1
|
Moch M, Schwarz N, Windoffer R, Leube RE. The keratin-desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis. Cell Mol Life Sci 2020; 77:543-558. [PMID: 31243490 PMCID: PMC7010626 DOI: 10.1007/s00018-019-03198-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 11/29/2022]
Abstract
Desmosome-anchored keratin intermediate filaments (KFs) are essential for epithelial coherence. Yet, desmosomal KF attachment and network organization are still unexplored in vivo. We, therefore, monitored KF network morphogenesis in fluorescent keratin 8 knock-in murine embryos revealing keratin enrichment at newly formed desmosomes followed by KF formation, KF elongation and KF fusion. To examine details of this process and its coupling to desmosome formation, we studied fluorescent keratin and desmosomal protein reporter dynamics in the periphery of expanding HaCaT keratinocyte colonies. Less than 3 min after the start of desmosomal proteins clustering non-filamentous keratin enriched at these sites followed by KF formation and elongation. Subsequently, desmosome-anchored KFs merged into stable bundles generating a rim-and-spokes system consisting of subcortical KFs connecting desmosomes to each other and radial KFs connecting desmosomes to the cytoplasmic KF network. We conclude that desmosomes are organizing centers for the KF cytoskeleton with a hitherto unknown nucleation capacity.
Collapse
Affiliation(s)
- Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Quinlan RA, Schwarz N, Windoffer R, Richardson C, Hawkins T, Broussard JA, Green KJ, Leube RE. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J Cell Sci 2018; 130:3437-3445. [PMID: 29032358 DOI: 10.1242/jcs.202168] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK .,Biophysical Sciences Institute, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Nicole Schwarz
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Reinhard Windoffer
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Christine Richardson
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Tim Hawkins
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Joshua A Broussard
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen J Green
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Rudolf E Leube
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
3
|
Hatzfeld M, Keil R, Magin TM. Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics. Cold Spring Harb Perspect Biol 2017; 9:a029157. [PMID: 28096266 PMCID: PMC5453391 DOI: 10.1101/cshperspect.a029157] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension. Here, we summarize the current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss whether the desmosome-keratin scaffold might be actively involved in mechanosensing and in the conversion of chemical signals into mechanical strength.
Collapse
Affiliation(s)
- Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology and Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Schwarz N, Windoffer R, Magin TM, Leube RE. Dissection of keratin network formation, turnover and reorganization in living murine embryos. Sci Rep 2015; 5:9007. [PMID: 25759143 PMCID: PMC4355630 DOI: 10.1038/srep09007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/10/2015] [Indexed: 11/09/2022] Open
Abstract
Epithelial functions are fundamentally determined by cytoskeletal keratin network organization. However, our understanding of keratin network plasticity is only based on analyses of cultured cells overexpressing fluorescently tagged keratins. In order to learn how keratin network organization is affected by various signals in functional epithelial tissues in vivo, we generated a knock-in mouse that produces fluorescence-tagged keratin 8. Homozygous keratin 8-YFP knock-in mice develop normally and show the expected expression of the fluorescent keratin network both in fixed and in vital tissues. In developing embryos, we observe for the first time de novo keratin network biogenesis in close proximity to desmosomal adhesion sites, keratin turnover in interphase cells and keratin rearrangements in dividing cells at subcellular resolution during formation of the first epithelial tissue. This mouse model will help to further dissect keratin network dynamics in its native tissue context during physiological and also pathological events.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Thomas M Magin
- Translational Center for Regenerative Medicine and Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Mattey DL, Suhrbier A, Parrish E, Garrod DR. Recognition, calcium and the control of desmosome formation. CIBA FOUNDATION SYMPOSIUM 2007; 125:49-65. [PMID: 3829838 DOI: 10.1002/9780470513408.ch4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since desmosome formation requires the participation of two adjacent cells, a crucial initiating event must be recognition between desmosomal adhesion molecules. Studies of mutual desmosome formation between different cell types suggest that the recognition mechanisms are highly conserved between different tissues and different species of animals. A further requirement for desmosome formation is an adequate extracellular concentration of Ca2+ (greater than 0.1 mM). Keratinocytes, MDCK cells and MDBK cells all show Ca2+-induced desmosome formation. The desmosomes of these cells also show variable stability to reduction in [Ca2+] and Ca2+ chelation. Desmosome formation at low [Ca2+] is triggered by tunicamycin in keratinocytes, suggesting that the carbohydrate moieties of desmosomal glycoproteins may be involved in the Ca2+ control mechanism. The desmosomal glycoproteins appear to bind Ca2+, while the desmosomal adhesion molecules known as desmocollins, like other Ca2+-dependent adhesion molecules, yield a soluble fragment on trypsinization in the presence of Ca2+. For desmocollins the soluble fragment has a relative molecular mass of 42,000.
Collapse
|
6
|
Windoffer R, Wöll S, Strnad P, Leube RE. Identification of novel principles of keratin filament network turnover in living cells. Mol Biol Cell 2004; 15:2436-48. [PMID: 15004233 PMCID: PMC404035 DOI: 10.1091/mbc.e03-09-0707] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally assumed that turnover of the keratin filament system occurs by exchange of subunits along its entire length throughout the cytoplasm. We now present evidence that a circumscribed submembranous compartment is actually the main site for network replenishment. This conclusion is based on the following observations in living cells synthesizing fluorescent keratin polypeptides: 1) Small keratin granules originate in close proximity to the plasma membrane and move toward the cell center in a continuous motion while elongating into flexible rod-like fragments that fuse with each other and integrate into the peripheral KF network. 2) Recurrence of fluorescence after photobleaching is first seen in the cell periphery where keratin filaments are born that translocate subsequently as part of the network toward the cell center. 3) Partial keratin network reformation after orthovanadate-induced disruption is restricted to a distinct peripheral zone in which either keratin granules or keratin filaments are transiently formed. These findings extend earlier investigations of mitotic cells in which de novo keratin network formation was shown to originate from the cell cortex. Taken together, our results demonstrate that the keratin filament system is not homogeneous but is organized into temporally and spatially distinct subdomains. Furthermore, the cortical localization of the regulatory cues for keratin filament turnover provides an ideal way to adjust the epithelial cytoskeleton to dynamic cellular processes.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
7
|
Windoffer R, Leube RE. De novo formation of cytokeratin filament networks originates from the cell cortex in A-431 cells. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:33-44. [PMID: 11746670 DOI: 10.1002/cm.1039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Of the three major cytoskeletal filament systems, the intermediate filaments are the least understood. Since they differ fundamentally from the actin- and microtubule-based networks by their lack of polarity, it has remained a mystery how and where these principally endless filaments are formed. Using a recently established epithelial cell system in which fluorescently labeled intermediate filaments of the cytokeratin type can be monitored in living cells, we address these issues. By multidimensional time-lapse fluorescence microscopy, we examine de novo intermediate filament network formation from non-filamentous material at the end of mitosis and show that it mirrors disassembly. It is demonstrated that filament formation is initiated from the cell cortex without focal preference after cytokinesis. Furthermore, it is shown that this process is dependent on energy, on the integrity of the actin filament network and the microtubule system, and that it can be inhibited by the tyrosine phosphatase inhibitor pervanadate. Based on these observations, a two-step working model is proposed involving (1) interactions within the planar cortical layer acting as an organizing center forming a two-dimensional network and (2) subsequent radial dynamics facilitating the formation of a mature three-dimensional network.
