1
|
Khare M, Piparia S, Tantisira KG. Pharmacogenetics of childhood uncontrolled asthma. Expert Rev Clin Immunol 2023:1-14. [PMID: 37190963 PMCID: PMC10657335 DOI: 10.1080/1744666x.2023.2214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Asthma is a heterogeneous, multifactorial disease with multiple genetic and environmental risk factors playing a role in pathogenesis and therapeutic response. Understanding of pharmacogenetics can help with matching individualized treatments to specific genotypes of asthma to improve therapeutic outcomes especially in uncontrolled or severe asthma. AREAS COVERED In this review, we outline novel information about biology, pathways, and mechanisms related to interindividual variability in drug response (corticosteroids, bronchodilators, leukotriene modifiers, and biologics) for childhood asthma. We discuss candidate gene, genome-wide association studies and newer omics studies including epigenomics, transcriptomics, proteomics, and metabolomics as well as integrative genomics and systems biology methods related to childhood asthma. The articles were obtained after a series of searches, last updated November 2022, using database PubMed/CINAHL DB. EXPERT OPINION Implementation of pharmacogenetic algorithms can improve therapeutic targeting in children with asthma, particularly with severe or uncontrolled asthma who typically have challenges in clinical management and carry considerable financial burden. Future studies focusing on potential biomarkers both clinical and pharmacogenetic can help formulate a prognostic test for asthma treatment response that would represent true bench to bedside clinical implementation.
Collapse
Affiliation(s)
- Manaswitha Khare
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Hospital Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
Keim-Malpass J, Malpass HC. Cost Utility of Bronchial Thermoplasty for Severe Asthma: Implications for Future Cost-Effectiveness Analyses Based on Phenotypic Heterogeneity. CLINICOECONOMICS AND OUTCOMES RESEARCH 2022; 14:427-437. [PMID: 35747136 PMCID: PMC9211745 DOI: 10.2147/ceor.s362530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Asthma is a disease with tremendous phenotypic heterogeneity, and the patients who are most severely impacted by the disease are high utilizers of the United States healthcare system. In the past decade, there has been many advances in asthma therapy for those with severe disease, including the use of a procedure called bronchial thermoplasty (BT) and the use of biologic therapy for certain phenotypes, but questions remain regarding the long-term durability and cost effectiveness of these therapies. The purpose of this analysis was (1) to assess the cost utility of BT relative to usual care (base case) and (2) to assess the cost utility of BT relative to usual care plus biologic therapy (omalizumab) (scenario analysis) based on updated 10-year clinical trial outcomes. Methods A Markov cohort model was developed and used to estimate the cost utility of BT to estimate the costs and quality-of-life impact of BT versus the comparisons over a 10-year time frame using a limited societal perspective, which included both direct health utilization costs and indirect costs associated with missed days of work, among those with severe persistent asthma. Results In the base case and the scenario analysis, BT was the dominant treatment strategy compared to usual care alone and usual care plus biologic therapy. The net monetary benefit for BT was $483,555.49 over a 10-year time horizon. Conclusion Cost-utility models are central to policy decisions dictating coverage, and can be extended to inform the patient and provider, during clinical decision-making, of the relative trade-offs of therapy, assessing long-term clinical and cost outcomes. Phenotypic classification of severe asthma is central to patient management and should also be integrated into economic analysis frameworks, particularly as new biologic agents are developed that are specific to a phenotype. Despite a larger upfront cost of BT therapy, there is a durable clinical and economic benefit over time for those with severe asthma.
Collapse
Affiliation(s)
- Jessica Keim-Malpass
- University of Virginia School of Nursing, Charlottesville, VA, USA.,Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.,University of Virginia Center for Advanced Medical Analytics, Charlottesville, VA, USA
| | - H Charles Malpass
- Department of Pulmonary and Critical Care Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
3
|
Kho AT, McGeachie MJ, Li J, Chase RP, Amr SS, Hastie AT, Hawkins GA, Li X, Chupp GL, Meyers DA, Bleecker ER, Weiss ST, Tantisira KG. Lung function, airway and peripheral basophils and eosinophils are associated with molecular pharmacogenomic endotypes of steroid response in severe asthma. Thorax 2022; 77:452-460. [PMID: 34580195 PMCID: PMC9016241 DOI: 10.1136/thoraxjnl-2020-215523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Asthma is a complex disease with heterogeneous expression/severity. There is growing interest in defining asthma endotypes consistently associated with different responses to therapy, focusing on type 2 inflammation (Th2) as a key pathological mechanism. Current asthma endotypes are defined primarily by clinical/laboratory criteria. Each endotype is likely characterised by distinct molecular mechanisms that identify optimal therapies. METHODS We applied unsupervised (without a priori clinical criteria) principal component analysis on sputum airway cells RNA-sequencing transcriptomic data from 19 asthmatics from the Severe Asthma Research Program at baseline and 6-8 weeks follow-up after a 40 mg dose of intramuscular corticosteroids. We investigated principal components PC1, PC3 for association with 55 clinical variables. RESULTS PC3 was associated with baseline Th2 clinical features including blood (rank-sum p=0.0082) and airway (rank-sum p=0.0024) eosinophilia, FEV1 change (Kendall tau-b R=-0.333 (-0.592 to -0.012)) and follow-up FEV1 albuterol response (Kendall tau-b R=0.392 (0.079 to 0.634)). PC1 with blood basophlia (rank-sum p=0.0191). The top 5% genes contributing to PC1, PC3 were enriched for distinct immune system/inflammation ontologies suggesting distinct subject-specific clusters of transcriptomic response to corticosteroids. PC3 association with FEV1 change was reproduced in silico in a comparable independent 14-subject (baseline, 8 weeks after daily inhaled corticosteroids (ICS)) airway epithelial cells microRNAome dataset. CONCLUSIONS Transcriptomic PCs from this unsupervised methodology define molecular pharmacogenomic endotypes that may yield novel biology underlying different subject-specific responses to corticosteroid therapy in asthma, and optimal personalised asthma care. Top contributing genes to these PCs may suggest new therapeutic targets.
