1
|
Miyara SJ, Shinozaki K, Hayashida K, Shoaib M, Choudhary RC, Zafeiropoulos S, Guevara S, Kim J, Molmenti EP, Volpe BT, Becker LB. Differential Mitochondrial Bioenergetics in Neurons and Astrocytes Following Ischemia-Reperfusion Injury and Hypothermia. Biomedicines 2024; 12:1705. [PMID: 39200170 PMCID: PMC11352110 DOI: 10.3390/biomedicines12081705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/02/2024] Open
Abstract
The close interaction between neurons and astrocytes has been extensively studied. However, the specific behavior of these cells after ischemia-reperfusion injury and hypothermia remains poorly characterized. A growing body of evidence suggests that mitochondria function and putative transference between neurons and astrocytes may play a fundamental role in adaptive and homeostatic responses after systemic insults such as cardiac arrest, which highlights the importance of a better understanding of how neurons and astrocytes behave individually in these settings. Brain injury is one of the most important challenges in post-cardiac arrest syndrome, and therapeutic hypothermia remains the single, gold standard treatment for neuroprotection after cardiac arrest. In our study, we modeled ischemia-reperfusion injury by using in vitro enhanced oxygen-glucose deprivation and reperfusion (eOGD-R) and subsequent hypothermia (HPT) (31.5 °C) to cell lines of neurons (HT-22) and astrocytes (C8-D1A) with/without hypothermia. Using cell lysis (LDH; lactate dehydrogenase) as a measure of membrane integrity and cell viability, we found that neurons were more susceptible to eOGD-R when compared with astrocytes. However, they benefited significantly from HPT, while the HPT effect after eOGD-R on astrocytes was negligible. Similarly, eOGD-R caused a more significant reduction in adenosine triphosphate (ATP) in neurons than astrocytes, and the ATP-enhancing effects from HPT were more prominent in neurons than astrocytes. In both neurons and astrocytes, measurement of reactive oxygen species (ROS) revealed higher ROS output following eOGD-R, with a non-significant trend of differential reduction observed in neurons. HPT after eOGD-R effectively downregulated ROS in both cells; however, the effect was significantly more effective in neurons. Lipid peroxidation was higher after eOGD-R in neurons, while in astrocytes, the increase was not statistically significant. Interestingly, HPT had similar effects on the reduction in lipoperoxidation after eOGD-R with both types of cells. While glutathione (GSH) levels were downregulated after eOGD-R in both cells, HPT enhanced GSH in astrocytes, but worsened GSH in neurons. In conclusion, neuron and astrocyte cultures respond differently to eOGD-R and eOGD-R + HTP treatments. Neurons showed higher sensitivity to ischemia-reperfusion insults than astrocytes; however, they benefited more from HPT therapy. These data suggest that given the differential effects from HPT in neurons and astrocytes, future therapeutic developments could potentially enhance HPT outcomes by means of neuronal and astrocytic targeted therapies.
Collapse
Affiliation(s)
- Santiago J. Miyara
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Koichiro Shinozaki
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Kei Hayashida
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Muhammad Shoaib
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | | | | | - Sara Guevara
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Junhwan Kim
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Ernesto P. Molmenti
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Surgery, Renown Health, Reno, NV 89502, USA
| | - Bruce T. Volpe
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Lance B. Becker
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
2
|
Grigoriev E, Ponasenko AV, Sinitskaya AV, Ivkin AA, Kornelyuk RA. Mitochondrial DNA as a Candidate Marker of Multiple Organ Failure after Cardiac Surgery. Int J Mol Sci 2022; 23:ijms232314748. [PMID: 36499077 PMCID: PMC9737207 DOI: 10.3390/ijms232314748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Assess the level of mitochondrial DNA depending on the presence of multiple organ failure in patients after heart surgery. The study included 60 patients who underwent surgical treatment of valvular heart disease using cardiopulmonary bypass. Uncomplicated patients were included in the 1st group (n = 30), patients with complications and multiple organ failure (MOF) were included in the 2nd group (n = 30). Serum mtDNA levels were determined by quantitative real-time polymerase chain reaction with fluorescent dyes. Mitochondrial DNA gene expression did not differ between group before surgery. Immediately after the intervention, cytochrome B gene expression was higher in the group with MOF, and it remained high during entire follow-up period. A similar trend was observed in cytochrome oxidase gene expression. Increased NADH levels of gene expressions during the first postoperative day were noted in both groups, the expression showed tendency to increase on the third postoperative day. mtDNA gene expression in the "MOF present" group remained at a higher level compared with the group without complications. A positive correlation was reveled between the severity of MOF according to SOFA score and the level of mtDNA (r = 0.45; p = 0.028) for the end-point "First day". The ROC analysis showed that mtDNA circulating in plasma (AUC = 0.605) can be a predictor of MOF development. The level of mtDNA significantly increases in case of MOF, irrespective of its cause. (2) The expression of mtDNA genes correlates with the level of MOF severity on the SOFA score.