Collapse
Affiliation(s)
- R Windoffer
- Department of Anatomy, Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
8
|
Windoffer R, Leube RE. Detection of cytokeratin dynamics by time-lapse fluorescence microscopy in living cells. J Cell Sci 1999; 112 ( Pt 24):4521-34. [PMID: 10574702 DOI: 10.1242/jcs.112.24.4521] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To monitor the desmosome-anchored cytokeratin network in living cells fusion protein HK13-EGFP consisting of human cytokeratin 13 and the enhanced green fluorescent protein was stably expressed in vulvar carcinoma-derived A-431 cells. It is shown for A-431 subclone AK13-1 that HK13-EGFP emits strong fluorescence in fixed and living cells, being part of an extended cytoplasmic intermediate filament network that is indistinguishable from that of parent A-431 cells. Biochemical, immunological and ultrastructural analyses demonstrate that HK13-EGFP behaves identically to the endogenous cytokeratin 13 and is therefore a reliable in vivo tag for this polypeptide and the structures formed by it. Time-lapse fluorescence microscopy reveals that the cytokeratin 13-containing network is in constant motion, resulting in continuous restructuring occurring in single and migratory cells, as well as in desmosome-anchored cells. Two major types of movement are distinguished: (i) oscillations of mostly long filaments, and (ii) an inward-directed flow of fluorescence originating as diffuse material at the cell periphery and moving in the form of dots and thin filaments toward the deeper cytoplasm where it coalesces with other filaments and filament bundles. Both movements are energy dependent and can be inhibited by nocodazole, but not by cytochalasin D. Finally, disassembly and reformation of cytokeratin filament networks are documented in dividing cells revealing distinct and rapidly occurring stages of cytokeratin organisation and distribution.
Collapse
Affiliation(s)
- R Windoffer
- Department of Anatomy, Johannes Gutenberg-University Mainz, Becherweg 13, D-55099 Mainz, Germany
| | | |
Collapse
|
9
|
Salas PJ, Rodriguez ML, Viciana AL, Vega-Salas DE, Hauri HP. The apical submembrane cytoskeleton participates in the organization of the apical pole in epithelial cells. J Biophys Biochem Cytol 1997; 137:359-75. [PMID: 9128248 PMCID: PMC2139782 DOI: 10.1083/jcb.137.2.359] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In a previous publication (Rodriguez, M.L., M. Brignoni, and P.J.I. Salas. 1994. J. Cell Sci. 107: 3145-3151), we described the existence of a terminal web-like structure in nonbrush border cells, which comprises a specifically apical cytokeratin, presumably cytokeratin 19. In the present study we confirmed the apical distribution of cytokeratin 19 and expanded that observation to other epithelial cells in tissue culture and in vivo. In tissue culture, subconfluent cell stocks under continuous treatment with two different 21-mer phosphorothioate oligodeoxy nucleotides that targeted cytokeratin 19 mRNA enabled us to obtain confluent monolayers with a partial (40-70%) and transitory reduction in this protein. The expression of other cytoskeletal proteins was undisturbed. This downregulation of cytokeratin 19 resulted in (a) decrease in the number of microvilli; (b) disorganization of the apical (but not lateral or basal) filamentous actin and abnormal apical microtubules; and (c) depletion or redistribution of apical membrane proteins as determined by differential apical-basolateral biotinylation. In fact, a subset of detergent-insoluble proteins was not expressed on the cell surface in cells with lower levels of cytokeratin 19. Apical proteins purified in the detergent phase of Triton X-114 (typically integral membrane proteins) and those differentially extracted in Triton X-100 at 37 degrees C or in n-octyl-beta-D-glycoside at 4 degrees C (representative of GPI-anchored proteins), appeared partially redistributed to the basolateral domain. A transmembrane apical protein, sucrase isomaltase, was found mispolarized in a subpopulation of the cells treated with antisense oligonucleotides, while the basolateral polarity of Na+-K+ATPase was not affected. Both sucrase isomaltase and alkaline phosphatase (a GPI-anchored protein) appeared partially depolarized in A19 treated CACO-2 monolayers as determined by differential biotinylation, affinity purification, and immunoblot. These results suggest that an apical submembrane cytoskeleton of intermediate filaments is expressed in a number of epithelia, including those without a brush border, although it may not be universal. In addition, these data indicate that this structure is involved in the organization of the apical region of the cytoplasm and the apical membrane.
Collapse
Affiliation(s)
- P J Salas
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Bornslaeger EA, Corcoran CM, Stappenbeck TS, Green KJ. Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J Cell Biol 1996; 134:985-1001. [PMID: 8769422 PMCID: PMC2120955 DOI: 10.1083/jcb.134.4.985] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The desmosomal plaque protein desmoplakin (DP), located at the juncture between the intermediate filament (IF) network and the cytoplasmic tails of the transmembrane desmosomal cadherins, has been proposed to link IF to the desmosomal plaque. Consistent with this hypothesis, previous studies of individual DP domains indicated that the DP COOH terminus associates with IF networks whereas NH2-terminal sequences govern the association of DP with the desmosomal plaque. Nevertheless, it had not yet been demonstrated that DP is required for attaching IF to the desmosome. To test this proposal directly, we generated A431 cell lines stably expressing DP NH2-terminal polypeptides, which were expected to compete with endogenous DP during desmosome assembly. As these polypeptides lacked the COOH-terminal IF-binding domain, this competition should result in the loss of IF anchorage if DP is required for linking IF to the desmosomal plaque. In such cells, a 70-kD DP NH2-terminal polypeptide (DP-NTP) colocalized at cell-cell interfaces with desmosomal proteins. As predicted, the distribution of endogenous DP was severely perturbed. At cell-cell borders where endogenous DP was undetectable by immunofluorescence, there was a striking absence of attached tonofibrils (IF bundles). Furthermore, DP-NTP assembled into ultrastructurally identifiable junctional structures lacking associated IF bundles. Surprisingly, immunofluorescence and immunogold electron microscopy indicated that adherens junction components were coassembled into these structures along with desmosomal components and DP-NTP. These results indicate that DP is required for anchoring IF networks to desmosomes and furthermore suggest that the DP-IF complex is important for governing the normal spatial segregation of adhesive junction components during their assembly into distinct structures.
Collapse
Affiliation(s)
- E A Bornslaeger
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
12
|
Cluzeaud F, Bens M, Wu MS, Li Z, Vicart P, Paulin D, Vandewalle A. Relationships between intermediate filaments and cell-specific functions in renal cell lines derived from transgenic mice harboring the temperature-sensitive T antigen. J Cell Physiol 1996; 167:22-35. [PMID: 8698837 DOI: 10.1002/(sici)1097-4652(199604)167:1<22::aid-jcp3>3.0.co;2-e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Four renal cell lines were derived from glomeruli, proximal, distal, and cortical collecting tubules microdissected from the kidneys of transgenic mice carrying the temperature-sensitive mutant of the simian virus 40 large T antigen under the control of the vimentin promoter. All four cell lines contained large T antigen in their nuclei, grew rapidly, and contained vimentin filaments when grown in serum-enriched medium at the permissive temperature of 33 degrees C. The glomerular cell line formed multiple layers of cells and contained smooth muscle actin and desmin filaments, features of mesangial cells. The three tubule cell lines formed monolayers of polarized cuboid cells separated by tight junctions and having a patchy distribution of cytokeratins K8-K18. A shift from 33 degrees C to the restrictive temperature (39.5 degrees C) stopped cell growth in all cell lines and caused profound changes in the content of intermediate filaments. Vimentin was still present in mesangial-like cells, but the proximal, distal, and collecting tubule cells contained uniform networks of cytokeratins K8-K18 and desmoplakin I and II around the cell peripheries. Potassium transport, mediated by Na+-K+ ATPase pumps and specific cAMP hormonal sensitivities, significantly increased in proximal, distal, and collecting tubule cells when shifted from 33 degrees C to 39.5 degrees C. Thus, the temperature-dependent inactivation of large T antigen, responsible for the arrest of cell growth, did not affect the phenotype of mesangial-like glomerular cells but induced some changes in the expression of intermediate filaments and restored, at least partially, the main parental cell-specific functions in proximal, distal, and collecting tubule cultured cells.
