1
|
Gibson M, Yiallourou S, Pase MP. The Association Between 24-Hour Blood Pressure Profiles and Dementia. J Alzheimers Dis 2023; 94:1303-1322. [PMID: 37458039 DOI: 10.3233/jad-230400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Midlife hypertension increases risk for dementia. Around one third of adults have diagnosed hypertension; however, many adults are undiagnosed, or remain hypertensive despite diagnosis or treatment. Since blood pressure (BP) follows a circadian rhythm, ambulatory BP monitoring allows for the assessment of BP over a 24-hour period and provides an important tool for improving the diagnosis and management of hypertension. The measurement of 24-hour BP profiles, especially nocturnal BP, demonstrate better predictive ability for cardiovascular disease and mortality than office measurement. However, few studies have examined 24-hour BP profiles with respect to dementia risk. This is an important topic since improvements in BP management could facilitate the primary prevention of vascular cognitive impairment and dementia. Therefore, this review discusses the evidence linking BP to dementia, with a focus on whether the implementation of 24-hour BP measurements can improve risk prediction and prevention strategies. Pathways linking nocturnal BP to dementia are also discussed as are risk reduction strategies. Overall, limited research suggests an association between 24-hour BP elevation and poorer cognition, cerebral small vessel disease, and dementia. However, most studies were cross-sectional. Further evidence is needed to substantiate 24-hour BP profiles, over and above office BP, as predictors of vascular cognitive impairment and incident dementia.
Collapse
Affiliation(s)
- Madeline Gibson
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Stephanie Yiallourou
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Matthew P Pase
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Lee JH, Son DH, Kwon YJ. Association between oxidative balance score and new-onset hypertension in adults: A community-based prospective cohort study. Front Nutr 2022; 9:1066159. [PMID: 36590204 PMCID: PMC9798298 DOI: 10.3389/fnut.2022.1066159] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Oxidative stress plays a key role in the pathophysiology of hypertension development. The oxidative balance score (OBS) comprises dietary and lifestyle pro- and anti-oxidant components and reflects the overall oxidative stress burden. We aimed to evaluate the association between the OBS and new-onset hypertension (HTN) using large, community-based, prospective Korean cohort data. Methods Among 10,030 participants aged 40-69 years included in the Korean Genome and Epidemiology Study, the data of 5,181 participants were analyzed. The hazard ratio (HR) and 95% confidence interval (CI) for new-onset HTN according to sex-specific OBS quartile groups were calculated using univariable and multivariable Cox proportional hazard regression analyses. Results During the mean 13.6-year follow-up period, 1,157 men and 1,196 women developed new-onset HTN. Compared to the Q1 group, the adjusted HRs (95%CI) for new-onset HTN in the Q2, Q3, and Q4 groups were 0.96 (0.82-1.16), 0.85 (0.72-0.99), and 0.71 (0.59-0.86) in men and 0.81 (0.69-0.95), 0.81(0.68-0.95), and 0.70 (0.57-0.84) in women, respectively. Discussion Individuals with high OBS are at lower risk of developing HTN. This study suggests that a healthy lifestyle and antioxidant rich diet could be a preventive strategy for HTN.
Collapse
Affiliation(s)
- Jun-Hyuk Lee
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, South Korea,Department of Medicine, Graduate School of Hanyang University, Seoul, South Korea
| | - Da-Hye Son
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, South Korea,*Correspondence: Yu-Jin Kwon
| |
Collapse
|
3
|
DiNatale J, Crowe-White K. Effects of resveratrol supplementation on nitric oxide-mediated vascular outcomes in hypertension: A systematic review. Nitric Oxide 2022; 129:74-81. [DOI: 10.1016/j.niox.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
4
|
Prasad K. Involvement of AGE and Its Receptors in the Pathogenesis of Hypertension in Elderly People and Its Treatment. Int J Angiol 2022; 31:213-221. [PMID: 36588874 PMCID: PMC9803554 DOI: 10.1055/s-0042-1756175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Both systolic and diastolic blood pressures increase with age up to 50 to 60 years of age. After 60 years of age systolic pressure rises to 84 years of age but diastolic pressure remains stable or even decreases. In the oldest age group (85-99 years), the systolic blood pressure (SBP) is high and diastolic pressure (DBP) is the lowest. Seventy percent of people older than 65 years are hypertensive. This paper deals with the role of advanced glycation end products (AGE) and its cell receptor (RAGE) and soluble receptor (sRAGE) in the development of hypertension in the elderly population. Plasma/serum levels of AGE are higher in older people as compared with younger people. Serum levels of AGE are positively correlated with age, arterial stiffness, and hypertension. Low serum levels of sRAGE are associated with arterial stiffness and hypertension. Levels of sRAGE are negatively correlated with age and blood pressure. Levels of sRAGE are lower in patients with arterial stiffness and hypertension than patients with high levels of sRAGE. AGE could induce hypertension through numerous mechanisms including, cross-linking with collagen, reduction of nitric oxide, increased expression of endothelin-1, and transforming growth factor-β (TGF-β). Interaction of AGE with RAGE could produce hypertension through the generation of reactive oxygen species, increased sympathetic activity, activation of nuclear factor-kB, and increased expression of cytokines, cell adhesion molecules, and TGF- β. In conclusion, the AGE-RAGE axis could be involved in hypertension in elderly people. Treatment for hypertension in elderly people should be targeted at reduction of AGE levels in the body, prevention of AGE formation, degradation of AGE in vivo, downregulation of RAGE expression, blockade of AGE-RAGE interaction, upregulation of sRAGE expression, and use of antioxidants.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Han MX, Jiang WY, Jiang Y, Wang LH, Xue R, Zhang GX, Chen JW. Gao-Zi-Yao improves learning and memory function in old spontaneous hypertensive rats. BMC Complement Med Ther 2022; 22:147. [PMID: 35643519 PMCID: PMC9148521 DOI: 10.1186/s12906-022-03630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Aims Gao-Zi-Yao has long been a unique way for treating various diseases. The present study is to explore the effect of Gao-Zi-Yao on learning and memory function in old spontaneous hypertensive rats (SHR) and its possible mechanism. Method Male old SHR were received different doses of Gao-Zi-Yao for 4 weeks. Systolic blood pressure (SBP) and heart rate were monitored. Serum levels of nitric oxide (NO), interleukin (IL)-1β, IL-2, and tumor necrotic factor (TNF)-α were measured. Morris water maze was performed to test the learning and memory function of the rats. Number of neurons in hippocampus was counted by Nissl staining. Western blot was applied to detect the expressions of learning and memory function related proteins, N-methyl-d-aspartate receptor 2B (NMDAR 2B), glutamate receptor 1 (GluR1), phosphorylated-calmodulin-dependent protein kinase II (p-CaMK II), and phosphorylated-cAMP responsive element-binding protein (p-CREB) in rat hippocampus. Results Data showed that Gao-Zi-Yao reduced SBP in old SHR, elevated NO level, and suppressed levels of IL-1β, IL-2, TNF-α. The results of Morris water maze experiment showed that Gao-Zi-Yao dose-dependently improved learning and memory function. Number of neurons in the hippocampal dentate gyrus (DG) region of the old SHR was increased by Gao-Zi-Yao treatment. In addition, Gao-Zi-Yao elevated the protein expressions of NMDAR 2B, GluR1, p-CaMK II, and p-CREB in hippocampus. Conclusion Gao-Zi-Yao decreases SBP and improves the learning and memory function of the old SHR by regulation of oxidative stress, inflammatory factors and neuron number in hippocampal DG area and the expression of learning and memory function related proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03630-0.
Collapse
|
6
|
Kollarova M, Puzserova A, Balis P, Radosinska D, Tothova L, Bartekova M, Barancik M, Radosinska J. Age- and Phenotype-Dependent Changes in Circulating MMP-2 and MMP-9 Activities in Normotensive and Hypertensive Rats. Int J Mol Sci 2020; 21:E7286. [PMID: 33023122 PMCID: PMC7582756 DOI: 10.3390/ijms21197286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are important in the pathogenesis of numerous diseases. The present study aimed to monitor the activation of MMP-2 and MMP-9 in spontaneously hypertensive rats (SHR) and their normotensive counterparts-Wistar-Kyoto rats (WKY). The animals were divided according to age (7, 20, and 52 weeks) and phenotype into: WKY-7, WKY-20, WKY-52, SHR-7, SHR-20 and SHR-52 groups. MMP plasma activities were determined by gelatine zymography. We monitored selected parameters of oxidative stress and antioxidant status. N-terminal pro-brain natriuretic peptide (NT-proBNP) was determined as a marker of heart function and neurohumoral activation. SHR-7 showed higher MMP-2 activity compared with WKY-7, while SHR-52 showed lower MMP-2 and MMP-9 activities compared with WKY-52. Examining age-dependent changes in MMP activities, we found a decrease in MMP-2 activity and increase in MMP-9 activity with increasing age in both phenotypes. Parameters of oxidative stress and antioxidant status as well as NT-proBNP levels were not significantly worsened due to aging in SHR. Our results suggest that hypertension is accompanied by varying MMP activation during aging. The results of our study may indicate that MMP-2 inhibition is therapeutically applicable during the development of hypertension, while in developed, stabilized and uncomplicated hypertension, systemic MMP-2 and MMP-9 inhibition may not be desirable.
Collapse
Affiliation(s)
- Marta Kollarova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (M.K.); (M.B.)
| | - Angelika Puzserova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (A.P.); (P.B.)
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (A.P.); (P.B.)
| | - Dominika Radosinska
- Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
| | - Lubomira Tothova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia;
| | - Monika Bartekova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (M.K.); (M.B.)
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovakia;
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovakia;
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (M.K.); (M.B.)
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovakia;
| |
Collapse
|
7
|
LC-MS-Based Lipidomic Analysis of Serum Samples from Spontaneously Hypertensive Rats Treated with an Extract of Acanthopanax sessiliflorus Fruits. Molecules 2020; 25:molecules25143269. [PMID: 32708994 PMCID: PMC7397080 DOI: 10.3390/molecules25143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Recently, lipidomics has revealed that many diseases are highly associated with altered lipid metabolism, as in the case of hypertension affecting serum lipid metabolism. In this study, an LC-MS-based lipidomic approach was used to profile serum lipids in spontaneously hypertensive rats (SHRs) treated with an extract of Acanthopanax sessiliflorus fruits (ASF), to elucidate the serum lipid metabolism alteration by hypertension and the treatment of a drug or ASF. First, UPLC-QTOF/MS profiled a total of 208 lipids from six pooled samples of normal controls, SHR, SHR + 100 mg/kg of drug, and SHR + ASF 200, 400, or 600 mg/kg. These six groups were differentiated by the PCA and sPLS-DA, and 120 lipid species were identified as differentially regulated lipids (DRLs) by ANOVA (p values < 0.05). Second, UPLC-QqQ/MS was used for the target profiling of 120 DRLs from individual samples of the six groups. Using an ANOVA, 67 lipids (38 TGs, 4 DGs, 17 PCs, 2 PEs, and 6 LPCs) were selected as validated DRLs. The mostly altered lipids, such as TG (62:13), TG (60:13), PC (34:4), PC (36:5), and PC (38:2), were decreased in SHR compared to the normal control, and received little by treatment with ASF. These results demonstrated the correlation between hypertension and serum lipid metabolism. Furthermore, both drug and ASF treatment similarly altered the lipid profiles of SHRs. Finally, we found that DRLs have the potential to help us to interpret the lipid metabolism of hypertension.
