1
|
Denecke S, Malfara MF, Hodges KR, Holmes NA, Williams AR, Gallagher-Teske JH, Pascarella JM, Daniels AM, Sterk GJ, Leurs R, Ruthel G, Hoang R, Povelones ML, Povelones M. Adhesion of Crithidia fasciculata promotes a rapid change in developmental fate driven by cAMP signaling. mSphere 2024; 9:e0061724. [PMID: 39315810 PMCID: PMC11520290 DOI: 10.1128/msphere.00617-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Trypanosomatids are single-celled parasites responsible for human and animal disease. Typically, colonization of an insect host is required for transmission. Stable attachment of parasites to insect tissues via their single flagellum coincides with differentiation and morphological changes. Although attachment is a conserved stage in trypanosomatid life cycles, the molecular mechanisms are not well understood. To study this process, we elaborate upon an in vitro model in which the swimming form of the trypanosomatid Crithidia fasciculata rapidly differentiates following adhesion to artificial substrates. Live imaging of cells transitioning from swimming to attached shows parasites undergoing a defined sequence of events, including an initial adhesion near the base of the flagellum immediately followed by flagellar shortening, cell rounding, and the formation of a hemidesmosome-like attachment plaque between the tip of the shortened flagellum and the substrate. Quantitative proteomics of swimming versus attached parasites suggests differential regulation of cyclic adenosine monophosphate (cAMP)-based signaling proteins. We have localized two of these proteins to the flagellum of swimming C. fasciculata; however, both are absent from the shortened flagellum of attached cells. Pharmacological inhibition of cAMP phosphodiesterases increased cAMP levels in the cell and prevented attachment. Further, treatment with inhibitor did not affect the growth rate of either swimming or established attached cells, indicating that its effect is limited to a critical window during the early stages of adhesion. These data suggest that cAMP signaling is required for attachment of C. fasciculata and that flagellar signaling domains may be reorganized during differentiation and attachment.IMPORTANCETrypanosomatid parasites cause significant disease burden worldwide and require insect vectors for transmission. In the insect, parasites attach to tissues, sometimes dividing as attached cells or producing motile, infectious forms. The significance and cellular mechanisms of attachment are relatively unexplored. Here, we exploit a model trypanosomatid that attaches robustly to artificial surfaces to better understand this process. This attachment recapitulates that observed in vivo and can be used to define the stages and morphological features of attachment as well as conditions that impact attachment efficiency. We have identified proteins that are enriched in either swimming or attached parasites, supporting a role for the cyclic AMP signaling pathway in the transition from swimming to attached. As this pathway has already been implicated in environmental sensing and developmental transitions in trypanosomatids, our data provide new insights into activities required for parasite survival in their insect hosts.
Collapse
Affiliation(s)
- Shane Denecke
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Kelly R. Hodges
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Andre R. Williams
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | | | | | - Abigail M. Daniels
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan HZ, Amsterdam, the Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan HZ, Amsterdam, the Netherlands
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Hoang
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | - Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Nascimento JDF, Damasceno FS, Marsiccobetre S, Vitorino FNDL, Achjian RW, da Cunha JPC, Silber AM. Branched-chain amino acids modulate the proteomic profile of Trypanosoma cruzi metacyclogenesis induced by proline. PLoS Negl Trop Dis 2024; 18:e0012588. [PMID: 39383181 PMCID: PMC11493278 DOI: 10.1371/journal.pntd.0012588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/21/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, has a complex life cycle that involves triatomine insects as vectors and mammals as hosts. The differentiation of epimastigote forms into metacyclic trypomastigotes within the insect vector is crucial for the parasite's life cycle progression. Factors influencing this process, including temperature, pH, and nutritional stress, along with specific metabolite availability, play a pivotal role. Amino acids like proline, histidine, and glutamine support cell differentiation, while branched-chain amino acids (BCAAs) inhibit it. Interestingly, combining the pro-metacyclogenic amino acid proline with one of the anti-metacyclogenic BCAAs results in viable metacyclics with significantly reduced infectivity. To explore the characteristics of metacyclic parasites differentiated in the presence of BCAAs, proteomics analyses were conducted. Metacyclics obtained in triatomine artificial urine (TAU) supplemented with proline alone and in combination with leucine, isoleucine, or valine were compared. The analyses revealed differential regulation of 40 proteins in TAU-Pro-Leu, 131 in TAU-Pro-Ile, and 179 in TAU-Pro-Val, as compared to metacyclics from TAU-Pro. Among these, 22%, 11%, and 13% of the proteins were associated with metabolic processes, respectively. Notably, enzymes related to glycolysis and the tricarboxylic acid (TCA) cycle were reduced in metacyclics with Pro-BCAAs, while enzymes involved in amino acid and purine metabolic pathways were increased. Furthermore, metacyclics with Pro-Ile and Pro-Val exhibited elevated enzymes linked to lipid and redox metabolism. The results revealed five proteins that were increased and four that were decreased in common in the presence of Pro+BCAAs, indicating their possible participation in key processes related to metacyclogenesis. These findings suggest that the presence of BCAAs can reshape the metabolism of metacyclics, contributing to the observed reduction in infectivity in these parasites.
