1
|
Ijeabuonwu AM, Bernatoniene J, Pranskuniene Z. Medicinal Plants Used to Treat Skin Diseases and for Cosmetic Purposes in Norway. PLANTS (BASEL, SWITZERLAND) 2024; 13:2821. [PMID: 39409691 PMCID: PMC11478695 DOI: 10.3390/plants13192821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
Skin diseases in Norway represents an important area of study due to their incidence and prevalence, yet ethnobotanical research in this context remains scarce. The aim of this study was to evaluate the knowledge of Norwegian traditional medicine regarding the treatment of skin diseases and cosmetic purposes through a comparative analysis with EMA monographs. Participants were surveyed using semi-structured interviews. The two samples comprised 22 individuals from Bodø and 26 individuals from other Norwegian communities, all of whom use medicinal plants for the treatment of skin diseases and cosmetic purposes. The indications for skin diseases identified in the study were compared with the European Union herbal monographs published by the European Medicines Agency. Fieldwork was conducted between June 2022 and September 2023, during which 42 plant species from 22 families were recorded. More than half of these plant species (65.38%) were used without European Medicines Agency-approved medical indications. From a public safety perspective, ensuring the safety of self-treatment for skin diseases is a critical research focus for future ethnobotanical studies.
Collapse
Affiliation(s)
- AmalaChukwu M. Ijeabuonwu
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania; (A.M.I.); (J.B.)
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania; (A.M.I.); (J.B.)
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Zivile Pranskuniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania; (A.M.I.); (J.B.)
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| |
Collapse
|
2
|
Ozturk RY, Cakir R. In vitro anticancer efficacy of Calendula Officinalis extract-loaded chitosan nanoparticles against gastric and colon cancer cells. Drug Dev Ind Pharm 2024:1-15. [PMID: 39269335 DOI: 10.1080/03639045.2024.2404143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE This study assessed the anticancer activities of calendula officinalis-loaded chitosan nanoparticles in gastric and colon cancer cells compared to fibroblast cells and examined the balance between ROS and antioxidants. METHODS Considering this information, we synthesized Calendula officinalis-loaded chitosan nanoparticles (CO-CSNPs) via the ionic gelation method. Their characterizations were carried out with ZetaSizer, UV-Vis, FTIR and SEM devices including size, morphology and surface zeta potential analysis, loading capacity, encapsulation efficiency, in vitro drug release, and chemical interactions. The anticancer activities of CO, CSNPs, and CO-CSNPs were tested against AGS, Caco-2, and normal NIH-3T3 cells using an XTT assay. The anticancer effects were evaluated with the DAPI staining, scratch assay, reactive oxygen species (ROS) detection and CUPRAC method on cellular and non-cellular processes that promote anticancer mechanisms. RESULTS Results showed that CO and CO-CNPs exhibited anticancer activity against AGS and Caco-2. Further, the formulation of CO with CSNPs enhanced the anticancer activity of CO while having no cytotoxicity on NIH-3T3. DAPI staining, scratch assay, ROS, and CUPRAC method confirmed the anticancer activity of CO and CO-CSNPs, which resulted in a reduction in the number of apoptotic cells, inhibited migration, triggered apoptotic pathway via ROS, and higher antioxidant activity. CONCLUSIONS The results of the study indicate that CO-CSNPs are a promising therapeutic formulation for gastric and colon cancer treatment. We consider that this study will lead to the investigation of molecular mechanisms of CO-CSNPs in cancer treatment and their investigation in clinical studies.
