1
|
Pinheiro Pantoja KR, Melo Aires GC, Ferreira CP, de Lima MDC, Menezes EGO, de Carvalho Junior RN. Supercritical Technology as an Efficient Alternative to Cold Pressing for Avocado Oil: A Comparative Approach. Foods 2024; 13:2424. [PMID: 39123615 PMCID: PMC11311359 DOI: 10.3390/foods13152424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Avocado oil is rich in nutrients beneficial to human health, such as monounsaturated fatty acids, phenolic compounds, tocopherol, and carotenoids, with numerous possibilities for application in industry. This review explores, through a comparative approach, the effectiveness of the supercritical oil extraction process as an alternative to the conventional cold-pressing method, evaluating the differences in the extraction process steps through the effect of temperature and operating pressure on bioactive quality and oil yield. The results reveal that supercritical avocado oil has a yield like that of mechanical cold pressing and superior functional and bioactive quality, especially in relation to α-tocopherol and carotenoids. For better use and efficiency of the supercritical technology, the maturation stage, moisture content, fruit variety, and collection period stand out as essential factors to be observed during pre-treatment, as they directly impact oil yield and nutrient concentration. In addition, the use of supercritical technology enables the full use of the fruit, significantly reducing waste, and adds value to the agro-industrial residues of the process. It produces an edible oil free of impurities, microorganisms, and organic solvents. It is a green, environmentally friendly technology with long-term environmental and economic advantages and an interesting alternative in the avocado market.
Collapse
Affiliation(s)
- Kelly Roberta Pinheiro Pantoja
- Program of Post-Graduation in Natural Resources Engineering in the Amazon (PRODERNA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil;
| | - Giselle Cristine Melo Aires
- Program of Post-Graduation in Food Science and Technology (PPGCTA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil;
| | - Clara Prestes Ferreira
- Food Science and Technology Laboratory (LCTEA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil; (C.P.F.); (M.d.C.d.L.)
| | - Matheus da Costa de Lima
- Food Science and Technology Laboratory (LCTEA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil; (C.P.F.); (M.d.C.d.L.)
| | - Eduardo Gama Ortiz Menezes
- Department of Chemical Engineering, Federal Institute of Education, Science and Technology of Rondônia (IFRO), 4985 Calama Avenue, Porto Velho 76820441, RO, Brazil;
| | - Raul Nunes de Carvalho Junior
- Program of Post-Graduation in Food Science and Technology, Program of Post-Graduation in Natural Resources Engineering in the Amazon, Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil
| |
Collapse
|
2
|
Marović R, Badanjak Sabolović M, Brnčić M, Ninčević Grassino A, Kljak K, Voća S, Karlović S, Rimac Brnčić S. The Nutritional Potential of Avocado By-Products: A Focus on Fatty Acid Content and Drying Processes. Foods 2024; 13:2003. [PMID: 38998508 PMCID: PMC11241566 DOI: 10.3390/foods13132003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to analyze the content of fatty acids and tocopherols in various components (pulp, seeds, peel) of avocado (Persea americana), which are often neglected as by-products. In addition, the effects of different drying processes on these components were investigated and the health benefits of the main fatty acids contained in avocados were highlighted. The samples were subjected to three drying processes: hot air (HAD), vacuum (VD), and hot-air microwave (HAMD). In all parts of fresh avocado, oleic acid was the most abundant (41.28-57.93%), followed by palmitic acid (19.90-29.45%) and linoleic acid (8.44-14.95%). Drying led to a significant reduction in the oleic acid content, with palmitic acid showing the greatest stability. HAD resulted in higher levels of oleic acid and linoleic acid in dried pulp and peel samples compared with VD and HAMD, while HAMD had the highest content of α-linolenic acid in all parts. In addition, HAMD had the shortest drying time. HAMD duration was 35 min, which was 76.7% shorter than HAD (150 min) and 82.5% shorter than VD (200 min). Considering fatty acid retention and drying efficiency, HAMD appears to have been the most effective method, especially for the avocado peel. Remarkably, the avocado peel consistently contained higher total tocopherol, with δ-tocopherol generally being the most abundant form. The high content of tocopherols, oleic acid, and linoleic acid in the avocado peel suggests promising health benefits.
Collapse
Affiliation(s)
- Roko Marović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marija Badanjak Sabolović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Antonela Ninčević Grassino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Kristina Kljak
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sandra Voća
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sven Karlović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Suzana Rimac Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Olivares D, Ulloa PA, Vergara C, Hernández I, García-Rojas MÁ, Campos-Vargas R, Pedreschi R, Defilippi BG. Effects of Delaying the Storage of 'Hass' Avocados under a Controlled Atmosphere on Skin Color, Bioactive Compounds and Antioxidant Capacity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1455. [PMID: 38891264 PMCID: PMC11174840 DOI: 10.3390/plants13111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
During ripening, 'Hass' avocado skin changes from green to purple/black. Low-temperature storage with a controlled atmosphere (CA) is the most widely used method for avocado storage; however, few studies have simulated this technology and considered the days of regular air (RA) storage prior to CA storage. Herein, the effect of delaying the storage of 'Hass' avocado (>30% dry matter) in a CA was examined. Long-term storage conditions (5 °C for 50 days) corresponded to (i) regular air storage (RA), (ii) CA (4 kPa O2 and 6 kPa CO2) and (iii) 10 days in RA + 40 days in a CA and (iv) 20 days in RA + 30 days in a CA. Evaluations were performed during storage and at the ready-to-eat (RTE) stage. Skin color remained unchanged during storage, but at the RTE stage, more color development was observed for fruits stored under CA conditions, as these fruits were purple/black (>50%). At the RTE stage, the anthocyanin content increased, and compared to fruit under RA, fruit under a CA contained a five-fold greater content. A 20-day delay between harvest and CA storage increased the fruit softening rate and skin color development after cold storage, reducing the effectiveness of CA as a postharvest technology for extending storage life.
Collapse
Affiliation(s)
- Daniela Olivares
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago 8831314, Chile; (D.O.); (P.A.U.); (C.V.); (M.Á.G.-R.)
| | - Pablo A. Ulloa
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago 8831314, Chile; (D.O.); (P.A.U.); (C.V.); (M.Á.G.-R.)
| | - Cristina Vergara
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago 8831314, Chile; (D.O.); (P.A.U.); (C.V.); (M.Á.G.-R.)
| | - Ignacia Hernández
- Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, Quillota 2260000, Chile; (I.H.); (R.P.)
| | - Miguel Ángel García-Rojas
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago 8831314, Chile; (D.O.); (P.A.U.); (C.V.); (M.Á.G.-R.)
| | - Reinaldo Campos-Vargas
- Facultad de Ciencias Agronómicas, Centro de Estudios Postcosecha, Universidad de Chile, Santa Rosa 11315, Santiago 8820808, Chile;
| | - Romina Pedreschi
- Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, Quillota 2260000, Chile; (I.H.); (R.P.)
| | - Bruno G. Defilippi
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago 8831314, Chile; (D.O.); (P.A.U.); (C.V.); (M.Á.G.-R.)