Collapse
Affiliation(s)
- Janaina de Freitas Nascimento
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Francisca Natália de Luna Vitorino
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Renan Weege Achjian
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Ferreira AZL, de Araújo CN, Cardoso ICC, de Souza Mangabeira KS, Rocha AP, Charneau S, Santana JM, Motta FN, Bastos IMD. Metacyclogenesis as the Starting Point of Chagas Disease. Int J Mol Sci 2023; 25:117. [PMID: 38203289 PMCID: PMC10778605 DOI: 10.3390/ijms25010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024] Open
Abstract
Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular stages. To ensure its survival in these diverse environments, T. cruzi undergoes extreme morphological and molecular changes. The metacyclic trypomastigote (MT) form, which arises from the metacyclogenesis (MTG) process in the triatomine hindgut, serves as a crucial link between the insect and human hosts and can be considered the starting point of Chagas disease. This review provides an overview of the current knowledge regarding the parasite's life cycle, molecular pathways, and mechanisms involved in metabolic and morphological adaptations during MTG, enabling the MT to evade the immune system and successfully infect human cells.
Collapse
Affiliation(s)
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | - Isabela Cunha Costa Cardoso
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Amanda Pereira Rocha
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Flávia Nader Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
4
|
Povelones ML, Holmes NA, Povelones M. A sticky situation: When trypanosomatids attach to insect tissues. PLoS Pathog 2023; 19:e1011854. [PMID: 38128049 PMCID: PMC10734937 DOI: 10.1371/journal.ppat.1011854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Transmission of trypanosomatids to their mammalian hosts requires a complex series of developmental transitions in their insect vectors, including stable attachment to an insect tissue. While there are many ultrastructural descriptions of attached cells, we know little about the signaling events and molecular mechanisms involved in this process. Each trypanosomatid species attaches to a specific tissue in the insect at a particular stage of its life cycle. Attachment is mediated by the flagellum, which is modified to accommodate a filament-rich plaque within an expanded region of the flagellar membrane. Attachment immediately precedes differentiation to the mammal-infectious stage and in some cases a direct mechanistic link has been demonstrated. In this review, we summarize the current state of knowledge of trypanosomatid attachment in insects, including structure, function, signaling, candidate molecules, and changes in gene expression. We also highlight remaining questions about this process and how the field is poised to address them through modern approaches.
Collapse
Affiliation(s)
- Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Guerra-Slompo EP, Picchi-Constante GFA, Marek M, Romier C, Sippl W, Zanchin NIT. In cellulo and in vivo assays for compound testing against Trypanosoma cruzi. STAR Protoc 2023; 4:102058. [PMID: 36853683 PMCID: PMC9881407 DOI: 10.1016/j.xpro.2023.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/18/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Here, we describe a combined in cellulo and in vivo approach to identify compounds with higher potential for efficient inhibition of Trypanosoma cruzi. Phase I of in cellulo assays is designed to exclude inactive or toxic compounds, while phase II is designed for accurate IC50, CC50, and selective index (SI) determination. Compounds showing high SI are tested using in vivo infection models in parallel with benznidazole to assess their efficacy relative to a reference drug used for Chagas disease treatment. For complete details on the use and execution of this protocol, please refer to Marek et al. (2021).1.
