1
|
Roalsø ES, Klonteig S, Kraft B, Skarstein S, Hilland E, Mirtaheri P, Aalberg M, Jonassen R. Over-the-counter analgesic usage: associations with attentional biases in young women. Behav Pharmacol 2024; 35:453-459. [PMID: 39373169 DOI: 10.1097/fbp.0000000000000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The use of over-the-counter analgesics (OTCA) has been found to alter various aspects of emotional processing and has been linked to increased anxiety and depression symptoms. Attentional bias is an aspect of emotional processing that is closely related to anxiety and depression. Although OTCA and attentional bias have both been linked to anxiety and depression, the potential links between OTCA usage and attentional bias are not yet investigated. The present study aimed to determine whether the frequency of OTCA usage is associated with differences in attentional bias by comparing response-based measures of attentional bias in 62 women aged 19-30 years. The findings showed that the small group reporting high OTCA usage demonstrated more orientation avoidance to fearful stimuli than those reporting no or low usage. Based on these preliminary findings, further research on attentional bias and its relationship to high OTCA usage is recommended.
Collapse
Affiliation(s)
| | - Sandra Klonteig
- Faculty of Technology, Art and Design, Advanced Health Intelligence and Brain-Inspired Technologies (ADEPT), Oslo Metropolitan University
| | - Brage Kraft
- Faculty of Health Sciences
- Division of Psychiatry, Diakonhemmet Hospital, Oslo
| | | | | | - Peyman Mirtaheri
- Faculty of Technology, Art and Design, Advanced Health Intelligence and Brain-Inspired Technologies (ADEPT), Oslo Metropolitan University
| | - Marianne Aalberg
- Division of Mental Health Services, Akershus University Hospital, Akershus, Norway
| | | |
Collapse
|
2
|
Kang D, Ahn YY, Moon HB, Kim K, Jeon J. Exploring micropollutants in polar environments based on non-target analysis using LC-HRMS. MARINE POLLUTION BULLETIN 2024; 209:117083. [PMID: 39393234 DOI: 10.1016/j.marpolbul.2024.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
The routine use of chemicals in polar regions contributes to unexpected occurrence of micropollutants, with sewage discharge as a prominent pollution source. The aim of this study was to identify and quantify micropollutants in polar environments near potential point sources using non-target analysis (NTA) with liquid chromatography high-resolution mass spectrometry. Seawater samples were collected from Ny-Ålesund, Svalbard and Marian Cove, King George Island, in 2023. We tentatively identified 32 compounds with NTA, along with 105 homologous series substances. Of these, 18 substances were confirmed, and 13 were quantified using the internal standard method. Most quantified substances in the Ny-Ålesund, including caffeine, naproxen, and polyethylene glycols (PEGs), exhibited concentrations ranged from 0.9 to 770,000 ng/L. In Marian Cove, the analysis predominantly detected acetaminophen, with concentrations ranging from 13 to 35 ng/L. The findings underscore the presence and spatial distribution of emerging micropollutants resulting from wastewater discharge in polar regions.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Science, University of Science of Technology (UST), Incheon 21990, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea.
| |
Collapse
|
3
|
Mahagna AA, Annunziata S, Torriani C, Jannelli E, Mascia B, Montagna A, Mosconi M, Mattia C, Pasta G. Perioperative Pain Management in Hemophilic Patient Undergoing Orthopedic Surgery: A Narrative Review. Healthcare (Basel) 2024; 12:2007. [PMID: 39408188 PMCID: PMC11475796 DOI: 10.3390/healthcare12192007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Hemophilia type A and B is associated with spontaneous bleeding in muscle tissues and joints. Acute hemarthrosis, representing 70-80% of all bleedings in severe hemophilia patients, is extremely painful. When surgical procedures are needed in hemophiliac patients, perioperative management should be planned with a multidisciplinary team. Our narrative review, through a rigorous analysis of the current literature, focuses on pain management in hemophiliac patients. METHODS The report synthesizes a literature review on hemophilia, adapting PRISMA guidelines. It identifies a research question on surgical procedures and perioperative pain management. Various sources, including electronic databases, are utilized. Study inclusion criteria are defined based on the research question. Forty studies are included. A detailed study selection is illustrated. RESULTS Guidelines for managing acute postoperative pain in the general population advocate for a multimodal analgesic administration to enhance synergistic benefits, reduce opioid requirements, and minimize side effects. Recent recommendations from the World Federation of Hemophilia (WFH) for postoperative pain management in hemophilia patients suggest tailoring treatment based on pain levels, in coordination with anesthesiologists. CONCLUSIONS Pain management in hemophiliac patients undergoing orthopedic interventions requires a multidisciplinary approach, with further research needed to define a reliable global standard of treatment.
Collapse
Affiliation(s)
- Antonio Abed Mahagna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Salvatore Annunziata
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Camilla Torriani
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Eugenio Jannelli
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Benedetta Mascia
- Division of Anesthesiology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Alice Montagna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Consalvo Mattia
- Division of Anesthesiology, Intensive Care and Pain Medicine, ICOT Polo Pontino, Sapienza University of Rome, 04100 Rome, Italy
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
4
|
Khamees Thabet H, Ragab A, Imran M, Helal MH, Ibrahim Alaqel S, Alshehri A, Ash Mohd A, Rakan Alshammari M, S Abusaif M, A Ammar Y. Discovery of new anti-diabetic potential agents based on paracetamol incorporating sulfa-drugs: Design, synthesis, α-amylase, and α-glucosidase inhibitors with molecular docking simulation. Eur J Med Chem 2024; 275:116589. [PMID: 38878516 DOI: 10.1016/j.ejmech.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Uncontrolled diabetes can lead to hyperglycemia, which causes neuropathy, heart attacks, retinopathy, and nervous system damage over time, therefore, controlling hyperglycemia using potential drug target inhibitors is a promising strategy. This work focused on synthesizing new derivatives via the diazo group, using a hybridization strategy involving two approved drugs, paracetamol and several sulfonamides. The newly designed diazo-paracetamols 5-12 were fully characterized and then screened for in vitro α-amylase and α-glucosidase activities and exhibited inhibitory percentages (IP) = 92.5-96.5 % and 91.0-95.7 % compared to Acarbose IP = 96.5 and 95.8 %, respectively at 100 μg/mL. The IC50 values of the synthesized derivatives were evaluated against α-amylase and α-glucosidase enzymes, and the results demonstrated moderate to potent activity. Among the tested diazo-paracetamols, compound 11 was found to have the highest potency activity against α-amylase with IC50 value of 0.98 ± 0.015 μM compared to Acarbose IC50 = 0.43 ± 0.009 μM, followed by compound 10 (IC50 = 1.55 ± 0.022 μM) and compound 9 (IC50 = 1.59 ± 0.023 μM). On the other hand, for α-glucosidase, compound 10 with pyrimidine moiety demonstrated the highest inhibitory activity with IC50 = 1.39 ± 0.021 μM relative to Acarbose IC50 = 1.24 ± 0.029 μM and the order of the most active derivatives was 10 > 9 (IC50 = 2.95 ± 0.046 μM) > 11 (IC50 = 5.13 ± 0.082 μM). SAR analysis confirmed that the presence of 4,5-dimethyl-isoxazole or pyrimidine nucleus attached to the sulfonyl group is important for activity. Finally, the docking simulation was achieved to determine the mode of binding interactions for the most active derivatives in the enzyme's active site.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam, 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Malek Rakan Alshammari
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
5
|
Shahramian I, Jahanpanah A, Rashki N, Shiehzadeh F, Hamedi-Shahraki S, Ostadrahimi P, Tahani M, Moradi M. Rectal versus intravenous administration of acetaminophen; Clinical investigation of plasma level, analgesic, and antipyretic effects on 6-month to 6-year-old children in Zabol city, Iran. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:898-904. [PMID: 38759885 DOI: 10.1016/j.pharma.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVES Acetaminophen is the most widely antipyretic analgesic medicine used in adults and children worldwide. Rectal acetaminophen is widely used in children who resist or cannot take oral medications. This study was designed to compare the efficacy of rectal and IV acetaminophen in children with fever and mild to moderate pain. PATIENTS AND METHODS Total 60 children aged six months to 6 years, with fever and pain, that were treated with rectal or intravenous acetaminophen were selected and assigned in two groups. The IV group received 10mg/kg paracetamol as an IV infusion, and the rectal group received a 15mg/kg dose immediately after admission. Pain score was calculated using the FLACC method, and the axillary temperature was recorded at baseline and then 0.5, 1, 2, 4, and 6hours after drug administration. Blood samples were collected at baseline and then at 30min-intervals for the first 90minutes. RESULTS The trend of changes in mean pain score at different time intervals was significantly different between the two groups. Body temperature decrease was more prominent in the IV group. The plasma concentration increased in both groups significantly with time. This increase was sharper in the IV group, just in the first 60minutes after drug administration. CONCLUSIONS IV acetaminophen has more rapid onset of action, while rectal dosage form control fever and pain for longer duration. Considering its favorable effects with ease of administration and lower cost, rectal acetaminophen can be a reasonable option in selected patients with pain or fever.
