1
|
Khan F, Bamunuarachchi NI, Pham DTN, Tabassum N, Khan MSA, Kim YM. Mixed biofilms of pathogenic Candida-bacteria: regulation mechanisms and treatment strategies. Crit Rev Microbiol 2021; 47:699-727. [PMID: 34003065 DOI: 10.1080/1040841x.2021.1921696] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-species biofilm is one of the most frequently recorded clinical problems. Mixed biofilms develop as a result of interactions between microorganisms of a single or multiple species (e.g. bacteria and fungi). Candida spp., particularly Candida albicans, are known to associate with various bacterial species to form a multi-species biofilm. Mixed biofilms of Candida spp. have been previously detected in vivo and on the surfaces of many biomedical instruments. Treating infectious diseases caused by mixed biofilms of Candida and bacterial species has been challenging due to their increased resistance to antimicrobial drugs. Here, we review and discuss the clinical significance of mixed Candida-bacteria biofilms as well as the signalling mechanisms involved in Candida-bacteria interactions. We also describe possible approaches for combating infections associated with mixed biofilms, such as the use of natural or synthetic drugs and combination therapy. The review presented here is expected to contribute to the advances in the biomedical field on the understanding of underlying interaction mechanisms of pathogens in mixed biofilm, and alternative approaches to treating the related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea.,Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
2
|
Černáková L, Rodrigues CF. Microbial interactions and immunity response in oral Candida species. Future Microbiol 2020; 15:1653-1677. [PMID: 33251818 DOI: 10.2217/fmb-2020-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral candidiasis are among the most common noncommunicable diseases, related with serious local and systemic illnesses. Although these infections can occur in all kinds of patients, they are more recurrent in immunosuppressed ones such as patients with HIV, hepatitis, cancer or under long antimicrobial treatments. Candida albicans continues to be the most frequently identified Candida spp. in these disorders, but other non-C. albicans Candida are rising. Understanding the immune responses involved in oral Candida spp. infections is a key feature to a successful treatment and to the design of novel therapies. In this review, we performed a literature search in PubMed and WoS, in order to examine and analyze common oral Candida spp.-bacteria/Candida-Candida interactions and the host immunity response in oral candidiasis.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology & Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Célia F Rodrigues
- Department of Chemical Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering, University of Porto, Portugal
| |
Collapse
|
3
|
Rodrigues ME, Gomes F, Rodrigues CF. Candida spp./Bacteria Mixed Biofilms. J Fungi (Basel) 2019; 6:jof6010005. [PMID: 31861858 PMCID: PMC7151131 DOI: 10.3390/jof6010005] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022] Open
Abstract
The ability to form biofilms is a common feature of microorganisms, such as bacteria or fungi. These consortiums can colonize a variety of surfaces, such as host tissues, dentures, and catheters, resulting in infections highly resistant to drugs, when compared with their planktonic counterparts. This refractory effect is particularly critical in polymicrobial biofilms involving both fungi and bacteria. This review emphasizes Candida spp.-bacteria biofilms, the epidemiology of this community, the challenges in the eradication of such biofilms, and the most relevant treatments.
Collapse
Affiliation(s)
- Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO–Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.E.R.); (F.G.)
| | - Fernanda Gomes
- CEB, Centre of Biological Engineering, LIBRO–Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.E.R.); (F.G.)
| | - Célia F. Rodrigues
- LEPABE–Dep. of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
4
|
Diaz PI, Hong BY, Dupuy AK, Strausbaugh LD. Mining the oral mycobiome: Methods, components, and meaning. Virulence 2016; 8:313-323. [PMID: 27791473 DOI: 10.1080/21505594.2016.1252015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Research on oral fungi has centered on Candida. However, recent internal transcribed spacer (ITS)-based studies revealed a vast number of fungal taxa as potential oral residents. We review DNA-based studies of the oral mycobiome and contrast them with cultivation-based surveys, showing that most genera encountered by cultivation have also been detected molecularly. Some taxa such as Malassezia, however, appear in high prevalence and abundance in molecular studies but have not been cultivated. Important technical and bioinformatic challenges to ITS-based oral mycobiome studies are discussed. These include optimization of sample lysis, variability in length of ITS amplicons, high intra-species ITS sequence variability, high inter-species variability in ITS copy number and challenges in nomenclature and maintenance of curated reference databases. Molecular surveys are powerful first steps to characterize the oral mycobiome but further research is needed to unravel which fungi detected by DNA are true oral residents and what role they play in oral homeostasis.