Collapse
Affiliation(s)
- F Cluzeaud
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Gap junction channels are formed by paired oligomeric membrane hemichannels called connexons, which are composed of proteins of the connexin family. Experiments with transfected cell lines and paired Xenopus oocytes have demonstrated that heterotypic intercellular channels which are formed by two connexons, each composed of a different connexin, can selectively occur. Studies by Stauffer [Stauffer, K. A. (1995) J. Biol. Chem. 270, 6768-6772] have shown that recombinant Cx26 and Cx32 coinfected into insect cells may form heteromeric connexons. By solubilizing and subfractionating individual connexons from ovine lenses, we show by immunoprecipitation that connexons can contain two different connexins forming heteromeric assemblies in vivo.
Collapse
Affiliation(s)
- J X Jiang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Kowalczyk AP, Stappenbeck TS, Parry DA, Palka HL, Virata ML, Bornslaeger EA, Nilles LA, Green KJ. Structure and function of desmosomal transmembrane core and plaque molecules. Biophys Chem 1994; 50:97-112. [PMID: 8011944 DOI: 10.1016/0301-4622(94)85023-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Desmosomes are intercellular junctions that function in cell-cell adhesion and attachment of intermediate filaments (IF) to the cell surface. Desmogleins and desmocollins are the major components of the transmembrane adhesion complex, whereas desmoplakins (DPs) are the most prominent components of the cytoplasmic plaque. Based on sequence similarity, desmogleins and desmocollins are related to the calcium-dependent homophilic adhesion molecules known as cadherins. Like the classical cadherins, the desmosomal cadherins contain four homologous extracellular domains bearing putative calcium-binding sites, a single transmembrane spanning domain, and a C-terminal cytoplasmic tail. Molecules in the desmoglein subclass contain a unique C-terminal extension within which is found a repeating motif that is predicted to form two beta-strands and two turns. Stable cell lines expressing desmoglein 1 have been generated from normally non-adherent L cell fibroblasts, to study the contribution of this cadherin to desmosomal adhesion. The predicted sequence of desmoplakin (DP) I suggests it will form homodimers comprising a central alpha-helical coiled-coil rod and two globular end domains. The C-terminus contains three regions with significant homology, each of which is made up of a 38-residue motif also found in two other molecules involved in organization of IF, bullous pemphigoid antigen and plectin. Ectopically expressed polypeptides including the C-terminus of DP I specifically align with keratin and vimentin IF in cultured cells, whereas those lacking this domain do not align with IF. The last 68 amino acids of DP are required for alignment along keratin but not vimentin IF, and residues 48-68 from the C-terminal end are critical for this interaction. These results suggest that the C-terminus of DP plays a role in the attachment of IF to the desmosome and that a specific site is necessary for interaction with keratin IF. A sequence at the most N-terminal end of DP appears to be required for efficient incorporation into the desmosomal plaque. Interestingly, this region has not been reported to be present in the homologous bullous pemphigoid antigen or plectin molecules and may represent a desmosomal targeting sequence.
Collapse
Affiliation(s)
- A P Kowalczyk
- Northwestern University Medical School, Department of Pathology, Chicago, IL 60611
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Philippou S, Sommerfeld HJ, Wiese M, Morgenroth K. The morphological substrate of autonomic regulation of the bronchial epithelium. VIRCHOWS ARCHIV. A, PATHOLOGICAL ANATOMY AND HISTOPATHOLOGY 1993; 423:469-76. [PMID: 7507277 DOI: 10.1007/bf01606537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Observations of explanted bronchial mucosa show that ciliary function is maintained for 7 days subsequent to explanation. This finding demonstrates that non-neural mechanisms exist which regulate ciliary function. Ultrastructural and immunohistochemical studies both for light and electron microscopy were performed on human bronchial biopsy material and lung resection specimens in order to recognize the morphological substrate of this regulatory mechanism. A complex system of cytokeratin filaments and microtubules radiate through the whole cytoplasm of ciliated cells with direct contact to the nucleus, cilia, microvilli, desmosomes and to the apical terminal adhesive complex. Between the basal bodies and the apical terminal adhesive complex microfilaments can be found. In the apical cytoplasm a dense filamentary network is seen in association with the adhesive complex. These morphological findings indicate that the cytoskeleton of the bronchial epithelium plays a key role in the co-ordination of ciliary function.
Collapse
Affiliation(s)
- S Philippou
- Department of Pathology, Ruhr-University of Bochum, Germany
| | | | | | | |
Collapse
|
16
|
Stappenbeck TS, Bornslaeger EA, Corcoran CM, Luu HH, Virata ML, Green KJ. Functional analysis of desmoplakin domains: specification of the interaction with keratin versus vimentin intermediate filament networks. J Biophys Biochem Cytol 1993; 123:691-705. [PMID: 7693716 PMCID: PMC2200123 DOI: 10.1083/jcb.123.3.691] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously demonstrated that truncated desmoplakin I (DP I) molecules containing the carboxyl terminus specifically coalign with and disrupt both keratin and vimentin intermediate filament (IF) networks when overexpressed in tissue culture cells (Stappenbeck, T. S., and K. J. Green. J. Cell Biol. 116:1197-1209). These experiments suggested that the DP carboxyl-terminal domain is involved either directly or indirectly in linking IF with the desmosome. Using a similar approach, we have now investigated the behavior of ectopically expressed full-length DP I in cultured cells. In addition, we have further dissected the functional sequences in the carboxyl terminus of DP I that facilitate the interaction with IF networks. Transient transfection of a clone encoding full-length DP I into COS-7 cells produced protein that appeared in some cells to associate with desmosomes and in others to coalign with and disrupt IF. Deletion of the carboxyl terminus from this clone resulted in protein that still appeared capable of associating with desmosomes but not interacting with IF networks. As the amino terminus appeared to be dispensable for IF interaction, we made finer deletions in the carboxyl terminus of DP based on blocks of sequence similarity with the related molecules bullous pemphigoid antigen and plectin. We found a sequence at the very carboxyl terminus of DP that was necessary for coalignment with and disruption of keratin IF but not vimentin IF. Furthermore, the coalignment of specific DP proteins along keratin IF but not vimentin IF was correlated with resistance to extraction by Triton. The striking uncoupling resulting from the deletion of specific DP sequences suggests that the carboxyl terminus of DP interacts differentially with keratin and vimentin IF networks.