Collapse
Affiliation(s)
- Alvin T Kho
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Scientific Research Centre, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Robert P Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sami S Amr
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Partners Personalized Medicine, Partners Healthcare, Boston, Massachusetts, USA
| | - Annette T Hastie
- Center for Genomics and Personalized Medicine Research, Wake Forest Health Sciences, Winston Salem, North Carolina, USA
| | - Gregory A Hawkins
- Center for Genomics and Personalized Medicine Research, Wake Forest Health Sciences, Winston Salem, North Carolina, USA
| | - Xingnan Li
- Division of Genetics, Genomics and Precision Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Geoffrey L Chupp
- Pulmonary & Critical Care Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Partners Personalized Medicine, Partners Healthcare, Boston, Massachusetts, USA
| | - Kelan G Tantisira
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Asthma exacerbations have been suggested to result from complex interactions between genetic and nongenetic components. In this review, we provide an overview of the genetic association studies of asthma exacerbations, their main results and limitations, as well as future directions of this field. RECENT FINDINGS Most studies on asthma exacerbations have been performed using a candidate-gene approach. Although few genome-wide association studies of asthma exacerbations have been conducted up to date, they have revealed promising associations but with small effect sizes. Additionally, the analysis of interactions between genetic and environmental factors has contributed to better understand of genotype-specific responses in asthma exacerbations. SUMMARY Genetic association studies have allowed identifying the 17q21 locus and the ADRB2 gene as the loci most consistently associated with asthma exacerbations. Future studies should explore the full spectrum of genetic variation and will require larger sample sizes, a better representation of racial/ethnic diversity and a more precise definition of asthma exacerbations. Additionally, the analysis of important environmental gene-environment analysis and the integration of multiple omics will allow understanding the genetic factors and biological processes underlying the risk for asthma exacerbations.
Collapse
|
5
|
Wang AL, Gruzieva O, Qiu W, Kebede Merid S, Celedón JC, Raby BA, Söderhäll C, DeMeo DL, Weiss ST, Melén E, Tantisira KG. DNA methylation is associated with inhaled corticosteroid response in persistent childhood asthmatics. Clin Exp Allergy 2019; 49:1225-1234. [PMID: 31187518 DOI: 10.1111/cea.13447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/19/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Response to inhaled corticosteroids is highly variable, and the association between DNA methylation and treatment response is not known. OBJECTIVE To examine the association between peripheral blood DNA methylation and inhaled corticosteroid response in children with persistent asthma. METHODS Epigenome-wide DNA methylation was analysed in individuals on inhaled corticosteroids in three independent and ethnically diverse cohorts-Childhood Asthma Management Program (CAMP); Children, Allergy, Milieu, Stockholm, Epidemiology (BAMSE); and Genetic Epidemiology of Asthma in Costa Rica Study (GACRS). Treatment response was evaluated using two definitions, the absence of emergency department visits and/or hospitalizations and the absence oral corticosteroid use while on inhaled corticosteroid therapy. CpG sites meeting nominal significance (P < 0.05) for each outcome were combined in a three-cohort meta-analysis with adjustment for multiple testing. DNA methylation was correlated with gene expression using Pearson and partial correlations. RESULTS In 154 subjects from CAMP, 72 from BAMSE, and 168 from GACRS, relative hypomethylation of cg00066816 (171 bases upstream of IL12B) was associated with the absence of emergency department visits and/or hospitalizations (Q = 0.03) in all cohorts and lower IL12B expression (ρ = 0.34, P = 0.01) in BAMSE. Relative hypermethylation of cg04256470 (688 bases upstream of CORT) was associated with the absence of oral corticosteroid use (Q = 0.04) in all cohorts and higher CORT expression (ρ = 0.20, P = 0.045) in CAMP. CONCLUSION AND CLINICAL RELEVANCE Differential DNA methylation of IL12B and CORT are associated with inhaled corticosteroid treatment response in persistent childhood asthmatics. Pharmaco-methylation can identify novel markers of treatment sensitivity in asthma.
Collapse
Affiliation(s)
- Alberta L Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.,Sachs' Children's Hospital, Stockholm, Sweden
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|