Collapse
Affiliation(s)
- Patricia I Diaz
- a Division of Periodontology, Department of Oral Health and Diagnostic Sciences , School of Dental Medicine, UConn Health , Farmington , CT , USA
| | - Bo-Young Hong
- a Division of Periodontology, Department of Oral Health and Diagnostic Sciences , School of Dental Medicine, UConn Health , Farmington , CT , USA
| | - Amanda K Dupuy
- b Institute for Systems Genomics, University of Connecticut , Storrs , CT , USA
| | - Linda D Strausbaugh
- b Institute for Systems Genomics, University of Connecticut , Storrs , CT , USA
| |
Collapse
|
5
|
Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 2013. [DOI: 10.1099/jmm.0.045054-0] [Citation(s) in RCA: 730] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- J. C. O. Sardi
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - L. Scorzoni
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - T. Bernardi
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - A. M. Fusco-Almeida
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - M. J. S. Mendes Giannini
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| |
Collapse
|
6
|
Chang X, Li R, Yu J, Bao X, Qin J. Phaeohyphomycosis of the central nervous system caused by Exophiala dermatitidis in a 3-year-old immunocompetent host. J Child Neurol 2009; 24:342-5. [PMID: 19258294 DOI: 10.1177/0883073808323524] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An extremely rare case of cerebral phaeohyphomycosis caused by Exophiala dermatitidis is reported. We described an otherwise healthy young child whose presentation was a progressive intracranial hypertension and paraplegia, accompanied by urine retention and constipation. His blood test showed eosinophilia with the proportion of eosinophilic cell up to 28%. A computed tomography and magnetic resonance imaging of the brain and the spinal cord revealed multiple lesions. A cerebral biopsy was performed and the pathological report was cerebral phaeohyphomycosis. Cultures of the tissue and cerebrospinal fluid grew the same fungus. Extraction of genomic DNA from cultures was performed, and the DNA sequence displayed 99% sequence homologies with E dermatitidis. The patient's response to therapy was poor, and the boy died 2 months later. Our experience suggests that phaeohyphomycosis should be included in the differential diagnosis in children with multiple intracranial lesions of unknown origin and eosinophilia.