- Facultad de Ciencias Agronómicas, Centro de Estudios Postcosecha, Universidad de Chile, Santa Rosa 11315, Santiago 8820808, Chile;
| |
Collapse
|
4
|
Neves BB, Pinto S, Pais R, Batista J, Domingues MR, Melo T. Looking into the lipid profile of avocado and byproducts: Using lipidomics to explore value-added compounds. Compr Rev Food Sci Food Saf 2024; 23:e13351. [PMID: 38682674 DOI: 10.1111/1541-4337.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
Consumer priorities in healthy diets and lifestyle boosted the demand for nutritious and functional foods as well as plant-based ingredients. Avocado has become a food trend due to its nutritional and functional values, which in turn is increasing its consumption and production worldwide. Avocado edible portion has a high content of lipids, with the pulp and its oil being rich in monounsaturated fatty acids and essential omega - 3 and omega - 6 polyunsaturated fatty acids (PUFA). These fatty acids are mainly esterified in triacylglycerides, the major lipids in pulp, but also in minor components such as polar lipids (phospholipids and glycolipids). Polar lipids of avocado have been overlooked despite being recently highlighted with functional properties as well. The growth in the industry of avocado products is generating an increased amount of their byproducts, such as seed and peels (nonedible portions), still undervalued. The few studies on avocado byproducts pointed out that they also contain interesting lipids, with seeds particularly rich in polar lipids bearing PUFA, and thus can be reused as a source of add-value phytochemical. Mass spectrometry-based lipidomics approaches appear as an essential tool to unveil the complex lipid signature of avocado and its byproducts, contributing to the recognition of value-added lipids and opening new avenues for their use in novel biotechnological applications. The present review provides an up-to-date overview of the lipid signature from avocado pulp, peel, seed, and its oils.
Collapse
Affiliation(s)
- Bruna B Neves
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Sara Pinto
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Rita Pais
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Joana Batista
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| |
Collapse
|
5
|
Méndez Hernández C, Grycz A, Rios Mesa D, Rodríguez Galdón B, Rodríguez-Rodríguez EM. The Quality Evaluation of Avocado Fruits ( Persea americana Mill.) of Hass Produced in Different Localities on the Island of Tenerife, Spain. Foods 2024; 13:1058. [PMID: 38611361 PMCID: PMC11011534 DOI: 10.3390/foods13071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The effect of the production area on the quality of Hass avocados grown on the island of Tenerife was studied. For this purpose, several physicochemical parameters, such as fruit weight, percentage of pulp, seed and skin, proximate composition, minerals, total phenolic compounds (TP), total flavonoid compounds (TF), α-tocopherol, antioxidant capacity, and fatty acid profile were analyzed. The location of the orchards significantly influenced avocado weight; pulp and seed percentage; and fat, fiber, ash, α-tocopherol, TP, phosphorus, potassium, calcium, iron, zinc, and oleic and palmitoleic acid contents. Buenavista (BU) avocados were the smallest (185 g) and presented the highest percentage of pulp (77.1%) and lowest percentage of fiber (5.43%). The highest levels of dry matter (33.8%) and fat (20.4%) were found in avocados harvested in Los Silos (SI) and Santiago del Teide (SA), respectively. Compared with those at the other locations, the avocados harvested in Güímar (GU) had high levels of α-tocopherol (52.2 µg g-1) and phenolic compounds (56.0 mg GAE 100 g-1). Avocados from Los Realejos (RE) had the highest percentage of oleic acid and the lowest percentage of palmitoleic acid. Numerous significant correlations were found between the variables studied, especially those between TP, TF, and antioxidant capacity (DPPH) and between fat percentage and dry matter.
Collapse
Affiliation(s)
| | - Alicja Grycz
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, 38296 Tenerife, Spain; (A.G.); (B.R.G.)
| | - Domingo Rios Mesa
- Servicio de Agricultura del Cabildo Insular de Tenerife, 38071 Tenerife, Spain; (C.M.H.); (D.R.M.)
| | - Beatriz Rodríguez Galdón
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, 38296 Tenerife, Spain; (A.G.); (B.R.G.)
| | - Elena M. Rodríguez-Rodríguez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, 38296 Tenerife, Spain; (A.G.); (B.R.G.)
| |
Collapse
|
6
|
Serrano-García I, Domínguez-García J, Hurtado-Fernández E, González-Fernández JJ, Hormaza JI, Beiro-Valenzuela MG, Monasterio R, Pedreschi R, Olmo-García L, Carrasco-Pancorbo A. Assessing the RP-LC-MS-Based Metabolic Profile of Hass Avocados Marketed in Europe from Different Geographical Origins (Peru, Chile, and Spain) over the Whole Season. PLANTS (BASEL, SWITZERLAND) 2023; 12:3004. [PMID: 37631215 PMCID: PMC10458757 DOI: 10.3390/plants12163004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Spain dominates avocado production in Europe, with the Hass variety being the most prominent. Despite this, Spanish production satisfies less than 10% of the overall avocado demand in Europe. Consequently, the European avocado market heavily relies on imports from overseas, primarily sourced from Peru and Chile. Herein, a comprehensive characterization of the metabolic profile of Hass avocado fruits from Spain, Peru, and Chile, available in the European market throughout the year, was carried out. The determination of relevant substances was performed using high- and low-resolution RP-LC-MS. Remarkable quantitative differences regarding phenolic compounds, amino acids, and nucleosides were observed. Principal component analysis revealed a natural clustering of avocados according to geographical origin. Moreover, a specific metabolic pattern was established for each avocado-producing country using supervised partial least squares discriminant analysis. Spanish fruits exhibited high levels of coumaric acid malonyl-hexose II, coumaric acid hexose II, and ferulic acid hexose II, together with considerably low levels of pantothenic acid and uridine. Chilean avocado fruits presented high concentrations of abscisic acid, uridine, ferulic acid, succinic acid, and tryptophan. Fruits from Peru showed high concentrations of dihydroxybenzoic acid hexose, alongside very low levels of p-coumaric acid, ferulic acid, coumaric acid malonyl-hexose I, and ferulic acid hexose II.
Collapse
Affiliation(s)
- Irene Serrano-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva S/N, 18071 Granada, Spain; (I.S.-G.); (J.D.-G.); (M.G.B.-V.); (R.M.); (A.C.-P.)
| | - Joel Domínguez-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva S/N, 18071 Granada, Spain; (I.S.-G.); (J.D.-G.); (M.G.B.-V.); (R.M.); (A.C.-P.)
| | - Elena Hurtado-Fernández
- Department of Biological and Health Sciences, Faculty of Health Sciences, University of Loyola, Campus Sevilla, Avda. de las Universidades S/N, 41704 Dos Hermanas, Spain;
| | - José Jorge González-Fernández
- Institute for Mediterranean and Subtropical Horticulture (IHSM La Mayora-UMA-CSIC), 29750 Algarrobo-Costa, Spain; (J.J.G.-F.); (J.I.H.)
| | - José Ignacio Hormaza
- Institute for Mediterranean and Subtropical Horticulture (IHSM La Mayora-UMA-CSIC), 29750 Algarrobo-Costa, Spain; (J.J.G.-F.); (J.I.H.)
| | - María Gemma Beiro-Valenzuela
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva S/N, 18071 Granada, Spain; (I.S.-G.); (J.D.-G.); (M.G.B.-V.); (R.M.); (A.C.-P.)
| | - Romina Monasterio
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva S/N, 18071 Granada, Spain; (I.S.-G.); (J.D.-G.); (M.G.B.-V.); (R.M.); (A.C.-P.)
- Instituto de Biología Agrícola de Mendoza (IBAM), UNCuyo-CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza 5505, Argentina
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco S/N, La Palma, Quillota 2260000, Chile;
- Millennium Institute Center for Genome Regulation (CRG), Santiago 8331150, Chile
| | - Lucía Olmo-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva S/N, 18071 Granada, Spain; (I.S.-G.); (J.D.-G.); (M.G.B.-V.); (R.M.); (A.C.-P.)