Collapse
Affiliation(s)
- Iraj Shahramian
- Shiraz Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Anita Jahanpanah
- Student Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Rashki
- Student Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Farideh Shiehzadeh
- Department of Pharmaceutics, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, Faculty of public health, Zabol University of Medical Sciences, Zabol, Iran
| | - Pouya Ostadrahimi
- Pediatric Gastroenterology and Hepatology Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Masoud Tahani
- Pediatric Gastroenterology and Hepatology Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Mandana Moradi
- Department of Clinical Pharmacy, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.
| |
Collapse
|
6
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Therapeutic Implication of miRNAs as an Active Regulatory Player in the Management of Pain: A Review. Genes (Basel) 2024; 15:1003. [PMID: 39202362 PMCID: PMC11353898 DOI: 10.3390/genes15081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic pain is frequently associated with neuropathy, inflammation, or the malfunctioning of nerves. Chronic pain is associated with a significant burden of morbidity due to opioid use, associated with addiction and tolerance, and disability. MicroRNAs (miRs) are emerging therapeutic targets to treat chronic pain through the regulation of genes associated with inflammation, neuronal excitability, survival, or de-differentiation. In this review, we discuss the possible involvement of miRs in pain-related molecular pathways. miRs are known to regulate high-conviction pain genes, supporting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Jahan MN, Alam MA, Rahman MM, Hoque SM, Ahmad H. Mesoporous Fe 3O 4/SiO 2/poly(2-carboxyethyl acrylate) composite polymer particles for pH-responsive loading and targeted release of bioactive molecules. RSC Adv 2024; 14:23560-23573. [PMID: 39071478 PMCID: PMC11276395 DOI: 10.1039/d4ra03160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
pH-responsive polymer microspheres undergoing reversible changes in their surface properties have been proved useful for drug delivery to targeted sites. This paper is aimed at preparing pH-responsive polymer-modified magnetic mesoporous SiO2 particles. First, mesoporous magnetic (Fe3O4) core-particles are prepared using a one-pot solvothermal method. Then, magnetic Fe3O4 particles are covered with a C[double bond, length as m-dash]C functional mesoporous SiO2 layer before seeded emulsion polymerization of 2-carboxyethyl acrylate (2-CEA). The composite polymer particles are named Fe3O4/SiO2/P(2-CEA). The average diameters of the Fe3O4 core and Fe3O4/SiO2/P(2-CEA) composite polymer particles are 414 and 595 nm, respectively. The mesoporous (pore diameter = 3.41 nm) structure of Fe3O4/SiO2/P(2-CEA) composite polymer particles is confirmed from Brunauer-Emmett-Teller (BET) surface analysis. The synthesized Fe3O4/SiO2/P(2-CEA) composite polymer exhibited pH-dependent changes in volume and surface charge density due to deprotonation of the carboxyl group under alkaline pH conditions. The change in the surface properties of Fe3O4/SiO2/P(2-CEA) composite polymer particles following pH change is confirmed from the pH-dependent sorption of cationic methylene blue (MB) and anionic methyl orange (MO) dye molecules. The opening of the pH-responsive P(2-CEA) gate valve at pH 10.0 allowed the release of loaded vancomycin up to 99% after 165 min and p-acetamido phenol (p-AP) up to 46% after 225 min. Comparatively, the amount of release is lower at pH 8.0 but still suitable for drug delivery applications. These results suggested that the mesoporous Fe3O4/SiO2 composite seed acted as a microcapsule, while P(2-CEA) functioned as a gate valve across the porous channel. The prepared composite polymer can therefore be useful for treating intestine/colon cancer, where the pH is comparatively alkaline.
Collapse
Affiliation(s)
- Most Nusrat Jahan
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Ashraful Alam
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Mahabur Rahman
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
- Department of Chemistry, Pabna University of Science and Technology 6600 Pabna Bangladesh
| | - S Manjura Hoque
- Materials Science Division, Bangladesh Atomic Energy Commission Dhaka Bangladesh
| | - Hasan Ahmad
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| |
Collapse
|
8
|
Jagtap YA, Kumar P, Dubey AR, Kinger S, Choudhary A, Karmakar S, Lal G, Kumar A, Kumar A, Prasad A, Mishra A. Acetaminophen induces mitochondrial apoptosis through proteasome dysfunctions. Life Sci 2024; 349:122732. [PMID: 38768775 DOI: 10.1016/j.lfs.2024.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Acetaminophen is a known antipyretic and non-opioid analgesic for mild pain and fever. Numerous studies uncover their hidden chemotherapeutics applications, including chronic cancer pain management. Acetaminophen also represents an anti-proliferative effect in some cancer cells. Few studies also suggest that the use of Acetaminophen can trigger apoptosis and impede cellular growth. However, Acetaminophen's molecular potential and precise mechanism against improper cellular proliferation and use as an effective anti-proliferative agent still need to be better understood. Here, our current findings show that Acetaminophen induces proteasomal dysfunctions, resulting in aberrant protein accumulation and mitochondrial abnormalities, and consequently induces cell apoptosis. We observed that the Acetaminophen treatment leads to improper aggregation of ubiquitylated expanded polyglutamine proteins, which may be due to the dysfunctions of proteasome activities. Our in-silico analysis suggests the interaction of Acetaminophen and proteasome. Furthermore, we demonstrated the accumulation of proteasome substrates and the depletion of proteasome activities after treating Acetaminophen in cells. Acetaminophen induces proteasome dysfunctions and mitochondrial abnormalities, leading to pro-apoptotic morphological changes and apoptosis successively. These results suggest that Acetaminophen can induce cell death and may retain a promising anti-proliferative effect. These observations can open new possible molecular strategies in the near future for developing and designing specific and effective proteasome inhibitors, which can be helpful in conjugation with other anti-tumor drugs for their better efficiency.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Surojit Karmakar
- National Centre for Cell Science (NCCS), Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
9
|
Liu J, Cao Q, Zeng J, Liang X. Efficacy of intravenous acetaminophen on postoperative shivering: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e38710. [PMID: 38996153 PMCID: PMC11245272 DOI: 10.1097/md.0000000000038710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
PURPOSE Postoperative shivering (POS) is a common and vital complication after anesthesia, which may result in serious consequences and uncomfortable experiences. Acetaminophen has been used to treat fever and mild to moderate pain. However, there is not enough evidence to prove its advantage for POS. This meta-analysis aimed to explore the prophylactic use of acetaminophen as a valid agent for POS. METHODS Two researchers independently searched PubMed, the Cochrane Library, and Embase for controlled clinical trials. The meta-analysis of randomized controlled trials (RCTs) was performed by Review Manager. RESULTS Nine trials with 856 patients were included in our meta-analysis. Acetaminophen significantly reduced POS compared with placebo (pooled risk ratio [RR]: 0.43, 95% confidence interval [CI]: 0.35-0.52). What is more, not only 15 mg/kg but also 1000 mg intravenous acetaminophen could reduce the incidence of shivering compared with placebo. CONCLUSION Our present meta-analysis demonstrates that the intravenous prophylactic infusion of acetaminophen may prevent POS, and the results may provide new evidence to expand the clinical value of acetaminophen in addition to its routine usage.