Collapse
Affiliation(s)
- Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | | | | | | |
Collapse
|
7
|
Chowdhary A, Lee-Yang W, Lasker BA, Brandt ME, Warnock DW, Arthington-Skaggs BA. Comparison of multilocus sequence typing and Ca3 fingerprinting for molecular subtyping epidemiologically-related clinical isolates of Candida albicans. Med Mycol 2006; 44:405-17. [PMID: 16882607 DOI: 10.1080/13693780600612230] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Southern hybridization with the complex probe Ca3 is a well established tool for molecular subtyping of Candida albicans. Multilocus sequence typing (MLST) is a DNA sequence-based subtyping method recently applied to C. albicans and shown to have a high degree of intraspecies discriminatory power. However, its utility for studying the molecular epidemiology of sequential isolates from recurrent disease has not been established. We compared Ca3 Southern hybridization and MLST using seven housekeeping genes (CaAAT1a, CaACC1, CaADP1, CaPMI, CaSYA1, CaVPS13, CaZWF1b) for their ability to discriminate among 37 C. albicans isolates from recurrent cases of oropharyngeal candidiasis (OPC) in ten HIV-positive patients from India and the US. Among the 37 isolates, MLST identified 23 distinct genotypes (index of diversity = 97%); Ca3 Southern hybridization identified 21 distinct genotypes (index of diversity = 95%). Both methods clustered isolates into seven genetically-related groups and, with one exception, isolates that were indistinguishable by MLST were indistinguishable or highly related by Ca3 Southern hybridization. These results demonstrate that MLST performs equally well or better compared to Ca3 Southern hybridization for defining genetic-relatedness of sequential C. albicans isolates from recurrent cases of OPC in HIV-positive patients.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lasker BA, Butler G, Lott TJ. Molecular genotyping of Candida parapsilosis group I clinical isolates by analysis of polymorphic microsatellite markers. J Clin Microbiol 2006; 44:750-9. [PMID: 16517850 PMCID: PMC1393075 DOI: 10.1128/jcm.44.3.750-759.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida parapsilosis, a pathogenic yeast, is composed of three newly designated genomic species that are physiologically and morphologically indistinguishable. Nosocomial infections caused by group I C. parapsilosis are often associated with the breakdown of infection control practices and the contamination of medical devices, solutions, and indwelling catheters. Due to the low levels of nucleotide sequence variation that are observed, an investigation of the size polymorphisms in loci harboring microsatellite repeat sequences was applied for the typing of C. parapsilosis group I isolates. PCR primer sets that flank the microsatellite repeats for seven loci were designed. Following amplification by PCR, the size of each amplification product was determined automatically by capillary electrophoresis. A total of 42 C. parapsilosis group I isolates were typed by microsatellite analysis, and their profiles were compared to the hybridization profiles obtained by use of the Cp3-13 DNA probe. A high degree of discrimination (discriminatory power = 0.971) was observed by microsatellite analysis. The number of different alleles per locus ranged from 14 for locus B to 5 for locus C. Microsatellite analysis detected 30 different microsatellite genotypes, with 24 genotypes represented by a single isolate. Comparison of the genotypes obtained by microsatellite analysis and those obtained by analysis of the Cp3-13 hybridization profiles showed that they were similar, and these methods were able to identify related and unrelated isolates. Some discrepancies were observed between the methods and may be due to higher mutation rates and/or homoplasy by microsatellite markers. Identical results were observed between microsatellite analysis and Cp3-13 DNA hybridization profile analysis for C. parapsilosis isolates obtained from two patients, demonstrating the reproducibilities of the methods in vivo. Identical microsatellite profiles were observed for isolates displaying different phenotypic switching morphologies. Indistinguishable Cp3-13 DNA hybridization profiles were observed for six epidemiologically related isolates; however, only three of six primary isolates had identical microsatellite profiles. Size variation at a single locus was observed for three of six isolates obtained either after the outbreak period or from a different body site, suggesting the potential of the method to detect microevolutionary events. Interestingly, for most loci a single allele per strain was observed; in contrast, two alleles per locus were observed for some strains, and consistent with the findings for natural isolates, some isolates may be aneuploid. Due to the potential for high throughput, reproducibility, and discrimination, microsatellite analysis may provide a robust and efficient method for the genotyping of large numbers of C. parapsilosis group I isolates.
Collapse
Affiliation(s)
- Brent A Lasker
- Mycotic Diseases Branch, Division of Bacterial and Mycotic Diseases, National Centers for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G-11, Atlanta, GA 30333.