Collapse
|
8
|
Kanthlal SK, Joseph J, Paul B, M V, P UD. Antioxidant and vasorelaxant effects of aqueous extract of large cardamom in L-NAME induced hypertensive rats. Clin Exp Hypertens 2020; 42:581-589. [PMID: 32202168 DOI: 10.1080/10641963.2020.1739699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The present work aimed to study the effect of aqueous extract of large cardamom (AELC) to prevent vascular remodeling and oxidative stress in Nω-Nitro-L-arginine methyl ester (L-NAME)-induced hypertension. METHOD Male Wistar rats were administered with L-NAME 40 mg/kg/day for 28 days by oral gavage. The treatments included captopril (20 mg/kg/day) or AELC (100, 200 and 400 mg/kg/day) along with L-NAME administration. RESULTS L-NAME treated rats showed high systolic, diastolic and mean arterial pressure, decreased nitric oxide level, increased level of malondialdehyde in plasma, heart, aorta and kidney, hypertrophy of the vascular wall and reduced vascular response to acetylcholine in phenylephrine-precontracted aorta. Treatment with AELC markedly reduced the blood pressure, restored the nitric oxide level, reduced the malondialdehyde level, alleviated the hypertrophy in L-NAME-induced hypertensive rats. Additionally, it also improved the vascular response to acetylcholine in phenylephrine pre-contracted aorta. CONCLUSION In conclusion, our results demonstrate the preventive effect of AELC in L-NAME-induced hypertensive model, which is possibly related to antioxidant activities and restoration of nitric oxide level.
Collapse
Affiliation(s)
- S K Kanthlal
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Jipnomon Joseph
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Bindhu Paul
- Amrita Centre for Nano Sciences and Molecular Medicine, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Vijayakumar M
- Department of Cardiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Uma Devi P
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham , Kochi, India
| |
Collapse
|
9
|
Chronic NOS Inhibition Affects Oxidative State and Antioxidant Response Differently in the Kidneys of Young Normotensive and Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5349398. [PMID: 31885800 PMCID: PMC6893281 DOI: 10.1155/2019/5349398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 01/24/2023]
Abstract
Deficiency of nitric oxide (NO) and oxidative stress can be a cause, a consequence, or, more often, a potentiating factor for hypertension and hypertensive renal disease. Both NO and superoxide anions are radical molecules that interact with each other, leading to oxidative damage of such organs as the kidney. In the present study, we investigated the effect of chronic-specific (neuronal NOS inhibition) and nonspecific NOS inhibition on the oxidative state and antioxidant response and associated oxidative damage of the kidney of young normotensive and hypertensive rats. Young male normotensive Wistar rats (WRs, age 4 weeks) and spontaneously hypertensive rats (SHRs, age 4 weeks) were divided into three groups for each strain by the type of administered compounds. The first group was treated with 7-nitroindazole (WR+7-NI; SHR+7-NI), the second group was treated with N(G)-nitro-L-arginine-methyl ester (WR+L-NAME; SHR+L-NAME), and the control group was treated with pure drinking water (WR; SHR) continuously for up to 6 weeks. Systolic blood pressure increased in WR+L-NAME after the first week of administration and increased slightly in SHR+L-NAME in the third week of treatment. 7-NI had no effect on blood pressure. While total NOS activity was not affected by chronic NOS inhibition in any of the WR groups, it was attenuated in SHR+7-NI and SHR+L-NAME. Nitration of proteins (3-nitrotyrosine expression) was significantly reduced in WR+7NI but not in WR+L-NAME and increased in SHR+7-NI and SHR+L-NAME. Immunoblotting analysis of SOD isoforms showed decreased SOD2 and SOD3 expressions in both WR+7-NI and WR+L-NAME followed by increased SOD activity in WR+L-NAME. Conversely, increased expression of SOD2 and SOD3 was observed in SHR+L-NAME and SHR+7-NI, respectively. SOD1 expression and total activity of SOD did not change in the SHR groups. Our results show that the antioxidant defense system plays an important role in maintaining the oxidative state during NO deficiency. While the functioning antioxidant system seeks to balance the oxidation state in the renal cortex of normotensive WRs, the impaired antioxidant activity leads to the development of oxidative damage of proteins in the kidney induced by peroxynitrite in SHRs.
Collapse
|
10
|
Zou Z, Wang M, Wang Z, Aluko RE, He R. Antihypertensive and antioxidant activities of enzymatic wheat bran protein hydrolysates. J Food Biochem 2019; 44:e13090. [PMID: 31663146 DOI: 10.1111/jfbc.13090] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/01/2019] [Accepted: 10/02/2019] [Indexed: 02/01/2023]
Abstract
Bioactive peptides from plant protein sources have been continuously identified as nutrient supplements for low toxicity but multiple physiological activities such as antihypertensive, antioxidant, and anti-inflammatory. In this study, wheat bran protein isolate was digested with alcalase to produce wheat bran protein hydrolysate (WPH) that was then separated into different peptide fractions (<1, 1-3, 3-5, and 5-10 kDa) by membrane ultrafiltration. WPH and the peptide fractions were evaluated for in vitro activities such as antioxidant, renin inhibition, and angiotensin-converting enzyme (ACE) inhibition. In addition, the blood pressure-lowering effects of WPH and the <1 kDa peptides were determined by oral administration to spontaneously hypertensive rats (SHRs). Results showed that the ACE and renin inhibitions were significantly (p < .05) higher for the <1 kDa fraction (84.25% ± 2.45%, 75.19% ± 1.75%, respectively) when compared to the WPH and >1 kDa fractions. The <1 kDa fraction also showed significantly (p < .05) higher oxygen radical antioxidant activity with 2044.73 ± 37.45 (μM TE/g protein) when compared to lower values obtained for the >1 kDa membrane fractions and WPH. Oral administration (100 mg/kg body weight) of the <1 kDa membrane fraction to SHRs resulted in a better decrease (-35 mmHg) in the systolic blood pressure when compared to the WPH (-20 mmHg) after 6 hr. And seven peptides (NL, QL, FL, HAL, AAVL, AKTVF, and TPLTR) were identified and amino acid sequence was determined by tandem mass spectrometry. We conclude that the WPH could be considered as a suitable natural antihypertensive and antioxidant resource. PRACTICAL APPLICATIONS: The results of the present study indicate that WPH and its ultrafiltration fractions possess potential as a source of antihypertensive and strong antioxidant peptides. It has been proved that wheat bran has a good blood pressure lowering and antioxidation and other biological activities, and the <1 kDa fraction showing high oxygen radical absorbance capacity level also has better in vitro ACE inhibition and renin-inhibitory activity. The higher antihypertensive efficiency of the <1 kDa fraction may be because the peptides can be better absorbed from the gastrointestinal tract or an increased ability to interact with the enzyme (ACE or renin) protein structure to change the active conformation and lead to decreased catalysis. The results of this study indicate that WPH, especially <1 kDa peptide, can be used as a component in formulating antihypertensive functional foods and nutraceuticals, thus improving the industrial production efficiency and bioavailability of wheat bran.
Collapse
Affiliation(s)
- Zhipeng Zou
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Mingjie Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
11
|
Di Pietro N, Potenza MA, Di Silvestre S, Addabbo F, Di Pietrantonio N, Di Tomo P, Pipino C, Mandatori D, Palmerini C, Failli P, Bonomini M, Montagnani M, Pandolfi A. Calcimimetic R-568 vasodilatory effect on mesenteric vascular beds from normotensive (WKY) and spontaneously hypertensive (SHR) rats. Potential involvement of vascular smooth muscle cells (vSMCs). PLoS One 2018; 13:e0202354. [PMID: 30092054 PMCID: PMC6084966 DOI: 10.1371/journal.pone.0202354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
The potential role of calcimimetics as vasculotropic agents has been suggested since the discovery that calcium sensing receptors (CaSRs) are expressed in cardiovascular tissues. However, whether this effect is CaSR-dependent or -independent is still unclear. In the present study the vascular activity of calcimimetic R-568 was investigated in mesenteric vascular beds (MVBs) isolated from Spontaneously Hypertensive rats (SHR) and the relative age-matched Wistar-Kyoto (WKY) control rats. Pre-constricted MBVs were perfused with increasing concentrations of R-568 (10 nM– 30 μM) resulting in a rapid dose-dependent vasodilatation. However, in MVBs from SHR this was preceded by a small but significant vasoconstriction at lowest nanomolar concentrations used (10–300 nM). Pre-treatment with pharmacological inhibitors of nitric oxide (NO) synthase (NOS, L-NAME), KCa channels (CTX), cyclo-oxygenase (INDO) and CaSR (Calhex) or the endothelium removal suggest that NO, CaSR and the endothelium itself contribute to the R-568 vasodilatory/vasoconstrictor effects observed respectively in WKY/SHR MVBs. Conversely, the vasodilatory effects resulted by highest R-568 concentration were independent of these factors. Then, the ability of lower R-568 doses (0.1–1 μM) to activate endothelial-NOS (eNOS) pathway in MVBs homogenates was evaluated. The Akt and eNOS phosphorylation levels resulted increased in WKY homogenates and Calhex significantly blocked this effect. Notably, this did not occur in the SHR. Similarly, vascular smooth muscle cells (vSMCs) stimulation with lower R-568 doses resulted in Akt activation and increased NO production in WKY but not in SHR cells. Interestingly, in these cells this was associated with the absence of the biologically active dimeric form of the CaSR thus potentially contributing to explain the impaired vasorelaxant effect observed in response to R-568 in MVB from SHR compared to WKY. Overall, these findings provide new insight on the mechanisms of action of the calcimimetic R-568 in modulating vascular tone both in physiological and pathological conditions such as hypertension.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/physiopathology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Hypertension/drug therapy
- Hypertension/physiopathology
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiopathology
- Phenethylamines/pharmacology
- Propylamines/pharmacology
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Calcium-Sensing/antagonists & inhibitors
- Receptors, Calcium-Sensing/metabolism
- Tissue Culture Techniques
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Natalia Di Pietro
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Aging and Translational Medicine Research Center (CeSI-MeT), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- “G. d’Annunzio” University Foundation, Chieti, Italy
| | | | - Sara Di Silvestre
- Aging and Translational Medicine Research Center (CeSI-MeT), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- “G. d’Annunzio” University Foundation, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Francesco Addabbo
- Department of Pharmacology and Human Physiology, University of Bari, Bari, Italy
| | - Nadia Di Pietrantonio
- Aging and Translational Medicine Research Center (CeSI-MeT), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- “G. d’Annunzio” University Foundation, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Pamela Di Tomo
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Aging and Translational Medicine Research Center (CeSI-MeT), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Caterina Pipino
- Aging and Translational Medicine Research Center (CeSI-MeT), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- “G. d’Annunzio” University Foundation, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Domitilla Mandatori
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Aging and Translational Medicine Research Center (CeSI-MeT), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Carola Palmerini
- Aging and Translational Medicine Research Center (CeSI-MeT), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- “G. d’Annunzio” University Foundation, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Paola Failli
- Department of Neurofarba, Pharmacology and Toxicology Unit, University of Florence, Florence, Italy
| | - Mario Bonomini
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Aging and Translational Medicine Research Center (CeSI-MeT), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Monica Montagnani
- Department of Pharmacology and Human Physiology, University of Bari, Bari, Italy
| | - Assunta Pandolfi
- Aging and Translational Medicine Research Center (CeSI-MeT), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- “G. d’Annunzio” University Foundation, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- * E-mail:
| |
Collapse
|
12
|
Nwachukwu ID, Aluko RE. Antioxidant Properties of Flaxseed Protein Hydrolysates: Influence of Hydrolytic Enzyme Concentration and Peptide Size. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ifeanyi D. Nwachukwu
- Department of Food and Human Nutritional Sciences; University of Manitoba, 190 Dysart Road; Winnipeg Manitoba R3T 2N2 Canada
- Faculty of Agricultural and Food Sciences, The Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba, 196 Innovation Drive; Winnipeg Manitoba R3T 2N2 Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences; University of Manitoba, 190 Dysart Road; Winnipeg Manitoba R3T 2N2 Canada
- Faculty of Agricultural and Food Sciences, The Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba, 196 Innovation Drive; Winnipeg Manitoba R3T 2N2 Canada
| |
Collapse
|
13
|
Radical Scavenger Capacity of Jabuticaba Fruit ( Myrciaria cauliflora) and Its Biological Effects in Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2383157. [PMID: 29422986 PMCID: PMC5750504 DOI: 10.1155/2017/2383157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Jabuticaba is an exotic fruit native to Brazil that has been arousing medicinal interest. Using chemical (HPLC-PDA, resonance mass spectra, and NMR), electroanalytical (differential pulse voltammetry, radical scavenging assay), and pharmacological (in vivo and in vitro) approaches, we have identified its bioactive compounds and hypotensive effects on hypertensive rats. The hydroalcoholic extract of jabuticaba (HEJ) presents a great quantity of phenolic compounds, and several molecules with hydroxyl groups present high efficiency as an antioxidant. The treatment with HEJ (100 and 300 mg/kg/day, for four weeks) presented hypotensive effects on L-NAME-induced hypertensive rats, possibly improving the nitric oxide bioavailability because of its high antioxidant potential. Furthermore, renal and cardiac hypertrophies were also attenuated after the HEJ treatment. Moreover, the vascular responses to contractile and dilating agonists were improved with the HEJ treatment, which is also able to induce nitric oxide production in endothelial cells.
