1
|
Payne K, Suriyanarayanan H, Brooks J, Mehanna H, Nankivell P, Gendoo D. Exploring the impact of intra-tumoural heterogeneity on liquid biopsy cell-free DNA methylation and copy number in head and neck squamous cell carcinoma. Oral Oncol 2024; 158:107011. [PMID: 39236578 DOI: 10.1016/j.oraloncology.2024.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Liquid biopsy profiling is gaining increasing promise towards biomarker-led identification and disease stratification of tumours, particularly for tumours displaying significant intra-tumoural heterogeneity (ITH). For head and neck squamous cell carcinoma (HNSCC), which display high levels of genetic ITH, identification of epigenetic modifications and methylation signatures has shown multiple uses in stratification of HNSCC for prognosis, treatment, and HPV status. In this study, we investigated the potential of liquid biopsy methylomics and genomic copy number to profile HNSCC. We conducted multi-region sampling of tumour core, tumour margin and normal adjacent mucosa, as well as plasma cell-free DNA (cfDNA) across 9 HNSCC patients. Collectively, our work highlights the prevalence of methylomic ITH in HNSCC, and demonstrates the potential of cfDNA methylation as a tool for ITH assessment and serial sampling.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Harini Suriyanarayanan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Deena Gendoo
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
2
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
3
|
Ustaszewski A, Kostrzewska-Poczekaj M, Janiszewska J, Jarmuz-Szymczak M, Wierzbicka M, Marszal J, Grénman R, Giefing M. Assessing Various Control Samples for Microarray Gene Expression Profiling of Laryngeal Squamous Cell Carcinoma. Biomolecules 2021; 11:biom11040588. [PMID: 33923685 PMCID: PMC8072880 DOI: 10.3390/biom11040588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 01/11/2023] Open
Abstract
Selection of optimal control samples is crucial in expression profiling tumor samples. To address this issue, we performed microarray expression profiling of control samples routinely used in head and neck squamous cell carcinoma studies: human bronchial and tracheal epithelial cells, squamous cells obtained by laser uvulopalatoplasty and tumor surgical margins. We compared the results using multidimensional scaling and hierarchical clustering versus tumor samples and laryngeal squamous cell carcinoma cell lines. A general observation from our study is that the analyzed cohorts separated according to two dominant factors: “malignancy”, which separated controls from malignant samples and “cell culture-microenvironment” which reflected the differences between cultured and non-cultured samples. In conclusion, we advocate the use of cultured epithelial cells as controls for gene expression profiling of cancer cell lines. In contrast, comparisons of gene expression profiles of cancer cell lines versus surgical margin controls should be treated with caution, whereas fresh frozen surgical margins seem to be appropriate for gene expression profiling of tumor samples.
Collapse
Affiliation(s)
- Adam Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (A.U.); (M.K.-P.); (J.J.); (M.J.-S.); (M.W.)
| | - Magdalena Kostrzewska-Poczekaj
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (A.U.); (M.K.-P.); (J.J.); (M.J.-S.); (M.W.)
| | - Joanna Janiszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (A.U.); (M.K.-P.); (J.J.); (M.J.-S.); (M.W.)
| | - Malgorzata Jarmuz-Szymczak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (A.U.); (M.K.-P.); (J.J.); (M.J.-S.); (M.W.)
- Department of Oncology, Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 61-001 Poznań, Poland
| | - Malgorzata Wierzbicka
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (A.U.); (M.K.-P.); (J.J.); (M.J.-S.); (M.W.)
- Department of Otolaryngology and Laryngological Oncology, Poznań University of Medical Sciences, 60-355 Poznań, Poland;
| | - Joanna Marszal
- Department of Otolaryngology and Laryngological Oncology, Poznań University of Medical Sciences, 60-355 Poznań, Poland;
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, 20520 Turku, Finland;
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (A.U.); (M.K.-P.); (J.J.); (M.J.-S.); (M.W.)