| | | | | |
Collapse
|
9
|
Hartung de Capriles C, Mata-Essayag S, Pérez C, Colella MT, Roselló A, Olaizola C, Abate SMT. Detection of Candida dubliniensis in Venezuela. Mycopathologia 2006; 160:227-34. [PMID: 16205971 DOI: 10.1007/s11046-005-6873-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Over the past decades there has been a significant increase in fungal infections caused by Candida species, and continues to be common in immunocompromised individuals infected with the human immunodeficiency virus (HIV). Although Candida albicans remains the fungal species most frequently isolated as an opportunistic oral pathogen, other non-albicans are often identified in this cohort of patients, including C. dubliniensis. This yeast is closely related to and shares many phenotypic characteristics with C. albicans. Colonies of these two species appear morphologically identical when not grown on special media. The shared phenotypic characteristics of C. dubliniensis and C. albicans suggest that many C. dubliniensis isolates may have been misidentified as C. albicans in the past. The present studies aim is to recover and identify C. dubliniensis, and presumptive clinical C. albicans, from the oral cavities of HIV-seropositive individuals, comparing conventional media to obtain a simple, low-cost and reliable identification system for C. dubliniensis. A total of 16 isolates (3,98%) had been obtained from 402 HIV infected individuals with recurrent oropharyngitis and were identified as C. dubliniensis. Out of these C. dubliniensis isolates 19% were resistant, with MICs above 64 microg/ml to fluconazole. This constitutes, to the authors knowledge the first recovery of this organism in Venezuela.
Collapse
|
10
|
Yu J, Yang S, Zhao Y, Li R. A case of subcutaneous phaeohyphomycosis caused byChaetomium globosumand the sequences analysis ofC. globosum. Med Mycol 2006; 44:541-5. [PMID: 16966171 DOI: 10.1080/13693780500525235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A 14-year-old boy developed painful erythema and necrosis on his face with petechia on his upper extremities. Microscopically, necrotic tissue treated with potassium hydroxide showed branched, dematiaceous, septate hyphae. Chaetomium globosum was isolated repeatedly from the necrotic tissues. Morphology and thermotolerance test of the pathogen were also studied. The internal transcribed spacer region in rRNA gene was amplified and sequenced. The sequence of this patient matched well with that of C. globosum in GenBank and from other patients and environment.
Collapse
Affiliation(s)
- Jin Yu
- Department of Dermatology and Venereology/Research Center for Medical Mycology, Peking University First Hospital, Beijing, PR, China.
| | | | | | | |
Collapse
|
11
|
Abstract
HIV infection affects residents of all countries of the world, but the greater majority of affected individuals reside in the developing world. In the past decade there have been substantial changes in the management of HIV disease, particularly the introduction of highly active antiretroviral therapy (HAART). Such agents have reduced significantly the morbidity and mortality associated with HIV disease, however, they are not available for most HIV-infected individuals in the developing world. There is now considerable understanding of the molecular epidemiology, transmission and therapy of the common opportunistic oral infections of HIV disease, and as a consequence of improved anti-HIV strategies, the frequency and severity of oral disease associated with HIV infection have reduced considerably, although HAART may predispose to human papilloma virus infection of the mouth and potentially increase the risk of later oral squamous cell carcinoma. Despite advances in clinical care the majority of individuals with HIV disease worldwide will continue to develop oral disease, as they are resident in the developing world and do not have ready access to even simple therapies.
Collapse
Affiliation(s)
- Cristina Frezzini
- Oral Medicine Division of Maxillofacial Diagnostic, Medical and Surgical Sciences, Eastman Dental Institute for Oral Health Care Sciences, UCL, University of London, London, UK
| | | | | |
Collapse
|
12
|
Chen KW, Lo HJ, Lin YH, Li SY. Comparison of four molecular typing methods to assess genetic relatedness of Candida albicans clinical isolates in Taiwan. J Med Microbiol 2005; 54:249-258. [PMID: 15713608 DOI: 10.1099/jmm.0.45829-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This report describes the investigation of the genetic profiles of 53 Candida albicans isolates collected from 18 hospitals in Taiwan using three PFGE-based typing methods (PFGE karyotyping, and PFGE of SfiI and BssHII restriction fragments) and one repetitive-sequence-PCR (rep-PCR) method. All four methods were able to identify clonal related isolates from the same patients. PFGE-BssHII exhibited the highest discriminatory power by discriminating 40 genotypes, followed by PFGE-SfiI (35 genotypes) and then by rep-PCR (31 genotypes), while PFGE karyotyping exhibited the lowest discriminatory power (19 genotypes). High discriminatory power can also be achieved by combining typing methods with different typing mechanisms, such as rep-PCR and PFGE-based typing methods. The results also showed that the genotype of each isolate was patient-specific and not associated with the source of the isolation, geographic origin or antifungal resistance.