Collapse
Affiliation(s)
- Jikai Liu
- School of Medicine, Jiangnan University, Wuxi, China
| | - Qian Cao
- School of Medicine, Jiangnan University, Wuxi, China
| | - Jinfang Zeng
- Department of Anesthesiology, Jiangnan University Medical Center, Wuxi, China
| | - Xiao Liang
- Department of Anesthesiology, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
10
|
Velikova T, Valkov H, Aleksandrova A, Peshevska-Sekulovska M, Sekulovski M, Shumnalieva R. Harnessing immunity: Immunomodulatory therapies in COVID-19. World J Virol 2024; 13:92521. [PMID: 38984079 PMCID: PMC11229839 DOI: 10.5501/wjv.v13.i2.92521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 06/24/2024] Open
Abstract
An overly exuberant immune response, characterized by a cytokine storm and uncontrolled inflammation, has been identified as a significant driver of severe coronavirus disease 2019 (COVID-19) cases. Consequently, deciphering the intricacies of immune dysregulation in COVID-19 is imperative to identify specific targets for intervention and modulation. With these delicate dynamics in mind, immunomodulatory therapies have emerged as a promising avenue for mitigating the challenges posed by COVID-19. Precision in manipulating immune pathways presents an opportunity to alter the host response, optimizing antiviral defenses while curbing deleterious inflammation. This review article comprehensively analyzes immunomodulatory interventions in managing COVID-19. We explore diverse approaches to mitigating the hyperactive immune response and its impact, from corticosteroids and non-steroidal drugs to targeted biologics, including anti-viral drugs, cytokine inhibitors, JAK inhibitors, convalescent plasma, monoclonal antibodies (mAbs) to severe acute respiratory syndrome coronavirus 2, cell-based therapies (i.e., CAR T, etc.). By summarizing the current evidence, we aim to provide a clear roadmap for clinicians and researchers navigating the complex landscape of immunomodulation in COVID-19 treatment.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Hristo Valkov
- Department of Gastroenterology, University Hospital “Tsaritsa Yoanna-ISUL”, Medical University of Sofia, Sofia 1527, Bulgaria
| | | | - Monika Peshevska-Sekulovska
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | - Russka Shumnalieva
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Rheumatology, Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Medical University-Sofia, Sofia 1612, Bulgaria
| |
Collapse
|
11
|
Geib R, Colacino E, Gremaud L. Sustainable Beckmann Rearrangement using Bead-Milling Technology: The Route to Paracetamol. CHEMSUSCHEM 2024; 17:e202301921. [PMID: 38353034 DOI: 10.1002/cssc.202301921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
To address the growing demand for more sustainable and greener chemistry, mechanochemical methodologies are emerging as key players. However, to date there has been little data highlighting the benefits of these rising mechanochemical technologies with regard to process scale-up activities or implementation in commercial production scale. Herein, we report the first application of bead-mill technology (Dyno®-mill) for the sustainable mechanochemical synthesis of Acetaminophen, known under the brand name Paracetamol. Using the Beckmann rearrangement, the optimized solvent-free methodology delivered a final product on a scale of several tens of grams. In comparison to current production solvent-based process, the proposed process achieves a higher yield while also allowing the removal of solvents in the chemical reaction, hereby reducing one of the extensive drivers to waste generation. The mechanochemical approach was compared to solvent-based process using a combination of green metrics and EcoScale score. The mechanochemical synthesis of paracetamol scores the highest for all the metrics over currently used solution-based processes.
Collapse
Affiliation(s)
- Romain Geib
- School of Engineering and Architecture of Fribourg, Department of Chemistry -, Institute of Chemical Technology, HES-SO University of Applied Sciences and Arts Western Switzerland, Boulevard de Pérolles, 80, 1700, Fribourg, Switzerland
| | | | - Ludovic Gremaud
- School of Engineering and Architecture of Fribourg, Department of Chemistry -, Institute of Chemical Technology, HES-SO University of Applied Sciences and Arts Western Switzerland, Boulevard de Pérolles, 80, 1700, Fribourg, Switzerland
| |
Collapse
|
12
|
Banupriya M, Manimekalai A, Umadevi M, Parimaladevi R, Sagadevan S. Ecologically sustainable removal of pharmaceuticals: A mechanistic study of bismuth sulfide-graphene oxide/silver nanocomposite. ENVIRONMENTAL RESEARCH 2024; 250:118482. [PMID: 38365056 DOI: 10.1016/j.envres.2024.118482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Bismuth sulfide nanoparticles (BiS NPs) were synthesized via the hydrothermal method, and reduced graphene oxide(rGO) and silver nanoparticles (Ag), which acted as substrates, have prepared using the chemical reduction method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy, and photoluminescence spectroscopy. Commercially available paracetamol-500 mg (PAM) and aspirin-300 mg (ASP) were selected for photodegradation under visible light using the as-prepared composites in an aqueous solution. Photoluminescence spectroscopy was used to detect PAM and ASP using the photo-excited electron transfer (PET) process, and the limit of detection (LOD) has obtained for PAM(8.70 ppm) and ASP(4.43 ppm) with a sensitivity of 0.9954 and 0.8002, respectively. Fourier transform infrared spectroscopy (FTIR) was used to analyze the before and after degradation products and to confirm the disintegrated products such as -COOH and -CH- both before and after disintegration.. The experimental data were found to fit well with the Freundlich isotherm, suggesting that the as-prepared nanocomposites exhibited a heterogeneous nature for PAM (5119 mg/L), and the pseudo-first-order kinetic model suggests ASP (1030 mg/L) with R2 values of 0.9119 and 0.7075. The risk assessment analysis of PAM was 9.823 μg/L(RQ > 1) and that of ASP was 0.2106 μg/L(RQ < 1), indicating that PAM has a higher potential risk than ASP. The demographic data of the participants indicated that PAM was the most stockpiled medicine at home; this work also encompasses the action of a single PAM and ASP tablet toward the environment, if it is accidently disposed of improperly could create massive water/soil pollution; hence, the care/duty of each person should follow the proper disposal of medical waste because we cannot replace this environment.
Collapse
Affiliation(s)
- M Banupriya
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624101, India
| | - A Manimekalai
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624101, India
| | - M Umadevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624101, India
| | - R Parimaladevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624101, India.