Collapse
Affiliation(s)
- T S Stappenbeck
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | | | | | | | |
Collapse
|
17
|
Pasdar M, Li Z. Disorganization of microfilaments and intermediate filaments interferes with the assembly and stability of desmosomes in MDCK epithelial cells. CELL MOTILITY AND THE CYTOSKELETON 1993; 26:163-80. [PMID: 8287501 DOI: 10.1002/cm.970260207] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To investigate the possible role(s) of cytoskeletal elements in desmosome assembly we have studied the effects of cytostatic drugs on the assembly of desmosomes in MDCK epithelial cells. We showed previously [Pasdar et al.: Cell Motil. Cytoskeleton 23:201-213, 1992] that selective disruption of microtubules has no effect on desmosome assembly. Here, we have treated MDCK cells with cytochalasin B and a combination of cytochalasin B and nocodazole and analysed the effects of desmosome assembly. Immunofluorescence analysis of MDCK cultures following drug treatment indicated complete disruption of actin microfilaments and disorganization of cytokeratin intermediate filaments. Biochemical analysis of newly synthesized desmosomal membrane core glycoproteins as well as the cell adhesion protein E-cadherin revealed no effect of these drugs on the kinetics of synthesis, intracellular processing, or transport to the plasma membrane either in the presence or absence of cell-cell contact. However, morphological analyses revealed a significant disruption in the spatial organization of desmosomal proteins and E-cadherin. Drug treatment in the absence of cell-cell contact resulted in the disruption of the normally observed homogeneous punctate staining pattern and appearance of aggregate staining. Induction of cell-cell contact in these cultures resulted in redistribution of some of the aggregate staining to the plasma membrane. In contrast to control cultures, significant amount of intracellular staining was retained for all desmosomal proteins. Biochemical analyses of turnover rates of newly synthesized desmosomal proteins indicated a significant decrease in metabolic stability of these proteins while the turnover rate of E-cadherin was not significantly different among control and drug-treated cultures. Taken together, these results suggest that intact actin and cytokeratin filaments are necessary for the stability, efficient assembly, and spatial organization of the junctional components at the membrane. The regulatory role of cytokeratins and actin filaments in assembly and stability of desmosomes on the plasma membrane is discussed.
Collapse
Affiliation(s)
- M Pasdar
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
18
|
Ouyang P, Sugrue SP. Identification of an epithelial protein related to the desmosome and intermediate filament network. J Cell Biol 1992; 118:1477-88. [PMID: 1522118 PMCID: PMC2289612 DOI: 10.1083/jcb.118.6.1477] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Using a mAb, referred to as 08L, we have identified a protein, of M(r) approximately 140,000, associated with desmosomes of epithelial cells. The 08L antibody stained the intracellular side of lateral cell margins of monolayer epithelial cells but did not stain cell margins free of cell contact. Immunoelectron microscopy revealed that the 08L antigen was localized to the cytosolic surface of the desmosomal plaque near points of intermediate filament convergence with apparently little staining of the desmosomal plaque proper. Western blots revealed the 08L antigen to be a protein, of M(r) approximately 140,000, found in the Triton-X 100 insoluble pellet. High salt-containing buffers extracted the 08L antigen from the insoluble material. Examination of the assembly of 08L to the desmosome complex, in cells grown in low confluent culture or in calcium-switch assays, by double immunofluorescence with 08L and anti-desmoplakin antibody, revealed that 08L was recruited to morphologically identifiable desmosomes. 08L antigen may exist in a cytosolic pool prior to assembly to the cell surface. The solubility of 08L in low calcium and normal calcium conditions, however, was similar. 08L association to the desmosome was correlated with increased organization of the intermediate filament network. We suggest that the 08L antigen may be involved in the organization and stabilization of the desmosome-IF complexes of epithelia.
Collapse
Affiliation(s)
- P Ouyang
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
19
|
Zamansky GB, Nguyen U, Chou IN. An immunofluorescence study of the effects of ultraviolet radiation on the organization of microfilaments, keratin intermediate filaments, and microtubules in human keratinocytes. CELL MOTILITY AND THE CYTOSKELETON 1992; 22:296-306. [PMID: 1381290 DOI: 10.1002/cm.970220409] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Indirect immunofluorescence microscopy has been used to investigate the ultraviolet (UV) radiation induced disruption of the organization of microfilaments, keratin intermediate filaments, and microtubules in cultured human epidermal keratinocytes. Following irradiation, concurrent changes in the organization of the three major cytoskeletal components were observed in cells incubated under low Ca2+ (0.15 mM) conditions. UV irradiation induced a dose-dependent condensation of keratin filaments into the perinuclear region. This collapse of the keratin network was accompanied by the reorganization of microfilaments into rings and a restricted distribution of microtubules, responses normally elicited by exposure to high Ca2+ (1.05 mM) medium. The UV induced alteration of the keratin network appears to disrupt the interactions between keratin and actin, permitting the reorganization of actin filaments in the absence of Ca2+ stimulation. In addition to the perinuclear condensation of keratin filaments, UV irradiation inhibits the Ca2+ induced formation of keratin alignments at the membrane of apposed cells if UV treatment precedes exposure to high Ca2+ medium. Incubation of keratinocytes in high Ca2+ medium for 24 hours prior to irradiation results in the stabilization of membrane associated keratin alignments and a reduced susceptibility of cytoplasmic keratin filaments to UV induced disruption. Unlike results from investigations with isogenic skin fibroblasts, no UV induced disassembly of microtubules was discernible in irradiated human keratinocytes.
Collapse
Affiliation(s)
- G B Zamansky
- Department of Microbiology, Boston University School of Medicine, Massachusetts 02118
| | | | | |
Collapse
|
20
|
Miller RK, Vikstrom K, Goldman RD. Keratin incorporation into intermediate filament networks is a rapid process. J Cell Biol 1991; 113:843-55. [PMID: 1709167 PMCID: PMC2288995 DOI: 10.1083/jcb.113.4.843] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The properties of keratin-containing intermediate filament (IF) networks in vivo were studied following the microinjection of biotinylated keratin. Keratin-IFs were biotinylated, disassembled, and separated into type I and type II proteins by ion exchange chromatography. Recombination of these derivatized type I and type II keratins resulted in the formation of 10-nm diameter IF. The type I keratins were microinjected into epithelial cells and observed by immunofluorescence microscopy. Biotin-rich spots were found throughout the cytoplasm at 15-20 min after injection. Short biotinylated fibrous structures were seen at 30-45 min after injection, most of which colocalized with the endogenous bundles of IF (tono-filaments). By 1 1/2 to 2 h after microinjection, extensive biotinylated keratin IF-like networks were evident. These were highly coincident with the endogenous tonofilaments throughout the cell, including those at desmosomal junctions. These results suggest the existence of a relatively rapid subunit incorporation mechanism using numerous sites along the length of the endogenous tonofilament bundles. These observations support the idea that keratin-IFs are dynamic cytoskeletal elements.
