1
|
Li L, Li Z, Guo Y, Zhang K, Mi W, Liu J. Preparation of uniform-sized GeXIVA[1,2]-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency. Drug Deliv 2022; 29:2283-2295. [PMID: 35866254 PMCID: PMC9310807 DOI: 10.1080/10717544.2022.2089297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to prepare GeXIVA[1,2] PLGA microspheres by W/O/W re-emulsification-solvent evaporation technology and to develop sustained-release formulations to meet the clinical treatment needs of chronic neuropathic pain. Through prescription optimization, the uniformity of particle size and the encapsulation efficiency is improved, so as to achieve the quality standard of the microspheres. The mechanism of trehalose improving the stability of GeXIVA[1,2] was studied and verified by molecular simulation. The results showed that when adding trehalose to W1, using the PLGA model of 75:25, PLGA concentration of 30%, PVA concentration of 1.5%, adding 1% NaCl to PVA and adding 1% NaCl to solidification water, the prepared microspheres are smooth, the particle size is about 25 μm, and the encapsulation rate reaches 90%. The results of in vitro release experiments showed that the microspheres could be released steadily for about 30 days. The microsphere samples were characterized and analyzed by molecular simulation and powder X-ray diffractometer, and the protective mechanism of trehalose on GeXIVA[1,2] was discussed. The results showed that the hydrogen bond formed between trehalose and GeXIVA[1,2] acted as a hydration film and played a certain protective role on GeXIVA[1,2]. In addition, high-viscosity trehalose can form a glass state and wrap around GeXIVA[1,2], reducing the free movement of molecules. In the microsphere system, trehalose can also avoid the influence of PLGA material on the secondary structure of GeXIVA[1,2]. In conclusion, this study is expected to provide a new therapeutic strategy for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Lu Li
- Heilongjiang University of Traditional Chinese medicine, Harbin, China.,Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Zhiguo Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yongxin Guo
- Department of Anesthesiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Kai Zhang
- Department of Anesthesiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Jing Liu
- Department of Anesthesiology, The First Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Simulate SubQ: The Methods and the Media. J Pharm Sci 2021; 112:1492-1508. [PMID: 34728176 DOI: 10.1016/j.xphs.2021.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
For decades, there has been a growing interest in injectable subcutaneous formulations to improve the absorption of drugs into the systemic circulation and to prolong their release over a longer period. However, fluctuations in the blood plasma levels together with bioavailability issues often limit their clinical success. This warrants a closer look at the performance of long-acting depots, for example, and their dependence on the complex interplay between the dosage form and the physiological microenvironment. For this, biopredictive performance testing is used for a thorough understanding of the biophysical processes affecting the absorption of compounds from the injection site in vivo and their simulation in vitro. In the present work, we discuss in vitro methodologies including methods and media developed for the subcutaneous route of administration on the background of the most relevant absorption mechanisms. Also, we highlight some important knowledge gaps and shortcomings of the existing methodologies to provide the reader with a better understanding of the scientific evidence underlying these models.
Collapse
|
3
|
Kilicarslan M, Buke AN. An Overview: The Evaluation of Formation Mechanisms, Preparation Techniques and Chemical and Analytical Characterization Methods of the In Situ Forming Implants. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200616125009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the major developments of the last decade is the preparation of in situ implant formulations.
Injectable, biocompatible and/or biodegradable polymer-based in situ implants are classified
differently due to implant formation based on in vivo solid depot or formation mechanisms inducing
liquid form, gel or solid depot. In this review, published studies to date regarding in situ forming implant
systems were compiled and their formation mechanisms, materials and methods used, routes of
administration, chemical and analytical characterizations, quality-control tests and in vitro dissolution
tests were compared in Tables and were evaluated. There are several advantages and disadvantages of
these dosage forms due to the formation mechanism, polymer and solvent type and the ratio used in
formulations and all of these parameters have been discussed separately. In addition, new generation
systems developed to overcome the difficulties encountered in in situ implants have been evaluated.
There are some approved products of in situ implant preparations that can be used for different indications
available on the market and the clinical phase studies nowadays. In vitro and in vivo data obtained
by the analysis of the application of new technologies in many studies evaluated in this review showed
that the number of approved drugs to be used for various indications would increase in the future.