Collapse
Affiliation(s)
- Kuo-Wei Chen
- Laboratory for Mycopathogens, Chlamydia and Mycoplasma, Division of Laboratory Research and Development, Center for Disease Control, 161 Kun-Yang Street, Nan-Kang District, Taipei 115, Taiwan 2Division of Clinical Research, National Health Research Institutes, Taipei, Taiwan
| | - Hsiu-Jung Lo
- Laboratory for Mycopathogens, Chlamydia and Mycoplasma, Division of Laboratory Research and Development, Center for Disease Control, 161 Kun-Yang Street, Nan-Kang District, Taipei 115, Taiwan 2Division of Clinical Research, National Health Research Institutes, Taipei, Taiwan
| | - Yu-Hui Lin
- Laboratory for Mycopathogens, Chlamydia and Mycoplasma, Division of Laboratory Research and Development, Center for Disease Control, 161 Kun-Yang Street, Nan-Kang District, Taipei 115, Taiwan 2Division of Clinical Research, National Health Research Institutes, Taipei, Taiwan
| | - Shu-Ying Li
- Laboratory for Mycopathogens, Chlamydia and Mycoplasma, Division of Laboratory Research and Development, Center for Disease Control, 161 Kun-Yang Street, Nan-Kang District, Taipei 115, Taiwan 2Division of Clinical Research, National Health Research Institutes, Taipei, Taiwan
| |
Collapse
|
13
|
Chen J, Li H, Li R, Bu D, Wan Z. Mutations in the cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus serially isolated from a patient with lung aspergilloma. J Antimicrob Chemother 2005; 55:31-7. [PMID: 15563516 DOI: 10.1093/jac/dkh507] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To monitor changes in itraconazole susceptibility of isolates from a patient undergoing treatment for pulmonary Aspergillus infection and relate these changes to genotypic/phenotypic alterations. METHODS Six Aspergillus fumigatus isolates were serially recovered from the patient. Itraconazole MICs were determined by Etest and NCCLS methodology. Growth characteristics and phenotype were monitored. Molecular analysis included random amplified polymorphic DNA (RAPD) assay and sequencing of the cyp51A gene. RESULTS The MIC of itraconazole against the first isolate before treatment was 0.25 mg/L; the MIC against the second isolate, recovered after 6 months of itraconazole therapy, was >16 mg/L; and that against the third isolate, obtained 2 months after discontinuation of the therapy, was 0.5 mg/L. The MIC against the last three isolates, acquired after restoration of itraconazole therapy for 4-7 months, was >16 mg/L. The six isolates shared identical band patterns of RAPD assay using four primers and the same sequence in intertranscribed spacers (ITS). Therefore, the six isolates were likely to be the same strain of A. fumigatus, and mutations involving itraconazole resistance possibly occurred in these isolates after prolonged itraconazole therapy. Sequencing of the cyp51A gene in the coding region revealed a mutation of M220I in cytochrome P450 sterol 14-alpha-demethylase in the second resistant isolate and a mutation of G54R in the last three resistant isolates. Expression changes of some pump genes, such as MDR3, may also, in part, be related to the resistance to itraconazole. CONCLUSIONS We conclude that resistance of A. fumigatus to itraconazole occurred in a patient treated with the drug, and the resistance may result from mutations in the cyp51A gene-the gene encoding the target enzyme for itraconazole.