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva S/N, 18071 Granada, Spain; (I.S.-G.); (J.D.-G.); (M.G.B.-V.); (R.M.); (A.C.-P.)
| |
Collapse
|
7
|
Sahyon HA, El-Shafai NM, Elnajjar N, Althobaiti F, Aldhahrani A, Alharbi NS, Shoair AGF, El-Mehasseb IM. Avocado peel extract loaded on chitosan nanoparticles alleviates urethane toxicity that causes lung cancer in a mouse model. Int J Biol Macromol 2023; 234:123633. [PMID: 36791938 DOI: 10.1016/j.ijbiomac.2023.123633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Lung cancer progresses without obvious symptoms and is detected in most patients at late stages, causing a high rate of mortality. Avocado peels (AVP) were thought to be biowaste, but they have antioxidant and anticancer properties in vitro. Chitosan nanoparticles (Cs-NPs) were loaded with various plant extracts, increasing their in vitro and in vivo anticancer activities. Our goal was to load AVP onto Cs-NPs and determine the role of AVP-extract or AVP-loaded Cs-NPs in controlling the progression of lung cancer caused by urethane toxicity. The AVP-loaded chitosan nano-combination (Cs@AVP NC) was synthesized and characterized. Our in vitro results show that Cs@AVP NC has higher anticancer activity than AVP against three human cancer cell lines. The in vivo study proved the activation of apoptosis in lung cancer cells with the Cs@AVP NC oral treatment more than the AVP treatment. Additionally, Cs@AVP NC-treated animals showed significantly higher p53 and Bax-expression levels and lower NF-κB p65 levels in their lung tissues than in positive control animals. In conclusion, our study demonstrated the superior anticancer potency of Cs@AVP NC over AVP extract and its ability to inhibit lung cancer proliferation. Therefore, oral consumption of Cs@AVP NC might be a promising treatment for lung cancer.
Collapse
Affiliation(s)
- Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Noha Elnajjar
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Egypt.
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia.
| | - Nadaa S Alharbi
- Royal College of Surgeons in Ireland, Dublin, Ireland; Ministry of Health, Saudi Arabia.
| | - Abdel Ghany F Shoair
- Department of Science and Technology, University College - Ranyah, Taif University, Saudi Arabia; High Altitude Research Center, Prince Sultan Medical Complex, Taif University, Al-Hawiyah, Taif, Saudi Arabia.
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| |
Collapse
|
8
|
Kupnik K, Primožič M, Kokol V, Knez Ž, Leitgeb M. Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado ( Persea americana L.) Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051201. [PMID: 36904061 PMCID: PMC10007261 DOI: 10.3390/plants12051201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 05/06/2023]
Abstract
The aim of this research was to identify and quantify biologically active compounds from avocado (Persea americana L.) seeds (AS) utilizing different techniques with the use of ultrasound (US), ethanol (EtOH), and supercritical carbon dioxide (scCO2) for possible applications in (bio)medicine, pharmaceutical, cosmetic, or other relevant industries. Initially, a study of the process efficiency (η) was carried out, which revealed yields in the range of 2.96-12.11 wt%. The sample obtained using scCO2 was found to be the richest in total phenols (TPC) and total proteins (PC), while the sample obtained with the use of EtOH resulted in the highest content of proanthocyanidins (PAC). Phytochemical screening of AS samples, quantified by the HPLC method, indicated the presence of 14 specific phenolic compounds. In addition, the activity of the selected enzymes (cellulase, lipase, peroxidase, polyphenol oxidase, protease, transglutaminase, and superoxide dismutase) was quantified for the first time in the samples from AS. Using DPPH radical scavenging activity, the highest antioxidant potential (67.49%) was detected in the sample obtained with EtOH. The antimicrobial activity was studied using disc diffusion method against 15 microorganisms. Additionally, for the first time, the antimicrobial effectiveness of AS extract was quantified by determination of microbial growth-inhibition rates (MGIRs) at different concentrations of AS extract against three strains of Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens) bacteria, three strains of Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus pyogenes) bacteria, and fungi (Candida albicans). MGIRs and minimal inhibitory concentration (MIC90) values were determined after 8 and 24 h of incubation, thus enabling the screening of antimicrobial efficacy for possible further applications of AS extracts as antimicrobial agents in (bio)medicine, pharmaceutical, cosmetic, or other industries. For example, the lowest MIC90 value was determined for B. cereus after 8 h of incubation in the case of UE and SFE extracts (70 μg/mL), indicating an outstanding result and the potential of AS extracts, as the MIC values for B. cereus have not been investigated so far.
Collapse
Affiliation(s)
- Kaja Kupnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2294-462
| |
Collapse
|
9
|
Al-Otaibi T, Hawsah MA, Alojayri G, Mares MM, Aljawdah HMA, Maodaa SN, Al-Shaebi EM, Dkhil MA, Thagfan FA, Al-Quraishy S, Abdel-Gaber R. In vivo anticoccidial, antioxidant, and anti-inflammatory activities of avocado fruit, Persea americana (Lauraceae), against Eimeria papillata infection. Parasitol Int 2023; 95:102741. [PMID: 36871789 DOI: 10.1016/j.parint.2023.102741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Apicomplexan parasites, especially Eimeria sp., are the main intestinal murine pathogens, that lead to severe injuries to farm and domestic animals. Many anticoccidial drugs are available for coccidiosis, which, leads to the development of drug-resistant parasites. Recently, natural products are considered as an alternative agent to control coccidiosis. This study was designed to evaluate the anticoccidial activity of the Persea americana fruit extract (PAFE) in male C57BL/6 mice. A total of 35 male mice were divided into seven equal groups (1, 2, 3, 4, 5, 6, and 7). At day 0, all groups except the first group which served as uninfected-untreated control were infected orally with 1 × 103E. papillata sporulated oocysts. Group 2 served as uninfected-treated control. Group 3 was considered an infected-untreated group. After 60 min of infection, groups 4, 5, and 6 were treated with oral doses of PAFE aqueous methanolic extract (100, 300, and 500 mg/kg of body weight, respectively). Group 7 was treated with amprolium (a reference drug for coccidiosis). PAFE with 500 mg/kg, was the most effective dose, inducing a significant reduction in the output of oocysts in mice feces (by about 85.41%), accompanied by a significant decrease in the number of the developmental parasite stages and a significant elevation of the goblet cells in the jejunal tissues. Upon treatment, a significant change in the oxidative status due to E. papillata infection was observed, where the levels of glutathione (GSH) increased, while, levels of malondialdehyde (MDA) and nitric oxide (NO) were decreased. In addition, the infection significantly upregulated the inflammatory cytokines of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and interferon-γ (IFN-γ). This increase in mRNA expression of IL-1β, TNF-α, and IFN-γ was about 8.3, 10.6, and 4.5-fold, respectively, which significantly downregulated upon treatment. Collectively, P. americana is a promising medicinal plant with anticoccidial, antioxidant, and anti-inflammatory activities and could be used for the treatment of coccidiosis.
Collapse
Affiliation(s)
- Tahani Al-Otaibi
- Department of Science and Technology, Al-Nairiyah University College, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Maysar Abu Hawsah
- Department of Zoology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ghada Alojayri
- Department of Zoology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed M Mares
- Department of Zoology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Hossam M A Aljawdah
- Department of Science and Technology, Al-Nairiyah University College, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Saleh N Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Felwa A Thagfan
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
10
|
Cuevas-Cianca SI, Romero-Castillo C, Gálvez-Romero JL, Juárez ZN, Hernández LR. Antioxidant and Anti-Inflammatory Compounds from Edible Plants with Anti-Cancer Activity and Their Potential Use as Drugs. Molecules 2023; 28:molecules28031488. [PMID: 36771154 PMCID: PMC9920972 DOI: 10.3390/molecules28031488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Food is our daily companion, performing numerous beneficial functions for our bodies. Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive bibliographic search is conducted in various databases to update information on unprocessed foods with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer. The current state of knowledge on inflammatory processes involving some interleukins and tumor necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce inflammation and oxidative stress, both of which are important factors in cancer development. Many studies are still needed to take full advantage of the food products we use daily.
