1
|
Dufraisse M, Cegarra J, Atain Kouadio JJ, Clerc-Urmès I, Wioland L. From unknown to familiar: An exploratory longitudinal field study on occupational exoskeletons adoption. APPLIED ERGONOMICS 2025; 122:104393. [PMID: 39326261 DOI: 10.1016/j.apergo.2024.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/17/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Occupational exoskeletons hold promise in preventing musculoskeletal disorders, but their effectiveness relies on their long-term use by workers. This study aims to characterize the adoption process of occupational exoskeletons by analyzing the experiences of 25 operators. Using a mixed-methods approach, both quantitative and qualitative data were collected before and during a four-week familiarization period. We primarily focused on users' expectations, subjective assessments over time, and initial experiences. Findings elucidate shifts in operators' perceptions of the devices over time. Through their narratives, we highlight how exoskeleton use impact operators' movements and the subsequent adaptations. Operators demonstrated diverse exploratory behaviors, indicating their efforts to get to grips with the effects of exoskeletons in their own ways. This study offers insights into the initial stages of occupational exoskeleton adoption, thus enriching our comprehension of rejection patterns and pathways toward their widespread acceptance.
Collapse
Affiliation(s)
- Marc Dufraisse
- Institut National de Recherche et de Sécurité, Département Homme Au Travail, 1, Rue Du Morvan CS 60027, 54519, Vandoeuvre Cedex, France; Institut National Universitaire Champollion, Laboratoire Sciences de La Cognition, Technologie, Ergonomie, Place de Verdun, 81012, Albi Cedex 9, France.
| | - Julien Cegarra
- Institut National Universitaire Champollion, Laboratoire Sciences de La Cognition, Technologie, Ergonomie, Place de Verdun, 81012, Albi Cedex 9, France
| | - Jean-Jacques Atain Kouadio
- Institut National de Recherche et de Sécurité, Département Homme Au Travail, 1, Rue Du Morvan CS 60027, 54519, Vandoeuvre Cedex, France
| | - Isabelle Clerc-Urmès
- Institut National de Recherche et de Sécurité, Département Homme Au Travail, 1, Rue Du Morvan CS 60027, 54519, Vandoeuvre Cedex, France
| | - Liên Wioland
- Institut National de Recherche et de Sécurité, Département Homme Au Travail, 1, Rue Du Morvan CS 60027, 54519, Vandoeuvre Cedex, France
| |
Collapse
|
2
|
Zheng L, Pan C, Wei L, Bahreinizad H, Chowdhury S, Ning X, Santos F. Shoulder-assist exoskeleton effects on balance and muscle activity during a block-laying task on a simulated mast climber. INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS 2024; 104:10.1016/j.ergon.2024.103652. [PMID: 39449710 PMCID: PMC11497863 DOI: 10.1016/j.ergon.2024.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Interest in utilizing exoskeletons to mitigate the risks of musculoskeletal disorders (MSDs) among construction workers is growing, spurred by encouraging results in other industries. However, it is crucial to carefully examine their impact on workers' stability and balance before implementation. In this study, seven male participants lifted a 35-lb cinder block from a production table to a simulated wall at two heights-elbow and shoulder levels-using three different exoskeleton models on an unstable platform, where their balance and shoulder muscle activity were assessed. Balance-related parameters, included mean distance (MDIST), total excursion (EXCUR), and mean velocity (VEL) of the center of pressure, were derived from force plate data. Muscle activity in six shoulder and upper arm muscles was estimated using electromyography (EMG) data. The results indicated that wearing two of the exoskeletons significantly increased both total and medio-lateral (ML) MDIST compared to not wearing an exoskeleton. Wearing one of the exoskeletons significantly increased total and ML VEL and ML EXCUR. Although lifting level did not have a significant impact on the balance parameters, it did affect the muscle activity in most of the measured muscles. Moreover, only one exoskeleton significantly reduced the activity in a particular shoulder muscle compared to no exoskeleton use. In conclusion, the evaluated shoulder-assist exoskeletons showed limited benefits for preventing upper extremity MSDs and may negatively affect whole-body balance during a block-laying task on an unstable platform. These findings underscore the importance of comprehensive evaluations of balance and effectiveness prior to adopting exoskeletons in construction.
Collapse
Affiliation(s)
- Liying Zheng
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | | | - Leonardo Wei
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| | - Hossein Bahreinizad
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
| | - Suman Chowdhury
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, USA
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
| | - Xiaopeng Ning
- Division of Safety Research, NIOSH, Morgantown, WV, USA
| | - Felipe Santos
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
3
|
Okunola A, Afolabi A, Akanmu A, Jebelli H, Simikins S. Facilitators and barriers to the adoption of active back-support exoskeletons in the construction industry. JOURNAL OF SAFETY RESEARCH 2024; 90:402-415. [PMID: 39251296 DOI: 10.1016/j.jsr.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Active back-support exoskeletons are gaining more awareness as a solution to the prevalence of work-related musculoskeletal disorders in the construction industry. This study aims to understand the factors that influence the adoption of active back-support exoskeletons in the construction industry. METHOD A literature review was conducted to gather relevant adoption factors related to exoskeleton implementation. Building on the TOE (Technology, Organization, and Environment) framework, two rounds of the survey via the Delphi technique were administered with 13 qualified industry professionals to determine the most important adoption factors using the relative importance index. Through semi-structured interviews, the professionals expressed their perspectives on the impact of active back-support exoskeletons on the construction industry. RESULTS Important factors included 18 facilitators and 21 barriers. The impact of the exoskeletons in the construction industry was categorized into expected benefits, barriers, solutions, adjustment to technology, implementation, and applicable tasks. CONCLUSIONS This study identified the factors to be considered in the adoption and implementation of active back-support exoskeletons in the construction industry from the perspective of stakeholders. The study also elucidates the impact of active exoskeletons on construction organizations and the broader environment. PRACTICAL APPLICATIONS This study provides useful guidance to construction companies interested in adopting active back-support exoskeletons. Our results will also help manufacturers of active back-support exoskeletons to understand the functional requirements and adjustments required for utilization in the construction industry. Lastly, the study expands the application of the TOE framework to the adoption of active back-support exoskeletons in the construction industry.