- Correspondence: ; Tel.: +48-61-6579-138
| |
Collapse
|
4
|
Liu L, Wang C. Effect of ethanol extracts of Antrodia cinnamomea on head and neck squamous cell carcinoma cell line. ACTA ACUST UNITED AC 2020; 53:e8694. [PMID: 32401928 PMCID: PMC7228547 DOI: 10.1590/1414-431x20208694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/24/2020] [Indexed: 11/22/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors. Ethanol extract of Antrodia cinnamomea (EEA) has been widely studied for its health benefits including anticancer effects. The purpose of this study was to assess the effects of EEA on HNSCC. Cell proliferation, transwell, and wound healing assays were performed. The impact of EEA on tumor growth was investigated using a xenograft model. Expressions of migration-related proteins (MMP-2, MMP-9, TIMP-1, and TIMP-2) and apoptosis-related proteins (cleaved caspase-9 and cleaved PARP) were determined using western blot analysis. The results indicated that EEA significantly inhibited the capacities of proliferation, invasion, and migration of HNSCC cells in a dose-dependent manner. Cleaved caspase-9 and cleaved PARP expressions were increased in cells treated with an increasing concentration of EEA, which suggested that EEA induced apoptosis of HNSCC. MMP-2 and MMP-9 were downregulated when cells were administered EEA, while TIMP-1 and TIMP-2 were not affected, which uncovered the mechanisms mediating the EEA-induced inhibition on cell invasion and migration. The animal experiment also suggested that EEA inhibited tumor growth. Our study confirmed the inhibitive effects of EEA on cell proliferation, invasion, and migration of HNSCC in vitro and in vivo, providing the basis for further study of the application of EEA as an effective candidate for cancer treatment.
Collapse
Affiliation(s)
- Li Liu
- Anhui Medical College, Hefei, China
| | - Chen Wang
- Fuyang Vocational Technical College, Fuyang, China
| |
Collapse
|
5
|
Shiah SG, Hsiao JR, Chang HJ, Hsu YM, Wu GH, Peng HY, Chou ST, Kuo CC, Chang JY. MiR-30a and miR-379 modulate retinoic acid pathway by targeting DNA methyltransferase 3B in oral cancer. J Biomed Sci 2020; 27:46. [PMID: 32238162 PMCID: PMC7114797 DOI: 10.1186/s12929-020-00644-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Epigenetic silencing of retinoic acid (RA) signaling-related genes have been linked with the pathogenesis and clinical outcome in oral squamous cell carcinoma (OSCC) carcinogenesis. However, the precise mechanisms underlying the abnormal silencing of RA signaling-related genes in OSCC have not been well investigated. METHODS Using combined analysis of genome-wide gene expression and methylation profile from 40 matched normal-tumor pairs of OSCC specimens, we found a set of retinoid signaling related genes are frequently hypermethylated and downregulated in OSCC patient samples, including alcohol dehydrogenase, iron containing 1 (ADHFE1) and aldehyde dehydrogenase 1 family, member A2 (ALDH1A2), which are the important rate-limiting enzymes in synthesis of RA. The expression of ADHFE1 and ALDH1A2 in OSCC patients was determine by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. The binding sites of miR-30a and miR-379 with DNA methyltransferase 3B (DNMT3B) were predicted using a series of bioinformatic tools, and validated using dual luciferase assay and Western blot analyses. The functions of miR-30a, miR-379, and DNMT3B were accessed by growth and colony formation analyses using gain- and loss-of-function approaches. Chromatin immunoprecipitation (ChIP) was performed to explore the molecular mechanisms by arecoline and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) treatment. RESULTS We demonstrated that deregulated miR-30a and miR-379 could represent a mechanism for the silencing of ADHFE1 and ALDH1A2 in OSCC through targeting DNMT3B. Ectopic expression of miR-30a and miR-379 could induce re-expression of methylation-silenced ADHFE1 and ALDH1A2, and lead to growth inhibition in oral cancer cells. Furthermore, the dysregulation of the miRNAs and DNMT-3B may result from exposure to tobacco smoking and betel quid chewing. CONCLUSIONS Our results demonstrate that tobacco smoking and betel quid chewing could repress miR-30a and miR-379, which upregulate the DNMT3B expression, in turn, lead to the hypermethylation of ADHFE1 and ALDH1A genes, consequently, promote the oncogenic activity. These findings highlight the potential use of retinoids in combination with epigenetic modifiers for the prevention or treatment of oral cancer.