Collapse
Affiliation(s)
- Sofía Isabel Cuevas-Cianca
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Cristian Romero-Castillo
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - José Luis Gálvez-Romero
- ISSTE Puebla Hospital Regional, Boulevard 14 Sur 4336, Colonia Jardines de San Manuel, Puebla 72570, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| |
Collapse
|
11
|
del Carmen Razola-Díaz M, Guerra-Hernández EJ, Gómez-Caravaca AM, García-Villanova B, Verardo V. Mathematical modelling of drying kinetics of avocado peels and its influence on flavan-3-ols content and antioxidant activity. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Impact of Lactic Acid Bacteria Fermentation on Phenolic Compounds and Antioxidant Activity of Avocado Leaf Extracts. Antioxidants (Basel) 2023; 12:antiox12020298. [PMID: 36829856 PMCID: PMC9952674 DOI: 10.3390/antiox12020298] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The growing global consumption of avocados, associated with contents including bioactive compounds with numerous health-promoting properties, is producing a large amount of agro wastes around the world. Different management approaches are available for the recovery of bioactive compounds from wastes as potential ingredients for use in the production of functional foods and nutraceuticals. Lactic acid fermentation can be used to exploit nutritional potential and add value to agro wastes. In this study, fermentations with lactic acid bacteria were carried out in avocado leaves, and the total phenolic content and the antioxidant activity were determined by DPPH and FRAP assays from hydroalcoholic extracts obtained from fermented avocado leaves. Fifteen new phenolic compounds were identified for the first time in avocado leaves by HPLC-ESI-TOF-MS. L. plantarum CECT 748T and P. pentosaceus CECT 4695T showed the highest antioxidant activity. The sum of phenolic compounds was increased by 71, 62, 55 and 21% in fermentations with P. pentosaceus CECT 4695T, L. brevis CECT 5354, P. acidilactici CECT 5765T and L. plantarum CECT 9567, respectively, while it was reduced in the fermentation with L. plantarum 748T by 21% as demonstrated by HPLC-ESI-TOF-MS. Biotransformations induced by bacterial metabolism modified the phenolic compound profile of avocado leaves in a strain-specific-dependent manner. P. pentosaceus CECT 4695T significantly increased kaempferol, P. pentosaceus 4695T, L. brevis 5354 and L. plantarum 9567 increased rutin, and dihydro-p-coumaric acid was increased by the five selected lactic acid bacteria. Total flavonoids were highly increased after fermentations with the five selected lactic acid bacteria but flavonoid glucosides were decreased by L. plantarum 748T, which was related to its higher antioxidant activity. Our results suggest that lactic acid bacteria led the hydrolysis of compounds by enzymatic activity such as glycosidases or decarboxylase and the release of phenolics bound to the plant cell wall, thus improving their bioavailability.
Collapse
|
13
|
'Superfoods': Reliability of the Information for Consumers Available on the Web. Foods 2023; 12:foods12030546. [PMID: 36766074 PMCID: PMC9914617 DOI: 10.3390/foods12030546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The term 'superfoods', used frequently with marketing purposes, is usually associated with foodstuffs with beneficial health properties. 'Superfoods' appears in many information sources, including digital media. The information they provide is easily accessible for consumers through Internet search engines. The objective of this work is to investigate the data that web pages offer to consumers and their accuracy according to current scientific knowledge. The two main search engines were utilized for English language websites search, introducing the term 'superfoods'. In total, 124 search results were found. After applying the selection criteria, 45 web pages were studied. A total of 136 foods were considered as 'superfoods' by sites; 10 of them (kale, spinach, salmon, blueberries, avocado, chia, walnuts, beans, fermented milks and garlic) were mentioned on at least 15 sites. Nutritional and healthy properties displayed on sites were compared to scientific information. In conclusion, websites present the information in a very simplified manner and it is generally not wrong. However, they should offer to consumers comprehensible information without raising false expectations regarding health benefits. In any case, 'superfoods' consumption can have salutary effects as part of a balanced diet.
Collapse
|
14
|
Razola-Díaz MDC, Verardo V, Gómez-Caravaca AM, García-Villanova B, Guerra-Hernández EJ. Mathematical Modelling of Convective Drying of Orange By-Product and Its Influence on Phenolic Compounds and Ascorbic Acid Content, and Its Antioxidant Activity. Foods 2023; 12:foods12030500. [PMID: 36766029 PMCID: PMC9914427 DOI: 10.3390/foods12030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Orange peel is one of the main by-products from juice processing, and is considered as a promising source of phenolic compounds with anti-carcinogenic, anti-inflammatory, anti-microbial and antioxidant properties. The drying is an essential step to ensure the storage of this by-product at an industrial level, in order to use it as a functional ingredient or as a nutraceutical. Thus, this research focuses on the evaluation of the effect of the convective air-drying process in orange by-products at three different temperatures (40, 60 and 80 °C) and air flows (0, 0.8 and 1.6 m/s) on the phenolic content (measured by HPLC-MS), the antioxidant activity (measured by DPPH, ABTS and FRAP), and the vitamin C content (measured by HPLC-UV/VIS). Moreover, the mathematical modelling of its drying kinetics was carried out to examine the orange by-product behavior. Among the tested mathematical models, the Page model reported the highest fit and the best drying conditions, which showed the lowest reductions were at 60 °C with an air flow of 1.6 m/s and taking 315 min.
Collapse
Affiliation(s)
- María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Matáix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Matáix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
- Correspondence:
| | - Ana María Gómez-Caravaca
- Institute of Nutrition and Food Technology ‘José Matáix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Belén García-Villanova
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
| | | |
Collapse
|
15
|
Lyu X, Agar OT, Barrow CJ, Dunshea FR, Suleria HAR. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants (Basel) 2023; 12:antiox12010185. [PMID: 36671046 PMCID: PMC9855119 DOI: 10.3390/antiox12010185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Avocados (Persea americana M.) are highly valued fruits consumed worldwide, and there are numerous commercially available varieties on the market. However, the high demand for fruit also results in increased food waste. Thus, this study was conducted for comprehensive profiling of polyphenols of Hass, Reed, and Wurtz avocados obtained from the Australian local market. Ripe Hass peel recorded the highest TPC (77.85 mg GAE/g), TTC (148.98 mg CE/g), DPPH (71.03 mg AAE/g), FRAP (3.05 mg AAE/g), RPA (24.45 mg AAE/g), and ABTS (75.77 mg AAE/g) values; unripe Hass peel recorded the highest TFC (3.44 mg QE/g); and Wurtz peel recorded the highest TAC (35.02 mg AAE/g). Correlation analysis revealed that TPC and TTC were significantly correlated with the antioxidant capacity of the extracts. A total of 348 polyphenols were screened in the peel. A total of 134 compounds including 36 phenolic acids, 70 flavonoids, 11 lignans, 2 stilbenes, and another 15 polyphenols, were characterised through LC-ESI-QTOF-MS/MS, where the majority were from peels and seeds of samples extract. Overall, the hierarchical heat map revealed that there were a significant amount of polyphenols in peels and seeds. Epicatechin, kaempferol, and protocatechuic acid showed higher concentrations in Reed pulp. Wurtz peel contains a higher concentration of hydroxybenzoic acid. Our results showed that avocado wastes have a considerable amount of polyphenols, exhibiting antioxidant activities. Each sample has its unique value proposition based on its phenolic profile. This study may increase confidence in utilising by-products and encourage further investigation into avocado by-products as nutraceuticals.