Collapse
Affiliation(s)
| | | | - Martin Marek
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Christophe Romier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | | |
Collapse
|
6
|
Perdomo-Gómez CD, Ruiz-Uribe NE, González JM, Forero-Shelton M. Extensible membrane nanotubules mediate attachment of Trypanosoma cruzi epimastigotes under flow. PLoS One 2023; 18:e0283182. [PMID: 36947570 PMCID: PMC10032539 DOI: 10.1371/journal.pone.0283182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, an important cause of infectious chronic myocardiopathy in Latin America. The life cycle of the parasite involves two main hosts: a triatomine (arthropod hematophagous vector) and a mammal. Epimastigotes are flagellated forms inside the triatomine gut; they mature in its intestine into metacyclic trypomastigotes, the infective form for humans. Parasites attach despite the shear stress generated by fluid flow in the intestines of the host, but little is known about the mechanisms that stabilize attachment in these conditions. Here, we describe the effect of varying levels of shear stress on attached T. cruzi epimastigotes using a parallel plate flow chamber. When flow is applied, parasites are partially dragged but maintain a connection to the surface via ~40 nm wide filaments (nanotubules) and the activity of flagella is reduced. When flow stops, parasites return near their original position and flagellar motion resumes. Nanotubule elongation increases with increasing shear stress and is consistent with a model of membrane tether extension under force. Fluorescent probes used to confirm membrane composition also show micron-wide anchoring pads at the distal end of the nanotubules. Multiple tethering accounts for more resistance to large shear stresses and for reduced flagellar movement when flow is stopped. The formation of membrane nanotubules is a possible mechanism to enhance adherence to host cells under shear stress, favoring the continuity of the parasite´s life cycle.
Collapse
Affiliation(s)
- Cristhian David Perdomo-Gómez
- Laboratorio de Ciencias Básicas Médicas, School of Medicine, Universidad de los Andes, Bogotá, Colombia
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Nancy E Ruiz-Uribe
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - John Mario González
- Laboratorio de Ciencias Básicas Médicas, School of Medicine, Universidad de los Andes, Bogotá, Colombia
| | | |
Collapse
|
7
|
Oliveira C, Holetz FB, Alves LR, Ávila AR. Modulation of Virulence Factors during Trypanosoma cruzi Differentiation. Pathogens 2022; 12:pathogens12010032. [PMID: 36678380 PMCID: PMC9865030 DOI: 10.3390/pathogens12010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. This protozoan developed several mechanisms to infect, propagate, and survive in different hosts. The specific expression of proteins is responsible for morphological and metabolic changes in different parasite stages along the parasite life cycle. The virulence strategies at the cellular and molecular levels consist of molecules responsible for mediating resistance mechanisms to oxidative damage, cellular invasion, and immune evasion, performed mainly by surface proteins. Since parasite surface coat remodeling is crucial to invasion and infectivity, surface proteins are essential virulence elements. Understanding the factors involved in these processes improves the knowledge of parasite pathogenesis. Genome sequencing has opened the door to high-throughput technologies, allowing us to obtain a deeper understanding of gene reprogramming along the parasite life cycle and identify critical molecules for survival. This review therefore focuses on proteins regulated during differentiation into infective forms considered virulence factors and addresses the current known mechanisms acting in the modulation of gene expression, emphasizing mRNA signals, regulatory factors, and protein complexes.