Collapse
|
14
|
Aydin M, Gungor B, Akdur AS, Aksulu HE, Silan C, Susam I, Cabuk AK, Cabuk G. Resveratrol did not alter blood pressure in rats with nitric oxide synthase-inhibited hypertension. Cardiovasc J Afr 2017; 28:141-146. [PMID: 28759085 PMCID: PMC5602129 DOI: 10.5830/cvja-2016-069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/10/2016] [Indexed: 01/10/2023] Open
Abstract
Background: Inhibition of nitric oxide synthase (NOS) is a well-known experimental model of hypertension (HT). It was shown that oxidative stress contributes to the pathogenesis of HT. Resveratrol is a potent anti-oxidant that is found in red grapes, peanuts and red wine. It improves the NO response and increases endothelial NOS expression, which causes endothelium-dependent vasorelaxation as well as renal vasodilation. We aimed to explore the effects of resveratrol on blood pressure, the water–salt balance and sodium excretion as a reflection of renal function in NOS-inhibited rat models. Methods: Thirty-five male Sprague-Dawley rats (200–250g) were used in this study. In order to obtain hypertension models, an NOS inhibitor, N-nitro-L-arginin (L-NNA) was used. The rats were randomly divided into five groups: controls (given water and 0.8% salty diet) and four groups [given L-NNA, resveratrol (RSV) eluent, RSV, and L-NNA + RSV]. Blood pressures were measured indirectly by the tailcuff method on the first, seventh and 10th days. At the end of the study protocol (10th day), fluid balance, glomerular filtration rate, fractional sodium excretion, and blood and urinesodium and creatinine levels were measured. Results: At the end of the study protocol, blood pressures were higher in only the L-NNA group (117.8 ± 3.5 vs 149.5 ± 2.1 mmHg; p < 0.05), as expected. Additional applications of RSV with L-NNA could not prevent the increase in blood pressure (122.8 ± 7.3 vs 155.4 ± 4.4 mmHg; p < 0.05). There were no remarkable changes in water–salt balance and renal function with the application of resveratrol. Conclusion: Resveratrol was unable to prevent or reverse blood pressure increase in NOS-inhibited rats.
Collapse
Affiliation(s)
- Mehmet Aydin
- Department of Cardiology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Buket Gungor
- Department of Clinical Trials, Turkish Medicines and Medical Devices Agency, Turkish Ministry of Health, Ankara, Turkey
| | - A Secil Akdur
- Department of Clinical Pharmacology, Canakkale State Hospital, Turkish Ministry of Health, Canakkale, Turkey
| | - Hakki Engin Aksulu
- Department of Pharmacology, School of Medicine, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale, Turkey
| | - Coskun Silan
- Department of Pharmacology, School of Medicine, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale, Turkey; Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale, Turkey
| | - Ibrahim Susam
- Department of Cardiology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ali Kemal Cabuk
- Department of Cardiology, Tepecik Training and Research Hospital, Izmir, Turkey.
| | - Gizem Cabuk
- Department of Cardiology, Buca Seyfi Demirsoy State Hospital, Izmir, Turkey
| |
Collapse
|
15
|
Moringa oleifera Seeds Attenuate Vascular Oxidative and Nitrosative Stresses in Spontaneously Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4129459. [PMID: 28713487 PMCID: PMC5496124 DOI: 10.1155/2017/4129459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023]
Abstract
Moringa oleifera (MOI) is a tree currently used in traditional medicine in tropical Africa, America, and Asia for therapeutic applications in several disorders including arterial hypertension. We previously described a cardiac protective role of a treatment with MOI seeds in spontaneously hypertensive rats (SHR). Here, we investigated the effects of this treatment on oxidative and nitrosative vascular stresses in SHR, with normotensive Wistar Kyoto rats used as controls. Oxidative and nitrosative stresses detected in SHR aortas using the fluorescent dye dihydroethidine and protein nitrotyrosine staining were reduced in MOI-treated SHR aortas. This was associated with a decrease of free 8-isoprostane circulating level, vascular p22phox and p47phox expressions, and SOD2 upregulation. Moreover, circulating nitrites and C-reactive protein, increased in SHR, were both reduced in SHR receiving MOI. This was associated to decrease iNOS and NF-κB protein expressions after MOI treatment. In functional studies, the endothelium-dependent carbachol-induced relaxation was improved in MOI-treated SHR resistance arteries. Oral administration of MOI seeds demonstrates vascular antioxidant, anti-inflammatory, and endothelial protective effects in SHR. Our data support the use of MOI seeds in diet against cardiovascular disorders associated with oxidative stress and inflammation such as hypertension, scientifically validating the use of these seeds in Malagasy traditional medicine.
Collapse
|
16
|
Eros K, Magyar K, Deres L, Skazel A, Riba A, Vamos Z, Kalai T, Gallyas F, Sumegi B, Toth K, Halmosi R. Chronic PARP-1 inhibition reduces carotid vessel remodeling and oxidative damage of the dorsal hippocampus in spontaneously hypertensive rats. PLoS One 2017; 12:e0174401. [PMID: 28339485 PMCID: PMC5365133 DOI: 10.1371/journal.pone.0174401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular remodeling during chronic hypertension may impair the supply of tissues with oxygen, glucose and other compounds, potentially unleashing deleterious effects. In this study, we used Spontaneously Hypertensive Rats and normotensive Wistar-Kyoto rats with or without pharmacological inhibition of poly(ADP-ribose)polymerase-1 by an experimental compound L-2286, to evaluate carotid artery remodeling and consequent damage of neuronal tissue during hypertension. We observed elevated oxidative stress and profound thickening of the vascular wall with fibrotic tissue accumulation induced by elevated blood pressure. 32 weeks of L-2286 treatment attenuated these processes by modulating mitogen activated protein kinase phosphatase-1 cellular levels in carotid arteries. In hypertensive animals, vascular inflammation and endothelial dysfunction was observed by NF-κB nuclear accumulation and impaired vasodilation to acetylcholine, respectively. Pharmacological poly(ADP-ribose)polymerase-1 inhibition interfered in these processes and mitigated Apoptosis Inducing Factor dependent cell death events, thus improved structural and functional alterations of carotid arteries, without affecting blood pressure. Chronic poly(ADP-ribose)polymerase-1 inhibition protected neuronal tissue against oxidative damage, assessed by nitrotyrosine, 4-hydroxinonenal and 8-oxoguanosine immunohistochemistry in the area of Cornu ammonis 1 of the dorsal hippocampus in hypertensive rats. In this area, extensive pyramidal cell loss was also attenuated by treatment with lowered poly(ADP-ribose)polymer formation. It also preserved the structure of fissural arteries and attenuated perivascular white matter lesions and reactive astrogliosis in hypertensive rats. These data support the premise in which chronic poly(ADP-ribose)polymerase-1 inhibition has beneficial effects on hypertension related tissue damage both in vascular tissue and in the hippocampus by altering signaling events, reducing oxidative/nitrosative stress and inflammatory status, without lowering blood pressure.
Collapse
Affiliation(s)
- Krisztian Eros
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Klara Magyar
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Laszlo Deres
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Arpad Skazel
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Adam Riba
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Zoltan Vamos
- Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Pathophysiology and Gerontology, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Tamas Kalai
- Department of Organic and Pharmacological Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Ferenc Gallyas
- Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Balazs Sumegi
- Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary.,MTA-PTE Nuclear and Mitochondrial Interactions Research Group, University of Pecs, Pecs, Baranya, Hungary
| | - Kalman Toth
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,MTA-PTE Nuclear and Mitochondrial Interactions Research Group, University of Pecs, Pecs, Baranya, Hungary
| | - Robert Halmosi
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary
| |
Collapse
|
17
|
Moringa oleiferaSeeds Attenuate Vascular Oxidative and Nitrosative Stresses in Spontaneously Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [DOI: 10.1155/2017%2f4129459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Moringa oleifera(MOI) is a tree currently used in traditional medicine in tropical Africa, America, and Asia for therapeutic applications in several disorders including arterial hypertension. We previously described a cardiac protective role of a treatment with MOI seeds in spontaneously hypertensive rats (SHR). Here, we investigated the effects of this treatment on oxidative and nitrosative vascular stresses in SHR, with normotensive Wistar Kyoto rats used as controls. Oxidative and nitrosative stresses detected in SHR aortas using the fluorescent dye dihydroethidine and protein nitrotyrosine staining were reduced in MOI-treated SHR aortas. This was associated with a decrease of free 8-isoprostane circulating level, vascular p22phoxand p47phoxexpressions, and SOD2 upregulation. Moreover, circulating nitrites and C-reactive protein, increased in SHR, were both reduced in SHR receiving MOI. This was associated to decrease iNOS and NF-κB protein expressions after MOI treatment. In functional studies, the endothelium-dependent carbachol-induced relaxation was improved in MOI-treated SHR resistance arteries. Oral administration of MOI seeds demonstrates vascular antioxidant, anti-inflammatory, and endothelial protective effects in SHR. Our data support the use of MOI seeds in diet against cardiovascular disorders associated with oxidative stress and inflammation such as hypertension, scientifically validating the use of these seeds in Malagasy traditional medicine.