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Gao S, Wei G, Ma Q, Wang X, Wang S, Niu Y. Causal relationship between anti-inflammatory drugs and cancer: a pan-cancer study with Mendelian randomization. Front Genet 2024; 15:1392745. [PMID: 38854429 PMCID: PMC11156997 DOI: 10.3389/fgene.2024.1392745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Numerous epidemiological studies have elucidated the intricate connection between inflammation and cancer, highlighting how sustained inflammatory responses can fuel carcinogenesis by fostering proliferation, angiogenesis, and metastasis, while dampening immune responses and sensitivity to chemotherapy. Previous clinical investigations have underscored the potential of anti-inflammatory medications in either preventing or mitigating tumor formation. Here, the causal relationship between anti-inflammatory drugs and cancer was further explored through Mendelian randomization studies. Methods Employing Mendelian randomization, we scrutinized the causal links between three anti-inflammatory drugs-NSAIDs, Aspirin, and Anilide-and 37 types of cancer. We primarily utilized inverse variance weighting (IVW) as the primary analytical approach to delineate the causal association between these drugs and cancer types. Concurrently, sensitivity analyses were conducted to ascertain the absence of horizontal pleiotropy and heterogeneity. Results Our investigation revealed a discernible causal relationship between certain anti-inflammatory drugs and a subset of cancers, albeit without a pervasive impact across all cancer types. Specifically, NSAIDs exhibited a risk-reducing effect on non-small cell lung cancer (OR: 0.76, 95% CI: 0.59-0.97, p-value: 0.03) and gastric cancer (OR: 0.57, 95% CI: 0.34-0.98, p-value: 0.04). Conversely, aspirin was associated with an increased risk of oral malignant tumors (OR: 2.18, 95% CI: 1.13-4.21, p-value: 0.02). Notably, no statistically significant findings were observed for anilide drugs (p < 0.05). Conclusion We identified several cancers with potential causal links to NSAIDs, including non-small cell lung cancer and gastric cancer. Despite our extensive analysis, we did not identify a substantial causal relationship between the use of anti-inflammatory drugs and the development of various cancers.
Collapse
Affiliation(s)
- Shen Gao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guojiang Wei
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qianwang Ma
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Sen Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Govendir M, Vogelnest L, Shapiro AJ, Marschner C, Kimble B. Pharmacokinetic profile of oral and subcutaneous administration of paracetamol in the koala (Phascolarctos cinereus) and prediction of its analgesic efficacy. PLoS One 2024; 19:e0300703. [PMID: 38630750 PMCID: PMC11023281 DOI: 10.1371/journal.pone.0300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
The pharmacokinetic profile of paracetamol in koalas is described when administered orally at 15 mg/kg; followed by the same dose, administered every 12 hours (hrs), repeated five times. After the initial oral administration, the median (range) maximal plasma concentration (Cmax), the time Cmax was reached (Tmax) and elimination half-life (t1/2) were 16.93 μg/mL (13.66 to 20.25 μg/mL); 4 hrs (4 to 8 hrs) and 5.54 hrs (4.66 to 7.67 hrs), respectively. When paracetamol was administered orally at 15 mg/mL every 12 hrs, the trough total plasma concentration range remained comparable to the therapeutic range in humans i.e. 4 to 20 μg/mL that is known to provide some analgesia. However, there is a smaller proportion of free drug (i.e. not bound to plasma proteins; and the active form) available in koala plasma (approximately 40% unbound) compared to human plasma (approximately 80% unbound). Consequently, even when there are similar total drug plasma concentrations in both koala and human plasma, the therapeutic efficacy may be reduced in koalas compared to humans. The initial oral dose and subsequent twice daily doses resulted in no obvious adverse effects in any koala. Haematology, plasma electrolyte and biochemical analyte values remained within their reference ranges eight hrs after the last dose but there was a significant change in alanine transaminase (ALT) levels (an increase), and in total protein (a decrease) (both p = 0.03). A dose of 15 mg/kg was also administered as a subcutaneous injection, diluted 50:50 with saline, to two koalas. As the oral formulation and the subcutaneous administration resulted in comparable absorption, the study focused on the oral profile. Based on these results there is an argument to recommend a slight increase in the oral paracetamol dose for the koala, however further investigation is required to confirm whether repeated administration of a slightly higher dose may be associated with more severe or additional significant changes in haematology, electrolytes or biochemical analytes. However, a preferable recommendation would be to administer this dosage of paracetamol in combination with another analgesic such as tramadol, as a subcutaneous injection, to improve efficacy.
Collapse
Affiliation(s)
- Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Mosman, NSW, Sydney, Australia
| | - Amanda J. Shapiro
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Caroline Marschner
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Benjamin Kimble
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Griffard J, Kodadek LM. Management of Blunt Chest Trauma. Surg Clin North Am 2024; 104:343-354. [PMID: 38453306 DOI: 10.1016/j.suc.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Common mechanisms of blunt thoracic injury include motor vehicle collisions and falls. Chest wall injuries include rib fractures and sternal fractures; treatment involves supportive care, multimodal analgesia, and pulmonary toilet. Pneumothorax, hemothorax, and pulmonary contusions are also common and may be managed expectantly or with tube thoracostomy as indicated. Surgical treatment may be considered in select cases. Less common injury patterns include blunt trauma to the tracheobronchial tree, esophagus, diaphragm, heart, or aorta. Operative intervention is more often required to address these injuries.
Collapse
Affiliation(s)
- Jared Griffard
- Division of General Surgery, Trauma and Surgical Critical Care, Department of Surgery, Yale School of Medicine, 330 Cedar Street, Boardman Building 310, New Haven, CT 06510, USA
| | - Lisa M Kodadek
- Division of General Surgery, Trauma and Surgical Critical Care, Department of Surgery, Yale School of Medicine, 330 Cedar Street, Boardman Building 310, New Haven, CT 06510, USA.
| |
Collapse
|
16
|
Kouznetsov VV. Exploring acetaminophen prodrugs and hybrids: a review. RSC Adv 2024; 14:9691-9715. [PMID: 38525062 PMCID: PMC10958773 DOI: 10.1039/d4ra00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
This critical review highlights the advances in developing new molecules for treating pain syndrome, an important issue for human health. Acetaminophen (APAP, known as paracetamol) and nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used in clinical practice despite their adverse effects. Research is being conducted to develop innovative drugs with improved pharmaceutical properties to mitigate these effects. A more practical way to achieve that is to study well-known and time-tested drugs in their molecular combinations. Accordingly, the present work explores APAP and their combined chemical entities, i.e., prodrugs (soft drugs), codrugs (mutual prodrugs), and hybrids. Due to their molecular structure, APAP prodrugs or codrugs could be considered merged or conjugated hybrids; all these names are very fluid terms. This article proposed a structural classification of these entities to better analyze their advances. So, the following: carrier-linked O-modified APAP, -linked N-modified APAP derivatives (prodrugs), and direct- and spacer-N,O-linked APAP hybrids (codrugs) are the central parts of this review and are examined, especially ester and amide NSAID-APAP molecules. The C-linked APAP and nitric oxide (NO)-releasing APAP hybrids were also briefly discussed. Prime examples of APAP-based drugs such as propacetamol, benorylate, acetaminosalol, nitroparacetamol, and agent JNJ-10450232 weave well into this classification. The proposed classification is the first and original, giving a better understanding of the SAR studies for new pain relievers research and the design development for the analgesic APAP-(or NSAID)-based compounds.