Collapse
Affiliation(s)
- Akinwale Okunola
- Myers-Lawson School of Construction, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| | - Adedeji Afolabi
- Myers-Lawson School of Construction, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| | - Abiola Akanmu
- Myers-Lawson School of Construction, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| | - Houtan Jebelli
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States.
| | - Susan Simikins
- Department of Psychology, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
4
|
Kim S, Ojelade A, Moore A, Gutierrez N, Harris-Adamson C, Barr A, Srinivasan D, Rempel DM, Nussbaum MA. Understanding contributing factors to exoskeleton use-intention in construction: a decision tree approach using results from an online survey. ERGONOMICS 2024; 67:1208-1221. [PMID: 38085690 DOI: 10.1080/00140139.2023.2289859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Work-related musculoskeletal disorders (WMSDs) are a major health concern in the construction industry. Occupational exoskeletons (EXOs) are a promising ergonomic intervention to help reduce WMSD risk. Their adoption, however, has been low in construction. To understand the contributing factors to EXO use-intention and assist in future decision-making, we built decision trees to predict responses to each of three EXO use-intention questions (Try, Voluntary Use, and Behavioural Intention), using online survey responses. Variable selection and hyperparameter tuning were used respectively to reduce the number of potential predictors and improve prediction performance. The importance of variables in each final tree was calculated to understand which variables had a greater influence. The final trees had moderate prediction performance. The root node of each tree included EXOs becoming standard equipment, fatigue reduction, or performance increase. Important variables were found to be quite specific to different decision trees. Practical implications of the findings are discussed.Practitioner summary: This study used decision trees to identify key factors influencing the use-intention of occupational exoskeletons (EXOs) in construction, using online survey data. Key factors identified included EXOs becoming standard equipment, fatigue reduction, and performance improvement. Final trees provide intuitive visual representations of the decision-making process for workers to use EXOs.
Collapse
Affiliation(s)
- Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Aanuoluwapo Ojelade
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Albert Moore
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Nancy Gutierrez
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Alan Barr
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| | - David M Rempel
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
5
|
Ibrahim A, Okpala I, Nnaji C, Akanmu A. Effects of using an active hand exoskeleton for drilling tasks: A pilot study. JOURNAL OF SAFETY RESEARCH 2024; 90:381-391. [PMID: 39251294 DOI: 10.1016/j.jsr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Several studies have assessed and validated the impact of exoskeletons on back and shoulder muscle activation; however, limited research has explored the role that exoskeletons could play in mitigating lower arm-related disorders. This study assessed the impact of Ironhand, an active hand exoskeleton (H-EXO) designed to reduce grip force exertion, on worker exertion levels using a two-phase experimental design. METHOD Ten male participants performed a controlled, simulated drilling activity, while three male participants completed an uncontrolled concrete demolition activity. The impact of the exoskeleton was assessed in terms of muscle activity across three different muscles using electromyography (EMG), perceived exertion, and perceived effectiveness. RESULTS Results indicate that peak muscle activation decreased across the target muscle group when the H-EXO was used, with the greatest reduction (27%) observed in the Extensor Carpi Radialis (ECR). Using the exoskeleton in controlled conditions did not significantly influence perceived exertion levels. Users indicated that the H-EXO was a valuable technology and expressed willingness to use it for future tasks. PRACTICAL APPLICATIONS This study showcases how glove-based exoskeletons can potentially reduce wrist-related disorders, thereby improving safety and productivity among workers. Future work should assess the impact of the H-EXO in various tasks, different work environments and configurations, and among diverse user groups.
Collapse
Affiliation(s)
- Abdullahi Ibrahim
- Department of Construction Science, Texas A&M University, 101 Coke Building, College Station, TX 77840, USA.
| | - Ifeanyi Okpala
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, 3043 HM Comer, Tuscaloosa, AL 35487, USA.
| | - Chukwuma Nnaji
- Department of Construction Science, Texas A&M University, 101 Coke Building, College Station, TX 77840, USA.
| | - Abiola Akanmu
- Myers Lawson School of Construction, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
6
|
Shakourisalim M, Wang X, Beltran Martinez K, Golabchi A, Krell S, Tavakoli M, Rouhani H. A comparative study of biomechanical assessments in laboratory and field settings for manual material handling tasks using extractor tools and exoskeletons. Front Bioeng Biotechnol 2024; 12:1358670. [PMID: 38832133 PMCID: PMC11144878 DOI: 10.3389/fbioe.2024.1358670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
To enhance physical capabilities of workers who regularly perform physically demanding tasks involving heavy lifting and awkward postures, various tools and occupational exoskeletons can be used. Most of the studies aiming to explore the efficiency of these tools and exoskeletons have been performed in confined and controlled laboratory spaces, which do not represent the real-world work environment. This study aimed to compare the outcome of biomechanical assessment of using a back support exoskeleton and assistive tools (Lever and Jake) in the procedure of a high demanding manual material handling task versus the results found by performing the same task in a laboratory. Ten able-bodied participants and ten able-bodied utility workers performed the same manhole removal task in-lab and in-field, respectively, with the aid of an exoskeleton and Lever and Jake tools. Muscle activity and Rapid Entire Body Assessment (REBA) scores were recorded using surface electromyography and inertial measurement units, respectively and compared between in-lab and in-field trials. The field experiments indicated significant differences (p < 0.05) in normalized muscle activity across most muscles when compared to laboratory data. These results revealed how muscle activity is affected by the controlled lab setting compared to real-world field conditions. However, REBA scores indicate similar ergonomic implications regardless of the utilization of exoskeletons or tools. These findings underscore that real-world field assessments are crucial for evaluating ergonomic risks and effects of occupational exoskeletons and tools to account for environmental factors and workers' skills in ergonomic evaluations of this nature.
Collapse
Affiliation(s)
- Maryam Shakourisalim
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Xun Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Ali Golabchi
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
- EWI Works Inc., Edmonton, AB, Canada
| | | | - Mahdi Tavakoli
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hossein Rouhani
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Gonzales A, Barbieri DF, Carbonell AM, Joseph A, Srinivasan D, Cha J. The compatibility of exoskeletons in perioperative environments and workflows: an analysis of surgical team members' perspectives and workflow simulation. ERGONOMICS 2024; 67:674-694. [PMID: 37478005 DOI: 10.1080/00140139.2023.2240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Surgical team members in perioperative environments experience high physical demands. Interventions such as exoskeletons, external wearable devices that support users, have the potential to reduce these work-related physical demands. However, barriers such as workplace environment and task compatibility may limit exoskeleton implementation. This study gathered the perspectives of 33 surgical team members: 12 surgeons, four surgical residents, seven operating room (OR) nurses, seven surgical technicians (STs), two central processing technicians (CPTs), and one infection control nurse to understand their workplace compatibility. Team members were introduced to passive exoskeletons via demonstrations, after which surgical staff (OR nurses, STs, and CPTs) were led through a simulated workflow walkthrough where they completed tasks representative of their workday. Five themes emerged from the interviews (workflow, user needs, hindrances, motivation for intervention, and acceptance) with unique subthemes for each population. Overall, exoskeletons were largely compatible with the duties and workflow of surgical team members.