Collapse
Affiliation(s)
- Rabia Yilmaz Ozturk
- Department of Bioengineering, Graduate School Of Science And Engineering, Yildiz Technical University, Istanbul 34220, Turkey
- Turkey Biotechnology Institute, Health Institutes of Turkey (TUSEB), Istanbul 34718, Turkey
| | - Rabia Cakir
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey
- Turkey Biotechnology Institute, Health Institutes of Turkey (TUSEB), Istanbul 34718, Turkey
| |
Collapse
|
3
|
Raal A, Kaldmäe H, Kütt K, Jürimaa K, Silm M, Bleive U, Aluvee A, Adamson K, Vester M, Erik M, Koshovyi O, Nguyen KV, Nguyen HT, Drenkhan R. Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga ( Inonotus obliquus) Growing on Betula pendula and Betula pubescens. Pharmaceuticals (Basel) 2024; 17:1013. [PMID: 39204121 PMCID: PMC11357148 DOI: 10.3390/ph17081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Chaga mushroom (Inonotus obliquus) is a pathogenic fungus that grows mostly on birch species (Betula pendula Roth and B. pubescens Ehrh.) and has traditionally been used as an anticancer medicine. This study aimed to compare the chemical composition and cytotoxic activity of chagas growing on both Betula spp. on various cancer cell lines. The freeze-dried extracts contained triterpenes inotodiol, lanosterol betulin, and betulinic acid typical to conks growing on Betula species. The cytotoxic activity of chaga growing on Betula pendula and B. pubescens 80% ethanolic extracts against 31 human cancer cell lines was evaluated by a sulforhodamine B assay. Chaga extract showed moderate activity against all cancer cell lines examined; it did not result in high cytotoxicity (IC50 ≤ 20 µg/mL). The strongest inhibitions were observed with chaga (growing on B. pendula) extract on the HepG2 and CAL-62 cell line and with chaga (from B. pubescens) extract on the HepG2 cell line, with IC50 values of 37.71, 43.30, and 49.99 μg/mL, respectively. The chaga extracts from B. pendula exert somewhat stronger effects on most cancer cell lines studied than B. pubescens extracts, which can be attributed to a higher content of inotodiol in B. pendula extracts. This study highlights the potential of chaga as a source of bioactive compounds with selective anticancer properties. To the best of our knowledge, this study is the first investigation of the chemical composition of I. obliquus parasitizing on B. pubescens.
Collapse
Affiliation(s)
- Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Hedi Kaldmäe
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Karin Kütt
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Katrin Jürimaa
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Maidu Silm
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia;
| | - Uko Bleive
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Alar Aluvee
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Kalev Adamson
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Marili Vester
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | | | - Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Khan Viet Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City 530000, Vietnam; (K.V.N.); (H.T.N.)
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City 530000, Vietnam; (K.V.N.); (H.T.N.)
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| |
Collapse
|
4
|
Drif AI, Yücer R, Damiescu R, Ali NT, Abu Hagar TH, Avula B, Khan IA, Efferth T. Anti-Inflammatory and Cancer-Preventive Potential of Chamomile ( Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study. Biomedicines 2024; 12:1484. [PMID: 39062057 PMCID: PMC11275008 DOI: 10.3390/biomedicines12071484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AND AIM Chamomile tea, renowned for its exquisite taste, has been appreciated for centuries not only for its flavor but also for its myriad health benefits. In this study, we investigated the preventive potential of chamomile (Matricaria chamomilla L.) towards cancer by focusing on its anti-inflammatory activity. METHODS AND RESULTS A virtual drug screening of 212 phytochemicals from chamomile revealed β-amyrin, β-eudesmol, β-sitosterol, apigenin, daucosterol, and myricetin as potent NF-κB inhibitors. The in silico results were verified through microscale thermophoresis, reporter cell line experiments, and flow cytometric determination of reactive oxygen species and mitochondrial membrane potential. An oncobiogram generated through comparison of 91 anticancer agents with known modes of action using the NCI tumor cell line panel revealed significant relationships of cytotoxic chamomile compounds, lupeol, and quercetin to microtubule inhibitors. This hypothesis was verified by confocal microscopy using α-tubulin-GFP-transfected U2OS cells and molecular docking of lupeol and quercetin to tubulins. Both compounds induced G2/M cell cycle arrest and necrosis rather than apoptosis. Interestingly, lupeol and quercetin were not involved in major mechanisms of resistance to established anticancer drugs (ABC transporters, TP53, or EGFR). Performing hierarchical cluster analyses of proteomic expression data of the NCI cell line panel identified two sets of 40 proteins determining sensitivity and resistance to lupeol and quercetin, further pointing to the multi-specific nature of chamomile compounds. Furthermore, lupeol, quercetin, and β-amyrin inhibited the mRNA expression of the proinflammatory cytokines IL-1β and IL6 in NF-κB reporter cells (HEK-Blue Null1). Moreover, Kaplan-Meier-based survival analyses with NF-κB as the target protein of these compounds were performed by mining the TCGA-based KM-Plotter repository with 7489 cancer patients. Renal clear cell carcinomas (grade 3, low mutational rate, low neoantigen load) were significantly associated with shorter survival of patients, indicating that these subgroups of tumors might benefit from NF-κB inhibition by chamomile compounds. CONCLUSION This study revealed the potential of chamomile, positioning it as a promising preventive agent against inflammation and cancer. Further research and clinical studies are recommended.