Collapse
Affiliation(s)
- Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine|, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Head and Neck Collaborative Oncology Group, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Ju Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yuan-Ming Hsu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Guan-Hsun Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsuan-Yu Peng
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Sung-Tau Chou
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Shen S, Saito Y, Ren S, Liu C, Guo T, Qualliotine J, Khan Z, Sadat S, Califano JA. Targeting Viral DNA and Promoter Hypermethylation in Salivary Rinses for Recurrent HPV-Positive Oropharyngeal Cancer. Otolaryngol Head Neck Surg 2020; 162:512-519. [PMID: 32041482 DOI: 10.1177/0194599820903031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The incidence and survivorship of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) are increasing. Presence of HPV DNA and epigenetic alterations in salivary rinses are independently associated with clinical prognosis. We evaluated the utility of a combined panel in detecting disease recurrence during surveillance. We also assessed the assay's applicability in screening for HPV+ OPSCC. STUDY DESIGN Retrospective cohort study. SETTING Two tertiary academic hospitals. SUBJECTS AND METHODS Forty-nine patients with posttreatment OPSCC were enrolled. Separately, 21 treatment-naive patients and 40 controls were included in the screening analysis. Salivary rinses were obtained from these cohorts and biomarker levels were quantified. Receiver operative characteristic (ROC) curves and multivariate logistic models were used to assess performance of biomarker combinations. RESULTS Eight patients (16.3%) in the posttreatment cohort developed locoregional recurrence. Recurrence was associated with alcohol use (odds ratio [OR], 6.12; 95% confidence interval [CI], 0.26-3.79) and advanced nodal disease (OR, 2.21; 95% CI, 1.52-3.01). A panel of HPV DNA and methylated EDNRB improved detection of recurrent disease (area under the curve [AUC], 0.88) compared to single markers (AUC, 0.69-0.78). Positive biomarkers preceded clinical detection by 2.4 ± 1.6 months and was associated with nearly 40-fold risk of recurrence (OR, 36.4; 95% CI, 1.15-45.22). Within the screening analysis, single biomarkers demonstrated moderate sensitivity and specificity (AUC, 0.59-0.83) in the detection of primary disease. A panel combining HPV DNA markers with methylated EDNRB and methylated PAX5 improved AUC to 0.93. CONCLUSION Detection of high-risk HPV DNA or aberrant hypermethylation in oral rinses is associated with presence and recurrence of OPSCC. Targeting both markers in saliva may have utility in long-term surveillance.
Collapse
Affiliation(s)
- Sarek Shen
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Yuki Saito
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Shuling Ren
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Chao Liu
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Theresa Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Jesse Qualliotine
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of California San Diego, San Diego, California, USA
| | - Zubair Khan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Sayed Sadat
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Joseph A Califano
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA.,Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of California San Diego, San Diego, California, USA
| |
Collapse
|
7
|
Gaździcka J, Gołąbek K, Strzelczyk JK, Ostrowska Z. Epigenetic Modifications in Head and Neck Cancer. Biochem Genet 2019; 58:213-244. [PMID: 31712935 PMCID: PMC7113219 DOI: 10.1007/s10528-019-09941-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common human malignancy in the world, with high mortality and poor prognosis for patients. Among the risk factors are tobacco and alcohol intake, human papilloma virus, and also genetic and epigenetic modifications. Many studies show that epigenetic events play an important role in HNSCC development and progression, including DNA methylation, chromatin remodeling, histone posttranslational covalent modifications, and effects of non-coding RNA. Epigenetic modifications may influence silencing of tumor suppressor genes by promoter hypermethylation, regulate transcription by microRNAs and changes in chromatin structure, or induce genome instability through hypomethylation. Moreover, getting to better understand aberrant patterns of methylation may provide biomarkers for early detection and diagnosis, while knowledge about target genes of microRNAs may improve the therapy of HNSCC and extend overall survival. The aim of this review is to present recent studies which demonstrate the role of epigenetic regulation in the development of HNSCC.