Collapse
Affiliation(s)
- Alec Gonzales
- Department of Industrial Engineering, Clemson University, Clemson, South Carolina, USA
| | | | - Alfredo M Carbonell
- Department of Surgery, Prisma Health - Upstate, Greenville, South Carolina, USA
- University of South Carolina School of Medicine-Greenville, Greenville, South Carolina, USA
| | - Anjali Joseph
- School of Architecture, Clemson University, Clemson, South Carolina, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, South Carolina, USA
| | - Jackie Cha
- Department of Industrial Engineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
8
|
Raghuraman RN, Barbieri DF, Aviles J, Srinivasan D. Age and gender differences in the perception and use of soft vs. rigid exoskeletons for manual material handling. ERGONOMICS 2024:1-18. [PMID: 38613461 DOI: 10.1080/00140139.2024.2338268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
We investigated age and gender differences in the perception and use of soft (Apex) vs. rigid (Paexo Back) passive back-support exoskeletons (BSE) for repetitive lifting and lowering. A gender-balanced sample of 20 young (18-30 years) and 16 old (45-60 years) individuals were recruited. In the first session, participants' self-reported maximum acceptable load (MAL) was assessed using a psychophysical approach. Changes in muscle activity and kinematics due to BSE use in repetitive lifting/lowering tasks were also assessed. Overall, both BSEs increased MAL (by ∼7%), and reduced trunk extensor muscle activity across all groups (by ∼7-18%), compared to the control condition. Both BSEs promoted more squatting postures, increased quadriceps muscle activity (by ∼34%) and abdominal muscle activity during asymmetric tasks (by 5-20%). Some age and gender differences were significant, particularly for the trunk kinematics when using the Apex. Future work should include more diverse user groups in studying willingness to adopt BSEs and characterising their consequent effects on the body.
Collapse
Affiliation(s)
| | | | - Jessica Aviles
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
9
|
Vallée A. Exoskeleton technology in nursing practice: assessing effectiveness, usability, and impact on nurses' quality of work life, a narrative review. BMC Nurs 2024; 23:156. [PMID: 38443892 PMCID: PMC10913291 DOI: 10.1186/s12912-024-01821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
The use of exoskeletons in nursing practice has gained attention as a potential solution to address the physical demands and risks associated with the profession. This narrative review examines the effectiveness, usability, and impact of exoskeleton technology on nurses' quality of work life. The review focuses on the reduction of physical strain and fatigue, improved posture and body mechanics, enhanced patient care, usability and acceptance factors, and the broader impact on work life. The effectiveness of exoskeletons in reducing physical strain and fatigue among nurses is supported by evidence showing decreased muscle activation and reduced forces exerted on the body. The usability and acceptance of exoskeletons are critical considerations, including device comfort and fit, ease of use and integration into workflows, user experience and training, compatibility with the work environment, and user feedback for iterative design improvements. The implementation of exoskeletons has the potential to positively impact nurses' work life by reducing work-related injuries, improving physical well-being, enhancing job satisfaction, and promoting psychological and psychosocial benefits. Additionally, the use of exoskeletons can lead to improved patient care outcomes. Challenges and future directions in the field of exoskeleton technology for nurses include cost and accessibility, adaptability to nursing specialties and tasks, long-term durability and maintenance, integration with personal protective equipment, and ethical considerations. Addressing these challenges and considering future research and development efforts are crucial for the successful integration of exoskeleton technology in nursing practice, ultimately improving nurses' quality of work life and patient care delivery.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology and Public Health, Foch Hospital, 92150, Suresnes, France.
| |
Collapse
|
10
|
Song Y, Goršič M, Feng Z, Cordova H, Li L, Dai B, Novak V. Effects of a back-assist exosuit in lab-based approximations of construction tasks performed by novices and experienced construction workers. ERGONOMICS 2024:1-15. [PMID: 39387502 DOI: 10.1080/00140139.2024.2325535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/25/2024] [Indexed: 10/15/2024]
Abstract
Passive back-assist exosuits may be beneficial for construction workers, but few evaluations have been conducted with actual workers and construction-relevant tasks. This paper presents a laboratory study of the HeroWear Apex exosuit with 35 participants: 15 with significant construction experience and 20 without it. Participants completed several approximations of brief construction tasks (lifting, carrying, raising boards) and three 3-min tasks (hunched standing, kneeling, hunched walking with a nail gun) with and without the exosuit. During brief tasks, erector spinae electromyograms were reduced in all tasks (Cohen's d up to -0.58), kinematics suggested load shifting from the back to the legs, and the exosuit was perceived as helpful. During 3-min tasks, the exosuit was perceived as helpful in all tasks, but only reduced erector spinae electromyograms during kneeling. Thus, the exosuit may benefit workers during several construction-related tasks, though objective benefits could not be shown in 3-min standing or walking.
Collapse
Affiliation(s)
- Yu Song
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
- Department of Health, Sport & Exercise Sciences, University of Kansas, Lawrence, KS, USA
| | - Maja Goršič
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH, USA
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Zhichen Feng
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
| | - Haylen Cordova
- Physical Therapy Department, University of Utah, Salt Lake City, UT, USA
| | - Ling Li
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
| | - Boyi Dai
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
| | - Vesna Novak
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
Okpala I, Nnaji C. Insidious risks of wearable robots to worker safety and health: A scoping review. JOURNAL OF SAFETY RESEARCH 2024; 88:382-394. [PMID: 38485381 DOI: 10.1016/j.jsr.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 11/14/2023] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The construction industry is tormented by a high rate of work-related musculoskeletal disorders (WMSDs) and flat or declining productivity rates. To improve construction workers' safety, health, and productivity, construction researchers and practitioners are investigating the safe implementation of exoskeletons. However, concern exists that these human-robot interactions (HRI) could amplify the effects of existing health and safety risks and lead to new health and safety risks. Only a few comprehensive studies have identified safety and health hazards inherent in using exoskeletons within construction trades and potential strategies for mitigating these threats. This study attempts to bridge this gap. METHOD A literature search was conducted using electronic databases. The authors relied on a 5-step scoping review process to examine academic publications, industry reports, and fact sheets to generate helpful information for this study. RESULTS The review revealed 36 health and safety hazards associated with using wearable robots in high-risk construction trades. Twenty-two organizational and field-facing strategies were introduced as potential controls to mitigate the identified hazards. CONCLUSIONS The study provided a knowledge-based foundation for HRI safety risk assessment and guidance to optimize pre-task planning. This foundation could lead to significant advances in construction trade safety and the successful execution of tasks by robotic technology. PRACTICAL APPLICATIONS Results from the present study can guide construction practitioners and safety professionals involved in technology integration and safety risk assessment on safe ways to implement wearable robots. Moreover, the present study provides critical insight that could inform the design and implementation of job hazard analysis and shape continuous education programs and safety training. This study prompts policymakers, standard developers, and exoskeleton manufacturers to work closely to ensure a safe future for exoskeletons in the construction industry.