Collapse
Affiliation(s)
- Assia I. Drif
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Tobias H. Abu Hagar
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Bharati Avula
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| |
Collapse
|
5
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
6
|
Santos SA, Amaral RG, Graça AS, Gomes SVF, Santana FP, de Oliveira IB, Andrade LN, Severino P, de Albuquerque-Júnior RLC, Santos SL, Souto EB, Carvalho AA. Antitumor Profile of Combined Matricaria recutita Flower Extract and 5-Fluorouracil Chemotherapy in Sarcoma 180 In Vivo Model. TOXICS 2023; 11:375. [PMID: 37112602 PMCID: PMC10141557 DOI: 10.3390/toxics11040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Medicinal plants have been commonly associated with chemotherapeutic treatments, as an approach to reduce the toxicological risks of classical anticancer drugs. The objective of this study was to evaluate the effects of combining the antineoplastic drug 5-fluorouracil (5-FU) with Matricaria recutita flowers extract (MRFE) to treat mice transplanted with sarcoma 180. Tumor inhibition, body and visceral mass variation, biochemical, hematological, and histopathological parameters were evaluated. The isolated 5-FU, 5-FU+MRFE 100 mg/kg/day, and 5-FU+MRFE 200 mg/kg/day reduced tumor growth; however, 5-FU+MRFE 200 mg/kg/day showed a more significant tumor reduction when compared to 5-FU alone. These results corroborated with the analysis of the tumor histopathological and immunodetection of the Ki67 antigen. In the toxicological analysis of the association 5-FU+MRFE 200 mg/kg/day, an intense loss of body mass was observed, possibly as a result of diarrhea. In addition, spleen atrophy, with a reduction in white pulp, leukopenia and thrombocytopenia, was observed in the 5-FU groups alone and associated with MRFE 200 mg/kg/day; however, there was no statistical difference between these groups. Therefore, the MRFE 200 mg/kg/day did not interfere in myelosuppressive action of 5-FU. In hematological analysis, body and visceral mass variation and biochemical parameters related to renal (urea and creatinine) and cardiac (CK-MB) function, no alteration was observed. In biochemical parameters related to liver function enzymes, there was a reduction in aspartate transaminase (AST) values in the 5-FU groups alone and associated with MRFE 200 mg/kg/day; however, there was no statistical difference between these groups. Therefore, the MRFE 200 mg/kg/day does not appear to influence enzyme reduction. The results of this study suggest that the association between the 5-FU+MRFE 200 can positively interfere with the antitumor activity, promoting the antineoplastic-induced reduction in body mass, while minimizing the toxicity of chemotherapy.