Collapse
|
18
|
Badar A, Kaatabi H, Bamosa A, Al-Elq A, Abou-Hozaifa B, Lebda F, Alkhadra A, Al-Almaie S. Effect of Nigella sativa supplementation over a one-year period on lipid levels, blood pressure and heart rate in type-2 diabetic patients receiving oral hypoglycemic agents: nonrandomized clinical trial. Ann Saudi Med 2017; 37:56-63. [PMID: 28151458 PMCID: PMC6148980 DOI: 10.5144/0256-4947.2017.56] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Diabetic patients with hypertension and dyslipidemia are at a high risk of cardiovascular complications. OBJECTIVES To determine the effect of Nigella sativa supplementation on the lipid profile, mean arterial pressure, and heart rate in persons with type 2 diabetes on oral hypoglycemic agents (OHA). DESIGN Single-blind, nonrandomized. SETTING Diabetes clinic of a university hospital in Saudi Arabia. PATIENTS AND METHODS Type-2 diabetic patients were recruited by purposive sampling and assigned to treatment or control at the discretion of the investigator with the patient blinded to treatment. Before the in.tervention and every 3 months thereafter until the end of the treatment period, the following parameters were measured: triglycerides (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), and body mass index (BMI). Results at the baseline and each subsequent visit were compared between the two groups. MAIN OUTCOME MEASURE(S) Lipid and cardiovascular parameters, and BMI. RESULTS Fifty-seven patients were assigned to receive N sativa 2 g daily for one year and 57 were assigned to receive an identical regimen of placebo, along with OHA. A significant decrease in HDL-C and increase in the TC/HDL-C and LDL-C/HDL-C ratios were seen in the control group. The N sativa group had a signifi.cant decline in TC, LDL-C, TC/HDL-C and LDL-C/HDL-C ratios, compared with the respective baseline data and the control group. HDL-C was significantly elevated in the N sativa group. The control group showed a significant elevation in MAP. The N sativa group had a significant reduction in SBP, DBP, MAP and HR and a significant decrease in DBP, MAP and HR as compared with the control group. CONCLUSION N sativa supplementation improves total cholesterol, mean arterial pressure and heart rate in type 2 diabetes patients on oral hypoglycemic agents. LIMITATIONS There were 9 subjects in each group lost to follow up; thus the sample size could not be maintained as per the sample size calculation. The study was nonrandomized and thus there was a possibility of allocation bias. (Clinical trial registration number: CTRI/2013/06/003781, Clinical Trial Registry of India).
Collapse
Affiliation(s)
| | | | - Abdullah Bamosa
- Professor Abdullah Omar Bamosa, Imam Abdulrahman AlFaisal University,, Physiology, College of Medicine,, PO Box 2114, Dammam 31451, Saudi Arabia, M: +966-505853161, , ORCID: http://orcid.org/0000-0003-3061-6626
| | | | | | | | | | | |
Collapse
|
19
|
Syed AA, Lahiri S, Mohan D, Valicherla GR, Gupta AP, Riyazuddin M, Kumar S, Maurya R, Hanif K, Gayen JR. Evaluation of anti-hypertensive activity of Ulmus wallichiana extract and fraction in SHR, DOCA-salt- and L-NAME-induced hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:555-565. [PMID: 27720848 DOI: 10.1016/j.jep.2016.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulmus wallichiana Planchon (Himalayan Elm), a traditional medicinal plant, used in fracture healing in folk tradition of Uttarakhand, Himalaya, India. It is also used as diuretic. U. rhynchophylla, native to China, known as Gou Teng in Chinese medicine, is used for hypertension (WHO). U. macrocarpa has antihypertensive and vasorelaxant activity. However, no detailed studies related to hypertension have been reported previously, so we have explored the antihypertensive activity of U. wallichiana. AIM OF THE STUDY To investigate the pharmacological effect of ethanolic extract (EE) and butanolic fraction (BF) of U. wallichiana in hypertensive rats. MATERIALS AND METHODS SHR, DOCA-salt- and L-NAME-induced hypertension models were used. Treatment was performed by oral administration of EE and BF of U. wallichiana (500mg/kg/day and 50mg/kg/day) for 14 days. Then blood pressure was measured by non-invasive blood pressure (NIBP) measurement technique. Invasive blood pressure (IBP) was also reported to support the NIBP data. Concentrations of plasma renin, angiotensin II (Ang II), nitrate/nitrite (NO), cGMP were estimated. Angiotensin-converting enzyme (ACE) activity and ROS activity were also estimated. RESULTS Blood pressure was significantly higher in SHR as compared to normotensive wistar group (170.59±0.83mmHg vs 121.54±1.24mmHg, respectively). SBP was increased in DOCA-salt induced group compared to their control (132.77±3.90mmHg vs 107.85±5.95mmHg, respectively) and L-NAME-induced group compared to their control (168.55±5.07mmHg vs 113.03±4.13mmHg, respectively). The treatment of extract and fraction of U. wallichiana significantly decreased the blood pressure in SHR+EE (151.26±1.85mmHg, p<0.001), SHR+BF (140.44±1.16mmHg, p<0.001); DOCA+EE (113.43±5.44mmHg, p<0.05), DOCA+BF (105.09±5.12mmHg, p<0.05) and L-NAME+EE (119.76±4.39mmHg, p<0.001), L-NAME+BF (117.50±7.27mmHg, p<0.001) compared to their respective diseased control groups. The plasma renin, Ang II and ACE activity were also significantly decreased and augmented the NO and cGMP levels. It also down regulated the expression of Renin, ACE, NOS3 and TGF-β1 at mRNA levels. CONCLUSIONS The EE and BF probably reducing the BP via Renin-angiotensin-aldosterone system and NO/cGMP signaling pathway. The decrease in blood pressure may be due to presence of quercetin analogue flavonoids (2S,3S)-(+)-3',4',5,7-tetrahydroxydihydroflavonol-6-C-β-D-glucopyranoside; 6-Glucopyranosyl-3,3',4',5,7-pentahydroxyflavone; 6-Glucopyranosyl-4',5,7-trihydroxyflavanone and (2S,3S)-(+)-4',5,7-trihydroxydihydroflavonol-6-C-β-D-glucopyranoside, may be due to its antioxidant activity. Thus EE and BF of U. wallichiana found to have the potential ability to be used as herbal medicament to treat hypertension.
Collapse
Affiliation(s)
- Anees A Syed
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Shibani Lahiri
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Divya Mohan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Guru R Valicherla
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anand P Gupta
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Mohammed Riyazuddin
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Sudhir Kumar
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| | - Jiaur R Gayen
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
20
|
Abstract
SIGNIFICANCE A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. RECENT ADVANCES Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. CRITICAL ISSUES The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. FUTURE DIRECTIONS Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119-146.
Collapse
Affiliation(s)
- Brian B Ratliff
- 1 Department of Medicine, Renal Research Institute , New York Medical College, Valhalla, New York.,2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Wasan Abdulmahdi
- 2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Rahul Pawar
- 1 Department of Medicine, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Michael S Wolin
- 2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| |
Collapse
|
21
|
Girgih AT, Nwachukwu ID, Onuh JO, Malomo SA, Aluko RE. Antihypertensive Properties of a Pea Protein Hydrolysate during Short- and Long-Term Oral Administration to Spontaneously Hypertensive Rats. J Food Sci 2016; 81:H1281-7. [PMID: 27037677 DOI: 10.1111/1750-3841.13272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 11/30/2022]
Abstract
This study investigated short-term (24 h) and long-term (5 wk) systolic blood pressure (SBP)-lowering effects in spontaneously hypertensive rats (SHR) of a 5 kDa membrane pea protein hydrolysate permeate (PPH-5) produced through thermoase hydrolysis of pea protein isolate (PPI). Amino acid analysis showed that the PPH-5 had lower contents of sulfur-containing amino acids than the PPI. Size-exclusion chromatography indicated mainly low molecular weight (<10 kDa) peptides in PPH-5 but not in the PPI. The PPH-5 had renin and angiotensin converting enzyme inhibition IC50 values of 0.57 and 0.10 mg/mL (P < 0.05), respectively, and consisted mainly of peptides with 2 to 6 amino acids. Mass spectrometry analysis revealed mainly hydrophilic tetrapeptide sequences. After a single oral administration (100 mg/kg body weight) to SHR, the unheated PPI showed weakest (P < 0.05) SBP-lowering effect with a -4 mm Hg maximum when compared to -25 mm Hg for heat-treated PPI and -36 mm Hg for PPH-5. Incorporation of the PPH-5 as 0.5% or 1% (w/w) casein substitute in the SHR diet produced maximum SBP reductions of -22 or -26 mm Hg (P < 0.05), respectively after 3 wk. In comparison, the unhydrolyzed PPI produced a maximum SBP reduction of -17 mm Hg also after 3 wk. Potency of the pea products decreased in the 4th and 5th wk, though SBP values of the treated rats were still lower than the untreated control. We conclude that the antihypertensive potency of PPH-5 may have been due to the presence of easily absorbed hydrophilic peptides.
Collapse
Affiliation(s)
- Abraham T Girgih
- Dept. of Human Nutritional Sciences and The Richardson Centre for Functional Foods and Nutraceuticals, Univ. of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ifeanyi D Nwachukwu
- Dept. of Human Nutritional Sciences and The Richardson Centre for Functional Foods and Nutraceuticals, Univ. of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - John O Onuh
- Dept. of Human Nutritional Sciences and The Richardson Centre for Functional Foods and Nutraceuticals, Univ. of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Sunday A Malomo
- Dept. of Human Nutritional Sciences and The Richardson Centre for Functional Foods and Nutraceuticals, Univ. of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Rotimi E Aluko
- Dept. of Human Nutritional Sciences and The Richardson Centre for Functional Foods and Nutraceuticals, Univ. of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
22
|
Seth MK, Hussain ME, Pasha S, Fahim M. Effects of a novel ACE inhibitor, 3-(3-thienyl)-l-alanyl-ornithyl-proline, on endothelial vasodilation and hepatotoxicity in l-NAME-induced hypertensive rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1533-42. [PMID: 27143859 PMCID: PMC4844316 DOI: 10.2147/dddt.s77761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) is a widespread biological mediator involved in many physiological and pathological processes, eg, in the regulation of vascular tone and hypertension. Chronic inhibition of NO synthase by NG-nitro-l-arginine methyl ester (l-NAME) hydrochloride results in the development of hypertension accompanied by an increase in vascular responsiveness to adrenergic stimuli. Recently, we developed a novel sulfur-containing angiotensin-converting enzyme inhibitor: 3-(3-thienyl)-l-alanyl-ornithyl-proline (TOP). Our previous studies indicated a superior nature of the molecule as an antihypertensive agent in spontaneously hypertensive rats (showing the involvement of renin–angiotensin–aldosterone system) in comparison to captopril. The aim of the present study was to investigate the effect of TOP on NO pathway in l-NAME-induced hypertensive rats, and captopril was included as the standard treatment group. Treatment with both TOP (20 mg/kg) and captopril (40 mg/kg) prevented the development of hypertension in l-NAME model, but TOP showed better restoration of NO and normal levels of angiotensin-converting enzyme. In addition, in vitro vasorelaxation assay showed an improvement in endothelium-dependent vasodilation in both the cases. Further, the biochemical (malondialdehyde, alanine aminotransferase, and aspartate aminotransferase) and the histopathological effects of TOP on rat liver tissues revealed a protective nature of TOP in comparison to captopril in the l-NAME model. In conclusion, TOP at 50% lesser dose than captopril was found to be better in the l-NAME model.