Collapse
Affiliation(s)
- Ifeanyi Okpala
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, 3043 HM Comer, Tuscaloosa, AL 35487, United States.
| | - Chukwuma Nnaji
- Department of Construction Science, Texas A&M University, 574 Ross St, College Station, TX 77840, United States.
| |
Collapse
|
12
|
Golabchi A, Riahi N, Fix M, Miller L, Rouhani H, Tavakoli M. A framework for evaluation and adoption of industrial exoskeletons. APPLIED ERGONOMICS 2023; 113:104103. [PMID: 37499526 DOI: 10.1016/j.apergo.2023.104103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Work-related Musculoskeletal Disorders (WMSDs) account for a significant portion of worker illnesses and injuries, resulting in high costs and productivity losses to employers globally. In recent years, there has been an increased interest in the use of exoskeleton technology to reduce rates of WMSDs in industrial worksites. Despite the potential of exoskeletons to mitigate the risks of WMSDs, the required steps to properly assess and implement the technology for industrial applications are not clear. This paper proposes a framework that can help organizations successfully evaluate and adopt industrial exoskeletons. Through a focus group of industry professionals, researchers, and exoskeleton experts, and by building on existing literature, an overarching adoption framework is developed. The identified stages and tasks within the framework enable an organization to evaluate and adopt exoskeletons through a systematic approach and to identify the existing gaps in their technology adoption process. The findings also highlight the areas where further studies are needed to promote the adoption of industrial exoskeletons, including large-scale field studies and long-term monitoring.
Collapse
Affiliation(s)
- Ali Golabchi
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; EWI Works International Inc, Edmonton, Alberta, T6G 1H9, Canada.
| | - Negar Riahi
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mackenzie Fix
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Linda Miller
- EWI Works International Inc, Edmonton, Alberta, T6G 1H9, Canada
| | - Hossein Rouhani
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mahdi Tavakoli
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
13
|
Flor-Unda O, Casa B, Fuentes M, Solorzano S, Narvaez-Espinoza F, Acosta-Vargas P. Exoskeletons: Contribution to Occupational Health and Safety. Bioengineering (Basel) 2023; 10:1039. [PMID: 37760141 PMCID: PMC10647659 DOI: 10.3390/bioengineering10091039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
This review aims to characterize the current landscape of exoskeletons designed to promote medical care and occupational safety in industrial settings. Extensive exploration of scientific databases spanning industries, health, and medicine informs the classification of exoskeletons according to their distinctive attributes and specific footholds on the human physique. Within the scope of this review, a comprehensive analysis is presented, contextualizing the integration of exoskeletons based on different work activities. The reviewers extracted the most relevant articles published between 2008 and 2023 from IEEE, Proquest, PubMed, Science Direct, Scopus, Web of Science, and other databases. In this review, the PRISMA-ScR checklist was used, and a Cohen's kappa coefficient of 0.642 was applied, implying moderate agreement among the reviewers; 75 primary studies were extracted from a total of 344. The future of exoskeletons in contributing to occupational health and safety will depend on continued collaboration between researchers, designers, healthcare professionals, and industries. With the continued development of technologies and an increasing understanding of how these devices interact with the human body, exoskeletons will likely remain valuable for improving working conditions and safety in various work environments.
Collapse
Affiliation(s)
- Omar Flor-Unda
- Ingeniería Industrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador;
| | - Bregith Casa
- Ingeniería en Diseño Industrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad Central del Ecuador, Quito 170125, Ecuador; (B.C.); (M.F.)
| | - Mauricio Fuentes
- Ingeniería en Diseño Industrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad Central del Ecuador, Quito 170125, Ecuador; (B.C.); (M.F.)
| | - Santiago Solorzano
- Unidad de Innovación Tecnológica, Universidad de Las Américas, Quito 170125, Ecuador;
| | | | - Patricia Acosta-Vargas
- Ingeniería Industrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador;
- Intelligent and Interactive Systems Laboratory, Universidad de Las Américas, Quito 170125, Ecuador
| |
Collapse
|
14
|
Raghuraman RN, Upasani S, Gonzales A, Aviles J, Cha J, Srinivasan D. Manufacturing Industry Stakeholder Perspectives on Occupational Exoskeletons: Changes after a Brief Exposure to Exoskeletons. IISE Trans Occup Ergon Hum Factors 2023; 11:71-80. [PMID: 37747446 DOI: 10.1080/24725838.2023.2262480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
OCCUPATIONAL APPLICATIONSMultiple occupational exoskeletons have been developed recently with potential to reduce physical demands, muscle fatigue, and risk of over-exertion injuries in manufacturing, yet there are currently challenges in practical, large-scale deployment. We explored how stakeholder perceptions of exoskeletons were affected by exposure to passive arm- and back-support exoskeletons. Our outcomes indicate that even brief exposure to exoskeletons can positively influence worker and stakeholder perceptions on the usefulness and safety of exoskeletons. However, worker concerns about device usability and acceptability in the field were not mitigated by such brief exposure. This work may help manufacturing industry stakeholders understand what technology-adoption factors need further consideration when planning for exoskeleton deployment.
Collapse
Affiliation(s)
| | - Satyajit Upasani
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Alec Gonzales
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| | - Jessica Aviles
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| | - Jackie Cha
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
15
|
Fournier DE, Yung M, Somasundram KG, Du BB, Rezvani S, Yazdani A. Quality, productivity, and economic implications of exoskeletons for occupational use: A systematic review. PLoS One 2023; 18:e0287742. [PMID: 37368889 PMCID: PMC10298758 DOI: 10.1371/journal.pone.0287742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of this systematic review was to synthesize the current state of knowledge on the quality and productivity of workers and their work while wearing exoskeletons, as well as the economic implications of exoskeletons for occupational use. Following the PRISMA guidelines, six databases were systematically searched for relevant journal articles, written in English, and published since January 2000. Articles meeting the inclusion criteria had their quality assessed using JBI's Checklist for Quasi-Experimental Studies (Non-Randomized Experimental Studies). A total of 6,722 articles were identified and 15 articles focusing on the impact of exoskeletons on quality and productivity of exoskeleton users while performing occupational tasks were included in this study. None of the included articles evaluated the economic implications of exoskeletons for occupational use. This study revealed several quality and productivity measures (e.g., endurance time, task completion time, number of errors, number of task cycles completed) used to evaluate the impact of exoskeletons. The current state of the literature suggests that quality and productivity impacts of exoskeleton use are dependent on task characteristics that should be considered when adopting exoskeletons. Future studies should evaluate the impact of exoskeleton use in the field and on a diverse pool of workers, as well as its economic implications to better support decision-making in the adoption of exoskeletons within organizations.