Collapse
Affiliation(s)
- Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander Cl. 9 # Cra 27 A.A. 680006 Bucaramanga Colombia
| |
Collapse
|
17
|
Atif AN, Hatefi A, Arven A, Foroumadi A, Kadkhodaei S, Sadjadi A, Siavoshi F. Consumption of non-antibacterial drugs may have negative impact on Helicobacter pylori colonization in the stomach. Heliyon 2024; 10:e27327. [PMID: 38495192 PMCID: PMC10943393 DOI: 10.1016/j.heliyon.2024.e27327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Background Nineteen non-antibacterials were examined to show that their consumption for treatment of other diseases may inhibit Helicobacter pylori. Four antibiotics were used for comparison. Materials and methods Agar dilution method was used to examine the susceptibility of 20 H. pylori isolates to 4 antibiotics; metronidazole (MTZ), clarithromycin (CLR), amoxicillin (AMX), tetracycline (TET) and 19 non-antibacterials; proton pump inhibitors (PPIs), H2-blockers, bismuth subsalicylate (BSS), antifungals, statins, acetaminophen (ACE), aspirin (ASA), B-vitamins (B-Vits; Vit B1, Vit B6 and Vit Bcomplex) and vitamin C (Vit C). Blood agar plates were prepared with different concentrations of drugs and spot-inoculated with bacterial suspensions. Plates were incubated at 37 °C under microaerobic conditions and examined after 3-5 days. The isolate #20 that was mucoid and resistant to 19 drugs, including MTZ and SMV was tested against combined MTZ (8 μg/mL) and SMV (100 μg/mL). Results were analyzed statistically. Results Minimum inhibitory concentrations (MICs, μg/mL) of drugs and the frequency of susceptible H. pylori were determined as MTZ (8, 80%), CLR (2, 90%), AMX (1, 100%), TET (0.5, 70%), PPIs (8-128, 80%), H2-blockers (2000-8000, 75-80%), BSS (15, 85%), antifungals (64-256, 30-80%), statins (100-250, 35-90%), ACE (40, 75%), ASA (800, 75%), B-Vits (5000-20000, 80-100%) and Vit C (2048, 85%). Susceptibility of H. pylori isolates to 16 out of 19 non-antimicrobials (75-100%) was almost similar to those of antibiotics (70-100%) (P-value >0.05). The highest susceptibility rate (100%) belonged to Vit B1, Vit B6 and AMX. Out of 20 H. pylori isolates, 17 (85%) were susceptible to ≥13 non-antimicrobials and 3 (15%) were susceptible to < 13 (P-value <0.05). Mucoid H. pylori showed susceptibility to combination of MTZ and SMV. Conclusions Most of non-antibacterials inhibited H. pylori isolates, similar to antibiotics but their MICs exceeded those of antibiotics and their plasma concentrations. At low plasma concentration, non-antimicrobials may act as weak antibacterials, antibiotic adjuvants and immunostimulators.
Collapse
Affiliation(s)
- Allah Nazar Atif
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
- Department of Biology, Faculty of Sciences, Nangarhar University, Jalalabad, Afghanistan
| | - Atousa Hatefi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Asadullah Arven
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
- Department of Biology, Faculty of Education, Daykundi University, Nilli, Afghanistan
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Kadkhodaei
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Alireza Sadjadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
Antila H, Lilius TO, Palada V, Lohela T, Bell RF, Porkka-Heiskanen T, Kalso E. Effects of commonly used analgesics on sleep architecture-A topical review. Pain 2024; 165:00006396-990000000-00539. [PMID: 38442410 PMCID: PMC11247456 DOI: 10.1097/j.pain.0000000000003201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Affiliation(s)
- Hanna Antila
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Finland
- Individualized Drug Therapy Research Program Unit, Faculty of Medicine, University of Helsinki, Finland
| | - Tuomas O. Lilius
- Individualized Drug Therapy Research Program Unit, Faculty of Medicine, University of Helsinki, Finland
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Finland
| | - Vinko Palada
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Finland
| | - Terhi Lohela
- Individualized Drug Therapy Research Program Unit, Faculty of Medicine, University of Helsinki, Finland
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Finland
| | - Rae F. Bell
- Regional Centre of Excellence in Palliative Care, Haukeland University Hospital, Bergen, Norway
| | | | - Eija Kalso
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Finland
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Finland
| |
Collapse
|
19
|
Vandy A, Conteh E, Lahai M, Kolipha-Kamara M, Marah M, Marah F, Suma KM, Mattia SC, Tucker KD, Wray VS, Koroma A, Lebbie AU. Physicochemical quality assessment of various brands of paracetamol tablets sold in Freetown Municipality. Heliyon 2024; 10:e25502. [PMID: 38356517 PMCID: PMC10865243 DOI: 10.1016/j.heliyon.2024.e25502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Paracetamol is a widely used over-the-counter drug for managing fever and pain, but its quality may vary among different brands, especially in low- and middle-income countries, where counterfeit and substandard medicines are prevalent. This study evaluated the physicochemical properties of fifteen brands of 500 mg paracetamol tablets sold in various pharmacies in Freetown, Sierra Leone using identification tests, friability tests, assay, dissolution tests, and mass variation. The results showed that three brands were not registered with the Pharmacy Board of Sierra Leone, and two brands did not meet the requirement for labelling (no manufacturing date). All the brands met the requirement for mass variation, friability tests and assays. The percentage assay of the different brands ranged from 96.17 %w/w to 101.97 %w/w. However, two brands did not meet the specification for dissolution, with P012 releasing about 21.23 % ± 5.76 of the drug within 45min. Most of the paracetamol brands evaluated met the physicochemical test specification. However, two brands failed the dissolution test, two brands did not meet the labelling requirement and three brands were identified as unregistered products with the National Medicines Regulatory Authority in Sierra Leone. This study underscores the necessity of enhancing monitoring and post-market surveillance of pharmaceuticals in Sierra Leone to ensure they comply with regulatory requirements.
Collapse
Affiliation(s)
- Ahmed Vandy
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Eugene Conteh
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Michael Lahai
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Marie Kolipha-Kamara
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Mohamed Marah
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Foday Marah
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Kadiatu M. Suma
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Sia C. Mattia
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Kenneth D.S. Tucker
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Victor S.E. Wray
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Abass Koroma
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| | - Aiah U. Lebbie
- Faculty of Pharmaceutical Sciences - College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone
| |
Collapse
|
20
|
Suárez J, de Ceglia M, Rodríguez-Pozo M, Vargas A, Santos I, Melgar-Locatelli S, Castro-Zavala A, Castilla-Ortega E, Rodríguez de Fonseca F, Decara J, Rivera P. Inhibition of Adult Neurogenesis in Male Mice after Repeated Exposure to Paracetamol Overdose. Int J Mol Sci 2024; 25:1964. [PMID: 38396643 PMCID: PMC10888347 DOI: 10.3390/ijms25041964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Paracetamol, or acetaminophen (N-acetyl-para-aminophenol, APAP), is an analgesic and antipyretic drug that is commonly used worldwide, implicated in numerous intoxications due to overdose, and causes serious liver damage. APAP can cross the blood-brain barrier and affects brain function in numerous ways, including pain signals, temperature regulation, neuroimmune response, and emotional behavior; however, its effect on adult neurogenesis has not been thoroughly investigated. We analyze, in a mouse model of hepatotoxicity, the effect of APAP overdose (750 mg/kg/day) for 3 and 4 consecutive days and after the cessation of APAP administration for 6 and 15 days on cell proliferation and survival in two relevant neurogenic zones: the subgranular zone of the dentate gyrus and the hypothalamus. The involvement of liver damage (plasma transaminases), neuronal activity (c-Fos), and astroglia (glial fibrillar acidic protein, GFAP) were also evaluated. Our results indicated that repeated APAP overdoses are associated with the inhibition of adult neurogenesis in the context of elevated liver transaminase levels, neuronal hyperactivity, and astrogliosis. These effects were partially reversed after the cessation of APAP administration for 6 and 15 days. In conclusion, these results suggest that APAP overdose impairs adult neurogenesis in the hippocampus and hypothalamus, a fact that may contribute to the effects of APAP on brain function.