Collapse
Affiliation(s)
- Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland.
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Zofia Ostrowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| |
Collapse
|
8
|
Misawa K, Yamada S, Mima M, Nakagawa T, Kurokawa T, Imai A, Mochizuki D, Morita K, Ishikawa R, Endo S, Misawa Y. 5-Hydroxymethylcytosine and ten-eleven translocation dioxygenases in head and neck carcinoma. J Cancer 2019; 10:5306-5314. [PMID: 31602281 PMCID: PMC6775623 DOI: 10.7150/jca.34806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Ten-eleven translocation (TET) enzymes are implicated in DNA demethylation through dioxygenase activity, which converts 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC). However, the specific roles of TET enzymes and 5-hmC levels in head and neck squamous cell carcinoma (HNSCC) have not yet been evaluated. In this study, we analyzed 5-hmC levels and TET mRNA expression in a well-characterized dataset of 117 matched pairs of HNSCC tissues and normal tissues. 5-hmC levels and TET mRNA expression were examined via enzyme-linked immunosorbent assay and quantitative real-time PCR, respectively. 5-hmC levels were evaluated according to various clinical characteristics and prognostic implications. Notably, we found that 5-hmC levels were significantly correlated with tumor stage (P = 0.032) and recurrence (P = 0.018). Univariate analysis revealed that low levels of 5-hmC were correlated with poor disease-free survival (DFS; log-rank test, P = 0.038). The expression of TET family genes was not associated with outcomes. In multivariate analysis, low levels of 5-hmC were evaluated as a significant independent prognostic factor of DFS (hazard ratio: 2.352, 95% confidence interval: 1.136-4.896; P = 0.021). Taken together, our findings showed that reduction of TET family gene expression and subsequent low levels of 5-hmC may affect the development of HNSCC.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoya Kurokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kotaro Morita
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryuji Ishikawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shiori Endo
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
9
|
Schmitt K, Molfenter B, Laureano NK, Tawk B, Bieg M, Hostench XP, Weichenhan D, Ullrich ND, Shang V, Richter D, Stögbauer F, Schroeder L, de Bem Prunes B, Visioli F, Rados PV, Jou A, Plath M, Federspil PA, Thierauf J, Döscher J, Weissinger SE, Hoffmann TK, Wagner S, Wittekindt C, Ishaque N, Eils R, Klussmann JP, Holzinger D, Plass C, Abdollahi A, Freier K, Weichert W, Zaoui K, Hess J. Somatic mutations and promotor methylation of the ryanodine receptor 2 is a common event in the pathogenesis of head and neck cancer. Int J Cancer 2019; 145:3299-3310. [PMID: 31135957 DOI: 10.1002/ijc.32481] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
Abstract
Genomic sequencing projects unraveled the mutational landscape of head and neck squamous cell carcinoma (HNSCC) and provided a comprehensive catalog of somatic mutations. However, the limited number of significant cancer-related genes obtained so far only partially explains the biological complexity of HNSCC and hampers the development of novel diagnostic biomarkers and therapeutic targets. We pursued a multiscale omics approach based on whole-exome sequencing, global DNA methylation and gene expression profiling data derived from tumor samples of the HIPO-HNC cohort (n = 87), and confirmed new findings with datasets from The Cancer Genome Atlas (TCGA). Promoter methylation was confirmed by MassARRAY analysis and protein expression was assessed by immunohistochemistry and immunofluorescence staining. We discovered a set of cancer-related genes with frequent somatic mutations and high frequency of promoter methylation. This included the ryanodine receptor 2 (RYR2), which showed variable promoter methylation and expression in both tumor samples and cell lines. Immunohistochemical staining of tissue sections unraveled a gradual loss of RYR2 expression from normal mucosa via dysplastic lesion to invasive cancer and indicated that reduced RYR2 expression in adjacent tissue and precancerous lesions might serve as risk factor for unfavorable prognosis and upcoming malignant conversion. In summary, our data indicate that impaired RYR2 function by either somatic mutation or epigenetic silencing is a common event in HNSCC pathogenesis. Detection of RYR2 expression and/or promoter methylation might enable risk assessment for malignant conversion of dysplastic lesions.