Collapse
Affiliation(s)
- R K Miller
- Northwestern University Medical School, Department of Cell, Molecular, and Structural Biology, Chicago, Illinois 60611
| | | | | |
Collapse
|
21
|
Collins JE, Legan PK, Kenny TP, MacGarvie J, Holton JL, Garrod DR. Cloning and sequence analysis of desmosomal glycoproteins 2 and 3 (desmocollins): cadherin-like desmosomal adhesion molecules with heterogeneous cytoplasmic domains. J Cell Biol 1991; 113:381-91. [PMID: 2010468 PMCID: PMC2288940 DOI: 10.1083/jcb.113.2.381] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Desmosomal glycoproteins 2 and 3 (dg2 and 3) or desmocollins have been implicated in desmosome adhesion. We have obtained a 5.0-kb-long clone for dg3 from a bovine nasal epidermal lambda gt11 cDNA library. Sequence analysis of this clone reveals an open reading frame of 2,517 bases encoding a polypeptide of 839 amino acids. The sequence consists of a signal peptide of 28 amino acids, a precursor sequence of 104 amino acids, and a mature protein of 707 amino acids. The latter has the characteristics of a transmembrane glycoprotein with an extracellular domain of 550 amino acids and a cytoplasmic domain of 122 amino acids. The sequence of a partial clone from the same library shows that dg2 has an alternative COOH terminus that is extended by 54 amino acids. Genomic DNA sequence data show that this arises by splicing out of a 46-bp exon that encodes the COOH-terminal 11 amino acids of dg3 and contains an in-frame stop codon. The extracellular domain of dg3 shows 39.4% protein sequence identity with bovine N-cadherin and 28.4% identity with the other major desmosomal glycoprotein, dg1, or desmoglein. The cytoplasmic domain of dg3 and the partial cytoplasmic domain of dg2 show 23 and 24% identity with bovine N-cadherin, respectively. The results support our previous model for the transmembrane organization of dg2 and 3 (Parrish, E.P., J.E. Marston, D.L. Mattey, H.R. Measures, R. Venning, and D.R. Garrod. 1990. J. Cell Sci. 96:239-248; Holton, J.L., T.P. Kenny, P.K. Legan, J.E. Collins, J.N. Keen, R. Sharma, and D.R. Garrod. 1990. J. Cell Sci. 97:239-246). They suggest that these glycoproteins are specialized for calcium-dependent adhesion in their extracellular domains and, cytoplasmically, for the molecular interactions involved in desmosome plaque formation. Moreover this represents the first example of alternative splicing within the cadherin family of cell adhesion molecules.
Collapse
Affiliation(s)
- J E Collins
- Cancer Research Campaign, University of Southampton, Southampton General Hospital, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Alexander JS, Patton WF, Yoon MU, Shepro D. Cytokeratin filament modulation in pulmonary microvessel endothelial cells by vasoactive agents and culture confluency. Tissue Cell 1991; 23:141-50. [PMID: 1712990 DOI: 10.1016/0040-8166(91)90069-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, bovine pulmonary microvascular endothelial cells (PMV) were shown to contain cytokeratin 8 and 19 intermediate filaments (Patton et al., 1990). In this study, we examine the effect of culture contiguity and vasoactive agents on the content and assembly of cytokeratins in PMV. Immunofluorescent staining of PMV cultures show a progressive increase in cytokeratin filament assembly. In freshly plated PMV, keratin appears as hazy staining (less than 4 hr) and later organizes into keratin 'plaques' (4 days) associated with cell-cell contacts; post confluent (greater than 7 days) PMV cultures contain fully assembled cytokeratin filaments which extend to the cell periphery and approach filaments in apposed cells. Vimentin filaments are also present in freshly plated PMV cultures but unlike cytokeratins, become less filamentous at confluency. This cell density-dependent modulation of cytokeratins is also demonstrated by densitometric analysis of autoradiographs of 35S-methionine labeled keratins in which PMV keratin content is elevated at high cell densities, while vimentin content remains constant. Desmoplakins I and II, components of desmosomes, could not be demonstrated in PMV by immunoblotting. PMV treated with permeability modulating agents (4 x 10(-3) M EGTA, 1 microM cytochalasin B, 1 microM bradykinin, 1 microM A23187, and 1 microM PMA) exhibit border retraction and altered keratin filament staining. From these studies we conclude: 1) cytokeratin 8 and 19 containing intermediate filaments are present in confluent PMV cultures with vimentin but without desmosomes, 2) the state of assembly of PMV cytokeratin and vimentin filaments appears to be oppositely affected by culture contiguity, and 3) treatment of monolayers with vasoactive agents alters the state of assembly of cytokeratin filaments. We speculate that modulation of cytokeratin assembly in PMV may be involved in regulation of pulmonary microvascular structure and function.
Collapse
Affiliation(s)
- J S Alexander
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN 37235
| | | | | | | |
Collapse
|
23
|
Hashido K, Morita T, Matsushiro A, Nozaki M. Gene expression of cytokeratin endo A and endo B during embryogenesis and in adult tissues of mouse. Exp Cell Res 1991; 192:203-12. [PMID: 1701726 DOI: 10.1016/0014-4827(91)90177-v] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have examined the pattern of gene expression of mouse cytokeratin endo A and endo B during postimplantational development and in adult organs by Northern blot and in situ hybridization analyses. Both mRNAs localized in the ectoplacental cone, trophoblastic giant cells surrounding the parietal yolk sac, trophoblast cells in placenta, visceral yolk sac, and simple epithelium of the embryo during postimplantational development and in simple or transitional epithelial tissues in adult organs. These results indicate that endo A and endo B are coexpressed and may play some roles in these tissues.
Collapse
Affiliation(s)
- K Hashido
- Department of Microbial Genetics, Osaka University, Japan
| | | | | | | |
Collapse
|
24
|
Desmosome and intermediate filament assembly during differentiation and stratification of epithelial cells. J Biosci 1990. [DOI: 10.1007/bf02703890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Cartaud A, Ludosky MA, Courvalin JC, Cartaud J. A protein antigenically related to nuclear lamin B mediates the association of intermediate filaments with desmosomes. J Biophys Biochem Cytol 1990; 111:581-8. [PMID: 2199461 PMCID: PMC2116206 DOI: 10.1083/jcb.111.2.581] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Desmosomes are specialized domains of epithelial cell plasma membranes engaged in the anchoring of intermediate filaments (IF). So far, the desmosomal component(s) responsible for this binding has not been unambiguously identified. In the present work, we have examined bovine muzzle epidermis desmosomes for the presence of protein(s) structurally and functionally related to lamin B, the major receptor for IF in the nuclear envelope (Georgatos, S. D., and G. Blobel. 1987. J. Cell Biol. 105:105-115). By using polyclonal antibodies to lamin B in immunoblotting experiments, we find that a desmosomal protein of 140-kD shares epitope(s) with lamin B. Immunoelectron microscopic and urea extraction experiments show that this protein is a peripheral protein localized at the cytoplasmic side of the desmosomes (desmosomal plaques). Furthermore, this protein binds vimentin in an in vitro assay. Since this binding is inhibited by lamin B antibodies, the epitopes common to the 140-kD protein and to lamin B may be responsible for anchoring of intermediate filaments to desmosomes. These data suggest that lamin B-related proteins (see also Cartaud, A., J. C. Courvalin, M. A. Ludosky, and J. Cartaud. 1989. J. Cell Biol. 109:1745-1752) together with lamin B, provide cells with several nucleation sites, which can account for the multiplicity of IF organization in tissues.
Collapse
Affiliation(s)
- A Cartaud
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Université Paris VII, France
| | | | | | | |
Collapse
|
26
|
Merchant DJ. Terminally differentiating epithelial tissues in primary explant culture: a model of growth and development. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1990; 26:543-53. [PMID: 2193021 DOI: 10.1007/bf02624202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many epithelial tissues are characterized by the presence of basal cells which serve the dual roles of self-renewal and of progression through terminal differentiation, to a functional state. Such tissues, when grown in vitro as primary explants, exhibit a characteristic pattern of outgrowth and development which includes both renewal and efforts toward normal differentiation. The degree of differentiation achieved depends upon conditions of culture and may be modulated in a variety of ways. The human prostate constitutes such a system and offers numerous possibilities for investigating basic control mechanisms in growth and development. Information on a variety of epithelial tissues is reviewed and experimental results using human prostate tissue are presented.