Collapse
Affiliation(s)
- Daniel E. Fournier
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
| | - Marcus Yung
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
| | - Kumara G. Somasundram
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
| | - Bronson B. Du
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
| | - Sara Rezvani
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
| | - Amin Yazdani
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
- School of Public Health and Health Systems, University of Waterloo, Ontario, Canada
| |
Collapse
|
16
|
Pacifico I, Aprigliano F, Parri A, Cannillo G, Melandri I, Sabatini AM, Violante FS, Molteni F, Giovacchini F, Vitiello N, Crea S. Evaluation of a spring-loaded upper-limb exoskeleton in cleaning activities. APPLIED ERGONOMICS 2023; 106:103877. [PMID: 36095895 DOI: 10.1016/j.apergo.2022.103877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
In the past few years, companies have started considering the adoption of upper-limb occupational exoskeletons as a solution to reduce the health and cost issues associated with work-related shoulder overuse injuries. Most of the previous research studies have evaluated the efficacy of these devices in laboratories by measuring the reduction in muscle exertion resulting from device use in stereotyped tasks and controlled conditions. However, to date, uncertainties exist about generalizing laboratory results to more realistic conditions of use. The current study aims to investigate the in-field efficacy (through electromyography and perceived exertion), usability, and acceptance of a commercial spring-loaded upper-limb exoskeleton in cleaning job activities. The operators were required to maintain prolonged overhead postures while holding and moving a pole equipped with tools for window and ceiling cleaning. Compared to the normal working condition, the exoskeleton significantly reduced the total shoulder muscle activity (∼17%), the activity of the anterior deltoid (∼26%), medial deltoid (∼28%), and upper trapezius (∼24%). With the exoskeleton, the operators perceived reduced global effort (∼17%) as well as a reduced local effort in the shoulder (∼18%), arm (∼22%), upper back (∼14%), and lower back (∼16%). The beneficial effect of the exoskeleton and its suitability in cleaning settings are corroborated by the acceptance and usability scores assigned by operators, which averaged ∼5.5 out of 7 points. To the authors' knowledge, this study is the first to present an experience of exoskeleton use in cleaning contexts. The outcomes of this research invite further studies to test occupational exoskeletons in various realistic applications to foster scientific-grounded ergonomic evaluations and encourage the informed adoption of the technology.
Collapse
Affiliation(s)
| | | | - Andrea Parri
- IUVO S.r.l., Via Puglie 9, 56025, Pontedera, Pisa, Italy
| | - Giusi Cannillo
- Formula Servizi, Via Monteverdi, 31, 47122, Forlì, Italy
| | | | - Angelo Maria Sabatini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Francesco Saverio Violante
- Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna.Occupational Medicine Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro 17, 23845, Costa Masnaga, Lecco, Italy
| | | | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy; IRCCS Fondazione Don Carlo Gnocchi, 50143, Florence, Italy
| | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy; IRCCS Fondazione Don Carlo Gnocchi, 50143, Florence, Italy.
| |
Collapse
|
17
|
Mahmud D, Bennett ST, Zhu Z, Adamczyk PG, Wehner M, Veeramani D, Dai F. Identifying Facilitators, Barriers, and Potential Solutions of Adopting Exoskeletons and Exosuits in Construction Workplaces. SENSORS (BASEL, SWITZERLAND) 2022; 22:9987. [PMID: 36560355 PMCID: PMC9785667 DOI: 10.3390/s22249987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 05/31/2023]
Abstract
Exoskeletons and exosuits (collectively termed EXOs) have the potential to reduce the risk of work-related musculoskeletal disorders (WMSDs) by protecting workers from exertion and muscle fatigue due to physically demanding, repetitive, and prolonged work in construction workplaces. However, the use of EXOs in construction is in its infancy, and much of the knowledge required to drive the acceptance, adoption, and application of this technology is still lacking. The objective of this research is to identify the facilitators, barriers, and corresponding solutions to foster the adoption of EXOs in construction workplaces through a sequential, multistage Delphi approach. Eighteen experts from academia, industry, and government gathered in a workshop to provide insights and exchange opinions regarding facilitators, barriers, and potential solutions from a holistic perspective with respect to business, technology, organization, policy/regulation, ergonomics/safety, and end users (construction-trade professionals). Consensus was reached regarding all these perspectives, including top barriers and potential solution strategies. The outcomes of this study will help the community gain a comprehensive understanding of the potential for EXO use in the construction industry, which may enable the development of a viable roadmap for the evolution of EXO technology and the future of EXO-enabled workers and work in construction workplaces.
Collapse
Affiliation(s)
- Dilruba Mahmud
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Sean T. Bennett
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhenhua Zhu
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter G. Adamczyk
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Wehner
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dharmaraj Veeramani
- Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fei Dai
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
18
|
Madinei S, Kim S, Park JH, Srinivasan D, Nussbaum MA. A novel approach to quantify the assistive torque profiles generated by passive back-support exoskeletons. J Biomech 2022; 145:111363. [PMID: 36332510 DOI: 10.1016/j.jbiomech.2022.111363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Industrial exoskeletons are a promising ergonomic intervention to reduce the risk of work-related musculoskeletal disorders by providing external physical support to workers. Passive exoskeletons, having no power supplies, are of particular interest given their predominance in the commercial market. Understanding the mechanical behavior of the torque generation mechanisms embedded in passive exoskeletons is, however, essential to determine the efficacy of these devices in reducing physical loads (e.g., in manual material handling tasks). We introduce a novel approach using a computerized dynamometer to quantify the assistive torque profiles of two passive back-support exoskeletons (BSEs) at different support settings and in both static and dynamic conditions. The feasibility of this approach was examined using both human subjects and a mannequin. Clear differences in assistive torque magnitudes were evident between the two BSEs, and both devices generated more assistive torques during trunk/hip flexion than extension. Assistive torques obtained from human subjects were often within similar ranges as those from the mannequin, though values were more comparable over a narrow range of flexion/extension angles due to practical limitations with the dynamometer and human subjects. Characterizing exoskeleton assistive torque profiles can help in better understanding how to select a torque profile for given task requirements and user anthropometry, and aid in predicting the potential impacts of exoskeleton use by incorporating measured torque profiles in a musculoskeletal modeling system. Future work is recommended to assess this approach for other occupational exoskeletons.