Collapse
|
3
|
Longnus SL, Rutishauser N, Gillespie MN, Reichlin T, Carrel TP, Sanz MN. Mitochondrial Damage-associated Molecular Patterns as Potential Biomarkers in DCD Heart Transplantation: Lessons From Myocardial Infarction and Cardiac Arrest. Transplant Direct 2022; 8:e1265. [PMID: 34934807 PMCID: PMC8683216 DOI: 10.1097/txd.0000000000001265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
Heart transplantation with donation after circulatory death (DCD) has become a real option to increase graft availability. However, given that DCD organs are exposed to the potentially damaging conditions of warm ischemia before procurement, new strategies for graft evaluation are of particular value for the safe expansion of DCD heart transplantation. Mitochondria-related parameters are very attractive as biomarkers because of their intimate association with cardiac ischemia-reperfusion injury. In this context, a group of mitochondrial components, called mitochondrial damage-associated molecular patterns (mtDAMPs), released by stressed cells, holds great promise. mtDAMPs may be released at different stages of DCD cardiac donation and may act as indicators of graft quality. Because of the lack of information available for DCD grafts, we consider that relevant information can be obtained from other acute cardiac ischemic conditions. Thus, we conducted a systematic review of original research articles in which mtDAMP levels were assessed in the circulation of patients with acute myocardial infarction and cardiac arrest. We conclude that 4 mtDAMPs, ATP, cytochrome c, mitochondrial DNA, and succinate, are rapidly released into the circulation after the onset of ischemia, and their concentrations increase with reperfusion. Importantly, circulating levels of mtDAMPs correlate with cardiac damage and may be used as prognostic markers for patient survival in these conditions. Taken together, these findings support the concept that mtDAMPs may be of use as biomarkers to assess the transplant suitability of procured DCD hearts, and ultimately aid in facilitating the safe, widespread adoption of DCD heart transplantation.
Collapse
Affiliation(s)
- Sarah L. Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nina Rutishauser
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Mark N. Gillespie
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thierry P. Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria N. Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Chen S, Lachance BB, Gao L, Jia X. Targeted temperature management and early neuro-prognostication after cardiac arrest. J Cereb Blood Flow Metab 2021; 41:1193-1209. [PMID: 33444088 PMCID: PMC8142127 DOI: 10.1177/0271678x20970059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted temperature management (TTM) is a recommended neuroprotective intervention for coma after out-of-hospital cardiac arrest (OHCA). However, controversies exist concerning the proper implementation and overall efficacy of post-CA TTM, particularly related to optimal timing and depth of TTM and cooling methods. A review of the literature finds that optimizing and individualizing TTM remains an open question requiring further clinical investigation. This paper will summarize the preclinical and clinical trial data to-date, current recommendations, and future directions of this therapy, including new cooling methods under investigation. For now, early induction, maintenance for at least 24 hours, and slow rewarming utilizing endovascular methods may be preferred. Moreover, timely and accurate neuro-prognostication is valuable for guiding ethical and cost-effective management of post-CA coma. Current evidence for early neuro-prognostication after TTM suggests that a combination of initial prediction models, biomarkers, neuroimaging, and electrophysiological methods is the optimal strategy in predicting neurological functional outcomes.