Collapse
Affiliation(s)
- Juan Suárez
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain; (J.S.); (M.R.-P.); (I.S.)
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Marialuisa de Ceglia
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Miguel Rodríguez-Pozo
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain; (J.S.); (M.R.-P.); (I.S.)
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Antonio Vargas
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Ignacio Santos
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain; (J.S.); (M.R.-P.); (I.S.)
| | - Sonia Melgar-Locatelli
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Adriana Castro-Zavala
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Estela Castilla-Ortega
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, Instituto IBMA-Plataforma BIONAND, 29010 Málaga, Spain
| | - Juan Decara
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Patricia Rivera
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| |
Collapse
|
21
|
Castanho NRCM, de Marco N, Caetano ÉLA, Alves PLM, Pickler TB, Ibanez NLDA, Jozala AF, Grotto D. Exploring Bacterial Cellulose and a Biosurfactant as Eco-Friendly Strategies for Addressing Pharmaceutical Contaminants. Molecules 2024; 29:448. [PMID: 38257361 PMCID: PMC10818349 DOI: 10.3390/molecules29020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aquatic environments face contamination by pharmaceuticals, prompting concerns due to their toxicity even at low concentrations. To combat this, we developed an ecologically sustainable biosurfactant derived from a microorganism and integrated it into bacterial cellulose (BC). This study aimed to evaluate BC's efficacy, with and without the biosurfactant, as a sorbent for paracetamol and 17α-ethinylestradiol (EE2) in water. We cultivated BC membranes using Gluconacetobacter xylinus ATCC 53582 and synthesized the biosurfactant through pre-inoculation of Bacillus subtilis in a synthetic medium. Subsequently, BC membranes were immersed in the biosurfactant solution for incorporation. Experiments were conducted using contaminated water, analyzing paracetamol concentrations via spectrophotometry and EE2 levels through high-performance liquid chromatography. Results indicated BC's superior adsorption for EE2 over paracetamol. Incorporating the biosurfactant reduced hormone adsorption but enhanced paracetamol sorption. Notably, original and freeze-dried BC exhibited better adsorption efficacy than biosurfactant-infused BC. In conclusion, BC showed promise in mitigating EE2 contamination, suggesting its potential for environmental remediation. Future research could focus on optimizing biosurfactant concentrations to enhance sorption capabilities without compromising BC's inherent effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Angela Faustino Jozala
- Department of Pharmacy, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (N.R.C.M.C.); (N.d.M.); (É.L.A.C.); (P.L.M.A.); (T.B.P.); (N.L.d.A.I.)
| | - Denise Grotto
- Department of Pharmacy, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (N.R.C.M.C.); (N.d.M.); (É.L.A.C.); (P.L.M.A.); (T.B.P.); (N.L.d.A.I.)
| |
Collapse
|
22
|
Bai JQ, Li PB, Li CM, Li HH. N-arachidonoylphenolamine alleviates ischaemia/reperfusion-induced cardiomyocyte necroptosis by restoring proteasomal activity. Eur J Pharmacol 2024; 963:176235. [PMID: 38096967 DOI: 10.1016/j.ejphar.2023.176235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Necroptosis and apoptosis contribute to the pathogenesis of myocardial ischaemia/reperfusion (I/R) injury and subsequent heart failure. N-arachidonoylphenolamine (AM404) is a paracetamol lipid metabolite that has pleiotropic activity to modulate the endocannabinoid system. However, the protective role of AM404 in modulating I/R-mediated myocardial damage and the underlying mechanism remain largely unknown. A murine I/R model was generated by occlusion of the left anterior descending artery. AM404 (20 mg/kg) was injected intraperitoneally into mice at 2 and 24 h before the I/R operation. Our data revealed that AM404 administration to mice greatly ameliorated I/R-triggered impairment of myocardial performance and reduced infarct area, myocyte apoptosis, oxidative stress and inflammatory response accompanied by the reduction of receptor interacting protein kinase (RIPK)1/3- mixed lineage kinase domain-like (MLKL)-mediated necroptosis and upregulation of the immunosubunits (β2i and β5i). In contrast, administration of epoxomicin (a proteasome inhibitor) dramatically abolished AM404-dependent protection against myocardial I/R damage. Mechanistically, AM404 treatment increases β5i expression, which interacts with Pellino-1 (Peli1), an E3 ligase, to form a complex with RIPK1/3, thereby promoting their degradation, which leads to inhibition of cardiomyocyte necroptosis in the I/R heart. In conclusion, these findings demonstrate that AM404 could prevent cardiac I/R damage and may be a promising drug for the treatment of ischaemic heart disease.
Collapse
Affiliation(s)
- Jun-Qin Bai
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Pang-Bo Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chun-Min Li
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
23
|
Rodrigues K, Hussain R, Cooke S, Zhang G, Zhang D, Yin L, Tong X. Fructose as a novel nutraceutical for acetaminophen (APAP)-induced hepatotoxicity. METABOLISM AND TARGET ORGAN DAMAGE 2023; 3:20. [PMID: 39193224 PMCID: PMC11349303 DOI: 10.20517/mtod.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Acetaminophen (APAP) is the most widely used analgesic in the world. APAP overdose can cause severe hepatotoxicity and therefore is the most common cause of drug-induced liver injury. The only approved treatment for APAP overdose is N-acetyl-cysteine (NAC) supplementation. However, the narrow efficacy window of the drug severely limits its clinical use, prompting the search for other therapeutic options to counteract APAP toxicity. Recent research has pointed to fructose as a novel nutraceutical for APAP-induced liver injury. This review summarizes the current understanding of the molecular mechanisms underlying APAP-induced liver injury, introduces how fructose supplementation could prevent and treat APAP liver toxicity with a focus on the ChREBPα-FGF21 pathway, and proposes possible future directions of study.
Collapse
Affiliation(s)
- Kyle Rodrigues
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Rawdat Hussain
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Sarah Cooke
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Gary Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
24
|
Elmer J, Callaway CW. Temperature control after cardiac arrest. Resuscitation 2023; 189:109882. [PMID: 37355091 PMCID: PMC10530429 DOI: 10.1016/j.resuscitation.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Managing temperature is an important part of post-cardiac arrest care. Fever or hyperthermia during the first few days after cardiac arrest is associated with worse outcomes in many studies. Clinical data have not determined any target temperature or duration of temperature management that clearly improves patient outcomes. Current guidelines and recent reviews recommend controlling temperature to prevent hyperthermia. Higher temperatures can lead to secondary brain injury by increasing seizures, brain edema and metabolic demand. Some data suggest that targeting temperature below normal could benefit select patients where this pathology is common. Clinical temperature management should address the physiology of heat balance. Core temperature reflects the heat content of the head and torso, and changes in core temperature result from changes in the balance of heat production and heat loss. Clinical management of patients after cardiac arrest should include measurement of core temperature at accurate sites and monitoring signs of heat production including shivering. Multiple methods can increase or decrease heat loss, including external and internal devices. Heat loss can trigger compensatory reflexes that increase stress and metabolic demand. Therefore, any active temperature management should include specific pharmacotherapy or other interventions to control thermogenesis, especially shivering. More research is required to determine whether individualized temperature management can improve outcomes.