Collapse
Affiliation(s)
- Saman Madinei
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jang-Ho Park
- Department of Industrial Engineering, Clemson University, Clemson, SC 29634, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC 29634, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
19
|
Assessment of a Passive Lumbar Exoskeleton in Material Manual Handling Tasks under Laboratory Conditions. SENSORS 2022; 22:s22114060. [PMID: 35684682 PMCID: PMC9185583 DOI: 10.3390/s22114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
Manual material handling tasks in industry cause work-related musculoskeletal disorders. Exoskeletons are being introduced to reduce the risk of musculoskeletal injuries. This study investigated the effect of using a passive lumbar exoskeleton in terms of moderate ergonomic risk. Eight participants were monitored by electromyogram (EMG) and motion capture (MoCap) while performing tasks with and without the lumbar exoskeleton. The results showed a significant reduction in the root mean square (VRMS) for all muscles tracked: erector spinae (8%), semitendinosus (14%), gluteus (5%), and quadriceps (10.2%). The classic fatigue parameters showed a significant reduction in the case of the semitendinosus: 1.7% zero-crossing rate, 0.9% mean frequency, and 1.12% median frequency. In addition, the logarithm of the normalized Dimitrov’s index showed reductions of 11.5, 8, and 14% in erector spinae, semitendinosus, and gluteus, respectively. The calculation of range of motion in the relevant joints demonstrated significant differences, but in almost all cases, the differences were smaller than 10%. The findings of the study indicate that the passive exoskeleton reduces muscle activity and introduces some changes of strategies for motion. Thus, EMG and MoCap appear to be appropriate measurements for designing an exoskeleton assessment procedure.
Collapse
|
20
|
Garosi E, Mazloumi A, Jafari AH, Keihani A, Shamsipour M, Kordi R, Kazemi Z. Design and ergonomic assessment of a passive head/neck supporting exoskeleton for overhead work use. APPLIED ERGONOMICS 2022; 101:103699. [PMID: 35114511 DOI: 10.1016/j.apergo.2022.103699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Overhead work is an important risk factor associated with musculoskeletal disorders of the neck and shoulder region. This study aimed to propose and evaluate a passive head/neck supporting exoskeleton (HNSE) as a potential ergonomic intervention for overhead work applications. Fourteen male participants were asked to perform a simulated overhead task of fastening/unfastening nut in 4 randomized sessions, characterized by two variables: neck extension angle (40% and 80% of neck maximum range of motion) and exoskeleton condition (wearing and not wearing the HNSE). Using the HNSE, significantly alleviated perceived discomfort in the neck (p-value = 0.009), right shoulder (p-value = 0.05) and left shoulder (p-value = 0.02) and reduced electromyographic activity of the right (p-value = 0.005) and left (p-value = 0.01) sternocleidomastoid muscles. However, utilizing the exoskeleton caused a remarkable increase in right (p-value = 0.04) and left (p-value = 0.05) trapezius electromyographic activities. Performance was not significantly affected by the HNSE. Although the HNSE had promising effects with respect to discomfort and muscular activity in the static overhead task, future work is still needed to investigate its effect on performance and to provide support for the generalizability of study results.
Collapse
Affiliation(s)
- Ehsan Garosi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Iran; Department of Ergonomics, School of Public Health, Iran University of Medical Sciences, Iran
| | - Adel Mazloumi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Iran; Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Homayoun Jafari
- Medical Physics & Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Keihani
- Medical Physics & Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Kazemi
- Department of Ergonomics, School of Public Health, Iran University of Medical Sciences, Iran
| |
Collapse
|
21
|
Schwerha D, McNamara N, Kim S, Nussbaum MA. Exploratory Field Testing of Passive Exoskeletons in Several Manufacturing Environments: Perceived Usability and User Acceptance. IISE Trans Occup Ergon Hum Factors 2022; 10:71-82. [PMID: 35354354 DOI: 10.1080/24725838.2022.2059594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OCCUPATIONAL APPLICATIONSResults of the current exploratory study suggest that use of an exoskeleton (EXO) has the potential to be accepted by workers as an intervention in diverse manufacturing environments. Also evident were that the major factors contributing to EXO-use-intention are perceived comfort, task-technology fit, perceived safety, and perceived usefulness. A user's perception of perceived usability may be established by using an exoskeleton during actual job tasks, yet some aspects of perceived usability likely require multiple exposures to an EXO for an accurate assessment. Many negative comments regarding EXO use were related to physical constraints (e.g., restricted movements, bulkiness), and to the EXO interface (e.g., straps, cuff designs), suggesting a need for further research on EXO design to minimize discomfort. In practice, there is likely value in having workers use and explore candidate EXOs during their actual job, both to accurately assess the usefulness of an EXO and to find the most effective EXO.
Collapse
Affiliation(s)
- Diana Schwerha
- Department of Industrial & Systems Engineering, Liberty University, Lynchburg, VA, USA
| | - Nathan McNamara
- Department of Industrial & Systems Engineering, Ohio University, Athens, OH, USA
| | - Sunwook Kim
- Department of Industrial & Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Maury A Nussbaum
- Department of Industrial & Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
22
|
Elprama SA, Vanderborght B, Jacobs A. An industrial exoskeleton user acceptance framework based on a literature review of empirical studies. APPLIED ERGONOMICS 2022; 100:103615. [PMID: 34847372 DOI: 10.1016/j.apergo.2021.103615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Studying the acceptance of exoskeletons in industry has gained increased attention. Exoskeletons (wearable support devices) are envisioned to alleviate heavy work. Examining what factors influence the use of exoskeletons is important, because influencing these factors could positively contribute to the adoption of industrial exoskeletons. The factors identified in this paper have been systematically derived from empirical research with (potential future) end users, most of whom have tried on an exoskeleton. Our framework with factors influencing the acceptance of industrial exoskeletons can be used during the (ideally iterative) design, (re)development and evaluation phase of new or existing exoskeletons. This could improve the quality of exoskeletons since this allows designers to already consider acceptance factors early in the design process instead of finding out what is important late in the design process during (field) testing. In turn, this might accelerate the adoption of exoskeletons. Also, our framework can be used to study the ongoing introduction of exoskeletons at work since it also addresses policy decisions companies interested in implementing exoskeletons should consider.