Collapse
Affiliation(s)
- Camila Oliveira
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Centre de Recherche CERVO, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Fabíola Barbieri Holetz
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center, University Laval, Québec City, QC G1V 4G2, Canada
| | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Correspondence: ; Tel.: +55-41-33163230
| |
Collapse
|
8
|
da Silva-Gomes NL, Ruivo LADS, Moreira C, Meuser-Batista M, da Silva CF, Batista DDGJ, Fragoso S, de Oliveira GM, Soeiro MDNC, Moreira OC. Overexpression of TcNTPDase-1 Gene Increases Infectivity in Mice Infected with Trypanosoma cruzi. Int J Mol Sci 2022; 23:ijms232314661. [PMID: 36498985 PMCID: PMC9736689 DOI: 10.3390/ijms232314661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes located on the surface of the T. cruzi plasma membrane, which hydrolyze a wide range of tri-/-diphosphate nucleosides. In this work, we used previously developed genetically modified strains of Trypanosoma cruzi (T. cruzi), hemi-knockout (KO +/−) and overexpressing (OE) the TcNTPDase-1 gene to evaluate the parasite infectivity profile in a mouse model of acute infection (n = 6 mice per group). Our results showed significantly higher parasitemia and mortality, and lower weight in animals infected with parasites OE TcNTPDase-1, as compared to the infection with the wild type (WT) parasites. On the other hand, animals infected with (KO +/−) parasites showed no mortality during the 30-day trial and mouse weight was more similar to the non-infected (NI) animals. In addition, they had low parasitemia (45.7 times lower) when compared with parasites overexpressing TcNTPDase-1 from the hemi-knockout (OE KO +/−) group. The hearts of animals infected with the OE KO +/− and OE parasites showed significantly larger regions of cardiac inflammation than those infected with the WT parasites (p < 0.001). Only animals infected with KO +/− did not show individual electrocardiographic changes during the period of experimentation. Together, our results expand the knowledge on the role of NTPDases in T. cruzi infectivity, reenforcing the potential of this enzyme as a chemotherapy target to treat Chagas disease (CD).
Collapse
Affiliation(s)
- Natália Lins da Silva-Gomes
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | - Claudia Moreira
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | - Marcelo Meuser-Batista
- Laboratório de Educação Profissional em Técnicas Laboratoriais em Saúde, EPSJV/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | | | - Stênio Fragoso
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | | | | | - Otacilio C. Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
- Correspondence:
| |
Collapse
|
9
|
Buendía-Abad M, García-Palencia P, de Pablos LM, Martín-Hernández R, Higes M. The Haptomonad Stage of Crithidia acanthocephali in Apis mellifera Hindgut. Vet Sci 2022; 9:vetsci9060298. [PMID: 35737350 PMCID: PMC9229786 DOI: 10.3390/vetsci9060298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Crithidia acanthocephali is a trypanosomatid species that was initially described in the digestive tract of Hemiptera. However, this parasite was recently detected in honey bee colonies in Spain, raising the question as to whether bees can act as true hosts for this species. To address this issue, worker bees were experimentally infected with choanomastigotes from the early stationary growth phase and after 12 days, their hindgut was extracted for analysis by light microscopy and TEM. Although no cellular lesions were observed in the honey bee’s tissue, trypanosomatids had differentiated and adopted a haptomonad morphology, transforming their flagella into an attachment pad. This structure allows the protozoa to remain attached to the gut walls via hemidesmosomes-such as junctions. The impact of this species on honey bee health, as well as the pathogenic mechanisms involved, remains unknown. Nevertheless, these results suggest that insect trypanosomatids may have a broader range of hosts than initially thought.
Collapse
Affiliation(s)
- María Buendía-Abad
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain;
- Correspondence: (M.B.-A.); (M.H.)
| | - Pilar García-Palencia
- Departamento de Medicina Veterinaria y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28001 Madrid, Spain;
| | - Luis Miguel de Pablos
- Grupo de Bioquímica y Parasitología Molecular CTS-183, Departamento de Parasitología, Universidad de Granada, 18001 Granada, Spain;
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain;
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (Increcyt-Feder), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02001 Albacete, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain;
- Correspondence: (M.B.-A.); (M.H.)