Collapse
Affiliation(s)
- Muge Kilicarslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara,Turkey
| | - Ayse Nur Buke
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara,Turkey
| |
Collapse
|
4
|
Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00446-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Lee BK, Yun Y, Park K. PLA micro- and nano-particles. Adv Drug Deliv Rev 2016; 107:176-191. [PMID: 27262925 DOI: 10.1016/j.addr.2016.05.020] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/24/2016] [Indexed: 01/05/2023]
Abstract
Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are widely used as controlled drug delivery systems of therapeutic molecules, including proteins, genes, vaccines, and anticancer drugs. Even though PLA-based particles have challenges to overcome, such as low drug loading capacity, low encapsulation efficiency, and terminal sterilization, continuous innovations in particulate formulations will lead to development of clinically useful formulations.
Collapse
|
6
|
Levy O, Brennen WN, Han E, Rosen DM, Musabeyezu J, Safaee H, Ranganath S, Ngai J, Heinelt M, Milton Y, Wang H, Bhagchandani SH, Joshi N, Bhowmick N, Denmeade SR, Isaacs JT, Karp JM. A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials 2016; 91:140-150. [PMID: 27019026 DOI: 10.1016/j.biomaterials.2016.03.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/21/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023]
Abstract
Despite considerable advances in prostate cancer research, there is a major need for a systemic delivery platform that efficiently targets anti-cancer drugs to sites of disseminated prostate cancer while minimizing host toxicity. In this proof-of-principle study, human mesenchymal stem cells (MSCs) were loaded with poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) that encapsulate the macromolecule G114, a thapsigargin-based prostate specific antigen (PSA)-activated prodrug. G114-particles (∼950 nm in size) were internalized by MSCs, followed by the release of G114 as an intact prodrug from loaded cells. Moreover, G114 released from G114 MP-loaded MSCs selectively induced death of the PSA-secreting PCa cell line, LNCaP. Finally, G114 MP-loaded MSCs inhibited tumor growth when used in proof-of-concept co-inoculation studies with CWR22 PCa xenografts, suggesting that cell-based delivery of G114 did not compromise the potency of this pro-drug in-vitro or in-vivo. This study demonstrates a potentially promising approach to assemble a cell-based drug delivery platform, which inhibits cancer growth in-vivo without the need of genetic engineering. We envision that upon achieving efficient homing of systemically infused MSCs to cancer sites, this MSC-based platform may be developed into an effective, systemic 'Trojan Horse' therapy for targeted delivery of therapeutic agents to sites of metastatic PCa.
Collapse
Affiliation(s)
- Oren Levy
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - W Nathaniel Brennen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States
| | - Edward Han
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - David Marc Rosen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States
| | - Juliet Musabeyezu
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Helia Safaee
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Sudhir Ranganath
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Jessica Ngai
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Martina Heinelt
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Yuka Milton
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Hao Wang
- Department of Oncology, Division of Biostatistics at the Sidney Kimmel Comprehensive Cancer Center, United States
| | - Sachin H Bhagchandani
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Nitin Joshi
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Neil Bhowmick
- The Samuel Oschin Comprehensive Cancer Institute at the Cedars-Sinai Medical Center, United States
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States.
| | - John T Isaacs
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States.
| | - Jeffrey M Karp
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States.
| |
Collapse
|
7
|
Abstract
INTRODUCTION Proteins are effective biotherapeutics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability, frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. AREAS COVERED This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel-based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. EXPERT OPINION Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery-related issues. A large number of protein molecules are under clinical trials, and hence, there is an urgent need to develop new methods to deliver these highly potent biologics.
Collapse
Affiliation(s)
- Ravi Vaishya
- University of Missouri-Kansas City, Pharmaceutical Sciences , Kansas City, MO , USA
| | | | | | | |
Collapse
|
8
|
Abstract
BACKGROUND Drug-eluting polymer implants present a compelling parenteral route of administration for cancer chemotherapy. With potential for minimally invasive, image-guided placement and highly localized drug release, these delivery systems are playing an increasingly important role in cancer management. This is particularly true as the use of labile proteins and other bioactive molecules is likely to increase in the upcoming years. OBJECTIVE In this review, we present the current trends in the application of Pre-formed and in situ-forming systems as drug-eluting implants for cancer chemotherapy. METHODS We outline the clinically available options as well as up-and-coming technologies and their advantages and challenges. We also describe ongoing related innovations with image-guided drug delivery, mathematical modeling of implanted delivery systems and implanted drug delivery in combination with other therapies. RESULTS/CONCLUSION Whether used alone or combined with other minimally invasive procedures, drug-eluting polymeric implants will play a significant role in the future of cancer management.