Collapse
Affiliation(s)
- Mahesh Kumar Seth
- Peptide Synthesis Laboratory, CSIR, Institute of Genomics and Integrative Biology, Delhi, India; Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, India; Department of Physiology, Jamia Hamdard Deemed University, New Delhi, India
| | - M Ejaz Hussain
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, India
| | - Santosh Pasha
- Peptide Synthesis Laboratory, CSIR, Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohammad Fahim
- Department of Physiology, Jamia Hamdard Deemed University, New Delhi, India
| |
Collapse
|
23
|
Abstract
Hypertension is a highly prevalent condition with numerous health risks, and the incidence of hypertension is greatest among older adults. Traditional discussions of hypertension have largely focused on the risks for cardiovascular disease and associated events. However, there are a number of collateral effects, including risks for dementia, physical disability, and falls/fractures which are increasingly garnering attention in the hypertension literature. Several key mechanisms--including inflammation, oxidative stress, and endothelial dysfunction--are common to biologic aging and hypertension development and appear to have key mechanistic roles in the development of the cardiovascular and collateral risks of late-life hypertension. The objective of the present review is to highlight the multi-dimensional risks of hypertension among older adults and discuss potential strategies for treatment and future areas of research for improving overall care for older adults with hypertension.
Collapse
|
24
|
Girgih AT, Nwachukwu ID, Hasan FM, Fagbemi TN, Malomo SA, Gill TA, Aluko RE. Kinetics of in vitro enzyme inhibition and blood pressure-lowering effects of salmon ( Salmo salar ) protein hydrolysates in spontaneously hypertensive rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Kilic-Erkek O, Kilic-Toprak E, Caliskan S, Ekbic Y, Akbudak IH, Kucukatay V, Bor-Kucukatay M. Detraining reverses exercise-induced improvement in blood pressure associated with decrements of oxidative stress in various tissues in spontaneously hypertensive rats. Mol Cell Biochem 2015; 412:209-19. [DOI: 10.1007/s11010-015-2627-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/15/2015] [Indexed: 11/30/2022]
|
26
|
Ueno M, Chiba Y, Matsumoto K, Murakami R, Fujihara R, Kawauchi M, Miyanaka H, Nakagawa T. Blood-brain barrier damage in vascular dementia. Neuropathology 2015; 36:115-24. [DOI: 10.1111/neup.12262] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/12/2015] [Accepted: 09/13/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine; Kagawa University; Kagawa Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine; Kagawa University; Kagawa Japan
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine; Kagawa University; Kagawa Japan
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine; Kagawa University; Kagawa Japan
| | - Ryuji Fujihara
- Department of Pathology and Host Defense, Faculty of Medicine; Kagawa University; Kagawa Japan
| | - Machi Kawauchi
- Department of Pathology and Host Defense, Faculty of Medicine; Kagawa University; Kagawa Japan
| | | | | |
Collapse
|
27
|
Blanton C, He Z, Gottschall-Pass KT, Sweeney MI. Probiotics Blunt the Anti-Hypertensive Effect of Blueberry Feeding in Hypertensive Rats without Altering Hippuric Acid Production. PLoS One 2015; 10:e0142036. [PMID: 26544724 PMCID: PMC4636313 DOI: 10.1371/journal.pone.0142036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/14/2015] [Indexed: 01/29/2023] Open
Abstract
Previously we showed that feeding polyphenol-rich wild blueberries to hypertensive rats lowered systolic blood pressure. Since probiotic bacteria produce bioactive metabolites from berry polyphenols that enhance the health benefits of berry consumption, we hypothesized that adding probiotics to a blueberry-enriched diet would augment the anti-hypertensive effects of blueberry consumption. Groups (n = 8) of male spontaneously hypertensive rats were fed one of four AIN '93G-based diets for 8 weeks: Control (CON); 3% freeze-dried wild blueberry (BB); 1% probiotic bacteria (PRO); or 3% BB + 1% PRO (BB+PRO). Blood pressure was measured at weeks 0, 2, 4, 6, and 8 by the tail-cuff method, and urine was collected at weeks 4 and 8 to determine markers of oxidative stress (F2-isoprostanes), nitric oxide synthesis (nitrites), and polyphenol metabolism (hippuric acid). Data were analyzed using mixed models ANOVA with repeated measures. Diet had a significant main effect on diastolic blood pressure (p = 0.046), with significantly lower measurements in the BB- vs. CON-fed rats (p = 0.035). Systolic blood pressure showed a similar but less pronounced response to diet (p = 0.220), again with the largest difference between the BB and CON groups. Absolute increase in blood pressure between weeks 0 and 8 tended to be smaller in the BB and PRO vs. CON and BB+PRO groups (systolic increase, p = 0.074; diastolic increase, p = 0.185). Diet had a significant main effect on hippuric acid excretion (p<0.0001), with 2- and ~1.5-fold higher levels at weeks 4 and 8, respectively, in the BB and BB+PRO vs. PRO and CON groups. Diet did not have a significant main effect on F2-isoprostane (p = 0.159) or nitrite excretion (p = 0.670). Our findings show that adding probiotics to a blueberry-enriched diet does not enhance and actually may impair the anti-hypertensive effect of blueberry consumption. However, probiotic bacteria are not interfering with blueberry polyphenol metabolism into hippuric acid.
Collapse
Affiliation(s)
- Cynthia Blanton
- Department of Nutrition, Idaho State University, Pocatello, Idaho, United States of America
- * E-mail:
| | - Zhengcheng He
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Katherine T. Gottschall-Pass
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Marva I. Sweeney
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
28
|
Girgih AT, Alashi AM, He R, Malomo SA, Raj P, Netticadan T, Aluko RE. A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats. Nutrients 2015; 6:5652-66. [PMID: 25493943 PMCID: PMC4276990 DOI: 10.3390/nu6125652] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/02/2014] [Accepted: 11/24/2014] [Indexed: 11/26/2022] Open
Abstract
This report shows the antioxidant effects of a hemp seed meal protein hydrolysate (HMH) in spontaneously hypertensive rats (SHR). Defatted hemp seed meal was hydrolyzed consecutively with pepsin and pancreatin to yield HMH, which was incorporated into rat feed as a source of antioxidant peptides. Young (8-week old) SHRs were divided into three groups (8 rats/group) and fed diets that contained 0.0%, 0.5% or 1.0% (w/w) HMH for eight weeks; half of the rats were sacrificed for blood collection. After a 4-week washout period, the remaining 20-week old SHRs were fed for an additional four weeks and sacrificed for blood collection. Plasma total antioxidant capacity (TAC) and superoxide dismutase (SOD), catalase (CAT) and total peroxides (TPx) levels were determined. Results showed that plasma TAC, CAT and SOD levels decreased in the older 20-week old SHRs when compared to the young SHRs. The presence of HMH in the diets led to significant (p < 0.05) increases in plasma SOD and CAT levels in both young and adult SHR groups; these increases were accompanied by decreases in TPx levels. The results suggest that HMH contained antioxidant peptides that reduced the rate of lipid peroxidation in SHRs with enhanced antioxidant enzyme levels and total antioxidant capacity.
Collapse
Affiliation(s)
- Abraham T. Girgih
- Department of Human Nutritional Sciences and the Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; E-Mails: (A.T.G.); (A.M.A.); (R.H.); (S.A.M.)
| | - Adeola M. Alashi
- Department of Human Nutritional Sciences and the Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; E-Mails: (A.T.G.); (A.M.A.); (R.H.); (S.A.M.)
- School of Agriculture and Wine Sciences, Charles Sturt University, Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Rong He
- Department of Human Nutritional Sciences and the Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; E-Mails: (A.T.G.); (A.M.A.); (R.H.); (S.A.M.)
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Sunday A. Malomo
- Department of Human Nutritional Sciences and the Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; E-Mails: (A.T.G.); (A.M.A.); (R.H.); (S.A.M.)
| | - Pema Raj
- Department of Physiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; E-Mails: (P.R.); (T.N.)
- Canadian Centre for Agri-Food Research in Health and Medicine, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Thomas Netticadan
- Department of Physiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; E-Mails: (P.R.); (T.N.)
- Canadian Centre for Agri-Food Research in Health and Medicine, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Rotimi E. Aluko
- Department of Human Nutritional Sciences and the Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; E-Mails: (A.T.G.); (A.M.A.); (R.H.); (S.A.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-204-474-9555; Fax: +1-204-474-7593
| |
Collapse
|
29
|
Tayebati SK, Tomassoni D, Di Cesare Mannelli L, Amenta F. Effect of treatment with the antioxidant alpha-lipoic (thioctic) acid on heart and kidney microvasculature in spontaneously hypertensive rats. Clin Exp Hypertens 2015. [PMID: 26207883 DOI: 10.3109/10641963.2015.1047950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial cells represent an important vascular site of signaling and development of damage during ischemia, inflammation and other pathological conditions. Excessive reactive oxygen species production causes pathological activation of endothelium including exposure of cell to adhesion molecules. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) are members of the immunoglobulin super-family which are present on the surface of endothelial cells. These molecules represent important markers of endothelial inflammation. The present study was designed to investigate, with immunochemical and immunohistochemical techniques, the effect of treatment with (+/-)-alpha lipoic (thioctic) acid and its enantiomers on heart and kidney endothelium in spontaneously hypertensive rats (SHR). Arterial hypertension is accompanied by an increased oxidative stress status in the heart characterized by thiobarbituric acid reactive substances (TBARS) and nucleic acid oxidation increase. The higher oxidative stress also modifies adhesion molecules expression. In the heart VCAM-1, which was higher than ICAM-1 and PECAM-1, was increased in SHR. ICAM-1, VCAM-1 and PECAM-1 expression was significantly greater in the renal endothelium of SHR. (+/-)-Alpha lipoic acid and (+)-alpha lipoic acid treatment significantly decreased TBARS levels, the nucleic acid oxidation and prevented adhesion molecules expression in cardiac and renal vascular endothelium. These data suggest that endothelial molecules may be used for studying the mechanisms of vascular injury on target organs of hypertension. The effects observed after treatment with (+)-alpha lipoic acid could open new perspectives for countering heart and kidney microvascular injury which represent a common feature in hypertensive end-organs damage.