Collapse
Affiliation(s)
- Sara A. Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão CEP 49100-000, Brazil
| | - Ricardo G. Amaral
- Department of Physiology, Federal University of Sergipe, São Cristóvão CEP 49100-000, Brazil
| | - Ariel S. Graça
- Department of Physiology, Federal University of Sergipe, São Cristóvão CEP 49100-000, Brazil
| | - Silvana V. F. Gomes
- Institute de Technology and Research (ITP), Tiradentes University, Aracaju CEP 49100-000, Brazil
| | - Fabrício P. Santana
- Institute de Technology and Research (ITP), Tiradentes University, Aracaju CEP 49100-000, Brazil
| | - Iza B. de Oliveira
- Department of Medicine, Campus of Lagarto, Federal University of Sergipe, Lagarto CEP 49400-000, Brazil
| | - Luciana N. Andrade
- Department of Medicine, Campus of Lagarto, Federal University of Sergipe, Lagarto CEP 49400-000, Brazil
| | - Patrícia Severino
- Institute de Technology and Research (ITP), Tiradentes University, Aracaju CEP 49100-000, Brazil
| | | | - Sandra L. Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão CEP 49100-000, Brazil
| | - Eliana B. Souto
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Adriana A. Carvalho
- Department of Pharmacy, Campus of Lagarto, Federal University of Sergipe, Lagarto CEP 49400-000, Brazil
| |
Collapse
|
7
|
Milovanovic S, Grzegorczyk A, Świątek Ł, Grzęda A, Dębczak A, Tyskiewicz K, Konkol M. A Novel Strategy for the Separation of Functional Oils from Chamomile Seeds. FOOD BIOPROCESS TECH 2023; 16:1-16. [PMID: 37363382 PMCID: PMC9970133 DOI: 10.1007/s11947-023-03038-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
The main aim of this study was to evaluate the oils from chamomile seeds as a new source of bioactive compounds suitable for human consumption. A green extraction technique with supercritical carbon dioxide (sc-CO2) at pressures up to 450 bar and temperatures up to 60 °C was employed for the production of a high amount of biologically active oil. Additionally, exhausted waste material was re-extracted using sc-CO2 with the addition of ethanol. By optimization in operating pressure, temperature, production cost, fraction of milled seeds, and co-solvent addition, the amount of separated chamomile oil increased from 2.4 to 18.6% and the content of unsaturated fatty acids up to 88.7%. Oils contained α-bisabolol oxide A and B in amounts up to 1.4%. Linoleic acid was detected in an amount up to 711.1 mg/g and α-linolenic acid up to 27.5 mg/g. The total phenolic content in separated oil reached 80.4 mg GAE/g while the total flavonoid content reached 11.6 mg QE/g. The obtained chamomile oils showed antioxidant activity with an IC50 of up to 3.9 mg/mL. Among the 23 tested microorganisms, the antimicrobial activity of oils was the most pronounced against Gram-positive bacteria. The cytotoxic activity of oils was tested on normal and cancer-derived cell lines. Results indicated a significant potential for oil from chamomile seeds, produced in an eco-friendly manner, as a functional food. Supplementary Information The online version contains supplementary material available at 10.1007/s11947-023-03038-9.