Collapse
Affiliation(s)
- Shirley A Elprama
- imec-SMIT-Vrije Universiteit Brussel - BruBotics, Pleinlaan 9, 1050 Brussels, Belgium.
| | - Bram Vanderborght
- Vrije Universiteit Brussel - imec - BruBotics, Pleinlaan 2, 1050 Brussels, Belgium.
| | - An Jacobs
- imec-SMIT-Vrije Universiteit Brussel - BruBotics, Pleinlaan 9, 1050 Brussels, Belgium.
| |
Collapse
|
23
|
Hoffmann H, Pitz I, Adomssent B, Russmann C. [Association, expectations and barriers of the use of exoskeletons in small and medium-sized enterprises]. ZENTRALBLATT FUR ARBEITSMEDIZIN, ARBEITSSCHUTZ UND ERGONOMIE 2022; 72:68-77. [PMID: 35068706 PMCID: PMC8762628 DOI: 10.1007/s40664-021-00453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
Background In the manufacturing industry, work-related musculoskeletal disorders (MSD) result in sick days and have substantial economic consequences for the enterprise and the national economy. Exoskeletons can support the body when handling heavy loads and enduring enforced postures. Exoskeletons are being piloted particularly in large companies in the automotive industry; however, exoskeletons have so far attracted little interest in small and medium-sized enterprises (SME) and their use has so far barely been scientifically examined. The aim of this work was to determine barriers to exoskeleton implementation and expectations for their use in the manufacturing sector. Method Semi-structured guided interviews in six manufacturing companies were carried out and analyzed. Results In the enterprises a variety of activities up to the loading limits are carried out. Exoskeletons are generally expected to facilitate work and provide economic advantages. There are concerns with respect to their use due to cost factors, uncertain benefits and wearing discomfort. Particularly uncertainties about the effects of exoskeletons become evident. Conclusion The presented interview results are one step in an interdisciplinary process of further developing and implementing exoskeletons in the manufacturing industry. Concerns and unawareness of potential enterprises and users must be addressed, also to achieve a high user acceptance. Further studies that survey the identification of needs with better discriminatory power could provide additional insights.
Collapse
Affiliation(s)
- Holger Hoffmann
- Fakultät für Ingenieurwissenschaften und Gesundheit, HAWK Hildesheim/Holzminden/Göttingen, Göttingen, Deutschland
| | - Imke Pitz
- Fakultät für Ingenieurwissenschaften und Gesundheit, HAWK Hildesheim/Holzminden/Göttingen, Göttingen, Deutschland
| | - Björn Adomssent
- Fakultät für Ingenieurwissenschaften und Gesundheit, HAWK Hildesheim/Holzminden/Göttingen, Göttingen, Deutschland
| | - Christoph Russmann
- Fakultät für Ingenieurwissenschaften und Gesundheit, HAWK Hildesheim/Holzminden/Göttingen, Göttingen, Deutschland
| |
Collapse
|
24
|
McDevitt S, Hernandez H, Hicks J, Lowell R, Bentahaikt H, Burch R, Ball J, Chander H, Freeman C, Taylor C, Anderson B. Wearables for Biomechanical Performance Optimization and Risk Assessment in Industrial and Sports Applications. Bioengineering (Basel) 2022; 9:33. [PMID: 35049742 PMCID: PMC8772827 DOI: 10.3390/bioengineering9010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Wearable technologies are emerging as a useful tool with many different applications. While these devices are worn on the human body and can capture numerous data types, this literature review focuses specifically on wearable use for performance enhancement and risk assessment in industrial- and sports-related biomechanical applications. Wearable devices such as exoskeletons, inertial measurement units (IMUs), force sensors, and surface electromyography (EMG) were identified as key technologies that can be used to aid health and safety professionals, ergonomists, and human factors practitioners improve user performance and monitor risk. IMU-based solutions were the most used wearable types in both sectors. Industry largely used biomechanical wearables to assess tasks and risks wholistically, which sports often considered the individual components of movement and performance. Availability, cost, and adoption remain common limitation issues across both sports and industrial applications.
Collapse
Affiliation(s)
- Sam McDevitt
- Department of Electrical & Computer Engineering, Mississippi State University, Starkville, MS 39765, USA; (S.M.); (H.H.); (J.B.)
| | - Haley Hernandez
- Department of Electrical & Computer Engineering, Mississippi State University, Starkville, MS 39765, USA; (S.M.); (H.H.); (J.B.)
| | - Jamison Hicks
- Department of Industrial & Systems Engineering, Mississippi State University, Starkville, MS 39765, USA; (J.H.); (R.B.)
| | - Russell Lowell
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS 39765, USA; (R.L.); (H.C.)
| | - Hamza Bentahaikt
- Department of Mechanical Engineering, Mississippi State University, Starkville, MS 39765, USA;
| | - Reuben Burch
- Department of Industrial & Systems Engineering, Mississippi State University, Starkville, MS 39765, USA; (J.H.); (R.B.)
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39765, USA
| | - John Ball
- Department of Electrical & Computer Engineering, Mississippi State University, Starkville, MS 39765, USA; (S.M.); (H.H.); (J.B.)
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39765, USA
| | - Harish Chander
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS 39765, USA; (R.L.); (H.C.)
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39765, USA
| | - Charles Freeman
- Department of Human Sciences, Mississippi State University, Starkville, MS 39765, USA
| | | | | |
Collapse
|
25
|
Schmalz T, Colienne A, Bywater E, Fritzsche L, Gärtner C, Bellmann M, Reimer S, Ernst M. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting. IISE Trans Occup Ergon Hum Factors 2022. [PMID: 34763618 DOI: 10.1080/24725838.2021.2005720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OCCUPATIONAL APPLICATIONSGlobalization and eCommerce continue to fuel unprecedented growth in the logistics and warehousing markets. Simultaneously, the biggest bottleneck for these industries is their human capital. Where automation and robotic solutions fail to deliver a return on investment, humans frequently take over handling tasks that place harmful loads and strains on the body. Occupational exoskeletons can reduce fatigue and strain by supporting the lower spine and are designed to prevent work-related musculoskeletal disorders and other injuries. They are a mid- to long-term investment for industries to improve ergonomic conditions in workplaces, with the potential for reducing absences from work, sick days logged, and workers compensation claims. To examine the effectiveness of the newly introduced Paexo Back exoskeleton, a study was completed with 10 participants who completed manual load handling tasks with and without the exoskeleton. Key findings include significant reductions in metabolic effort and low back loading when the exoskeleton is worn.