Collapse
Affiliation(s)
- Katrin Schmitt
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Britta Molfenter
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalia Koerich Laureano
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Oral Pathology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bouchra Tawk
- Division of Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University Hospital, and Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Bieg
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), and Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Xavier Pastor Hostench
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), and Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Dieter Weichenhan
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Viny Shang
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniela Richter
- Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Stögbauer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lea Schroeder
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca de Bem Prunes
- Oral Pathology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Visioli
- Oral Pathology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Adriana Jou
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michaela Plath
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Philippe A Federspil
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Thierauf
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Döscher
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | | | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Steffen Wagner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Giessen, Giessen, Germany
| | - Claus Wittekindt
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Giessen, Giessen, Germany
| | - Naveed Ishaque
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), and Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), and Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Jens P Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | - Dana Holzinger
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University Hospital, and Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kolja Freier
- Department of Oral and Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich (TUM), and German Cancer Consortium (DKTK) partner site, Munich, Germany
| | - Karim Zaoui
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Kanazawa T, Misawa K, Shinmura K, Misawa Y, Kusaka G, Maruta M, Sasaki T, Watanabe Y, Carey TE. Promoter methylation of galanin receptors as epigenetic biomarkers for head and neck squamous cell carcinomas. Expert Rev Mol Diagn 2019; 19:137-148. [PMID: 30640567 DOI: 10.1080/14737159.2019.1567334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION While remarkable progress has been made in standard treatments for head and neck squamous cell carcinomas (HNSCCs), the long-term survival remains at an unsatisfactory 40-50%. To improve the survival rate, biomarkers for optimal treatment selection and prognostic prediction, as well as novel, low-toxicity treatment strategies, are required. Galanin receptor (GALR) 1 and GALR2 are well-studied tumor suppressors in HNSCCs. Compared with other clinicopathological factors, the epigenetic variants of GALRs have been found to be the most powerful markers to predict the prognosis of HNSCC patients. Areas covered: This review outlines the functions and signaling pathways of GALRs and explains the potential of GALR promoter methylation as a biomarker for HNSCC prognosis. We also summarize recent developments in promoter methylation studies in HNSCC and indicate future directions for GALR promoter methylation studies. Expert commentary: GALR studies have highlighted two major aspects with implications in HNSCC - that G-protein coupled receptors (GPCRs) act as tumor suppressor genes and that GALR promoter methylation is significantly related to the carcinogenesis of HNSCC. The findings of GALR studies can be applied to studies on other GPCRs and further in-depth DNA methylation studies. Deeper insights into GPCR epigenetics are expected to markedly improve HNSCC treatment.