Collapse
Affiliation(s)
| | - Daniele Tomassoni
- b School of Bioscience and Veterinary Medicine, University of Camerino , Camerino , Italy, and
| | | | | |
Collapse
|
30
|
Androwiki ACD, Camargo LDL, Sartoretto S, Couto GK, Ribeiro IMR, Veríssimo-Filho S, Rossoni LV, Lopes LR. Protein disulfide isomerase expression increases in resistance arteries during hypertension development. Effects on Nox1 NADPH oxidase signaling. Front Chem 2015; 3:24. [PMID: 25870854 PMCID: PMC4375999 DOI: 10.3389/fchem.2015.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
NADPH oxidases derived reactive oxygen species (ROS) play an important role in vascular function and remodeling in hypertension through redox signaling processes. Previous studies demonstrated that protein disulfide isomerase (PDI) regulates Nox1 expression and ROS generation in cultured vascular smooth muscle cells. However, the role of PDI in conductance and resistance arteries during hypertension development remains unknown. The aim of the present study was to investigate PDI expression and NADPH oxidase dependent ROS generation during hypertension development. Mesenteric resistance arteries (MRA) and thoracic aorta were isolated from 6, 8, and 12 week-old spontaneously hypertensive (SHR) and Wistar rats. ROS production (dihydroethidium fluorescence), PDI (WB, imunofluorescence), Nox1 and NOX4 (RT-PCR) expression were evaluated. Results show a progressive increase in ROS generation in MRA and aorta from 8 to 12 week-old SHR. This effect was associated with a concomitant increase in PDI and Nox1 expression only in MRA. Therefore, suggesting a positive correlation between PDI and Nox1 expression during the development of hypertension in MRA. In order to investigate if this effect was due to an increase in arterial blood pressure, pre hypertensive SHR were treated with losartan (20 mg/kg/day for 30 days), an AT1 receptor antagonist. Losartan decreased blood pressure and ROS generation in both vascular beds. However, only in SHR MRA losartan treatment lowered PDI and Nox1 expression to control levels. In MRA PDI inhibition (bacitracin, 0.5 mM) decreased Ang II redox signaling (p-ERK 1/2). Altogether, our results suggest that PDI plays a role in triggering oxidative stress and vascular dysfunction in resistance but not in conductance arteries, increasing Nox1 expression and activity. Therefore, PDI could be a new player in oxidative stress and functional alterations in resistance arteries during the establishment of hypertension.
Collapse
Affiliation(s)
- Aline C D Androwiki
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Lívia de Lucca Camargo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Simone Sartoretto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Gisele K Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Izabela M R Ribeiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Sidney Veríssimo-Filho
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Lucia R Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| |
Collapse
|
31
|
Albarwani S, Al-Siyabi S, Tanira MO. Prehypertension: Underlying pathology and therapeutic options. World J Cardiol 2014; 6:728-43. [PMID: 25228952 PMCID: PMC4163702 DOI: 10.4330/wjc.v6.i8.728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 06/08/2014] [Accepted: 06/14/2014] [Indexed: 02/06/2023] Open
Abstract
Prehypertension (PHTN) is a global major health risk that subjects individuals to double the risk of cardiovascular disease (CVD) independent of progression to overt hypertension. Its prevalence rate varies considerably from country to country ranging between 21.9% and 52%. Many hypotheses are proposed to explain the underlying pathophysiology of PHTN. The most notable of these implicate the renin-angiotensin system (RAS) and vascular endothelium. However, other processes that involve reactive oxygen species, the inflammatory cytokines, prostglandins and C-reactive protein as well as the autonomic and central nervous systems are also suggested. Drugs affecting RAS have been shown to produce beneficial effects in prehypertensives though such was not unequivocal. On the other hand, drugs such as β-adrenoceptor blocking agents were not shown to be useful. Leading clinical guidelines suggest using dietary and lifestyle modifications as a first line interventional strategy to curb the progress of PHTN; however, other clinically respected views call for using drugs. This review provides an overview of the potential pathophysiological processes associated with PHTN, abridges current intervention strategies and suggests investigating the value of using the "Polypill" in prehypertensive subjects to ascertain its potential in delaying (or preventing) CVD associated with raised blood pressure in the presence of other risk factors.
Collapse
Affiliation(s)
- Sulayma Albarwani
- Sulayma Albarwani, Sultan Al-Siyabi, Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Sultan Al-Siyabi
- Sulayma Albarwani, Sultan Al-Siyabi, Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Musbah O Tanira
- Sulayma Albarwani, Sultan Al-Siyabi, Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
32
|
Aqueous extract of dioscorea opposita thunb. normalizes the hypertension in 2K1C hypertensive rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:36. [PMID: 24447776 PMCID: PMC3904168 DOI: 10.1186/1472-6882-14-36] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dioscorea opposita Thunb. (Huai Shan Yao, DOT), a common staple food in China, has been used for more than 2000 years in traditional Chinese medicine (TCM) to treat different systemic diseases including hypertension. The objective of this study was to investigate the possible antihypertensive effects of the aqueous extract of (DOT) in renovascular hypertensive rats as well as the mechanism in reducing blood pressure. METHODS The two-kidney one-clip (2K1C) Goldblatt model of renovascular hypertension was used in Wistar rats. Rats with captopril, low-dose DOT and high-dose DOT treated 2K1C groups for 6 weeks. The blood pressure, cardiac mass index (heart weight/body weight), plasma level of angiotensin-II (Ang-II), endothelin-1(ET-1), superoxide dismutase (SOD) and malondialdehyde (MDA) were evaluated. RESULTS DOT significantly reduced mean systolic and diastolic blood pressure after treatment. DOT also significantly increased plasma SOD activity but decreased plasma MDA concentration. Renal function was improved with captopril and DOT. DOT reduced plasma Ang-II activity and plasma ET concentration. They couldalso significantly reduce the left ventricular hypertrophy and cardiac mass index. CONCLUSIONS Our results suggest that DOT may have an antihypertensive effect on hypertension by inhibit ET-converting enzyme and antioxidant activity, which warrant further exploration.
Collapse
|
33
|
Campos JC, Gomes KMS, Ferreira JCB. Impact of exercise training on redox signaling in cardiovascular diseases. Food Chem Toxicol 2013; 62:107-19. [PMID: 23978413 DOI: 10.1016/j.fct.2013.08.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/05/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases.
Collapse
Affiliation(s)
- Juliane C Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
34
|
Zhao W, Yu J, Su Q, Liang J, Zhao L, Zhang Y, Sun W. Antihypertensive effects of extract from Picrasma quassiodes (D. Don) Benn. in spontaneously hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:187-192. [PMID: 23142488 DOI: 10.1016/j.jep.2012.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/26/2012] [Accepted: 10/25/2012] [Indexed: 06/01/2023]
Abstract
UNLABELLED ETHNOPHARMACOLOGICA RELEVANCE: Picrasma quassiodes (D. Don) Benn. (PQB) is a widely used herbal medicine used for gastroenteritis, snakebite, infection and hypertension in China. The aim of the study was to investigate the possible antihypertensive mechanisms on spontaneously hypertensive rats (SHR) of the extract from Picrasma quassiodes (D. Don) Benn. MATERIALS AND METHODS In the in vivo study, extract from Picrasma quassiodes (D. Don) Benn. at the dose of 50, 100, 200mg/kg and captopril (12.5mg/kg) were administrated to different group of SHR rats by gavage for six consecutive weeks after the blood pressures were firstly measured. At the end of the study, rats serum nitric oxide (NO) was measured by the nitrate reductase method; superoxide dismutase (SOD) and malondialdehyde (MDA) activities were measured by the colorimetric method; the expression of aorta endothelial nitric oxide synthase (eNOS) was measured by immunohistochemical analysis. RESULTS The results showed that the oral administration of PQB could lower the systolic blood pressure (SBP) of SHR rats. In addition, the serum level of NO in SHR treated with PQB (100 and 200mg/kg) was increased dramatically (P<0.05, P<0.01), but administration with captopril had no significant effect. The expression of aorta eNOS was markedly increased when treated with PQB. The serum SOD levels were increased with treatment of PQB (100 and 200mg/kg; P<0.05, P<0.01). All the effects of these parameters were comparable to that of the SHR control group. CONCLUSIONS Our results disclosed that PQB is effective to lower blood pressure of SHR, its antihypertensive effect is probably associated with lowering oxidative stress by reducing SOD activity, preserving endothelial function and increasing the expression of eNOS to regulate NO and directly relax artery.
Collapse
Affiliation(s)
- Wenna Zhao
- Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an 710069, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Ramachandran L, Nair CKK. Prevention of γ-radiation induced cellular genotoxicity by tempol: protection of hematopoietic system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:253-262. [PMID: 22609778 DOI: 10.1016/j.etap.2012.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 03/15/2012] [Accepted: 04/16/2012] [Indexed: 06/01/2023]
Abstract
Tempol (TPL) under in vitro conditions reduced the extent of gamma radiation induced membrane lipid peroxidation and disappearance of covalently closed circular form of plasmid pBR322. TPL protected cellular DNA from radiation-induced damage in various tissues under ex vivo and in vivo conditions as evidenced by comet assay. TPL also prevented radiation induced micronuclei formation (in peripheral blood leucocytes) and chromosomal aberrations (in bone marrow cells) in whole body irradiated mice. TPL enhanced the rate of repair of cellular DNA (blood leucocytes and bone marrow cells) damage when administered immediately after radiation exposure as revealed from the increased Cellular DNA Repair Index (CRI). The studies thus provided compelling evidence to reveal the effectiveness of TPL to protect hematopoietic system from radiation injury.
Collapse
|
36
|
Dupont S, Maizel J, Mentaverri R, Chillon JM, Six I, Giummelly P, Brazier M, Choukroun G, Tribouilloy C, Massy ZA, Slama M. The onset of left ventricular diastolic dysfunction in SHR rats is not related to hypertrophy or hypertension. Am J Physiol Heart Circ Physiol 2012; 302:H1524-32. [DOI: 10.1152/ajpheart.00955.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Left ventricular (LV) diastolic dysfunction, particularly relaxation abnormalities, are known to be associated with the development of LV hypertrophy (LVH). Preliminary human and animal studies suggested that early LV diastolic dysfunction may be revealed independently of LVH. However, whether LV diastolic dysfunction is compromised before the onset of hypertension and LVH remains unknown. We therefore evaluated LV diastolic function in spontaneously hypertensive rats (SHR) at different ages and tested whether LV diastolic dysfunction is associated with abnormal intracellular calcium homeostasis. LV systolic and diastolic functions were evaluated by invasive and echocardiographic methods in 3-week-old (without hypertension) and 5-week-old (with hypertension) SHR and Wistar-Kyoto control rats. Basal intracytoplasmic calcium and sarcoplasmic reticulum (SR) Ca2+ contents were measured in cardiomyocytes using fura-2 AM. Sarco(endo)plasmic Ca2+-ATPase isoform 2a (SERCA 2a) and phospholamban (PLB) expressions were quantified by Western blot and quantitative RT-PCR techniques. LV relaxation dysfunction was observed in 3-week-old SHR rats before onset of hypertension and LVH. An increase in basal intracytoplasmic Ca2+ and a decrease in SR Ca2+ release were demonstrated in SHR. Decreased expression of SERCA 2a and Ser16 PLB (p16-PLB) protein levels was also observed in SHR rats, whereas mRNA expression was not decreased. For the first time, we have shown that LV myocardial dysfunction precedes hypertension in 3-week-old SHR rats. This LV myocardial dysfunction was associated with high diastolic [Ca2+]i possibly due to decreased SERCA 2a and p16-PLB protein levels. Diastolic dysfunction may be a potential predictive marker of arterial hypertension in genetic hypertension syndromes.
