1
|
Hirano D, Wada M, Kimura N, Jinnai D, Goto Y, Taniguchi T. Effects of divided attention on movement-related cortical potential in community-dwelling elderly adults: A preliminary study. Heliyon 2024; 10:e34126. [PMID: 39071682 PMCID: PMC11283040 DOI: 10.1016/j.heliyon.2024.e34126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/06/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Dual-tasking is defined as performing two or more tasks concurrently. This study aimed to investigate the effect of divided attention on movement-related cortical potential (MRCP) during dual-task performance in 11 community-dwelling elderly individuals while the load of the secondary task was altered. MRCP was recorded during a single task (ST), simple dual task (S-DT), and complex dual task (C-DT) as no-, low-, and high-load divided attention tasks, respectively. The ST involved self-paced tapping with an extended right index finger. In the S-DT and C-DT, the subjects simultaneously performed the ST and a visual number counting task with different levels of load. The coefficient of variation of movement frequency was significantly more variable in the C-DT than in the ST. The MRCP amplitude from electroencephalography electrode C3, contralateral to the moving hand, was significantly higher in the C-DT than in the ST. Higher attention diversion led to a significant reduction in MRCP amplitude in the participants. These results suggest that attention division in dual-task situations plays an important role in movement preparation and execution. We propose that MRCP can serve as a marker for screening the ability of older individuals to perform dual-tasks.
Collapse
Affiliation(s)
- Daisuke Hirano
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-1-26 Akasaka, Minato, Tokyo, 107-8402, Japan
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Misaki Wada
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Naotoshi Kimura
- Department of Occupational Therapy, School of Health Sciences at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Daisuke Jinnai
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Yoshinobu Goto
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-1-26 Akasaka, Minato, Tokyo, 107-8402, Japan
- Department of Physiology, Faculty of Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
- Department of Occupational Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takamichi Taniguchi
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-1-26 Akasaka, Minato, Tokyo, 107-8402, Japan
- Department of Occupational Therapy, School of Health Sciences at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| |
Collapse
|
2
|
Cavanagh JF, Rieger RE, Wilson JK, Gill D, Fullerton L, Brandt E, Mayer AR. Joint analysis of frontal theta synchrony and white matter following mild traumatic brain injury. Brain Imaging Behav 2020; 14:2210-2223. [PMID: 31368085 PMCID: PMC6992511 DOI: 10.1007/s11682-019-00171-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Some of the most disabling aspects of mild traumatic brain injury (mTBI) include lingering deficits in executive functioning. It is known that mTBI can damage white matter tracts, but it remains unknown how this structural brain damage translates into cognitive deficits. This experiment utilized theta band phase synchrony to identify the dysfunctional neural operations that contribute to cognitive problems following mTBI. Sub-acute stage (< 2 weeks) mTBI patients (N = 52) and healthy matched controls (N = 32) completed a control-demanding task with concurrent EEG. Structural MRI was also collected. While there were no performance-specific behavioral differences between groups in the dot probe expectancy task, the degree of theta band phase synchrony immediately following injury predicted the degree of symptom recovery two months later. Although there were no differences in fractional anisotropy (FA) between groups, joint independent components analysis revealed that a smaller network of lower FA-valued voxels contributed to a diminished frontal theta phase synchrony network in the mTBI group. This finding suggests that frontal theta band markers of cognitive control are sensitive to sub-threshold structural aberrations following mTBI.
Collapse
Affiliation(s)
- James F Cavanagh
- Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque, NM, 87131, USA.
| | - Rebecca E Rieger
- Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque, NM, 87131, USA
- Department of Neuroscience, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131, USA
| | - J Kevin Wilson
- Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque, NM, 87131, USA
- Department of Neuroscience, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131, USA
| | - Darbi Gill
- Department of Neuroscience, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131, USA
| | - Lynne Fullerton
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 116025, Albuquerque, NM, 87131, USA
| | - Emma Brandt
- Department of Neuroscience, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131, USA
| | - Andrew R Mayer
- Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque, NM, 87131, USA
- Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM, 87106, USA
- Departments of Neurology and Psychiatry, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131, USA
| |
Collapse
|
3
|
Cavanagh JF, Wilson JK, Rieger RE, Gill D, Broadway JM, Story Remer JH, Fratzke V, Mayer AR, Quinn DK. ERPs predict symptomatic distress and recovery in sub-acute mild traumatic brain injury. Neuropsychologia 2019; 132:107125. [PMID: 31228481 DOI: 10.1016/j.neuropsychologia.2019.107125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
Abstract
Mild traumatic brain injury (mTBI) can affect high-level executive functioning long after somatic symptoms resolve. We tested if simple EEG responses within an oddball paradigm could capture variance relevant to this clinical problem. The P3a and P3b components reflect bottom-up and top-down processes driving engagement with exogenous stimuli. Since these features are related to primitive decision abilities, abnormal amplitudes following mTBI may account for problems in the ability to exert executive control. Sub-acute (<2 weeks) mTBI participants (N = 38) and healthy controls (N = 24) were assessed at an initial session as well as a two-month follow-up (sessions 1 and 2). We contrasted the initial assessment to a comparison group of participants with chronic symptomatology following brain injury (N = 23). There were no group differences in P3a or P3b amplitudes. Yet in the sub-acute mTBI group, higher symptomatology on the Frontal Systems Behavior scale (FrSBe), a questionnaire validated as measuring symptomatic distress related to frontal lobe injury, correlated with lower P3a in session 1. This relationship was replicated in session 2. These findings were distinct from chronic TBI participants, who instead expressed a relationship between increased FrSBe symptoms and a lower P3b component. In the sub-acute group, P3b amplitudes in the first session correlated with the degree of symptom change between sessions 1 and 2, above and beyond demographic predictors. Controls did not show any relationship between FrSBe symptoms and P3a or P3b. These findings identify symptom-specific alterations in neural systems that vary along the time course of post-concussive symptomatology.