Collapse
Affiliation(s)
- Stoja Milovanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
- Łukasiewicz Research Network- New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Agnieszka Grzegorczyk
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki Str, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, 1 Chodźki Str, 20-093 Lublin, Poland
| | - Anita Grzęda
- Łukasiewicz Research Network- New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Agnieszka Dębczak
- Łukasiewicz Research Network- New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Katarzyna Tyskiewicz
- Łukasiewicz Research Network- New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Marcin Konkol
- Łukasiewicz Research Network- New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| |
Collapse
|
8
|
Nakurte I, Berga M, Pastare L, Kienkas L, Senkovs M, Boroduskis M, Ramata-Stunda A. Valorization of Bioactive Compounds from By-Products of Matricaria recutita White Ray Florets. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020396. [PMID: 36679109 PMCID: PMC9861205 DOI: 10.3390/plants12020396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 05/27/2023]
Abstract
In this research, we have reported the valorization possibilities of Matricaria recutita white ray florets using supercritical fluid extraction (SFE) with CO2. Experiments were conducted at temperatures of 35-55 °C and separation pressures of 5-9 MPa to evaluate their impact on the chemical composition and biological activity of the extracts. The total obtained extraction yields varied from 9.76 to 18.21 g 100 g-1 DW input. The greatest extraction yield obtained was at 9 MPa separation pressure and 55 °C in the separation tank. In all obtained extracts, the contents of total phenols, flavonoids, tannins, and sugars were determined. The influence of the supercritical CO2 extraction conditions on the extract antioxidant capacity was evaluated using the quenching activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). The chemical composition of the extracts was identified using both gas and liquid chromatography-mass spectrometry methods, whereas analyses of major and minor elements as well as heavy metals by microwave plasma atomic emission spectrometer were provided. Moreover, extracts were compared with respect to their antimicrobial activity, as well as the cytotoxicity and phototoxicity of the extracts. The results revealed a considerable diversity in the phytochemical classes among all extracts investigated in the present study and showed that the Matricaria recutita white ray floret by-product possesses cytotoxic and proliferation-reducing activity in immortalized cell lines, as well as antimicrobial activity. To the best of our knowledge, this is the first paper presenting such comprehensive data on the chemical profile, antioxidant properties, and biological properties of SFE derived from Matricaria recutita white ray florets. For the first time, these effects have been studied in processing by-products, and the results generated in this study provide valuable preconditions for further studies in specific test systems to fully elucidate the mechanisms of action and potential applications, such as potential use in cosmetic formulations.
Collapse
Affiliation(s)
- Ilva Nakurte
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia
| | - Marta Berga
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia
| | - Laura Pastare
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia
| | - Liene Kienkas
- Field and Forest, SIA, 2 Izstades Str., Priekuli Parish, LV-4126 Cesis, Latvia
| | - Maris Senkovs
- Microbial Strain Collection of Latvia, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| | | | | |
Collapse
|
9
|
The Phytochemical Profile and Anticancer Activity of Anthemis tinctoria and Angelica sylvestris Used in Estonian Ethnomedicine. PLANTS 2022; 11:plants11070994. [PMID: 35406974 PMCID: PMC9003001 DOI: 10.3390/plants11070994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 01/07/2023]
Abstract
The aerial parts of Anthemis tinctoria L. and Angelica sylvestris L. and the roots of A. sylvestris have been used as traditional anticancer remedies in Estonian ethnomedicine. The aim of this study was to investigate content of essential oils (by gas chromatography) and polyphenolic compounds (using two different methods of high performance liquid chromatography–mass spectrometry (HPLC–MS)) of both plant species, as well as the in vitro anti-cancer effects of their essential oils and methanolic extracts. The average (n = 5 samples) yield of essential oils was 0.15%, 0.13%, and 0.17%, respectively. The principal compounds of the essential oil from the aerial parts of A. tinctoria were palmitic acid (15.3%), p-cymene (12.6%), and α-muurolene (12.5%), and α-pinene (45.4%), p-cymene (15.5%), and β-myrcene (13.3%) in aerial parts of A. sylvestris, while isocaryophyllene oxide (31.9%), α-bisabolol (17.5%), and α-pinene (12.4%) were the main constituents in the roots. The most abundant phenolic compounds in aerial parts were the derivatives of caffeic acid, quinic acid, and quercetin; the main compounds in roots of A. sylvestris were chlorogenic acid, quinic acid, and naringenin. The strongest anticancer effects were observed in essential oils of A. sylvestris roots and aerial parts on human carcinoma in the mouth cells (KB, IC50 19.73 μg/mL and 19.84 μg/mL, respectively). The essential oil of A. tinctoria showed a strong effect on KB and LNCaP cells (27.75–29.96 μg/mL). The methanolic extracts of both plants had no effect on the cancer cells studied.