Collapse
Affiliation(s)
- Xiaoyan Lyu
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Osman Tuncay Agar
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Frank R. Dunshea
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
- Correspondence: ; Tel.: +61-4-7043-9670
| |
Collapse
|
16
|
Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods 2022; 12:foods12010159. [PMID: 36613377 PMCID: PMC9818228 DOI: 10.3390/foods12010159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022] Open
Abstract
Agroindustrial activities generate various residues or byproducts which are inefficiently utilized, impacting the environment and increasing production costs. These byproducts contain significant amounts of bioactive compounds, including dietary fiber with associated phenolic compounds, known as antioxidant dietary fiber (ADF). Phenolic compounds are related to the prevention of diseases related to oxidative stress, such as neurodegenerative and cardiovascular diseases. The mechanism of ADF depends on its chemical structure and the interactions between the dietary fiber and associated phenolic compounds. This work describes ADF, the main byproducts considered sources of ADF, its mechanisms of action, and its potential use in the formulation of foods destined for human consumption. ADF responds to the demand for low-cost, functional ingredients with great health benefits. A higher intake of antioxidant dietary fiber contributes to reducing the risk of diseases such as type II diabetes, colon cancer, obesity, and kidney stones, and has bile-acid retention-excretion, gastrointestinal laxative, hypoglycemic, hypocholesterolemic, prebiotic, and cardioprotective effects. ADF is a functional, sustainable, and profitable ingredient with different applications in agroindustry; its use can improve the technofunctional and nutritional properties of food, helping to close the cycle following the premise of the circular economy.
Collapse
|
17
|
David D, Felipe Alzate A, Rojano B, Copete-Pertuz LS, Echeverry R. Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activity from avocado seed (Persea americana mill). BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The increase in the demand for Hass avocado has brought a rise in the generation of inedible waste such as peel and seed, by-products that are rich in bioactive substances. In the present study, aqueous, ethanolic, and supercritical fluid extracts were obtained from fresh seed and dry seed, which were analyzed to determine the antioxidant capacity measured through 2,2-diphenyl-2-picrylhydrazyl free radical (DPPH); 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) methods as well as the content of phenolic compounds. In addition, the antimicrobial activity of strains of food interest, such as Listeria monocytogenes, Salmonella enterica Typhimurium and Escherichia coli was evaluated. The ethanolic extract of fresh seed presented the highest antioxidant and antimicrobial activity. The aqueous extract of fresh seed registered a significant antioxidant capacity but an absence of antimicrobial activity. In contrast, the ethanolic extract of dry seed showed a representative antimicrobial activity on both S. enterica Typhimurium and L. monocytogenes, but low antioxidant activity. E. coli exhibited resistance against all the assessed extracts. The results from this work highlight the opportunity to consider the Hass avocado seed extracts as a novel alternative to replace or reduce the use of synthetic antioxidant and antimicrobial additives in food.
Keywords: Waste by-product; Aqueous extract; Ethanolic extract; Supercritical extraction; Polyphenols; Free radical.
Collapse
Affiliation(s)
- Dorely David
- ecnoparque Nodo Rionegro. Grupo de Investigación en Innovación y Agroindustria (GIIA). Centro de la Innovación La Agroindustria y la Aviación, Servicio Nacional de Aprendizaje - SENA, Vereda la Bodega-Zona Franca-Bodegas 14 y 15, CP 054040 Rionegro, Colombia
| | - Andrés Felipe Alzate
- Laboratorio Ciencia de los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia– Sede Medellín, Calle 59A No 63-20, CP 050034 Medellín, Colombia
| | - Benjamín Rojano
- Laboratorio Ciencia de los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia– Sede Medellín, Calle 59A No 63-20, CP 050034 Medellín, Colombia
| | - Ledys S. Copete-Pertuz
- Compañía Nacional de Levaduras, Levapan S.A, Cr27 A 40-470, 763028 Valle del Cauca, Colombia
| | - Ricardo Echeverry
- Universidad Católica de Oriente- Facultad Ciencias de la Salud- Grupo de investigación APS
| |
Collapse
|
18
|
Effects of Ascorbic Acid and Melatonin Treatments on Antioxidant System in Fresh-Cut Avocado Fruits During Cold Storage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Charles AC, Dadmohammadi Y, Abbaspourrad A. Food and cosmetic applications of the avocado seed: a review. Food Funct 2022; 13:6894-6901. [PMID: 35695181 DOI: 10.1039/d1fo02438h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Avocado seed waste has increased as avocado products have become commercialized since the seed is considered inedible. However, by exploring the potential uses of the seed, the unrecyclable waste produced by the avocado industry can be reduced. This paper aims to review and discuss current literature on the food and cosmetic applications of avocado seeds and their constituents. In descending order, avocado seeds contain starch, water, lipids, protein, phytochemicals, antinutrients, vitamins, and minerals. As for food applications, starch can be used as a bioplastic, flour, thickening agent, and emulsifier. Additionally, extracts containing avocado seed phytochemicals show antimicrobial and preservative activities, which can find use in meat products and in producing an orange dye. When considering cosmetic applications, patented avocado seed extract formulations have proven useful in skincare. Also, the avocado seed lipids, in the form of fatty acids, can be processed into soap. By applying the ideas presented in this review, the toll avocado seeds take on the environment would be reduced, improving the sustainability of the avocado market. As a result, avocado seeds can contribute to the emerging bioeconomy market for food and cosmetic applications.
Collapse
Affiliation(s)
- Albert C Charles
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca 14853, NY, USA.
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca 14853, NY, USA.
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca 14853, NY, USA.
| |
Collapse
|
20
|
Odukoya JO, Odukoya JO, Mmutlane EM, Ndinteh DT. Ethnopharmacological Study of Medicinal Plants Used for the Treatment of Cardiovascular Diseases and Their Associated Risk Factors in sub-Saharan Africa. PLANTS (BASEL, SWITZERLAND) 2022; 11:1387. [PMID: 35631812 PMCID: PMC9143319 DOI: 10.3390/plants11101387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality, including deaths arising from non-communicable diseases in sub-Saharan Africa (SSA). Consequently, this study aimed to provide details of medicinal plants (MPs) employed in SSA for the treatment of CVDs and their related risk factors to open new avenues for the discovery of novel drugs. The extensive ethnopharmacological literature survey of these MPs in 41 SSA countries was based on studies from 1982 to 2021. It revealed 1,085 MPs belonging to 218 botanical families, with Fabaceae (9.61%), Asteraceae (6.77%), Apocynaceae (3.93%), Lamiaceae (3.75%), and Rubiaceae (3.66%) being the most represented. Meanwhile, Allium sativum L., Persea americana Mill., Moringa oleifera Lam., Mangifera indica L., and Allium cepa L. are the five most utilised plant species. The preferred plant parts include the leaves (36%), roots (21%), barks (14%), fruits (7%), and seeds (5%), which are mostly prepared by decoction. Benin, Mauritius, Nigeria, South Africa, and Togo had the highest reported use while most of the investigations were on diabetes and hypertension. Despite the nutraceutical advantages of some of these MPs, their general toxicity potential calls for caution in their human long-term use. Overall, the study established the need for governments of SSA countries to validate the efficacy/safety of these MPs as well as provide affordable, accessible, and improved modern healthcare services.