Collapse
Affiliation(s)
- Jian Chen
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, No. 8 Xishiku St, West District, Beijing, 100034, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Clark TA, Slavinski SA, Morgan J, Lott T, Arthington-Skaggs BA, Brandt ME, Webb RM, Currier M, Flowers RH, Fridkin SK, Hajjeh RA. Epidemiologic and molecular characterization of an outbreak of Candida parapsilosis bloodstream infections in a community hospital. J Clin Microbiol 2004; 42:4468-72. [PMID: 15472295 PMCID: PMC522355 DOI: 10.1128/jcm.42.10.4468-4472.2004] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida parapsilosis is an important cause of bloodstream infections in the health care setting. We investigated a large C. parapsilosis outbreak occurring in a community hospital and conducted a case-control study to determine the risk factors for infection. We identified 22 cases of bloodstream infection with C. parapsilosis: 15 confirmed and 7 possible. The factors associated with an increased risk of infection included hospitalization in the intensive care unit (adjusted odds ratio, 16.4; 95% confidence interval, 1.8 to 148.1) and receipt of total parenteral nutrition (adjusted odds ratio, 9.2; 95% confidence interval, 0.9 to 98.1). Samples for surveillance cultures were obtained from health care worker hands, central venous catheter insertion sites, and medical devices. Twenty-six percent of the health care workers surveyed demonstrated hand colonization with C. parapsilosis, and one hand isolate was highly related to all case-patient isolates by tests with the DNA probe Cp3-13. Outbreak strain isolates also demonstrated reduced susceptibilities to fluconazole and voriconazole. This largest known reported outbreak of C. parapsilosis bloodstream infections in adults resulted from an interplay of host, environment, and pathogen factors. Recommendations for control measures focused on improving hand hygiene compliance.
Collapse
Affiliation(s)
- Thomas A Clark
- Epidemic Intelligence Service, Epidemiology Program Office, Division of Applied Public Health Training, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
de Repentigny L, Lewandowski D, Jolicoeur P. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev 2004; 17:729-59, table of contents. [PMID: 15489345 PMCID: PMC523562 DOI: 10.1128/cmr.17.4.729-759.2004] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oropharyngeal and esophageal candidiases remain significant causes of morbidity in human immunodeficiency virus (HIV)-infected patients, despite the dramatic ability of antiretroviral therapy to reconstitute immunity. Notable advances have been achieved in understanding, at the molecular level, the relationships between the progression of HIV infection, the acquisition, maintenance, and clonality of oral candidal populations, and the emergence of antifungal resistance. However, the critical immunological defects which are responsible for the onset and maintenance of mucosal candidiasis in patients with HIV infection have not been elucidated. The devastating impact of HIV infection on mucosal Langerhans' cell and CD4(+) cell populations is most probably central to the pathogenesis of mucosal candidiasis in HIV-infected patients. However, these defects may be partly compensated by preserved host defense mechanisms (calprotectin, keratinocytes, CD8(+) T cells, and phagocytes) which, individually or together, may limit Candida albicans proliferation to the superficial mucosa. The availability of CD4C/HIV transgenic mice expressing HIV-1 in immune cells has provided the opportunity to devise a novel model of mucosal candidiasis that closely mimics the clinical and pathological features of candidal infection in human HIV infection. These transgenic mice allow, for the first time, a precise cause-and-effect analysis of the immunopathogenesis of mucosal candidiasis in HIV infection under controlled conditions in a small laboratory animal.
Collapse
Affiliation(s)
- Louis de Repentigny
- Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada.