Collapse
|
10
|
Yousefbeyk F, Hemmati G, Gholipour Z, Ghasemi S, Evazalipour M, Schubert C, Koohi DE, Böhm V. Phytochemical analysis, antioxidant, cytotoxic, and antimicrobial activities of golden chamomile ( Matricaria aurea (Loefl.) Schultz Bip). Z NATURFORSCH C 2022; 77:331-342. [PMID: 35231163 DOI: 10.1515/znc-2021-0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Matricaria aurea (Loefl.) Schultz Bip. (Asteraceae), known as golden chamomile, has been traditionally used for the treatment of various diseases. In this study, total phenolic, flavonoid, and tannin contents of total extract and different fractions of this plant were determined. The antioxidant, cytotoxic, and antimicrobial activities were also evaluated. Moreover, the phenolic profiles of selected fractions were determined by HPLC and LC-MS/MS analysis. Results demonstrated total phenolic contents of 37.8-57.2 mg GAE/g and total flavonoid contents of 3.0-111.2 mg QE/g. The ethyl acetate and methanol fractions (EF and MF) had the highest concentrations of phenolic, tannin, and flavonoid compounds. In both DPPH radical scavenging assay and phosphomolybdenum reduction assay, EF showed the best antioxidant activity, followed by MF. EF and MF indicated also the best antibacterial activities against Bacillus subtilis (MIC 1.56 and 12.5 mg ml-1) and Staphylococcus aureus (MIC 0.78 and 12.5 mg ml-1). Hexane fraction (HF) had no antibacterial effect. None of the samples had antifungal effect. MTT (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed for EF and HF the highest antiproliferative activities (IC50 values ranged from 111.8 to 294.6 μg ml-1). The presence of chlorogenic acid, ferulic acid, and luteolin-7-O-glucoside in MF, and p-coumaric acid in EF was confirmed and quantified.
Collapse
Affiliation(s)
- Fatemeh Yousefbeyk
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ghazaleh Hemmati
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ziba Gholipour
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Clara Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Diba E Koohi
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Volker Böhm
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
11
|
The Potential of Dietary Antioxidants from a Series of Plant Extracts as Anticancer Agents against Melanoma, Glioblastoma, and Breast Cancer. Antioxidants (Basel) 2021; 10:antiox10071115. [PMID: 34356348 PMCID: PMC8301026 DOI: 10.3390/antiox10071115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/24/2023] Open
Abstract
In modern society, cancer is one of the most relevant medical problems. It is important to search for promising plant raw materials whose extracts have strong antioxidant and anticancer effects. The aim of this study was to determine the composition of phenolic compounds in plant extracts, to evaluate their antioxidant and anticancer activity, and to find the correlations between those activities. Extracts of calendula, sage, bearberry, eucalyptus, yarrow, and apple were selected for the study. The phenolic compounds of these extracts were determined by the UPLC-ESI-MS/MS method and the antioxidant activity was evaluated in vitro by four different UV-VIS spectrophotometric methods (ABTS, DPPH, CUPRAC, FRAP). The anticancer activity of extracts was tested against melanoma IGR39, glioblastoma U-87, and triple-negative breast cancer MDA-MB-231 cell lines in vitro by MTT assay. The highest content of identified and quantified phenolic compounds was found in sage leaf extract and the lowest in ethanol eucalyptus leaf extract. The highest antioxidant activity was determined by all applied methods for the acetone eucalyptus leaf extract. The majority of extracts were mostly active against the melanoma IGR39 cell line, and possessed the lowest activity against the glioblastoma U-87 cell line. Acetone extract of eucalyptus leaf samples exhibited the highest anticancer activity against all tested cell lines. Strong and reliable correlation has been found between antioxidant and anticancer activity in breast cancer and glioblastoma cell lines, especially when evaluating antioxidant activity by the FRAP method.