Collapse
Affiliation(s)
- Johnson Oluwaseun Odukoya
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Chemistry, The Federal University of Technology, Akure PMB 704, Ondo State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Food Science and Technology, Kwara State University, Malete, Ilorin PMB 1530, Kwara State, Nigeria
| | - Edwin Mpho Mmutlane
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Derek Tantoh Ndinteh
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| |
Collapse
|
21
|
Méril-Mamert V, Ponce-Mora A, Sylvestre M, Lawrence G, Bejarano E, Cebrián-Torrejón G. Antidiabetic Potential of Plants from the Caribbean Basin. PLANTS 2022; 11:plants11101360. [PMID: 35631785 PMCID: PMC9146409 DOI: 10.3390/plants11101360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia, insulin insufficiency or insulin resistance, and many issues, including vascular complications, glycative stress and lipid metabolism dysregulation. Natural products from plants with antihyperglycemic, hypolipidemic, pancreatic protective, antioxidative, and insulin-like properties complement conventional treatments. Throughout this review, we summarize the current status of knowledge of plants from the Caribbean basin traditionally used to manage DM and treat its sequelae. Seven plants were chosen due to their use in Caribbean folk medicine. We summarize the antidiabetic properties of each species, exploring the pharmacological mechanisms related to their antidiabetic effect reported in vitro and in vivo. We propose the Caribbean flora as a source of innovative bioactive phytocompounds to treat and prevent DM and DM-associated complications.
Collapse
Affiliation(s)
- Vanessa Méril-Mamert
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Alejandro Ponce-Mora
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain;
| | - Muriel Sylvestre
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Genica Lawrence
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain;
- Correspondence: (E.B.); (G.C.-T.); Tel.: +96-136-90-00 (ext. 64541) (E.B.); +96-136-90-00 (ext. 64315) (G.C.-T.)
| | - Gerardo Cebrián-Torrejón
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
- Correspondence: (E.B.); (G.C.-T.); Tel.: +96-136-90-00 (ext. 64541) (E.B.); +96-136-90-00 (ext. 64315) (G.C.-T.)
| |
Collapse
|
22
|
Bioactive and Physicochemical Properties of Exotic Fruit Seed Powders: Mango (Mangefiera indica L.) and Rambutan (Nephelium lappaceum L.) Obtained by Various Drying Methods. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Exotic fruits, which are becoming more and more popular in European countries, contain seeds, which are an unused and useless byproduct of fruit processing. Research conducted in recent years suggests that these unused waste products can be a source of nutrients and bioactive compounds in much more concentrated amounts than those found in the flesh of the fruit. Research on the physicochemical properties and the content of bioactive compounds in fruit seeds may allow the assessment of the possibility and purposefulness of their wider application in the production of functional food. Therefore, the aim of this study was to determine the physicochemical and bioactive properties of exotic, tropical fruit seed powders, such as mango (Mangefiera indica L.) and rambutan (Nephelium lappaceum L.) seeds, obtained by convective drying (CD) and sublimation drying (FD). In the tested powders, the water-holding capacity and water solubility were determined, the color was measured using the ‘electronic eye’ instrumental method, the taste profile was determined using the ‘electronic tongue’, and the content of selected bioactive compounds—such as tannins (titration method), total polyphenols and antioxidant activity was also determined using the spectrophotometric method. It was found that the studied powders were characterized by low water-holding capacity (1.2–1.6 g/1 g of powder), low solubility in water (9.5–17.4%), neutral color and varied taste profile, depending on the origin of the tested powder. Rambutan seed powders were characterized by a more bitter taste with a higher umami-flavor intensity compared to mango seed powders, which showed a more intense acidic and sweet taste. The conducted research shows that the applied methods of powder production, i.e., drying (to similar aw values) by convection vs. sublimation, had a much greater impact on changes in the content of bioactive compounds than on the tested physicochemical parameters. The freeze-dried seed powders were characterized by a higher content of polyphenolic compounds and a higher antioxidant activity than convection-dried seed powders. Considering the high content of polyphenols and high antioxidant activity, the studied powders may find applications in the production of dietary supplements and in the design of functional foods. Due to the low water solubility index, mango and rambutan powders can be used in the design of products where particle sensitivity is indicated. The use of the investigated exotic fruit seed powders, i.e., mango and rambutan, may not only be beneficial for nutritional reasons, but also may contribute to the reduction of post-production waste, in line with the recently widespread “zero waste” trend.
Collapse
|
23
|
Bonilla-Loaiza AM, Váquiro-Herrera HA, Solanilla-Duque JF. Physicochemical and bioactive properties of avocado ( Persea americana Mill. cv. Lorena). INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Chemical compounds are of great importance in the food, cosmetic and pharmaceutical industries. Nutritional components, the presence of secondary metabolites with antioxidant and antimicrobial activity, and physicochemical properties of pulp, seed and peel of Lorena avocado cultivars were studied. Antioxidant activity was evaluated by ABTS, DPPH and lipid peroxidation in pulp, seed and peel. 26 extracts was evaluated. The results confirmed that the fruit parts stabilize free radicals and inhibit lipid oxidation processes, with the highest values in seed and peel, due to their content of flavonoids, o-diphenols and phenols. The results of phytochemical screening, antioxidant capacity and antimicrobial activity, showed significant bioprospective advantage for the presence of flavonoids, condensed tannins and total phenols in the seed, peel and pulp of Lorena avocado cultivars. Avocado fruits are rich in bioactive compounds that can be used in functional food applications.
Collapse
Affiliation(s)
- Adriana Marcela Bonilla-Loaiza
- Grupo de Investigación Centro de Desarrollo Agroindustrial del Tolima (CEDAGRITOL), Facultad Ingeniería Agronómica , Universidad del Tolima , Ibagué , Colombia
| | - Henry Alexander Váquiro-Herrera
- Grupo de Investigación Centro de Desarrollo Agroindustrial del Tolima (CEDAGRITOL), Facultad Ingeniería Agronómica , Universidad del Tolima , Ibagué , Colombia
| | | |
Collapse
|
24
|
Louis MRLM, Rani VP, Krishnan P, Reegan AD, Balakrishna K, Ignacimuthu S, Packiam SM, Maheswaran R, Shirota O. Mosquito Larvicidal Activity of Compounds from Unripe Fruit Peel of Avocado (Persea americana Mill.). Appl Biochem Biotechnol 2022; 195:2636-2647. [PMID: 35201599 DOI: 10.1007/s12010-022-03831-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Abstract
Mosquitoes are important vectors responsible for spreading a number of diseases affecting both humans and animals. Many diseases as dengue, chikungunya, yellow fever, malaria, filariasis and Japanese encephalitis are spread by mosquitoes. There are many reports of plant extracts and their active constituents showing anti-mosquito activities as larvicidal, pupicidal, ovicidal and adulticidal activities. Persea americana Mill. (Lauraceae), known as avocado, has been reported to show many pharmacological and antimicrobial activities. In this communication, the mosquito larvicidal activities of the three-active constituents, avocadene, avocadyne and avocadenol-A, from the methanolic extract of the unripe fruit peel are presented. The three mosquito species studied were Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. All three compounds showed the highest larvicidal activity against An. stephensi, LC50 values being 2.80ppm for avocadene, 2.33ppm for avocadyne and 2.07ppm for avocadenol-A. Avocadene showed larvicidal activity of 3.73ppm against Ae. aegypti and 5.96ppm against Cx. quinquefasciatus. The LC50 value of avocadyne was 5.35ppm against Ae. aegypti and 3.98ppm against Cx. quinquefasciatus. Similarly, avocadenol-A showed 6.56ppm against Ae. aegypti and 2.35ppm against Cx. quinquefasciatus. The active constituents were isolated by bioactivity-guided fractionation by silica gel column chromatography and RP HPLC. The compounds were identified by physical and spectroscopic data and compared with literature values already reported.