Collapse
Affiliation(s)
- Thomas Schmalz
- Ottobock SE & Co. KGaA/Clinical Research & Services - Biomechanics, Göttingen, Germany
| | - Anja Colienne
- Private University of Applied Science, Göttingen, Germany
| | | | | | | | - Malte Bellmann
- Ottobock SE & Co. KGaA/Clinical Research & Services - Biomechanics, Göttingen, Germany
| | - Samuel Reimer
- Ottobock SE & Co. KGaA/Business Development Industrials, Duderstadt, Germany
| | - Michael Ernst
- Ottobock SE & Co. KGaA/Clinical Research & Services - Biomechanics, Göttingen, Germany
| |
Collapse
|
26
|
Liu R, Mou X, Liu HC. Occupational Health and Safety Risk Assessment based on Combination Weighting and Uncertain Linguistic Information: Method Development and Application to a Construction Project. IISE Trans Occup Ergon Hum Factors 2021; 8:175-186. [PMID: 33448249 DOI: 10.1080/24725838.2021.1875519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OCCUPATIONAL APPLICATIONSOccupational hazards and work-related accidents are a substantial problem in countries around the world. Therefore, it is of great importance to develop appropriate techniques to assess and reduce the risk of occupational hazards. In many situations, however, exact data are inadequate to model real-life scenarios, because of the complexity of occupational health and safety (OHS) risk assessment problems. We present a new OHS risk assessment model to assess and rank the risk of occupational hazards based on combination weighting and uncertain linguistic information. Moreover, a practical example of a shopping mall construction project is given to illustrate the effectiveness of the proposed model. The new model was found to provide a useful, practical, and flexible way for risk evaluation in OHS. In particular, it offered a new method for capturing domain expert opinions and prioritizing potential occupational hazards to improve the health and safety of workers.
Collapse
Affiliation(s)
- Ran Liu
- School of Management, Shanghai University, Shanghai, China
| | - Xun Mou
- School of Management, Shanghai University, Shanghai, China
| | - Hu-Chen Liu
- School of Economics and Management, Tongji University, Shanghai, China
| |
Collapse
|
27
|
Cha JS, Monfared S, Stefanidis D, Nussbaum MA, Yu D. Supporting Surgical Teams: Identifying Needs and Barriers for Exoskeleton Implementation in the Operating Room. HUMAN FACTORS 2020; 62:377-390. [PMID: 31593495 PMCID: PMC10027361 DOI: 10.1177/0018720819879271] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE The objective of this study was to identify potential needs and barriers related to using exoskeletons to decrease musculoskeletal (MS) symptoms for workers in the operating room (OR). BACKGROUND MS symptoms and injuries adversely impact worker health and performance in surgical environments. Half of the surgical team members (e.g., surgeons, nurses, trainees) report MS symptoms during and after surgery. Although the ergonomic risks in surgery are well recognized, little has been done to develop and sustain effective interventions. METHOD Surgical team members (n = 14) participated in focus groups, performed a 10-min simulated surgical task with a commercial upper-body exoskeleton, and then completed a usability questionnaire. Content analysis was conducted to determine relevant themes. RESULTS Four themes were identified: (1) characteristics of individuals, (2) perceived benefits, (3) environmental/societal factors, and (4) intervention characteristics. Participants noted that exoskeletons would benefit workers who stand in prolonged, static postures (e.g., holding instruments for visualization) and indicated that they could foresee a long-term decrease in MS symptoms with the intervention. Specifically, raising awareness of exoskeletons for early-career workers and obtaining buy-in from team members may increase future adoption of this technology. Mean participant responses from the System Usability Scale was 81.3 out of 100 (SD = 8.1), which was in the acceptable range of usability. CONCLUSION Adoption factors were identified to implement exoskeletons in the OR, such as the indicated need for exoskeletons and usability. Exoskeletons may be beneficial in the OR, but barriers such as maintenance and safety to adoption will need to be addressed. APPLICATION Findings from this work identify facilitators and barriers for sustained implementation of exoskeletons by surgical teams.
Collapse
Affiliation(s)
- Jackie S Cha
- 311308 Purdue University, West Lafayette, Indiana, USA
| | - Sara Monfared
- 12250 Indiana University School of Medicine, Indianapolis, USA
| | | | | | - Denny Yu
- 311308 Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
28
|
Pillai MV, Van Engelhoven L, Kazerooni H. Evaluation of a Lower Leg Support Exoskeleton on Floor and Below Hip Height Panel Work. HUMAN FACTORS 2020; 62:489-500. [PMID: 32150477 DOI: 10.1177/0018720820907752] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The aim of this study is to determine the effectiveness of using a leg support exoskeleton (legX) in different modes on simulated work tasks which emulate real-world job tasks. BACKGROUND Prolonged kneeling and squatting tasks increase the risk of work-related musculoskeletal disorders at the knee in industrial occupations. METHODS We evaluated legX capable of spring assistance throughout one's range of motion and/or locking support at a fixed angular position. Participants performed a dynamic panel task, alternating between hip and knee height, and a sustained floor level task with and without the exoskeleton. The exoskeleton was evaluated in spring mode, locking mode, and spring + locking mode for the panel task and only in locking mode for the floor task. The participants' (N = 15) muscle activity was recorded for the right lumbar erector spinae, thoracic erector spinae, tibialis anterior, rectus femoris, semitendinosus, and lateral gastrocnemius. RESULTS Significant reduction of the rectus femoris activity was observed with the exoskeleton (median reduction: 22%-56% and peak reduction: 12%-48% for the panel task and median reduction: 57% and peak reduction:34% during the floor task). CONCLUSION legX significantly reduces rectus femoris activity during squatted static (floor) and dynamic (panel) work and may reduce pain and discomfort associated with squatting and potentially reduce the risk of developing knee disorders. Dynamic tasks benefit from both locking modes and spring assistance, the greatest benefit occurring with a combination of the two. APPLICATION These results show that the legX can be beneficial to activities such as electrical panel work, grinding, sanding of larger surfaces, and concrete laying.
Collapse
|
29
|
Nussbaum MA, Lowe BD, de Looze M, Harris-Adamson C, Smets M. An Introduction to the Special Issue on Occupational Exoskeletons. IISE Trans Occup Ergon Hum Factors 2020. [DOI: 10.1080/24725838.2019.1709695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maury A. Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Brian D. Lowe
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | | - Carisa Harris-Adamson
- Occupational and Environmental Medicine, University of California, San Francisco, CA, USA
| | - Marty Smets
- Advanced Manufacturing, Ford Motor Company, Glendale, MI, USA
| |
Collapse
|