Collapse
|
12
|
Tuzimski T, Petruczynik A, Plech T, Kaproń B, Makuch-Kocka A, Szultka-Młyńska M, Misiurek J, Buszewski B. Determination of Cytotoxic Activity of Sanguinaria canadensis Extracts against Human Melanoma Cells and Comparison of Their Cytotoxicity with Cytotoxicity of Some Anticancer Drugs. Molecules 2021; 26:molecules26061738. [PMID: 33804614 PMCID: PMC8003779 DOI: 10.3390/molecules26061738] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/30/2022] Open
Abstract
Melanoma is an enormous global health burden, and should be effectively addressed with better therapeutic strategies. Therefore, new therapeutic agents are needed for the management of this disease. The aim of this study was the investigation of cytotoxic activity of some isoquinoline alkaloid standards and extracts obtained from Sanguinaria canadensis—collected before, during, and after flowering—against three different human melanoma cells (A375, G361, SK-MEL-3). The cytotoxicity of these extracts was not previously tested on these melanoma cell lines. Determination of alkaloid contents was performed by HPLC-DAD using Polar RP column and mobile phase containing acetonitrile, water, and 1-butyl-3-methylimidazolium tetrafluoroborate. The cytotoxicity of alkaloid standards was investigated by determination of cell viability and calculation of IC50 values. Significant differences were observed in the alkaloids content and cytotoxic activity of the extracts, depending on the season of collection of the plant material. In the Sanguinaria canadensis extracts high contents of sanguinarine (from 4.8543 to 9.5899 mg/g of dry plant material) and chelerythrine (from 42.7224 to 6.8722 mg/g of dry plant material) were found. For both of these alkaloids, very high cytotoxic activity against the tested cell lines were observed. The IC50 values were in the range of 0.11–0.54 µg/mL for sanguinarine and 0.14 to 0.46 µg/mL for chelerythrine. IC50 values obtained for Sanguinaria canadensis extracts against all tested cell lines were also very low (from 0.88 to 10.96 µg/mL). Cytotoxic activity of alkaloid standards and Sanguinaria canadensis extracts were compared with the cytotoxicity of anticancer drugs—etoposide, cisplatin, and hydroxyurea. In all cases except the one obtained for cisplatin against A375, which was similar to that obtained for Sanguinaria canadensis after flowering against the same cell line, IC50 values obtained for anticancer drugs were higher than the IC50 values obtained for sanguinarine, chelerythrine, and Sanguinaria canadensis extracts. Our results showed that Sanguinaria canadensis extracts and isoquinoline alkaloids, especially sanguinarine and chelerythrine, could be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of human melanomas.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.)
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
- Correspondence: (T.T.); (A.P.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (T.P.); (A.M.-K.)
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (T.P.); (A.M.-K.)
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland; (M.S.-M.); (B.B.)
| | - Justyna Misiurek
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland; (M.S.-M.); (B.B.)
| |
Collapse
|
13
|
El Joumaa MM, Taleb RI, Rizk S, Borjac JM. Protective effect of Matricaria chamomilla extract against 1,2-dimethylhydrazine-induced colorectal cancer in mice. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 17:jcim-2019-0143. [PMID: 32229665 DOI: 10.1515/jcim-2019-0143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022]
Abstract
Background Colorectal cancer (CRC) is a major public health problem, with almost 1.8 million newly diagnosed cases and about 881,000 deaths annually. Chamomile (Matricaria chamomilla) is a well-documented medicinal herb that possesses anti-inflammatory and anti-carcinogenic properties. This study aimed to unravel the effect of aqueous chamomile extract against 1,2-dimethylhydrazine(DMH)-induced CRC in mice. Methods Male Balb/c mice received a weekly intraperitoneal injection of DMH (20 mg/kg body weight) for 12 weeks. Chamomile extract (150 mg/kg body weight/5 days/week p.o.) was administered at the initiation and post-initiation stages of carcinogenesis. Polyps count, histopathological analysis, real-time polymerase chain reaction (RT-PCR) analysis of Wnt signaling genes, ELISA of cyclooxygenase-2 (COX-2), and enzyme assay for inducible nitric oxide synthase (iNOS) were performed. Results Chamomile extract modulated the Wnt pathway in colonic tissues, where it significantly downregulated Wnt5a, β-catenin, T cell factor (Tcf4), lymphoid enhancer factor 1 (Lef1), c-Myc and Cyclin D1 expression levels, while it upregulated adenomatous polyposis coli (APC) and glycogen synthase kinase (GSK3β) expression levels. This extract significantly reduced COX-2 levels and iNOS activities. Polyps count and histopathological analysis provided supportive evidence for the biochemical and molecular analyses. Conclusions Chamomile can act as a potent dietary chemopreventive agent against DMH-induced CRC.