Collapse
Affiliation(s)
- James F Cavanagh
- University of New Mexico, Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque NM, 87131, USA.
| | - J Kevin Wilson
- University of New Mexico, Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque NM, 87131, USA
| | - Rebecca E Rieger
- University of New Mexico, Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque NM, 87131, USA
| | - Darbi Gill
- University of New Mexico Health Sciences Center, Department of Neuroscience, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131 USA
| | - James M Broadway
- University of New Mexico Health Sciences Center, Department of Neuroscience, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131 USA
| | - Jacqueline Hope Story Remer
- University of New Mexico Health Sciences Center, Department of Neuroscience, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131 USA
| | - Violet Fratzke
- University of New Mexico Health Sciences Center, Department of Neuroscience, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131 USA
| | - Andrew R Mayer
- University of New Mexico, Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque NM, 87131, USA; University of New Mexico Health Sciences Center, Department of Neuroscience, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131 USA; Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM, 87106, USA
| | - Davin K Quinn
- University of New Mexico Health Sciences Center, Department of Psychiatry and Behavioral Sciences, 2600 Marble Avenue NE, Albuquerque, NM, 87106, USA
| |
Collapse
|
4
|
Papathanasiou ES, Cronin T, Seemungal B, Sandhu J. Electrophysiological testing in concussion: A guide to clinical applications. JOURNAL OF CONCUSSION 2018. [DOI: 10.1177/2059700218812634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The diagnosis of mild traumatic brain injury in concussion is difficult since it is often unwitnessed, the patient’s recall is unreliable and initial clinical examination is often unrevealing, correlating poorly with the extent of brain injury. At present, there are no objective biomarkers of mild traumatic brain injury in concussion. Thus, a sensitive gold standard test is required to enable the effective and safe triage of patients who present to the acute services. As well as triage, objective monitoring of patients’ recovery over time and separate from clinical features that patients may develop following the injury (e.g. depression and migraine) is also needed. In contrast to neuroimaging, which is widely used to investigate traumatic brain injury patients, electrophysiology is readily available, is cheap and there are internationally recognized standardised methodologies. Herein, we review the existing literature on electrophysiological testing in concussion and mild traumatic brain injury; specifically, electroencephalogram, polysomnography, brainstem auditory evoked potentials, electro- and videonystagmography, vestibular evoked myogenic potentials, visually evoked potentials, somatosensory evoked potentials and transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Eleftherios S Papathanasiou
- Clinical Neurophysiology Laboratory, Clinic B, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Thomas Cronin
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Barry Seemungal
- Division of Brain Sciences, St Mary’s and Charing Cross Hospitals, Imperial College London, London, UK
| | - Jaswinder Sandhu
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Kraus N, Lindley T, Colegrove D, Krizman J, Otto-Meyer S, Thompson EC, White-Schwoch T. The neural legacy of a single concussion. Neurosci Lett 2017; 646:21-23. [DOI: 10.1016/j.neulet.2017.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
|
6
|
Aliakbaryhosseinabadi S, Kostic V, Pavlovic A, Radovanovic S, Nlandu Kamavuako E, Jiang N, Petrini L, Dremstrup K, Farina D, Mrachacz-Kersting N. Influence of attention alternation on movement-related cortical potentials in healthy individuals and stroke patients. Clin Neurophysiol 2017; 128:165-175. [DOI: 10.1016/j.clinph.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 09/04/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022]
|
7
|
Vander Werff Kathy R. The Application of the International Classification of Functioning, Disability and Health to Functional Auditory Consequences of Mild Traumatic Brain Injury. Semin Hear 2016; 37:216-32. [PMID: 27489400 DOI: 10.1055/s-0036-1584409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
This article reviews the auditory consequences of mild traumatic brain injury (mTBI) within the context of the International Classification of Functioning, Disability and Health (ICF). Because of growing awareness of mTBI as a public health concern and the diverse and heterogeneous nature of the individual consequences, it is important to provide audiologists and other health care providers with a better understanding of potential implications in the assessment of levels of function and disability for individual interdisciplinary remediation planning. In consideration of body structures and function, the mechanisms of injury that may result in peripheral or central auditory dysfunction in mTBI are reviewed, along with a broader scope of effects of injury to the brain. The activity limitations and participation restrictions that may affect assessment and management in the context of an individual's personal factors and their environment are considered. Finally, a review of management strategies for mTBI from an audiological perspective as part of a multidisciplinary team is included.
Collapse
|