Collapse
Affiliation(s)
- Takeharu Kanazawa
- a Department of Otolaryngology-Head and Neck Surgery , International University of Health and Welfare , Tokyo , Japan.,b Department of Otolaryngology-Head and Neck Surgery , Jichi Medical University , Shimotsuke , Japan
| | - Kiyoshi Misawa
- c Department of Otolaryngology/Head and Neck Surgery , Hamamatsu University School of Medicine , Hamamatsu , Japan
| | - Kazuya Shinmura
- d Department of Tumor Pathology , Hamamatsu University School of Medicine , Hamamatsu , Japan
| | - Yuki Misawa
- c Department of Otolaryngology/Head and Neck Surgery , Hamamatsu University School of Medicine , Hamamatsu , Japan
| | - Gen Kusaka
- e Department of Neurosurgery , Jichi Medical University Saitama Medical Center , Saitama , Saitama , Japan
| | - Mikiko Maruta
- b Department of Otolaryngology-Head and Neck Surgery , Jichi Medical University , Shimotsuke , Japan
| | - Toru Sasaki
- b Department of Otolaryngology-Head and Neck Surgery , Jichi Medical University , Shimotsuke , Japan
| | - Yusuke Watanabe
- a Department of Otolaryngology-Head and Neck Surgery , International University of Health and Welfare , Tokyo , Japan
| | - Thomas E Carey
- f Laboratory of Head and Neck Center Biology, Department of Otolaryngology, Head and Neck Surgery , The University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
11
|
Mochizuki D, Misawa Y, Kawasaki H, Imai A, Endo S, Mima M, Yamada S, Nakagawa T, Kanazawa T, Misawa K. Aberrant Epigenetic Regulation in Head and Neck Cancer Due to Distinct EZH2 Overexpression and DNA Hypermethylation. Int J Mol Sci 2018; 19:ijms19123707. [PMID: 30469511 PMCID: PMC6320890 DOI: 10.3390/ijms19123707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Enhancer of Zeste homologue 2 (EZH2) overexpression is associated with tumor proliferation, metastasis, and poor prognosis. Targeting and inhibition of EZH2 is a potentially effective therapeutic strategy for head and neck squamous cell carcinoma (HNSCC). We analyzed EZH2 mRNA expression in a well-characterized dataset of 230 (110 original and 120 validation cohorts) human head and neck cancer samples. This study aimed to investigate the effects of inhibiting EZH2, either via RNA interference or via pharmacotherapy, on HNSCC growth. EZH2 upregulation was significantly correlated with recurrence (p < 0.001) and the methylation index of tumor suppressor genes (p < 0.05). DNMT3A was significantly upregulated upon EZH2 upregulation (p = 0.043). Univariate analysis revealed that EZH2 upregulation was associated with poor disease-free survival (log-rank test, p < 0.001). In multivariate analysis, EZH2 upregulation was evaluated as a significant independent prognostic factor of disease-free survival (hazard ratio: 2.085, 95% confidence interval: 1.390–3.127; p < 0.001). Cells treated with RNA interference and DZNep, an EZH2 inhibitor, showed the most dramatic changes in expression, accompanied with a reduction in the growth and survival of FaDu cells. These findings suggest that EZH2 upregulation is correlated with tumor aggressiveness and adverse patient outcomes in HNSCC. Evaluation of EZH2 expression might help predict the prognosis of HNSCC patients.
Collapse
Affiliation(s)
- Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Hideya Kawasaki
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Shiori Endo
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan.
| | - Takeharu Kanazawa
- Department of Otolaryngology, Tokyo Voice Center, International University of Health and Welfare, Tokyo 107-0052, Japan.
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| |
Collapse
|
12
|
Sharma D, Koshy G, Gupta S, Sharma B, Grover S. Deciphering the Role of the Barr Body in Malignancy: An insight into head and neck cancer. Sultan Qaboos Univ Med J 2017; 17:e389-e397. [PMID: 29372079 PMCID: PMC5766293 DOI: 10.18295/squmj.2017.17.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 01/20/2023] Open
Abstract
X chromosome inactivation is the epitome of epigenetic regulation and long non-coding ribonucleic acid function. The differentiation status of cells has been ascribed to X chromosome activity, with two active X chromosomes generally only observed in undifferentiated or poorly differentiated cells. Recently, several studies have indicated that the reactivation of an inactive X chromosome or X chromosome multiplication correlates with the development of malignancy; however, this concept is still controversial. This review sought to shed light on the role of the X chromosome in cancer development. In particular, there is a need for further exploration of the expression patterns of X-linked genes in cancer cells, especially those in head and neck squamous cell carcinoma (HNSCC), in order to identify different prognostic subpopulations with distinct clinical implications. This article proposes a functional relationship between the loss of the Barr body and the disproportional expression of X-linked genes in HNSCC development.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Oral & Maxillofacial Pathology, Christian Dental College, Ludhiana, Punjab, India