Collapse
Affiliation(s)
- Songyu Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Yang L, Dong Y, Wu C, Youngblood H, Li Y, Zong X, Li L, Xu T, Zhang Q. Effects of prenatal photobiomodulation treatment on neonatal hypoxic ischemia in rat offspring. Theranostics 2021; 11:1269-1294. [PMID: 33391534 PMCID: PMC7738878 DOI: 10.7150/thno.49672] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury is a severe complication often leading to neonatal death and long-term neurobehavioral deficits in children. Currently, the only treatment option available for neonatal HI injury is therapeutic hypothermia. However, the necessary specialized equipment, possible adverse side effects, and limited effectiveness of this therapy creates an urgent need for the development of new HI treatment methods. Photobiomodulation (PBM) has been shown to be neuroprotective against multiple brain disorders in animal models, as well as limited human studies. However, the effects of PBM treatment on neonatal HI injury remain unclear. Methods: Two-minutes PBM (808 nm continuous wave laser, 8 mW/cm2 on neonatal brain) was applied three times weekly on the abdomen of pregnant rats from gestation day 1 (GD1) to GD21. After neonatal right common carotid artery ligation, cortex- and hippocampus-related behavioral deficits due to HI insult were measured using a battery of behavioral tests. The effects of HI insult and PBM pretreatment on infarct size; synaptic, dendritic, and white matter damage; neuronal degeneration; apoptosis; mitochondrial function; mitochondrial fragmentation; oxidative stress; and gliosis were then assessed. Results: Prenatal PBM treatment significantly improved the survival rate of neonatal rats and decreased infarct size after HI insult. Behavioral tests revealed that prenatal PBM treatment significantly alleviated cortex-related motor deficits and hippocampus-related memory and learning dysfunction. In addition, mitochondrial function and integrity were protected in HI animals treated with PBM. Additional studies revealed that prenatal PBM treatment significantly alleviated HI-induced neuroinflammation, oxidative stress, and myeloid cell/astrocyte activation. Conclusion: Prenatal PBM treatment exerts neuroprotective effects on neonatal HI rats. Underlying mechanisms for this neuroprotection may include preservation of mitochondrial function, reduction of inflammation, and decreased oxidative stress. Our findings support the possible use of PBM treatment in high-risk pregnancies to alleviate or prevent HI-induced brain injury in the perinatal period.
Collapse
|
6
|
Harrington JS, Huh JW, Schenck EJ, Nakahira K, Siempos II, Choi AMK. Circulating Mitochondrial DNA as Predictor of Mortality in Critically Ill Patients: A Systematic Review of Clinical Studies. Chest 2019; 156:1120-1136. [PMID: 31381882 DOI: 10.1016/j.chest.2019.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/05/2019] [Accepted: 07/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite numerous publications on mitochondrial DNA (mtDNA) in the last decade it remains to be seen whether mtDNA can be used clinically. We conducted a systematic review to assess circulating cell-free mtDNA as a biomarker of mortality in critically ill patients. METHODS This systematic review was registered with PROSPERO (CRD42016046670). PubMed, CINAHL, the Cochrane Library, Embase, Scopus, and Web of Science, and reference lists of retrieved articles were searched. Studies measuring circulating cell-free mtDNA and reporting on all-cause mortality in critically ill adult and pediatric patients were included. The primary and secondary outcomes were mortality and morbidity, respectively. RESULTS Of the 1,566 initially retrieved publications, 40 studies were included, accounting for 3,450 critically ill patients. Substantial differences between studies were noted in how mtDNA was isolated and measured. Sixteen of the 40 included studies (40%) explored the association between mtDNA levels and mortality; of those 16 studies, 11 (68.8%) reported a statistically significant association. The area under the receiver operating characteristic (AUROC) curve for mtDNA and mortality was calculated for 10 studies and ranged from 0.61 to 0.95. CONCLUSIONS There is growing interest in mtDNA as a predictor of mortality in critically ill patients. Most studies are small, lack validation cohorts, and utilize different protocols to measure mtDNA. When reported, AUROC analysis usually suggests a statistically significant association between mtDNA and mortality. Standardization of mtDNA protocols and the completion of a large, prospective, multicenter trial may be warranted to firmly establish the clinical usefulness of mtDNA.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY
| | - Jin-Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Edward J Schenck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY; Department of Pharmacology, Nara Medical University, Kashihara, Nara, Japan
| | - Ilias I Siempos
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY; First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, University of Athens Medical School, Athens, Greece
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY.
| |
Collapse
|