Collapse
Affiliation(s)
- D J Merchant
- Department of Microbiology and Immunology, Eastern Virginia Medical School, Norfolk 23501
| |
Collapse
|
27
|
Zatloukal K, Spurej G, Rainer I, Lackinger E, Denk H. Fate of Mallory body-containing hepatocytes: disappearance of Mallory bodies and restoration of the hepatocytic intermediate filament cytoskeleton after drug withdrawal in the griseofulvin-treated mouse. Hepatology 1990; 11:652-61. [PMID: 1691733 DOI: 10.1002/hep.1840110419] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mallory bodies are characteristic morphological features of alcoholic hepatitis in man and can be produced in the mouse by chronic griseofulvin intoxication. The appearance of Mallory bodies in hepatocytes is associated with derangement of the cytokeratin intermediate filament cytoskeleton, at least as revealed by immunofluorescence and suggested by immunoelectron microscopy. Immunohistochemical studies were performed to answer the question whether Mallory body formation and cytoskeleton alterations finally lead to cell death or are reversible phenomena. Chronically griseofulvin-intoxicated mice killed at different stages of recovery on a normal diet served as experimental animals. It could be shown that (a) Mallory bodies are very durable structures and are found for up to 6 mo after griseofulvin withdrawal as a result of persistence and neoformation; (b) new Mallory bodies can appear even several months after cessation of griseofulvin feeding; (c) Mallory body formation and cytoskeletal changes by themselves do not lead to irreversible cell damage; (d) the cytoskeletal changes are reversible within 7 mo after griseofulvin withdrawal; (e) a dissociation between disappearance of Mallory bodies and restoration of a regularly immunostained cytoplasmic cytokeratin meshwork is observed.
Collapse
Affiliation(s)
- K Zatloukal
- Institute of Pathology, University of Graz School of Medicine, Austria
| | | | | | | | | |
Collapse
|
28
|
Carmo-Fonseca M, David-Ferreira JF. Interactions of intermediate filaments with cell structures. ELECTRON MICROSCOPY REVIEWS 1990; 3:115-41. [PMID: 2103336 DOI: 10.1016/0892-0354(90)90017-m] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intermediate filaments (IF) are unique components of the cytoskeleton of most eukaryotic cells. Also the nuclear lamins are now recognized to be IF-like proteins, providing the nucleus with a putative skeleton for chromatin attachment. Immunofluorescence and whole-mount electron microscopic studies reveal that IF form a cytoplasmic network that surrounds the nucleus and extends to cell surface, as 'mechanical integrators of cellular space'. It seems however unlikely that IF in the cell accomplish a merely structural role, considering the diversity of IF proteins and the complex regulation of their gene expression. In this work we primarily present electron microscopic data that points to the presence of interactions between IF and several cellular components, namely the nucleus, plasma membrane, other cytoskeletal elements, cytoplasmic organelles and ribonucleoproteins. Although the functional significance of such interactions remains to be demonstrated, assumptions like involvement of IF in information transfer or cytoskeleton-dependent control of gene expression represent attractive hypothesis for future research.
Collapse
Affiliation(s)
- M Carmo-Fonseca
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | |
Collapse
|
29
|
Boyer B, Tucker GC, Vallés AM, Franke WW, Thiery JP. Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J Cell Biol 1989; 109:1495-509. [PMID: 2677020 PMCID: PMC2115780 DOI: 10.1083/jcb.109.4.1495] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Changes of cell morphology and the state of differentiation are known to play important roles in embryogenesis as well as in carcinogenesis. Examples of particularly profound changes are the conversions of epithelial to mesenchymal cells; i.e., the dissociation of some or all polygonal, polar epithelial cells and their transformation into elongate, fibroblastoid cells of high motility. As an in vitro model system for such changes in cell morphology, we have used cell cultures of the rat bladder carcinoma-derived cell line NBT-II which, on exposure to inducing medium containing a commercial serum substitute (Ultroser G), show an extensive change in their organization (epithelial-mesenchymal transition): the junctions between the epithelial cells are split, the epithelial cell organization is lost, and the resulting individual cells become motile and assume a spindle-like fibroblastoid appearance. Using immunofluorescence microscopy and biochemical protein characterization techniques, we show that this change is accompanied by a redistribution of desmosomal plaque proteins (desmoplakins, desmoglein, plakoglobin) and by a reorganization of the cytokeratin and the actin-fodrin filament systems. Moreover, intermediate-sized filaments of the vimentin type are formed in the fibroblastoid cells. We demonstrate that the modulation of desmosomal proteins, specifically an increase in soluble desmoplakins, is a relatively early event in cell dissociation and in epithelial-mesenchymal transition. In this process, a latent period of 5 h upon addition of inducing medium precedes the removal of these desmosomal components from the plasma membrane. The transition, which is reversible, is dependent on continued protein synthesis and phosphorylation but not on the presence of the inducing medium beyond the initial 2-h period. We discuss the value of this experimental system as a physiologically relevant approach for studying the regulation of the assembly and disassembly of desmosomes and other intercellular adhesion structures, and as a model of the conversion of cells from one state of differentiation into another.
Collapse
Affiliation(s)
- B Boyer
- Laboratoire de Physiopathologie du Développement, Centre National de la Recherche Scientifique, Paris, France
| | | | | | | | | |
Collapse
|
30
|
Abstract
Cell proliferation of the human prostatic carcinoma cell line PC3 and of the epithelial cell strain PMU 23 derived from a primary culture of a stage III prostatic carcinoma was enhanced dose dependently by adding 0.1 nM to 10.0 nM bombesin (BMBS) to the culture medium. The growth stimulation was specifically inhibited by antibodies versus Gastrin Releasing Peptide (GRP) crossreacting with BMBS. Presence of BMBS-positive neuroendocrine cells in human prostate and measurable amounts of BMBS-like peptides in prostatic fluid were reported previously. In a binding assay using 125I-GRP, it was possible to demonstrate the presence of saturable specific receptors on PC3 cells, numerically comparable with those measured on small cell lung cancer cell lines. By immunofluorescence, however, no BMBS immunoreactivity on PC3 cells could be demonstrated. These observations suggest that BMBS plays a role in prostatic epithelium growth and that prostatic carcinoma may have an autocrine or paracrine proliferation stimulus within the gland microenvironment.
Collapse
Affiliation(s)
- M Bologna
- Department of Experimental Medicine, University of L'Aquila Medical School, Italy
| | | | | | | | | |
Collapse
|
31
|
Penn EJ, Hobson C, Rees DA, Magee AI. The assembly of the major desmosome glycoproteins of Madin-Darby canine kidney cells. FEBS Lett 1989; 247:13-6. [PMID: 2651159 DOI: 10.1016/0014-5793(89)81229-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Madin-Darby canine kidney (MDCK) cells are unable to form desmosomes when cultured in low-calcium medium [( Ca2+] less than 0.1 meq./l), but can be induced to do so by raising the calcium to physiological concentrations (1-2 meq./l). We have previously demonstrated that this block correlated with increased desmosomal protein turnover. Here we have immunoprecipitated the major desmosome glycoproteins [DGI (150 kDa) and DGII/III (120/100 kDa)] from non-ionic detergent-soluble and -insoluble fractions prepared from metabolically labelled MDCK cells cultured in standard or low-calcium medium. Pulse-chase studies showed that both DGI and DGII/III became unextractable in non-ionic detergent before their arrival at the cell surface, whether cells were grown in standard or low-calcium medium. The non-ionic detergent insolubility of these membrane components is therefore a separate step which precedes the formation of morphologically recognisable desmosomes.