Collapse
Affiliation(s)
- Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Mulyasuryani A, Prananto YP, Fardiyah Q, Widwiastuti H, Darjito D. Application of Chitosan-Based Molecularly Imprinted Polymer in Development of Electrochemical Sensor for p-Aminophenol Determination. Polymers (Basel) 2023; 15:polym15081818. [PMID: 37111963 PMCID: PMC10144842 DOI: 10.3390/polym15081818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Molecularly Imprinted Polymers (MIPs) have specific recognition capabilities and have been widely used for electrochemical sensors with high selectivity. In this study, an electrochemical sensor was developed for the determination of p-aminophenol (p-AP) by modifying the screen-printed carbon electrode (SPCE) with chitosan-based MIP. The MIP was made from p-AP as a template, chitosan (CH) as a base polymer, and glutaraldehyde and sodium tripolyphosphate as the crosslinkers. MIP characterization was conducted based on membrane surface morphology, FT-IR spectrum, and electrochemical properties of the modified SPCE. The results showed that the MIP was able to selectively accumulate analytes on the electrode surface, in which MIP with glutaraldehyde as a crosslinker was able to increase the signal. Under optimum conditions, the anodic peak current from the sensor increased linearly in the range of 0.5-35 µM p-AP concentration, with sensitivity of (3.6 ± 0.1) µA/µM, detection limit (S/N = 3) of (2.1 ± 0.1) µM, and quantification limit of (7.5 ± 0.1) µM. In addition, the developed sensor exhibited high selectivity with an accuracy of (94.11 ± 0.01)%.
Collapse
Affiliation(s)
- Ani Mulyasuryani
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
| | - Yuniar Ponco Prananto
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
| | - Qonitah Fardiyah
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
| | - Hanandayu Widwiastuti
- Pharmaceutical and Food Analysis Department, Health Polytechnic, Jl. Besar Ijen 77C, Malang 65112, Indonesia
| | - Darjito Darjito
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
| |
Collapse
|
26
|
Mokhtari Z, Raeeszadeh M, Akradi L. Comparative Effect of the Active Substance of Thyme with N-Acetyl Cysteine on Hematological Parameters and Histopathological Changes of Bone Marrow and Liver in Rat Models of Acetaminophen Toxicity. Anal Cell Pathol (Amst) 2023; 2023:1714884. [PMID: 37056637 PMCID: PMC10089780 DOI: 10.1155/2023/1714884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Acetaminophen has always been at the center of attention as a non-steroidal anti-inflammatory drug, which is generally associated with the serious side effects on liver and the hematological parameters. This study aimed to compare the effect of N-acetyl cysteine (NAC) and thyme extract on rat models of acetaminophen-induced toxicity. The present experimental study was conducted on 48 Wistar rats randomized into six groups, including the control group (no treatment); the Ac group (470 mg/kg of acetaminophen); the Ac + 100Ex, Ac + 200Ex, and Ac + 400Ex groups (acetaminophen + thyme extract at doses of 100, 200, 400 mg/kg); and Ac + NA group (acetaminophen + NAC). After weighing, a blood sample was taken from heart at the end of the period. The measured parameters were hematological, liver biochemical, and oxidative stress profiles. A part of the liver tissue was also fixed for the pathological examinations. The bone marrow was aspirated to check for cellular changes as well. The lowest mean of the final weight and liver weight to body weight ratio was observed in the Ac group. Weight loss was compensated in Ac + NA and Ac + 200Ex groups (P = 0.035). White blood cell (WBC), red blood cell (RBC), Hemoglobin (Hgb), and Hematocrit (HCT) in Ac and Ac + 400Ex groups showed significant differences from those of the other test groups (P < 0.001). Aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) enzymes in Ac + 200Ex and Ac + NA groups showed a significant decrease compared to those of the other treatment groups (P = 0.043). Total antioxidant capacity (TAC) and glutathione peroxidase (GPx) had the lowest levels in Ac and Ac + 400Ex groups, while malondialdehyde (MDA) had the highest content. In this regard, the liver histopathological indices (necrosis, hyperemia, and hemorrhage) in the Ac + 200Ex and Ac + NA groups reached their lowest grades in the treatment groups. The mean number of erythroid and myeloid cells in the Ac group reached the lowest (17.40 ± 3.48). The microscopic appearance of the bone marrow cells was different from normocytosis in the control group to hypocytosis in the Ac and Ac + 400Ex groups. Thymol, as an effective ingredient in thyme extract at a dose of 200 mg/kg compared to NAC, had a unique effect on reducing bone marrow and liver cell-tissue changes due to the acetaminophen toxicity.
Collapse
Affiliation(s)
- Zahra Mokhtari
- Graduate of Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Loghman Akradi
- Department of Pathobiology Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
27
|
Mallet C, Desmeules J, Pegahi R, Eschalier A. An Updated Review on the Metabolite (AM404)-Mediated Central Mechanism of Action of Paracetamol (Acetaminophen): Experimental Evidence and Potential Clinical Impact. J Pain Res 2023; 16:1081-1094. [PMID: 37016715 PMCID: PMC10066900 DOI: 10.2147/jpr.s393809] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Paracetamol remains the recommended first-line option for mild-to-moderate acute pain in general population and particularly in vulnerable populations. Despite its wide use, debate exists regarding the analgesic mechanism of action (MoA) of paracetamol. A growing body of evidence challenged the notion that paracetamol exerts its analgesic effect through cyclooxygenase (COX)-dependent inhibitory effect. It is now more evident that paracetamol analgesia has multiple pathways and is mediated by the formation of the bioactive AM404 metabolite in the central nervous system (CNS). AM404 is a potent activator of TRPV1, a major contributor to neuronal response to pain in the brain and dorsal horn. In the periaqueductal grey, the bioactive metabolite AM404 activated the TRPV1 channel-mGlu5 receptor-PLC-DAGL-CB1 receptor signaling cascade. The present article provides a comprehensive literature review of the centrally located, COX-independent, analgesic MoA of paracetamol and relates how the current experimental evidence can be translated into clinical practice. The evidence discussed in this review established paracetamol as a central, COX-independent, antinociceptive medication that has a distinct MoA from non-steroidal anti-inflammatory drugs (NSAIDs) and a more tolerable safety profile. With the establishment of the central MoA of paracetamol, we believe that paracetamol remains the preferred first-line option for mild-to-moderate acute pain for healthy adults, children, and patients with health concerns. However, safety concerns remain with the high dose of paracetamol due to the NAPQI-mediated liver necrosis. Centrally acting paracetamol/p-aminophenol derivatives could potentiate the analgesic effect of paracetamol without increasing the risk of hepatoxicity. Moreover, the specific central MoA of paracetamol allows its combination with other analgesics, including NSAIDs, with a different MoA. Future experiments to better explain the central actions of paracetamol could pave the way for discovering new central analgesics with a better benefit-to-risk ratio.
Collapse
Affiliation(s)
- Christophe Mallet
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
| | - Jules Desmeules
- Faculty of Medicine and The School of Pharmaceutical Sciences, Faculty of Sciences, Geneva University, Geneva, Switzerland
| | | | - Alain Eschalier
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
- Correspondence: Alain Eschalier, Faculté de Médecine, UMR Neuro-Dol, 49 Bd François Mitterrand, Clermont-Ferrand, 63000, France, Email
| |
Collapse
|
28
|
Protective Effect of Annona muricata Linn Fruit Pulp Lyophilized Powder against Paracetamol-Induced Redox Imbalance and Hepatotoxicity in Rats. Processes (Basel) 2023. [DOI: 10.3390/pr11010276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the current investigation, Annona muricata Linn. lyophilized fruit pulp powder was evaluated for its hepatoprotective activity induced by paracetamol or acetaminophen (APAP). Male Sprague Dawley rats were orally pre-treated for 15 days with A. muricata lyophilized fruit pulp powder at low (1 g/kg b.wt) and high doses (2 g/kg b.wt). Silymarin (100 mg/kg) was administered as the standard drug. Hepatotoxicity was induced using APAP, in a single oral administration of 2.5 g/kg body weight dosage on the 15th day. Aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) were elevated in the APAP group but were found to be significantly reduced in the pre-treated groups in a dose-dependent manner. APAP administration brought down the serum total protein and albumin levels significantly. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase were reduced in the APAP administration; further, the reduced glutathione pool in the tissue was also diminished significantly. However, with the administration of Annona lyophilized fruit pulp powder, the level of antioxidant parameters was near normal. A significant increase in lipid peroxidation was observed in the APAP group, while the silymarin, AML, and AMH groups exhibited resistance to lipid peroxidation (LPO), as evident from lower levels of LPO generated. Histopathological examination also revealed considerable tissue damage in the APAP alone treatment group, which was not devastating in the silymarin, AML, and AMH groups. Altogether, the study concludes that the lyophilized fruit pulp of A. muricata is protective against APAP-induced liver injury in rats by modulating the hepatic redox systems.