| | | | | |
Collapse
|
16
|
Abstract
Although polymicrobial diseases are not a new concept for microbiologists, they are experiencing a resurgence of interest owing to the development of suitable animal models and new molecular techniques that allow these diseases to be studied effectively. This broad review provides an excellent introduction to this fascinating topic. Examples are included of each type of polymicrobial disease and the animal models that are used to study these diseases are discussed. In many instances, schematics for the animal model are presented. Viral co-infections including bovine viral diarrhoeal viruses, porcine reproductive and respiratory syndrome, mixed hepatitis virus infections and HIV co-infection with hepatitis virus are discussed, together with attempts to model these diseases in animals. Viral and bacterial co-infections are reviewed with a special focus on otitis media and the rodent models that have been used to probe this important childhood illness. Of the polybacterial diseases, periodontitis is one of the best understood and a clinically relevant rodent model is now available. This model, and the role of biofilm formation in periodontitis are examined. Fungal infections of humans are often referred to as 'opportunistic' but in fact these infections are often fungal co-infections with viruses such as HIV and fungal mixed co-infections. The roles of these infections in disease and the rodent models used to study them are discussed. Parasite co-infections are thought to have a role in the severity of malaria and the severity of Lyme arthritis. These diseases and attempts to model them are evaluated. Finally, co-infections that are associated with virus-induced immunosuppression are discussed, together with their animal models.
Polymicrobial diseases involve two or more microorganisms that act synergistically, or in succession, to mediate complex disease processes. Although polymicrobial diseases in animals and humans can be caused by similar organisms, these diseases are often also caused by organisms from different kingdoms, genera, species, strains, substrains and even by phenotypic variants of a single species. Animal models are often required to understand the mechanisms of pathogenesis, and to develop therapies and prevention regimes. However, reproducing polymicrobial diseases of humans in animal hosts presents significant challenges.
Collapse
Affiliation(s)
- Lauren O Bakaletz
- Center for Microbial Pathogenesis, Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University College of Medicine & Public Health, 700 Children's Drive, Columbus, Ohio 43205-2696, USA.
| |
Collapse
|
17
|
Sullivan DJ, Moran GP, Pinjon E, Al-Mosaid A, Stokes C, Vaughan C, Coleman DC. Comparison of the epidemiology, drug resistance mechanisms, and virulence of and. FEMS Yeast Res 2004; 4:369-76. [PMID: 14734017 DOI: 10.1016/s1567-1356(03)00240-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Candida dubliniensis is a pathogenic yeast species that was first identified as a distinct taxon in 1995. Epidemiological studies have shown that C. dubliniensis is prevalent throughout the world and that it is primarily associated with oral carriage and oropharyngeal infections in human immunodeficiency virus (HIV)-infected and acquired immune deficiency syndrome (AIDS) patients. However, unlike Candida albicans, C. dubliniensis is rarely found in the oral microflora of normal healthy individuals and is responsible for as few as 2% of cases of candidemia (compared to approximately 65% for C. albicans). The vast majority of C. dubliniensis isolates identified to date are susceptible to all of the commonly used antifungal agents, however, reduced susceptibility to azole drugs has been observed in clinical isolates and can be readily induced in vitro. The primary mechanism of fluconazole resistance in C. dubliniensis has been shown to be overexpression of the major facilitator efflux pump Mdr1p. It has also been observed that a large number of C. dubliniensis strains express a non-functional truncated form of Cdr1p, and it has been demonstrated that this protein does not play a significant role in fluconazole resistance in the majority of strains examined to date. Data from a limited number of infection models reflect findings from epidemiological studies and suggest that C. dubliniensis is less pathogenic than C. albicans. The reasons for the reduced virulence of C. dubliniensis are not clear as it has been shown that the two species express a similar range of virulence factors. However, although C. dubliniensis produces hyphae, it appears that the conditions and dynamics of induction may differ from those in C. albicans. In addition, C. dubliniensis is less tolerant of environmental stresses such as elevated temperature and NaCl and H(2)O(2) concentration, suggesting that C. albicans may have a competitive advantage when colonising and causing infection in the human body. It is our hypothesis that a genomic comparison between these two closely-related species will help to identify virulence factors responsible for the far greater virulence of C. albicans and possibly identify factors that are specifically implicated in either superficial or systemic candidal infections.