Collapse
Affiliation(s)
- S. Dupont
- INSERM U 1088
- Jules Verne University of Picardy and Amiens University Medical Center, Amiens; and
| | - J. Maizel
- INSERM U 1088
- Jules Verne University of Picardy and Amiens University Medical Center, Amiens; and
| | - R. Mentaverri
- INSERM U 1088
- Jules Verne University of Picardy and Amiens University Medical Center, Amiens; and
| | - J.-M. Chillon
- INSERM U 1088
- Jules Verne University of Picardy and Amiens University Medical Center, Amiens; and
| | - I. Six
- INSERM U 1088
- Jules Verne University of Picardy and Amiens University Medical Center, Amiens; and
| | - P. Giummelly
- Cardiovascular Pharmacology Laboratory (EA 3452), Nancy, France
| | - M. Brazier
- INSERM U 1088
- Jules Verne University of Picardy and Amiens University Medical Center, Amiens; and
| | - G. Choukroun
- INSERM U 1088
- Jules Verne University of Picardy and Amiens University Medical Center, Amiens; and
| | - C. Tribouilloy
- INSERM U 1088
- Jules Verne University of Picardy and Amiens University Medical Center, Amiens; and
| | - Z. A. Massy
- INSERM U 1088
- Jules Verne University of Picardy and Amiens University Medical Center, Amiens; and
| | - M. Slama
- INSERM U 1088
- Jules Verne University of Picardy and Amiens University Medical Center, Amiens; and
| |
Collapse
|
37
|
Changes in hepatic protein expression in spontaneously hypertensive rats suggest early stages of non-alcoholic fatty liver disease. J Proteomics 2012; 75:1752-63. [DOI: 10.1016/j.jprot.2011.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/03/2011] [Accepted: 12/10/2011] [Indexed: 02/07/2023]
|
38
|
Agarwal D, Elks CM, Reed SD, Mariappan N, Majid DS, Francis J. Chronic exercise preserves renal structure and hemodynamics in spontaneously hypertensive rats. Antioxid Redox Signal 2012; 16:139-52. [PMID: 21895524 PMCID: PMC3222098 DOI: 10.1089/ars.2011.3967] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/09/2011] [Accepted: 08/09/2011] [Indexed: 12/24/2022]
Abstract
AIMS Exercise training (ExT) is a recommended adjunct to many pharmaceutical antihypertensive therapies. The effects of chronic ExT on the development of hypertension-induced renal injury remain unknown. We examined whether ExT would preserve renal hemodynamics and structure in the spontaneously hypertensive rat (SHR), and whether these effects were mediated by improved redox status and decreased inflammation. Normotensive WKY rats and SHR underwent moderate-intensity ExT for 16 weeks. One group of SHR animals was treated with hydralazine to investigate the pressure-dependent/independent effects of ExT. Acute renal clearance experiments were performed prior to sacrifice. Tissue free radical production rates were measured by electron paramagnetic resonance; gene and protein expression were measured by real time RT-PCR and Western blot or immunofluorescence, respectively. Plasma angiotensin II levels and kidney antioxidants were assessed. Training efficacy was assessed by citrate synthase activity assay in hind-limb muscle. RESULTS ExT delayed hypertension, prevented oxidative stress and inflammation, preserved antioxidant status, prevented an increase in circulating AngII levels, and preserved renal hemodynamics and structure in SHR. In addition, exercise-induced effects, at least, in part, were found to be pressure-independent. INNOVATION This study is the first to provide mechanistic evidence for the renoprotective benefits of ExT in a model of hypertension. Our results demonstrate that initiation of ExT in susceptible patients can delay the development of hypertension and provide renoprotection at the functional and ultrastructural level. CONCLUSION Chronic ExT preserves renal hemodynamics and structure in SHR; these effects are partially mediated by improved redox status and decreased inflammation.
Collapse
Affiliation(s)
- Deepmala Agarwal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Carrie M. Elks
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Scott D. Reed
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Nithya Mariappan
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Dewan S.A. Majid
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| |
Collapse
|
39
|
Perivascular Fat and the Microcirculation: Relevance to Insulin Resistance, Diabetes, and Cardiovascular Disease. CURRENT CARDIOVASCULAR RISK REPORTS 2011; 6:80-90. [PMID: 22247785 PMCID: PMC3251783 DOI: 10.1007/s12170-011-0214-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes and its major risk factor, obesity, are a growing burden for public health. The mechanisms that connect obesity and its related disorders, such as insulin resistance, type 2 diabetes, and hypertension, are still undefined. Microvascular dysfunction may be a pathophysiologic link between insulin resistance and hypertension in obesity. Many studies have shown that adipose tissue-derived substances (adipokines) interact with (micro)vascular function and influence insulin sensitivity. In the past, research focused on adipokines from perivascular adipose tissue (PVAT). In this review, we focus on the interactions between adipokines, predominantly from PVAT, and microvascular function in relation to the development of insulin resistance, diabetes, and cardiovascular disease.
Collapse
|
40
|
Zhao Y, Wang J, Ballevre O, Luo H, Zhang W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens Res 2011; 35:370-4. [DOI: 10.1038/hr.2011.195] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Abstract
Hypertension is a major contributor to the development of renal failure, cardiovascular disease, and stroke. These pathologies are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility, and vascular remodeling. Central to these phenomena is oxidative stress. Factors that activate pro-oxidant enzymes, such as NADPH oxidase, remain poorly defined, but likely involve angiotensin II, mechanical stretch, and inflammatory cytokines. Reactive oxygen species influence vascular, renal, and cardiac function and structure by modulating cell growth, contraction/dilatation, and inflammatory responses via redox-dependent signaling pathways. Compelling data from molecular and cellular experiments, together with animal studies, implicate a role for oxidative stress in hypertension. However, the clinical evidence is still controversial. This review provides current insights on the mechanisms of the generation of reactive oxygen species and the vascular effects of oxidative stress and discusses the significance of oxidative damage in experimental and clinical hypertension.
Collapse
|
42
|
Bessa KL, Belletati JF, Santos L, Rossoni LV, Ortiz JP. Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats. Braz J Med Biol Res 2011; 44:767-77. [PMID: 21670893 DOI: 10.1590/s0100-879x2011007500071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/26/2011] [Indexed: 11/21/2022] Open
Abstract
This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.
Collapse
Affiliation(s)
- K L Bessa
- Departamento de Ciências Ambientais e Tecnológicas, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | | | | | | | | |
Collapse
|
43
|
Bhatt SR, Lokhandwala MF, Banday AA. Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur J Pharmacol 2011; 667:258-64. [PMID: 21640096 DOI: 10.1016/j.ejphar.2011.05.026] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 01/03/2023]
Abstract
Endothelial dysfunction is a hallmark of hypertension and vascular oxidative stress can contribute to endothelial dysfunction and hypertension development. Resveratrol is an antioxidant polyphenol which improves endothelium dependent relaxation, the mechanisms of which are unknown. Also, the role of resveratrol in hypertension remains to be established. The purpose of this study was to investigate the mechanisms of resveratrol induced improvement of endothelial function and establish its role in hypertension. SHR and WKY rats, 3-4 weeks old, were treated with resveratrol in drinking water for 10 weeks, untreated SHR and WKY rats served as controls. At the end of the treatment, control SHR exhibited increased blood pressure, oxidative stress and attenuated endothelium dependent relaxation in comparison to WKY rats. The impaired endothelium function in SHR was associated with lower nitrite/nitrate levels, elevated nitrotyrosine content and eNOS uncoupling. Resveratrol treatment attenuated hypertension development in SHR as indicated by lower blood pressure in resveratrol treated SHR (SHR-R) compared to control SHR. SHR-R also exhibited reduced H(2)O(2) content and elevated superoxide dismutase activity. Resveratrol treatment normalized endothelium dependent vasorelaxation in SHR. In parallel, resveratrol restored nitrite/nitrate levels and normalized nitrotyrosine content in SHR. SHR exhibited increased l-arginine dependent superoxide production which was blocked by NOS inhibitor l-NNA, suggesting eNOS uncoupling. eNOS uncoupling was prevented by resveratrol treatment. In conclusion, early treatment with resveratrol lowers oxidative stress, preserves endothelial function and attenuates development of hypertension in SHR. More importantly, prevention of eNOS uncoupling and NO scavenging could represent novel mechanisms for resveratrol-mediated antihypertensive effects.
Collapse
Affiliation(s)
- Siddhartha R Bhatt
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | | | | |
Collapse
|
44
|
Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res 2011; 34:665-73. [PMID: 21512515 DOI: 10.1038/hr.2011.39] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic arterial hypertension is a highly prevalent cardiovascular risk factor that causes significant morbidity and mortality, and is becoming an increasingly common health problem because of the increasing longevity and prevalence of predisposing factors such as sedentary lifestyle, obesity and nutritional habits. Further complicating the impact of this disease, mild and moderate hypertension are usually asymptomatic, and their presence (and the subsequent increase in cardiovascular risk) is often unrecognized. The pathophysiology of hypertension involves a complex interaction of multiple vascular effectors including the activation of the sympathetic nervous system, of the renin-angiotensin-aldosterone system and of the inflammatory mediators. Subsequent vasoconstriction and inflammation ensue, leading to vessel wall remodeling and, finally, to the formation of atherosclerotic lesions as the hallmark of advanced disease. Oxidative stress and endothelial dysfunction are consistently observed in hypertensive subjects, but emerging evidence suggests that they also have a causal role in the molecular processes leading to hypertension. Reactive oxygen species (ROS) may directly alter vascular function or cause changes in vascular tone by several mechanisms including altered nitric oxide (NO) bioavailability or signaling. ROS-producing enzymes involved in the increased vascular oxidative stress observed during hypertension include the NADPH oxidase, xanthine oxidase, the mitochondrial respiratory chain and an uncoupled endothelial NO synthase. In the current review, we will summarize our current understanding of the molecular mechanisms in the development of hypertension with an emphasis on oxidative stress and endothelial dysfunction.