Collapse
|
29
|
Pain and Analgesic related insomnia. Pain Manag Nurs 2022; 24:254-264. [DOI: 10.1016/j.pmn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
|
30
|
Rusu RN, Ababei DC, Bild W, Stoian I, Macadan I, Stanciu GD, Ciobica A, Bild V. Self-Medication in Rural Northeastern Romania: Patients' Attitudes and Habits. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14949. [PMID: 36429676 PMCID: PMC9690038 DOI: 10.3390/ijerph192214949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many healthcare systems, along with healthcare professionals, have provided services in a patient-centered manner, in which patients are key actors in the care process. Encouraging self-care creates responsible patients, but it must be practiced responsibly. This study aims to analyze the tendency towards self-medication for patients from a rural area in Northeastern Romania. Data were collected using a questionnaire, which consisted of 25 questions, that has been developed by the research team. Student's T test or one-way ANOVA was used, and the reliability of the questionnaire was calculated using Cronbach's alpha coefficient. Fifty-eight patients agreed to participate and were interviewed. The results of the study suggest that respondents practice self-medication, which they resort to when their condition cannot be treated with natural remedies or herbs and when it impairs their ability to do their daily activities. Self-medication could be explained by the lack of self-care services as well as the trust patients have in the specific treatment. Patients prefer asking the pharmacist for drugs instead of visiting a physician, which could be due to higher accessibility and time-efficiency, while also being prone to stock up on certain medications due to limited access to healthcare.
Collapse
Affiliation(s)
- Razvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Walther Bild
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Ioana Stoian
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Ciobica
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| |
Collapse
|
31
|
Paracetamol-Induced Hypothermia in Rodents: A Review on Pharmacodynamics. Processes (Basel) 2022. [DOI: 10.3390/pr10040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Paracetamol can induce hypothermia in humans and rodents. The study’s aim is to review the mechanisms of paracetamol-induced hypothermia in rodents or the results issued from in vitro studies on the same species’ tissues (in doses that do not produce hepatic impairment) using the latest developments published in scientific journals over the last 15 years. Available human studies are also analysed. An extensive search in PubMed databases exploring the hypothermic response to paracetamol was conducted. 4669 articles about paracetamol’s effects on body temperature in mice or rats were found. After applying additional filters, 20 articles were selected for review, with 9 of them presented in tabular forms. The analysis of these articles found that the hypothermic effect of paracetamol is due to the inhibition of a cyclooxygenase-1 variant, is potentiated by endothelin receptor antagonists, and can be mediated through GABAA receptors and possibly through transient receptor potential cation channel subfamily A member 1 via N-acetyl-p-benzoquinone imine in the central nervous system. Human studies confirm the in vivo and in vitro experiments in rodents regarding the presence of a hypothermic effect after high, non-toxic doses of paracetamol. Further research is required to understand the mechanisms behind paracetamol’s hypothermic effect in humans.
Collapse
|
32
|
Gillmann HJ, Reichart J, Leffler A, Stueber T. The antipyretic effectiveness of dipyrone in the intensive care unit: A retrospective cohort study. PLoS One 2022; 17:e0264440. [PMID: 35271621 PMCID: PMC8912151 DOI: 10.1371/journal.pone.0264440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Dipyrone (metamizol) is regularly used in critical care for pain and fever treatment, especially in Germany and Spain. However, indication for antipyretic therapy in critically ill patients is currently unclear and data for both the risk and benefit of dipyrone treatment in the intensive care environment are scarce. We hypothesized that antipyretic efficiency of dipyrone would not exceed antipyretic efficiency of acetaminophen. We therefore aimed to compare temperature courses in critically ill patients receiving either intravenous dipyrone, acetaminophen or no antipyretic medication. Material and methods We included 937 intensive care unit (ICU) patients with body temperature recordings of at least 37.5°C. We investigated temperature decrease associated with dipyrone or acetaminophen and additionally compared it to an untreated control group. Results Within the eight-hour study interval, maximum body temperature decrease in patients without antipyretic medication was -0.6°C (IQR: -1.0 to -0.4°C; n = 315). Maximal decrease in body temperature was higher both with dipyrone (-0.8°C (IQR: -1.2 to -0.4°C); p = 0.016; n = 341) and acetaminophen (-0.9°C (IQR: -1.6 to -0.6°C); p<0.001; n = 71), but did not differ between dipyrone and acetaminophen (p = 0.066). As compared to untreated patients, dipyrone only led to a marginal additional decrease in body temperature of only -0.1°C. Maximum of antipyretic effectiveness was reached four hours after administration. Conclusion Antipyretic effectiveness of dipyrone in ICU patients may be overestimated. Given the lack of prospective data, clinical evidence for antipyretic dipyrone therapy in the ICU is insufficient and warrants further critical evaluation.
Collapse
Affiliation(s)
- Hans-Jörg Gillmann
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Jessica Reichart
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Andreas Leffler
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Stueber
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
Foster J, Lloyd AB, Havenith G. Non-contact infrared assessment of human body temperature: The journal Temperature toolbox. Temperature (Austin) 2021; 8:306-319. [PMID: 34901315 PMCID: PMC8654479 DOI: 10.1080/23328940.2021.1899546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
The assessment of human internal/core temperature (T core) is relevant in many scientific disciplines, but also for public health authorities when attempting to identify individuals with fever. Direct assessment of T core is often invasive, impractical on a large scale, and typically requires close contact between the observer and the target subject. Non-contact infrared thermometry (NCIT) represents a practical solution in which T core can potentially be assessed from a safe distance and in mass screening scenarios, by measuring skin temperature at specific anatomical locations. However, the COVID-19 pandemic has clearly demonstrated that these devices are not being used correctly, despite expert guided specifications available in International Standard Organization (ISO) documents. In this review, we provide an overview of the most pertinent factors that should be considered by users of NCIT. This includes the most pertinent methodological and physiological factors, as well as an overview on the ability of NCIT to track human T core. For practical use, we provide a checklist based on relevant ISO standards which are simple to follow and should be consulted prior to using NCIT for assessment of human T core. Our intention is for users of NCIT to adopt this checklist, which may improve the performance of NCIT for its ability to track T core.
Collapse
Affiliation(s)
- Josh Foster
- Environmental Ergonomics Research Centre, School of Design and Creative Arts, Loughborough University, Loughborough, Leicestershire, UK
| | - Alex Bruce Lloyd
- Environmental Ergonomics Research Centre, School of Design and Creative Arts, Loughborough University, Loughborough, Leicestershire, UK
| | - George Havenith
- Environmental Ergonomics Research Centre, School of Design and Creative Arts, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|