| | - George Koshy
- Department of Oral & Maxillofacial Pathology, Christian Dental College, Ludhiana, Punjab, India
| | - Shruti Gupta
- Department of Oral Anatomy, Postgraduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Bhushan Sharma
- Department of Oral & Maxillofacial Pathology, Christian Dental College, Ludhiana, Punjab, India
| | - Sonal Grover
- Department of Oral & Maxillofacial Pathology, Christian Dental College, Ludhiana, Punjab, India
| |
Collapse
|
13
|
Hess J. Predictive Factors for Outcome and Quality of Life in HPV-Positive and HPV-Negative HNSCC. Recent Results Cancer Res 2017; 206:233-242. [PMID: 27699543 DOI: 10.1007/978-3-319-43580-0_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Infection with high-risk types of the human papilloma virus (HPV) is an etiological risk factor for oropharyngeal squamous cell carcinoma (OPSCC) and associated with a better response to therapy and improved survival. A better understanding of the molecular principles underlying the differences in clinical behavior could pave the way to establish more effective and less toxic therapy for HPV-positive OPSCC and their HPV-negative counterparts. Compelling experimental evidence demonstrates that extensive global reprogramming of epigenetic profiles is as important as genetic mutations during neoplastic transformation and malignant progression, including HPV-positive OPSCC. In this chapter, the current knowledge on HPV-related alterations in DNA methylation, histone modification, and chromosome remodeling will be summarized and assessment of cancer-related profiles will be discussed as a valuable tool to gain important diagnostic or prognostic information for therapeutic decision-making and clinical management of HNSCC patients.
Collapse
Affiliation(s)
- Jochen Hess
- Department of Otolaryngology, Head and Neck Surgery, University Hospital and Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Impaired aldehyde dehydrogenase 1 subfamily member 2A-dependent retinoic acid signaling is related with a mesenchymal-like phenotype and an unfavorable prognosis of head and neck squamous cell carcinoma. Mol Cancer 2015; 14:204. [PMID: 26634247 PMCID: PMC4669670 DOI: 10.1186/s12943-015-0476-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022] Open
Abstract
Background An inverse correlation between expression of the aldehyde dehydrogenase 1 subfamily A2 (ALDH1A2) and gene promoter methylation has been identified as a common feature of oropharyngeal squamous cell carcinoma (OPSCC). Moreover, low ALDH1A2 expression was associated with an unfavorable prognosis of OPSCC patients, however the causal link between reduced ALDH1A2 function and treatment failure has not been addressed so far. Methods Serial sections from tissue microarrays of patients with primary OPSCC (n = 101) were stained by immunohistochemistry for key regulators of retinoic acid (RA) signaling, including ALDH1A2. Survival with respect to these regulators was investigated by univariate Kaplan-Meier analysis and multivariate Cox regression proportional hazard models. The impact of ALDH1A2-RAR signaling on tumor-relevant processes was addressed in established tumor cell lines and in an orthotopic mouse xenograft model. Results Immunohistochemical analysis showed an improved prognosis of ALDH1A2high OPSCC only in the presence of CRABP2, an intracellular RA transporter. Moreover, an ALDH1A2highCRABP2high staining pattern served as an independent predictor for progression-free (HR: 0.395, p = 0.007) and overall survival (HR: 0.303, p = 0.002), suggesting a critical impact of RA metabolism and signaling on clinical outcome. Functionally, ALDH1A2 expression and activity in tumor cell lines were related to RA levels. While administration of retinoids inhibited clonogenic growth and proliferation, the pharmacological inhibition of ALDH1A2-RAR signaling resulted in loss of cell-cell adhesion and a mesenchymal-like phenotype. Xenograft tumors derived from FaDu cells with stable silencing of ALDH1A2 and primary tumors from OPSCC patients with low ALDH1A2 expression exhibited a mesenchymal-like phenotype characterized by vimentin expression. Conclusions This study has unraveled a critical role of ALDH1A2-RAR signaling in the pathogenesis of head and neck cancer and our data implicate that patients with ALDH1A2low tumors might benefit from adjuvant treatment with retinoids. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0476-0) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
|