Collapse
Affiliation(s)
- E J Penn
- National Institute for Medical Research, London, England
| | | | | | | |
Collapse
|
32
|
Klymkowsky MW, Bachant JB, Domingo A. Functions of intermediate filaments. CELL MOTILITY AND THE CYTOSKELETON 1989; 14:309-31. [PMID: 2684432 DOI: 10.1002/cm.970140302] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M W Klymkowsky
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | |
Collapse
|
33
|
Boyer B, Tucker GC, Vallés AM, Gavrilovic J, Thiery JP. Reversible transition towards a fibroblastic phenotype in a rat carcinoma cell line. INTERNATIONAL JOURNAL OF CANCER. SUPPLEMENT = JOURNAL INTERNATIONAL DU CANCER. SUPPLEMENT 1989; 4:69-75. [PMID: 2509387 DOI: 10.1002/ijc.2910440719] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two distinct mechanisms by which bladder carcinoma cells of the NBT-II cell line dissociate and migrate away from an in vitro reconstituted epithelial sheet were examined as regards intercellular adhesion and cell locomotion. Scattering of NBT-II bladder carcinoma cell line was promoted by 2 distinct culture protocols: (i) deposition of some components of the extracellular matrix onto the culture substratum (glass or plastic) induced cell dispersion of the epithelial sheet of carcinoma cells, and (ii) addition of Ultroser G, a serum substitute, to the culture medium induced scattering and acquisition of motility of NBT-II cells. Under both culture conditions, NBT-II cells dissociated, lost their epithelial morphology, acquired fibroblastic shape and migrated actively. We show that, among different extracellular matrix proteins, only collagens were able to promote the transition towards fibroblastic phenotype (referred as epithelium-to-mesenchyme transition or EMT). Furthermore, the native 3-dimensional helical structure of collagens was required for their function. During induction of EMT of NBT-II cells with Ultroser G, the junctions between epithelial cells were split, polarized epithelial cell organization was lost, and the resulting individual cells became motile and assumed a spindle-like fibroblastoid appearance. Using immunofluorescence microscopy techniques, we demonstrate that this change is accompanied by redistribution of desmosomal plaque proteins (desmoplakins, desmoglein, plakoglobin) and by reorganization of the cytokeratin and the actin-fodrin filament systems. Intermediate-sized filaments of the vimentin type were formed de novo in the fibroblastoid cell form. The observed transition towards fibroblastic phenotype (epithelium-to-mesenchyme transition or EMT) was fully reversed by removing the inducing factors from the culture medium, as shown by the disappearance of vimentin filaments and the reappearance of desmosomes in the newly formed epithelial cells.
Collapse
Affiliation(s)
- B Boyer
- Laboratoire de Physiopathologie du Développement, CNRS and ENS, Paris, France
| | | | | | | | | |
Collapse
|
34
|
Duden R, Franke WW. Organization of desmosomal plaque proteins in cells growing at low calcium concentrations. J Biophys Biochem Cytol 1988; 107:1049-63. [PMID: 2458360 PMCID: PMC2115290 DOI: 10.1083/jcb.107.3.1049] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Desmosomes are not formed in epithelial cell cultures growing in media with low (less than or equal to 0.1 mM) concentrations of Ca2+ (LCM) but appear rapidly upon shift to media of normal calcium concentrations (NCM). Previous authors using immunolocalization of desmoplakin, a marker protein for the desmosomal plaque, in LCM-grown cells have interpreted positively stained, dense, cytoplasmic aggregates on intermediate filaments (IF) bundles as preformed plaque units which upon NCM shift would move to the plasma membrane and contribute to desmosome formation. Studying various cell cultures, including primary mouse keratinocytes and human A-431 cells, we show that most, probably all, desmoplakin-positive aggregates in LCM-grown cells are associated with membranous structures, mostly vesicles, and also contain other desmosomal markers, including desmoglein, a transmembrane glycoprotein. We interpret such vesicles as residual desmosome-derived domains endocytosed upon cell dissociation. Only keratinocytes grown for long times (2-4 wk) in LCM are practically free from such vesicles. In addition, we demonstrate that certain cells such as A-431 cells, when passaged in LCM and in the absence of stable junctions, are able to continually assemble "half-desmosomes" on the plasma membrane which in turn can be endocytosed as plaque-bearing vesicles. We also show that in LCM the synthesis of several desmosomal proteins (desmoplakins I and II, plakoglobin, desmoglein, "band 6 protein") continues and that most of the plaque protein, desmoplakin, is diffusely spread over the cytoplasm, apparently in a soluble monodisperse form of approximately 9S. From our results we propose that the plaque proteins occur in small, discrete, diffusible entities in the cytoplasm, in concentrations that are relatively high in LCM and low in NCM, from which they assemble directly, i.e., without intermediate precursor aggregates on IFs in the cytoplasm, on certain plasma membrane domains in a Ca2+ dependent process.
Collapse
Affiliation(s)
- R Duden
- Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg
| | | |
Collapse
|
35
|
Burge SM, Fenton DA, Dawber RP, Leigh IM. Darier's disease: an immunohistochemical study using monoclonal antibodies to human cytokeratins. Br J Dermatol 1988; 118:629-40. [PMID: 2456090 DOI: 10.1111/j.1365-2133.1988.tb02563.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pathogenesis of Darier's disease was investigated by immunohistochemical staining of skin biopsies from involved and uninvolved skin in 14 patients, using monoclonal antibodies specific for keratins expressed in simple epithelia, stratified squamous epithelia and during skin specific differentiation as well as keratins expressed in mucosa and some benign epidermal hyperproliferative states. Uninvolved perilesional skin from Darier's patients showed a normal profile of keratin expression, whereas in lesional skin there was apparent delay in the expression of the suprabasal skin specific keratins. Suprabasal keratins were not detected in basal cells, thus there was no true premature keratinization. The presence of hyperproliferative keratins was restricted to suprabasal cells in lesional skin. Four patients were receiving treatment with etretinate at the time of biopsy, but results in these patients did not differ from patients using topical treatments. Etretinate did not influence the profile of keratin expression in uninvolved or involved skin. The expression of type VII collagen was examined and was normal throughout uninvolved and lesional skin in Darier's disease.