Collapse
Affiliation(s)
- M R Lima Mirabel Louis
- PG & Research Department of Advanced Zoology & Biotechnology, Loyola Institute of Frontier Energy (LIFE), Loyola College, Affiliated to University of Madras, Chennai, Tamil Nadu, 600 034, India
| | - Vedham Pushpa Rani
- PG & Research Department of Advanced Zoology & Biotechnology, Loyola Institute of Frontier Energy (LIFE), Loyola College, Affiliated to University of Madras, Chennai, Tamil Nadu, 600 034, India.
| | - Padma Krishnan
- Department of Microbiology, Dr. ALM PG IBMS, University of Madras, Taramani, Chennai, Tamil Nadu, 600 113, India
| | - Appadurai Daniel Reegan
- National Centre for Disease Control, Bengaluru Branch, No:08, NTI Campus, Bellary Road, Bengaluru, Karnataka, 560 003, India
| | - Kedike Balakrishna
- Entomology Research Institute, Loyola College, Affiliated to University of Madras, Chennai, Tamil Nadu, 600 034, India
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Affiliated to Manonmaniam Sundaranar University, Palayamkottai, Tamil Nadu, 627 002, India.
| | - Soosaimanickam Maria Packiam
- Entomology Research Institute, Loyola College, Affiliated to University of Madras, Chennai, Tamil Nadu, 600 034, India
| | - Rajan Maheswaran
- Department of Zoology, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636 011, India
| | - Osamu Shirota
- Laboratory of Pharmacognosy and Natural Products Chemistry, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki City, Kagawa, 769-2193, Japan.
| |
Collapse
|
25
|
Cassani L, Gomez-Zavaglia A. Sustainable Food Systems in Fruits and Vegetables Food Supply Chains. Front Nutr 2022; 9:829061. [PMID: 35252306 PMCID: PMC8891749 DOI: 10.3389/fnut.2022.829061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Fruits and vegetables wastes (e.g., peel fractions, pulps, pomace, and seeds) represent ~16% of total food waste and contribute ~6% to global greenhouse gas emissions. The diversity of the fruit-horticultural production in several developing countries and the excess of certain fruits or vegetables in the months of greatest production offer unique opportunities for adding value to these wastes (co-products). Within the scope of the Circular Economy, valorization of such wastes for the production of innovative bio-ingredients can open great market opportunities if efficiently exploited. In this context, this review deals with the current situation of wastes arising from fruits and vegetables (availability, characterization) as sources of valuable ingredients (fiber, polyphenols, pigments) suitable to be incorporated into food, pharmaceutical and cosmeceutical products. In addition, an integral and systematic approach including the sustainable technologies generally used at both lab and industrial scale for efficient extraction of bioactive compounds from fruits and vegetables wastes are addressed. Overall, this review provides a general updated overview regarding the situation of fruits and vegetables chain supplies in the post-pandemic era, offering an integrative perspective that goes beyond the recovery of fiber and phytochemicals from the previous mentioned wastes and focuses on whole processes and in their social and economic impacts.
Collapse
Affiliation(s)
- Lucía Cassani
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA, CONICET), Mar del Plata, Argentina
- Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
- *Correspondence: Andrea Gomez-Zavaglia
| |
Collapse
|
26
|
Merino D, Bertolacci L, Paul UC, Simonutti R, Athanassiou A. Avocado Peels and Seeds: Processing Strategies for the Development of Highly Antioxidant Bioplastic Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38688-38699. [PMID: 34346668 PMCID: PMC8397233 DOI: 10.1021/acsami.1c09433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/23/2021] [Indexed: 05/28/2023]
Abstract
The industrial processing of avocados annually generates more than 1.2 million tons of avocado peels (APs) and avocado seeds (ASs) that have great potential in the production of active bioplastics, although they have never been considered for this aim until now. Separately, the APs and ASs, as well as a combination of avocado peels and seeds (APSs), were evaluated here for the first time for the preparation of antioxidant films, with application in food packaging. Films were prepared by casting, after their processing by three different methods: (1) hydrolysis in acid media, (2) hydrolysis followed by plasticization, and (3) hydrolysis and plasticization followed by blending with pectin polymers in different proportions (25 and 50 wt %). The results indicate that the combination of hydrolysis, plasticization, and pectin blending is essential to obtain materials with competitive mechanical properties, optical clarity, excellent oxygen barrier properties, high antioxidant activity, biodegradability, and migration of components in TENAX suitable for food contact applications. In addition, the materials prepared with APSs are advantageous from the point of view of the industrial waste valorization, since the entire avocado wastes are used for the production of bioplastics, avoiding further separation processes for their valorization.
Collapse
Affiliation(s)
- Danila Merino
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genoa 16163, Italy
| | - Laura Bertolacci
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genoa 16163, Italy
| | - Uttam C. Paul
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genoa 16163, Italy
| | - Roberto Simonutti
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, Via
Roberto Cozzi 55, 20125 Milano, Italy
| | | |
Collapse
|
27
|
Mora-Sandí A, Ramírez-González A, Castillo-Henríquez L, Lopretti-Correa M, Vega-Baudrit JR. Persea Americana Agro-Industrial Waste Biorefinery for Sustainable High-Value-Added Products. Polymers (Basel) 2021; 13:1727. [PMID: 34070330 PMCID: PMC8197556 DOI: 10.3390/polym13111727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Significant problems have arisen in recent years, such as global warming and hunger. These complications are related to the depletion and exploitation of natural resources, as well as environmental pollution. In this context, bioprocesses and biorefinery can be used to manage agro-industrial wastes for obtaining high-value-added products. A large number of by-products are composed of lignin and cellulose, having the potential to be exploited sustainably for chemical and biological conversion. The biorefinery of agro-industrial wastes has applications in many fields, such as pharmaceuticals, medicine, material engineering, and environmental remediation. A comprehensive approach has been developed toward the agro-industrial management of avocado (Persea americana) biomass waste, which can be transformed into high-value-added products to mitigate global warming, save non-renewable energy, and contribute to health and science. Therefore, this work presents a comprehensive review on avocado fruit waste biorefinery and its possible applications as biofuel, as drugs, as bioplastics, in the environmental field, and in emerging nanotechnological opportunities for economic and scientific growth.
Collapse
Affiliation(s)
- Anthony Mora-Sandí
- School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica; (A.M.-S.); (A.R.-G.)
| | - Abigail Ramírez-González
- School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica; (A.M.-S.); (A.R.-G.)
| | - Luis Castillo-Henríquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica;
- Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Mary Lopretti-Correa
- Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), Montevideo 11300, Uruguay;
| | - José Roberto Vega-Baudrit
- School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica; (A.M.-S.); (A.R.-G.)
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica;
| |
Collapse
|
28
|
Babiker EE, Ahmed IAM, Uslu N, Özcan MM, Juhaimi FA, Ghafoor K, Almusallam IA. Influence of Drying Methods on Bioactive Properties,Fatty Acids and Phenolic Compounds of Different Parts of Ripe and Unripe Avocado Fruits. J Oleo Sci 2021; 70:589-598. [PMID: 33692245 DOI: 10.5650/jos.ess20343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
All drying processes increased oil content, antioxidant activity, total phenolic contents, and most of the phenolic compounds in the pulp, peel and seeds of both ripe fruits with varied degrees (p < 0.05). In addition, the processes reduced the oil contents, linoleic acids, 3,4-dihydroxybenzoic acid, (+)-catechin, and naringenin of the pulp, antioxidant activity of the peels and seeds, and 3,4-dihydroxybenzoic acid, (+)-catechin of the seeds and it enhanced all other parameters in the pulp, peel, and seeds of unripe fruits (p < 0.05). Comparing the phenolic profiles of avocado pulp, peels, and seeds of ripe and unripe fruits indicated that the peel and seeds are richer than the pulp and that is superior in unripe fruits than ripe ones. In addition, drying processes particularly microwave and air drying greatly enhanced the bioactive properties of ripe and unripe avocado fruits and could thus be used to elongate the shelf-life of avocado fruit products without major impact on the overall quality.