Collapse
Affiliation(s)
- Derek J Sullivan
- Microbiology Research Unit, Department of Oral Medicine, Oral Surgery and Oral Pathology, Dublin Dental School and Hospital, University of Dublin, Trinity College, Dublin 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Makarova NU, Pokrowsky VV, Kravchenko AV, Serebrovskaya LV, James MJ, McNeil MM, Lasker BA, Warnock DW, Reiss E. Persistence of oropharyngeal Candida albicans strains with reduced susceptibilities to fluconazole among human immunodeficiency virus-seropositive children and adults in a long-term care facility. J Clin Microbiol 2003; 41:1833-7. [PMID: 12734213 PMCID: PMC154751 DOI: 10.1128/jcm.41.5.1833-1837.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nineteen oropharyngeal Candida albicans isolates from six children and seven adults living with AIDS at the Russia AIDS Centre, Moscow, from 1990 to 1998 were selected for molecular typing. Two fluconazole-resistant C. albicans genotypes were identified from a child who contracted human immunodeficiency virus infection during the Elista Hospital outbreak in the Kalmyk Republic in 1989. Highly related strains were observed 4 years later in the oral lesions and colonization of two patients and a health care worker. There may be a tendency for persons who are living with AIDS in a long-term care facility and who receive fluconazole therapy for oropharyngeal candidiasis to harbor and spread fluconazole-resistant C. albicans strains.
Collapse
Affiliation(s)
- Natalya U Makarova
- Laboratory of Bacteriology and Mycology, Department of Laboratory Medicine, Russia AIDS Centre, Central Institute of Epidemiology, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lasker BA. Evaluation of performance of four genotypic methods for studying the genetic epidemiology of Aspergillus fumigatus isolates. J Clin Microbiol 2002; 40:2886-92. [PMID: 12149346 PMCID: PMC120644 DOI: 10.1128/jcm.40.8.2886-2892.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present investigation, 49 Aspergillus fumigatus isolates obtained from four nosocomial outbreaks were typed by Afut1 restriction fragment length polymorphism (RFLP) analysis and three PCR-based molecular typing methods: random amplified polymorphic DNA (RAPD) analysis, sequence-specific DNA primer (SSDP) analysis, and polymorphic microsatellite markers (PMM) analysis. The typing methods were evaluated with respect to discriminatory power (D), reproducibility, typeability, ease of use, and ease of interpretation to determine their performance and utility for outbreak and surveillance investigations. Afut1 RFLP analysis detected 40 types. Thirty types were observed by RAPD analysis. PMM analysis detected 39 allelic types, but SSDP analysis detected only 14 types. All four methods demonstrated 100% typeability. PMM and RFLP analyses had comparable high degrees of discriminatory power (D = 0.989 and 0.988, respectively). The discriminatory power of RAPD analysis was slightly lower (D = 0.971), whereas SSDP analysis had the lowest discriminatory power (D = 0.889). Overall, SSDP analysis was the easiest method to interpret and perform. The profiles obtained by PMM analysis were easier to interpret than those obtained by RFLP or RAPD analysis. Bands that differed in staining intensity or that were of low intensity were observed by RAPD analysis, making interpretation more difficult. The reproducibilities with repeated runs of the same DNA preparation or with different DNA preparations of the same strain were high for all the methods. A high degree of genetic variation was observed in the test population, but isolates were not always similarly divided by each method. Interpretation of band profiles requires understanding of the molecular mechanisms responsible for genetic alternations. PMM analysis and Afut1 RFLP analysis, or their combination, appear to provide the best overall discriminatory power, reproducibility, ease of interpretation, and ease of use. This investigation will aid in planning epidemiologic and surveillance studies of A. fumigatus.
Collapse
Affiliation(s)
- Brent A Lasker
- Mycotic Diseases Branch, Division of Bacterial and Mycotic Diseases, National Centers for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| |
Collapse
|
20
|
Current awareness on yeast. Yeast 2002; 19:185-92. [PMID: 11788972 DOI: 10.1002/yea.820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|