Collapse
Affiliation(s)
- S M Burge
- Department of Dermatology, Slade Hospital, Headington, Oxford, U.K
| | | | | | | |
Collapse
|
36
|
Pasdar M, Nelson WJ. Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. II. Morphological analysis. J Cell Biol 1988; 106:687-95. [PMID: 3279050 PMCID: PMC2115092 DOI: 10.1083/jcb.106.3.687] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biochemical analysis of the kinetics of assembly of two cytoplasmic plaque proteins of the desmosome, desmoplakins I (250,000 Mr) and II (215,000 Mr), in Madin-Darby canine kidney (MDCK) epithelial cells, demonstrated that these proteins exist in a soluble and insoluble pool, as defined by their extract ability in a Triton X-100 high salt buffer (CSK buffer). Upon cell-cell contact, there is a rapid increase in the capacity of the insoluble pool at the expense of the soluble pool; subsequently, the insoluble pool is stabilized, while proteins remaining in the soluble pool continue to be degraded rapidly (Pasdar, M., and W. J. Nelson. 1988. J. Cell Biol. 106:677-685). In this paper, we have sought to determine the spatial distribution of the soluble and insoluble pools of desmoplakins I and II, and their organization in the absence and presence of cell-cell contact by using differential extraction procedures and indirect immunofluorescence microscopy. In the absence of cell-cell contact, two morphologically and spatially distinct patterns of staining of desmoplakins I and II were observed: a pattern of discrete spots in the cytoplasm and perinuclear region, which is insoluble in CSK buffer; and a pattern of diffuse perinuclear staining, which is soluble in CSK buffer, but which is preserved when cells are fixed in 100% methanol at -20 degrees C. Upon cell-cell contact, in the absence or presence of protein synthesis, the punctate staining pattern of desmoplakins I and II is cleared rapidly and efficiently from the cytoplasm to the plasma membrane in areas of cell-cell contact (less than 180 min). The distribution of the diffuse perinuclear staining pattern remains relatively unchanged and becomes the principal form of desmoplakins I and II in the cytoplasm 180 min after induction of cell-cell contact. Thereafter, the relative intensity of staining of the diffuse pattern gradually diminishes and is completely absent 2-3 d after induction of cell-cell contact. Significantly, double immunofluorescence shows that during desmosome assembly on the plasma membrane both staining patterns coincide with a subpopulation of cytokeratin intermediate filaments. Taken together with the preceding biochemical analysis, we suggest that the assembly of desmoplakins I and II in MDCK epithelial cells is regulated at three discrete stages during the formation of desmosomes.
Collapse
Affiliation(s)
- M Pasdar
- Institute for Cancer Research, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
37
|
Penn EJ, Burdett ID, Hobson C, Magee AI, Rees DA. Structure and assembly of desmosome junctions: biosynthesis and turnover of the major desmosome components of Madin-Darby canine kidney cells in low calcium medium. J Biophys Biochem Cytol 1987; 105:2327-34. [PMID: 3680384 PMCID: PMC2114848 DOI: 10.1083/jcb.105.5.2327] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neither stratifying (primary keratinocytes) nor simple (Madin-Darby canine kidney [MDCK] and Madin-Darby bovine kidney [MDBK]) epithelial cell types from desmosomes in low calcium medium (LCM; less than 0.1 mM), but they can be induced to do so by raising the calcium level to physiological concentrations (standard calcium medium [SCM], 2 mM). We have used polyclonal antisera to the major bovine epidermal desmosome components (greater than 100 kD) in a sensitive assay involving immunoprecipitation of the components from metabolically labeled MDCK cell monolayers to investigate the mechanism of calcium-induced desmosome formation. MDCK cells, whether cultured in LCM or SCM, were found to synthesize the desmosome protein, DPI and desmosome glycoproteins DGI and DGII/III with identical electrophoretic mobility, and also, where relevant, with similar carbohydrate addition/processing and proteolytic processing. The timings of these events and of transport of DGI to the cell surface were similar in low and high calcium. Although the rates of synthesis of the various desmosome components were also similar under both conditions, the glycoprotein turnover rates increased dramatically in cells cultured in LCM. The half-lives decreased by a factor of about 7 for DGI and 12 for DGII/III and, consistent with this, MDCK cells labeled for 48 h in SCM had three and six times the amount of DGI and DGII/III, respectively, as cells labeled for 48 h in LCM. The rate of turnover and the levels of DPI were changed in the same direction, but to much lesser extents. Possible mechanisms for the Ca2+-dependent control of desmosome formation are discussed in the light of this new evidence.
Collapse
Affiliation(s)
- E J Penn
- National Institute for Medical Research, London, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Abstract
We studied the phenotypic features of some typical human mesenchymal cells, including decidual stromal cells and adult and fetal fibroblasts under different cell culture conditions by using antibodies to intermediate filament proteins and desmoplakins. In cell culture, the decidual stromal cells rapidly acquired typical fibroblastoid appearance with abundant arrays of vimentin filaments while the cytokeratin-positive epithelial cells, occasionally found in typical epithelioid colonies, lacked vimentin positivity and showed desmoplakin positivity. Within a few days, many of the stromal cells started to present cytokeratin positivity when cultured either in Condimed or in Chang medium. The cytokeratin positivity was first detected in small, scattered cytoplasmic dotted fibrils or in perinuclear dotlike aggregates with fibrillar projections. Later, denser cytokeratin-positive fibrillar arrays could also be seen in stromal cells, which lacked desmoplakin positivity as judged by two monoclonal antibodies. Decidual stromal cells were also cloned and in five out of ten clones some of the cells acquired a similar cytokeratin positivity when transferred into Chang or Condimed medium. Immunoblotting results indicated that cytokeratins 8, 18, and 19 can be found in these cultures. Similar cytokeratin positivity could also be seen in the same culture conditions in cultured fetal fibroblasts from skin, chorionic villi, and lung but not in young or adult skin fibroblast cultures. The present results suggest that decidual stromal cells as well as some embryonal mesenchymal cells can acquire epithelial differentiation in vitro as judged by the emergence of cytokeratin proteins. This ability appears to be lost in the corresponding adult cell. The results furthermore suggest that cytokeratin fibrils can be organized in the cytoplasm without an apparent organization center and that neither the appearance of desmoplakins nor the formation of cell-to-cell contacts are required for cytokeratin filament assembly.
Collapse
Affiliation(s)
- H von Koskull
- Department I, Obstetrics and Gynecology, Helsinki University Central Hospital, Finland
| | | |
Collapse
|
39
|
Nelson WJ, Veshnock PJ. Dynamics of membrane-skeleton (fodrin) organization during development of polarity in Madin-Darby canine kidney epithelial cells. J Cell Biol 1986; 103:1751-65. [PMID: 3023391 PMCID: PMC2114393 DOI: 10.1083/jcb.103.5.1751] [Citation(s) in RCA: 216] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Madin-Darby canine kidney (MDCK) epithelial cells exhibit a polarized distribution of membrane proteins between the apical and basolateral domains of the plasma membrane. We have initiated studies to investigate whether the spectrin-based membrane skeleton plays a role in the establishment and maintenance of these membrane domains. MDCK cells express an isoform of spectrin composed of two subunits, Mr 240,000 (alpha-subunit) and Mr 235,000 (gamma-subunit). This isoform is immunologically and structurally related to fodrin in lens and brain cells, which is a functional and structural analog of alpha beta-spectrin, the major component of the erythrocyte membrane skeleton. Analysis of fodrin in MDCK cells by immunoblotting, immunofluorescence, and metabolic labeling revealed significant changes in the biophysical properties, subcellular distribution, steady-state levels, and turnover of the protein during development of a continuous monolayer of cells. The changes in the cellular organization of fodrin did not appear to coincide with the distributions of microfilaments, microtubules, or intermediate filaments. These changes result in the formation of a highly insoluble, relatively dense and stable layer of fodrin which appears to be localized to the cell periphery and predominantly in the region of the basolateral plasma membrane of MDCK cells in continuous monolayers. The formation of this structure coincides temporally and spatially with extensive cell-cell contact, and with the development of the polarized distribution of the Na+, K+-ATPase, a marker protein of the basolateral plasma membrane.
Collapse
|