Collapse
Affiliation(s)
- Eberhard Schulz
- II. Medizinische Klinik, Universitätsmedizin Mainz, Kardiologie, Angiologie und Internistische Intensivmedizin, Mainz, Germany
| | | | | |
Collapse
|
45
|
Oktem F, Kirbas A, Armagan A, Kuybulu AE, Yilmaz HR, Ozguner F, Uz E. Lisinopril attenuates renal oxidative injury in L-NAME-induced hypertensive rats. Mol Cell Biochem 2011; 352:247-53. [PMID: 21479940 DOI: 10.1007/s11010-011-0760-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 02/17/2011] [Indexed: 01/01/2023]
Abstract
Hypertension and related oxidative stress are involved in the pathogenesis of any renal diseases. Angiotensin-converting enzyme inhibitors have multi-directional renoprotective effects. In this study, we aimed to investigate whether lisinopril treatment has any biochemical alterations on renal tissue in L-NAME (Nε-nitro-L-arginine methyl ester) induced hypertension model. Twenty-eight Sprague-Dawley rats were included in this study and divided into four equal groups (n = 7): control group, L-NAME treated group (75 mg/kg/day), L-NAME plus lisinopril treated group and only lisinopril treated group (10 mg/kg/day). L-NAME and lisinopril were continued for 6 weeks. Systolic blood pressures were measured by using tail cuff method. In biochemical analysis, malondialdehyde (MDA, an index of lipid peroxidation) levels, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in renal tissues were used as markers of oxidative stress-induced renal impairment. Microalbumin and N-acetyl-β-D-glucosaminidase (NAG) in urine were determined as markers of renal tubular damage related to hypertension. Chronic L-NAME administration resulted in a significant depletion of serum nitric oxide (NO). When compared with control group, serum creatinine, microalbumin, urine NAG, renal tissue MDA level, and CAT activities were significantly high, while renal tissue SOD and GSH-Px activities low in L-NAME group. In the L-NAME plus lisinopril treated group, serum creatinine, microalbumin and urine NAG, renal MDA level and CAT activity decreased, whereas SOD, GSH-Px activities in renal tissue and serum NO levels were increased. Thus, lisinopril treatment reversed these effects. There were not any significant difference between L-NAME plus lisinopril treated group and control group concerning serum creatinine, renal tissue MDA level and SOD, GSH-Px, CAT activities. These results suggest that lisinopril could diminish biochemical alterations in L: -NAME induced hypertensive renal damage that occurs by oxidative stress.
Collapse
Affiliation(s)
- Faruk Oktem
- Department of Pediatric Nephrology, School of Medicine, Bezmialem Vakif University, İstanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
46
|
Erejuwa OO, Sulaiman SA, Wahab MSA, Sirajudeen KNS, Salleh MSM, Gurtu S. Differential responses to blood pressure and oxidative stress in streptozotocin-induced diabetic Wistar-Kyoto rats and spontaneously hypertensive rats: effects of antioxidant (honey) treatment. Int J Mol Sci 2011; 12:1888-907. [PMID: 21673929 PMCID: PMC3111640 DOI: 10.3390/ijms12031888] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/29/2010] [Accepted: 01/05/2011] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress is implicated in the pathogenesis and/or complications of hypertension and/or diabetes mellitus. A combination of these disorders increases the risk of developing cardiovascular events. This study investigated the effects of streptozotocin (60 mg/kg; ip)-induced diabetes on blood pressure, oxidative stress and effects of honey on these parameters in the kidneys of streptozotocin-induced diabetic Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Diabetic WKY and SHR were randomized into four groups and received distilled water (0.5 mL) and honey (1.0 g/kg) orally once daily for three weeks. Control SHR had reduced malondialdehyde (MDA) and increased systolic blood pressure (SBP), catalase (CAT) activity, and total antioxidant status (TAS). SBP, activities of glutathione peroxidase (GPx) and glutathione reductase (GR) were elevated while TAS was reduced in diabetic WKY. In contrast, SBP, TAS, activities of GPx and GR were reduced in diabetic SHR. Antioxidant (honey) treatment further reduced SBP in diabetic SHR but not in diabetic WKY. It also increased TAS, GSH, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, activities of GPx and GR in diabetic SHR. These data suggest that differences in types, severity, and complications of diseases as well as strains may influence responses to blood pressure and oxidative stress.
Collapse
Affiliation(s)
- Omotayo O. Erejuwa
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; E-Mails: (S.A.S.); (M.S.A.W.)
| | - Siti A. Sulaiman
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; E-Mails: (S.A.S.); (M.S.A.W.)
| | - Mohd Suhaimi Ab Wahab
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; E-Mails: (S.A.S.); (M.S.A.W.)
| | - Kuttulebbai N. S. Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; E-Mail:
| | - Md Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; E-Mail:
| | - Sunil Gurtu
- Monash University Sunway Campus, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, 46150, Bandar Sunway, Selangor, Malaysia; E-Mail:
| |
Collapse
|
47
|
Amoureux S, Lorgis L, Sicard P, Girard C, Rochette L, Vergely C. Vascular BDNF expression and oxidative stress during aging and the development of chronic hypertension. Fundam Clin Pharmacol 2011; 26:227-34. [PMID: 21210848 DOI: 10.1111/j.1472-8206.2010.00912.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and TrK receptors play an important role in vascular development and response to injury. In this study, we investigated the participation of the BDNF/TrK pathway and oxidative stress during the development of hypertension in spontaneously hypertensive rats (SHR). In SHR and normotensive rats (WKY) at 6 and 13 weeks of age, we studied (i) plasma antioxidant capacity, (ii) production of superoxide and NAD(P)H oxidase activity in aorta (iii) plasma BDNF and vascular expression of BDNF, TrKB, NAD(P)H oxidase subunits, AT1 receptor, and MCP-1. In 6- and 13-week-old SHR aorta, superoxide level was twice than in WKY aorta. At 13 weeks, when blood pressure in SHR was 60 mmHg higher in SHR than in WKY, an enhancement of NAD(P)H oxidase activity in SHR was associated with an increase in p47phox, AT1, and BDNF expression in vessels. MCP-1 expression increased with blood pressure. Our study demonstrated that in SHR rats, an increase in levels of vascular oxidative stress and in aortic BDNF and TrKB expression occurs prior to the rise in blood pressure, while a reinforcement of vascular and circulating oxidative stress markers is brought about later by hypertension.
Collapse
Affiliation(s)
- Sébastien Amoureux
- LPPCE, IFR Santé STIC 100, Facultés de Médecine et de Pharmacie, Dijon, France
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The stimulation of thromboxane/endoperoxide receptors (TP) elicits diverse physiological/pathophysiological reactions, including platelet aggregation and contraction of vascular smooth muscle. Furthermore, the activation of endothelial TP promotes the expression of adhesion molecules and favors adhesion and infiltration of monocytes/macrophages. In various cardiovascular diseases, endothelial dysfunction is predominantly the result of the release of endothelium-derived contracting factors that counteract the vasodilator effect of nitric oxide produced by the endothelial nitric oxide synthase. Endothelium-dependent contractions involve the activation of cyclooxygenases, the production of reactive oxygen species along with that of endothelium-derived contracting factors, which diffuse toward the vascular smooth muscle cells and activate their TP. TP antagonists curtail the endothelial dysfunction in diseases such as hypertension and diabetes, are potent antithrombotic agents, and reduce vascular inflammation. Therefore, TP antagonists, because of this triple activity, may have a unique potential for the treatment of cardiovascular disorders.
Collapse
|
49
|
Cao C, Edwards A, Sendeski M, Lee-Kwon W, Cui L, Cai CY, Patzak A, Pallone TL. Intrinsic nitric oxide and superoxide production regulates descending vasa recta contraction. Am J Physiol Renal Physiol 2010; 299:F1056-64. [PMID: 20702600 DOI: 10.1152/ajprenal.00070.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Descending vasa recta (DVR) are 12- to 15-μm microvessels that supply the renal medulla with blood flow. We examined the ability of intrinsic nitric oxide (NO) and reactive oxygen species (ROS) generation to regulate their vasoactivity. Nitric oxide synthase (NOS) inhibition with N(ω)-nitro-l-arginine methyl ester (l-NAME; 100 μmol/l), or asymmetric N(G),N(G)-dimethyl-l-arginine (ADMA; 100 μmol/l), constricted isolated microperfused DVR by 48.82 ± 4.34 and 27.91 ± 2.91%, respectively. Restoring NO with sodium nitroprusside (SNP; 1 mmol/l) or application of 8-Br-cGMP (100 μmol/l) reversed DVR vasoconstriction by l-NAME. The superoxide dismutase mimetic Tempol (1 mmol/l) and the NAD(P)H inhibitor apocynin (100, 1,000 μmol/l) also blunted ADMA- or l-NAME-induced vasoconstriction, implicating a role for concomitant generation of ROS. A role for ROS generation was also supported by an l-NAME-associated rise in oxidation of dihydroethidium that was prevented by Tempol or apocynin. To test whether H(2)O(2) might play a role, we examined its direct effects. From 1 to 100 μmol/l, H(2)O(2) contracted DVR whereas at 1 mmol/l it was vasodilatory. The H(2)O(2) scavenger polyethylene glycol-catalase reversed H(2)O(2) (10 μmol/l)-induced vasoconstriction; however, it did not affect l-NAME-induced contraction. Finally, the previously known rise in DVR permeability to (22)Na and [(3)H]raffinose that occurs with luminal perfusion was not prevented by NOS blockade. We conclude that intrinsic production of NO and ROS can modulate DVR vasoactivity and that l-NAME-induced vasoconstriction occurs, in part, by modulating superoxide concentration and not through H(2)O(2) generation. Intrinsic NO production does not affect DVR permeability to hydrophilic solutes.
Collapse
Affiliation(s)
- Chunhua Cao
- Div. of Nephrology, N3W143, 22 S. Greene St., UMMS, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ibarra-Lara L, Cervantes-Pérez LG, Pérez-Severiano F, Del Valle L, Rubio-Ruíz E, Soria-Castro E, Pastelín-Hernández GS, Sánchez-Aguilar M, Martínez-Lazcano JC, Sánchez-Mendoza A. PPARalpha stimulation exerts a blood pressure lowering effect through different mechanisms in a time-dependent manner. Eur J Pharmacol 2009; 627:185-93. [PMID: 19857485 DOI: 10.1016/j.ejphar.2009.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 09/03/2009] [Accepted: 10/14/2009] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator activated receptors (PPARs) are a family of nuclear receptors that, upon activation with selective ligands, work as transcription factors. Recently, these have been related with the cardiovascular system. Our aim was to study PPARalpha-stimulation and its effects on blood pressure in rats with aortic coarctation, and to explore the role of the antioxidant system. Male Wistar rats (250-280 g) were distributed into the following groups: 1) sham; 2) aortic coarctated-vehicle-treated (AoCo-V), and 3) AoCo-clofibrate (100mg/kg) treated (AoCo-C). Rats were treated for 1 or 21 days. Clofibrate lowered blood pressure in both 1- and 21-day treatments. Renal reactive oxygen species increased after 1 day in AoCo-V, while clofibrate prevented this effect. Superoxide dismutase (SOD)-1 expression increased 3.6-fold upon PPARalpha stimulation (1 day) and returned to normal values by day 21. SOD-1 activity increased slightly in response to clofibrate. Renal activity of catalase increased in AoCo-C (1 day) and returned to normal (21 days). eNOS expression was not modified acutely (1 day) but increased at 21 days of treatment with clofibrate. Angiotensin II AT(1)-receptor expression as well as angiotensin II decreased in clofibrate-treated rats, while angiotensin II AT(2)-receptor expression increased, in both treatment periods. Angiotensin-(1-7) increased at 21 days. Our results suggest that in the early development of AoCo-induced hypertension, stimulation of PPARalpha increases the antioxidant defenses, leading to improvement in endothelial factors while in the sub-chronic phase (21 days), eNOS and angiotensin II receptors appear to play major roles in controlling blood pressure.
Collapse
Affiliation(s)
- Luz Ibarra-Lara
- Department of Pharmacology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080 Mexico, D.F., Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|