Collapse
Affiliation(s)
- Agata A Exner
- Case Western Reserve University, Department of Radiology, 11100 Euclid Avenue, Cleveland, OH 44106-5056, USA.
| | | |
Collapse
|
9
|
Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 2008; 364:298-327. [PMID: 18621492 DOI: 10.1016/j.ijpharm.2008.04.042] [Citation(s) in RCA: 548] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/29/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
Injectable biodegradable and biocompatible copolymers of lactic and glycolic acid (PLGA) are an important advanced delivery system for week-to-month controlled release of hydrophobic drugs (e.g., from biopharmaceutical classification system class IV), which often display poor oral bioavailability. The basic principles and considerations to develop such microparticle formulations is reviewed here based on a comprehensive study of papers and patents from the beginnings of hydrophobic drug encapsulation in polylactic acid and PLGA up through the very recent literature. Challenges with the diversity of drug properties, microencapsulation methods, and organic solvents are evaluated in light of the precedence of commercialized formulations and with a focus on decreasing the time to lab-scale encapsulation of water-insoluble drug candidates in the early stage of drug development. The influence of key formulation variables on final microparticle characteristics, and how best to avoid undesired microparticle properties, is analyzed mechanistically. Finally, concepts are developed to manage the common issues of maintaining sink conditions for in vitro drug release assays of hydrophobic compounds. Overall, against the backdrop of an increasing number of new, poorly orally available drug entities entering development, microparticle delivery systems may be a viable strategy to rescue an otherwise undeliverable substance.
Collapse
Affiliation(s)
- Christian Wischke
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | | |
Collapse
|
10
|
Wang L, Venkatraman S, Kleiner L. Drug release from injectable depots: two different in vitro mechanisms. J Control Release 2004; 99:207-16. [PMID: 15380631 DOI: 10.1016/j.jconrel.2004.06.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
Certain poly (lactide-co-glycolide) (PLGA)/benzyl benzoate (BB) solutions can form gels when injected into buffer (depot formation) as well as upon ageing under ambient conditions. When evaluating various PLGAs in benzyl benzoate, we have found that only those that gel upon ageing also form gel depots in buffer. This indicates that depot formation in this system may be fundamentally different from the phase inversion depot formation that has been observed for PLGA in water-miscible solvents. The drug release kinetics in vitro is controlled both by diffusion and erosion, with the base form of the drug being always released faster than its salt form. This is due to base-catalyzed hydrolysis. While gel permeation chromatography (GPC) measurements show a continuous decrease in molecular weight, the rheological properties upon buffer injection show maxima, for the base drug and the salt drug. The location of the viscosity maximum with time is dependent on the nature of the drug and its concentration.
Collapse
Affiliation(s)
- Liwei Wang
- School of Materials Engineering, Nanyang Technological University, N4.1-1-30 Nanyang Avenue, Singapore 639798, Singapore
| | | | | |
Collapse
|
11
|
Wang L, Kleiner L, Venkatraman S. Structure formation in injectable poly(lactide-co-glycolide) depots. J Control Release 2003; 90:345-54. [PMID: 12880701 DOI: 10.1016/s0168-3659(03)00198-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solutions of low-molecular-weight poly(lactide-co-glycolide) (PLGA) in organic solvents have been investigated as novel injectable drug depots for drug delivery over periods of weeks to months. In this paper, we investigated the structure formation in a PLGA/benzyl benzoate system, using controlled stress rheometry, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). GPC analysis demonstrated a decrease in molecular weight as a function of time and temperature, indicating degradation. Rheological experiments showed that the flow properties of PLGA/benzyl benzoate solutions were affected by a combination of degradation and gelation; the latter was also detected by an endotherm in DSC and by three-dimensional structure formation studies by rheology. Extent of degradation and gelation of PLGA were shown to depend on the solvent.
Collapse
Affiliation(s)
- Liwei Wang
- School of Materials Engineering, Nanyang Technological University, N4.1-1-30 Nanyang Avenue, 639798 Singapore
| | | | | |
Collapse
|