Collapse
Affiliation(s)
- Elfadıl E Babiker
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Isam A Mohamed Ahmed
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Nurhan Uslu
- Department of Food Engineering, Faculty of Agriculture, Selcuk University
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture, Selcuk University
| | - Fahad Al Juhaimi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Kashif Ghafoor
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Ibrahim A Almusallam
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| |
Collapse
|
29
|
Al‐Juhaimi F, Uslu N, Musa Özcan M, Babiker EE, Ghafoor K, Mohamed Ahmed I, Alsawmahi ON. Effects of drying process on oil quality, the bioactive properties and phytochemical characteristics of avocado (Fuerte) fruits harvested at two different maturity stages. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fahad Al‐Juhaimi
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Nurhan Uslu
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Mehmet Musa Özcan
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Elfadıl E Babiker
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Kashif Ghafoor
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Isam Mohamed Ahmed
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Omer N. Alsawmahi
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| |
Collapse
|
30
|
Figueroa JG, Borrás-Linares I, Del Pino-García R, Curiel JA, Lozano-Sánchez J, Segura-Carretero A. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem 2021; 352:129300. [PMID: 33667920 DOI: 10.1016/j.foodchem.2021.129300] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Avocado peel is a by-product obtained in high amounts in the food industry with no further applications despite its richness in bioactive compounds. In this context, an efficient "green" microwave assisted extraction (MAE) was optimized to maximize the extraction of bioactive polyphenols. Moreover, the phenolic composition of the developed green avocado extract was characterized by HPLC coupled to MS analysers and the potential applications for the food industry were studied assaying different bioactivities. Thus, the matrix metalloproteinases inhibition, the antioxidant capacity and the antimicrobial activity against gram-positive and gram-negative bacteria, yeast and mold were tested. The results pointed out both, high matrix metalloproteinases inhibitory capacity and antioxidant activity of avocado peel MAE extract. These findings suggest the potential food industry applications of this extract as natural food preservative, functional food ingredient or nutraceuticals with antioxidant and anti-aging activities.
Collapse
Affiliation(s)
- Jorge G Figueroa
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, Granada 18071, Spain; Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain; Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 11-01-608, Ecuador
| | - Isabel Borrás-Linares
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain.
| | - Raquel Del Pino-García
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain
| | - José Antonio Curiel
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain
| | - Jesús Lozano-Sánchez
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain; Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, Granada 18071, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, Granada 18071, Spain; Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain
| |
Collapse
|
31
|
Phenolic compounds from ‘Hass’ avocado peel are retained in the indigestible fraction after an in vitro gastrointestinal digestion. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00794-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Utilization of Avocado and Mango Fruit Wastes in Multi-Nutrient Blocks for Goats Feeding: In Vitro Evaluation. Animals (Basel) 2020; 10:ani10122279. [PMID: 33287171 PMCID: PMC7761736 DOI: 10.3390/ani10122279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/21/2023] Open
Abstract
Simple Summary The demand for animal products generated with high animal welfare standards and low environmental impact is continuously increasing. Moreover, the growing awareness of consumers about the importance of a healthy diet to reduce the prevalence of dietary illnesses has increased the consumption of vegetables and fruits, generating more vegetable wastes. Using these wastes in animal feeding would reduce the pollution caused by their accumulation, but their nutritive value needs to be assessed. We analyzed the chemical composition and in vitro ruminal fermentation of avocado and mango fruit wastes (peels and a pulp:peels (PP) mixture), and the potential of including the PP mixture into multi-nutrient blocks (MB) for goats feeding. Tested wastes had high-moisture content, but whereas those from mango were rich in non-structural carbohydrates, those from avocado had high fat content. Mango wastes were fermented at a greater extent and faster rate than avocado ones. Only subtle differences were observed in the fermentation of MB including PP from either avocado or mango. Using the PP mixture in MB for goats seems to be a viable solution to reduce the waste’s environmental impact, but studies assessing the MB acceptance by the animals and their stability over long-time storage periods are needed. Abstract This study was conducted to investigate the nutritive value of avocado and mango fruit wastes, and to assess the possibility of preserving the wastes into multi-nutrient blocks (MB). Both peels and a pulp:peels (PP) mixture of each fruit were analyzed for chemical composition and in vitro fermentation with goats’ ruminal fluid. Wastes had low-dry matter (DM) content (<250 g/kg), with those from mango having high non-structural carbohydrates content (>800 g/kg DM) and those from avocado high fat levels (>580 g/kg DM). Mango wastes were fermented at a greater extent and faster rate than avocado ones. The PP mixture of each fruit was included into multi-nutrient blocks (MB) formulated to have similar chemical composition. There were only subtle differences in the fermentation of MB including wastes from either avocado or mango, but fermentation of avocado-MB resulted in significantly (p ≤ 0.032) greater acetate and lower propionate proportions than mango-MB. Including the PP mixture in the formulation of MB for goats feeding is a feasible option to reduce the environmental impact of avocado and mango fruit wastes, but studies on the acceptance of the MB by goats and their stability over long-time storage periods are needed.
Collapse
|
33
|
Salazar-López NJ, Domínguez-Avila JA, Yahia EM, Belmonte-Herrera BH, Wall-Medrano A, Montalvo-González E, González-Aguilar GA. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res Int 2020; 138:109774. [PMID: 33292952 DOI: 10.1016/j.foodres.2020.109774] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022]
Abstract
The increased demand for avocado, and therefore production and consumption, generate large quantities of by-products such as seeds, peel, and defatted pulp, which account for approximately 30% of fruit weight, and which are commonly discarded and wasted. The present review focuses on various compounds present in avocado fruit and its by-products, with particular interest to those that can be potentially used in different industrial forms, such as nutraceuticals, to add to or to formulate functional foods, among other uses. Main molecular families of bioactive compounds present in avocado include phenolic compounds (such as hydroxycinnamic acids, hydroxybenzoic acids, flavonoids and proanthocyanins), acetogenins, phytosterols, carotenoids and alkaloids. Types, contents, and possible functions of these bioactive compounds are described from a chemical, biological, and functional approach. The use of avocado and its by-products requires using processing methods that allow highest yield with the least amount of unusable residues, while also preserving the integrity of bioactive compounds of interest. Avocado cultivar, fruit development, ripening stage, and processing methods are some of the main factors that influence the type and amount of extractable molecules. The phytochemical diversity of avocado fruit and its by-products make them potential sources of nutraceutical compounds, from which functional foods can be obtained, as well as other applications in food, health, pigment, and material sectors, among others.
Collapse
Affiliation(s)
- Norma Julieta Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Elhadi M Yahia
- Laboratorio de Fitoquímicos y Nutrición, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias, Juriquilla, Querétaro, 76230 Qro., Mexico.
| | - Beatriz Haydee Belmonte-Herrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua 32310, Mexico.
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México-Instituto Tecnológico de Tepic, Av. Tecnológico 255 Fracc. Lagos del Country, Tepic, Nayarit 63175, Mexico.
| | - G A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|