Collapse
Affiliation(s)
- Manal M El Joumaa
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Robin I Taleb
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Jamilah M Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| |
Collapse
|
14
|
Effect of Different Green Extraction Methods and Solvents on Bioactive Components of Chamomile ( Matricaria chamomilla L.) Flowers. Molecules 2020; 25:molecules25040810. [PMID: 32069890 PMCID: PMC7070460 DOI: 10.3390/molecules25040810] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Chamomile (Matricaria chamomilla L.) dried flowers contain a group of interesting biologically active compounds such as sesquiterpenes, flavonoids, coumarins, vitamins, phenolic acids and glucosides. Therefore, the aim of the present study was to characterize the composition in bioactive compounds (specialized metabolites) present in water and ethanol extracts of chamomile flowers, together with monitoring the impact of different extraction techniques (conventional vs. ultrasound-assisted extraction (UAE)) on the parameters under investigation. UAE treatment significantly decreased the extraction time of bioactive compounds from herbal material. Polyphenolic compounds content and antioxidant capacity were significantly higher in UAE extracts. Moreover, solvent type had a significant impact on the specialized metabolites content, while the highest vitamin C and polyphenols content were recorded in 50% ethanol (v/v) extracts. Optimization of basic extraction factors: solvent type, temperature and technique is crucial for obtaining the extracts with the highest content of specialized metabolites and antioxidant capacity.
Collapse
|
15
|
Botanical Therapeutics: Phytochemical Screening and Biological Assessment of Chamomile, Parsley and Celery Extracts against A375 Human Melanoma and Dendritic Cells. Int J Mol Sci 2018; 19:ijms19113624. [PMID: 30453564 PMCID: PMC6274727 DOI: 10.3390/ijms19113624] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023] Open
Abstract
Chamomile, parsley, and celery represent major botanical sources of apigenin, a well-known flavone with chemopreventive properties. The aim of this study was to assess the phytochemical composition, antioxidant, and anti-inflammatory potential of methanol extracts obtained from chamomile, parsley, and celery collected from Romania, as well as the biological activity against A375 human melanoma and human dendritic cells. Results have shown that all three extracts are rich in polyphenolic compounds and flavonoids, and they generate a radical scavenger capacity, iron chelation potential, as well as lipoxygenase inhibition capacity. Chamomile and celery extracts present weak antiproliferative and pro-apoptotic properties in the set experimental conditions, while parsley extract draws out significant pro-apoptotic potential against A375 human melanoma cells. Parsley and chamomile extracts affected the fibroblast-like morphology of the screened tumor cell line. On the other hand, chamomile and celery extracts abrogated the expansion of LPS-activated dendritic cells, while the metabolic activity was attenuated by stimulation with celery extract; chamomile and parsley extracts had no effect upon this parameter. Chamomile and parsley extracts incubation with naive dendritic cells did not trigger cytokine secretion (TNF-alpha, IL-6, IL-10), but celery extract stimulation significantly reduced the anti-inflammatory, cytokine IL-10.
Collapse
|