| |
Collapse
|
10
|
Specker G, Estrada D, Radi R, Piacenza L. Trypanosoma cruzi Mitochondrial Peroxiredoxin Promotes Infectivity in Macrophages and Attenuates Nifurtimox Toxicity. Front Cell Infect Microbiol 2022; 12:749476. [PMID: 35186785 PMCID: PMC8855072 DOI: 10.3389/fcimb.2022.749476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease which is currently treated by nifurtimox (NFX) and benznidazole (BZ). Nevertheless, the mechanism of action of NFX is not completely established. Herein, we show the protective effects of T. cruzi mitochondrial peroxiredoxin (MPX) in macrophage infections and in response to NFX toxicity. After a 3-day treatment of epimastigotes with NFX, MPX content increased (2.5-fold) with respect to control, and interestingly, an MPX-overexpressing strain was more resistant to the drug. The generation of mitochondrial reactive species and the redox status of the low molecular weight thiols of the parasite were not affected by NFX treatment indicating the absence of oxidative stress in this condition. Since MPX was shown to be protective and overexpressed in drug-challenged parasites, non-classical peroxiredoxin activity was studied. We found that recombinant MPX exhibits holdase activity independently of its redox state and that its overexpression was also observed in temperature-challenged parasites. Moreover, increased holdase activity (2-fold) together with an augmented protease activity (proteasome-related) and an enhancement in ubiquitinylated proteins was found in NFX-treated parasites. These results suggest a protective role of MPX holdase activity toward NFX toxicity. Trypanosoma cruzi has a complex life cycle, part of which involves the invasion of mammalian cells, where parasite replication inside the host occurs. In the early stages of the infection, macrophages recognize and engulf T. cruzi with the generation of reactive oxygen and nitrogen species toward the internalized parasite. Parasites overexpressing MPX produced higher macrophage infection yield compared with wild-type parasites. The relevance of peroxidase vs. holdase activity of MPX during macrophage infections was assessed using conoidin A (CA), a covalent, cell-permeable inhibitor of peroxiredoxin peroxidase activity. Covalent adducts of MPX were detected in CA-treated parasites, which proves its action in vivo. The pretreatment of parasites with CA led to a reduced infection index in macrophages revealing that the peroxidase activity of peroxiredoxin is crucial during this infection process. Our results confirm the importance of peroxidase activity during macrophage infection and provide insights for the relevance of MPX holdase activity in NFX resistance.
Collapse
Affiliation(s)
- Gabriela Specker
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Damián Estrada
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Rosón JN, Vitarelli MDO, Costa-Silva HM, Pereira KS, Pires DDS, Lopes LDS, Cordeiro B, Kraus AJ, Cruz KNT, Calderano SG, Fragoso SP, Siegel TN, Elias MC, da Cunha JPC. H2B.V demarcates divergent strand-switch regions, some tDNA loci, and genome compartments in Trypanosoma cruzi and affects parasite differentiation and host cell invasion. PLoS Pathog 2022; 18:e1009694. [PMID: 35180281 PMCID: PMC8893665 DOI: 10.1371/journal.ppat.1009694] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/03/2022] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
Histone variants play a crucial role in chromatin structure organization and gene expression. Trypanosomatids have an unusual H2B variant (H2B.V) that is known to dimerize with the variant H2A.Z generating unstable nucleosomes. Previously, we found that H2B.V protein is enriched in tissue-derived trypomastigote (TCT) life forms, a nonreplicative stage of Trypanosoma cruzi, suggesting that this variant may contribute to the differences in chromatin structure and global transcription rates observed among parasite life forms. Here, we performed the first genome-wide profiling of histone localization in T. cruzi using epimastigotes and TCT life forms, and we found that H2B.V was preferentially located at the edges of divergent transcriptional strand switch regions, which encompass putative transcriptional start regions; at some tDNA loci; and between the conserved and disrupted genome compartments, mainly at trans-sialidase, mucin and MASP genes. Remarkably, the chromatin of TCT forms was depleted of H2B.V-enriched peaks in comparison to epimastigote forms. Interactome assays indicated that H2B.V associated specifically with H2A.Z, bromodomain factor 2, nucleolar proteins and a histone chaperone, among others. Parasites expressing reduced H2B.V levels were associated with higher rates of parasite differentiation and mammalian cell infectivity. Taken together, H2B.V demarcates critical genomic regions and associates with regulatory chromatin proteins, suggesting a scenario wherein local chromatin structures associated with parasite differentiation and invasion are regulated during the parasite life cycle.
Collapse
Affiliation(s)
- Juliana Nunes Rosón
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina–UNIFESP, São Paulo, Brazil
| | - Marcela de Oliveira Vitarelli
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Héllida Marina Costa-Silva
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Kamille Schmitt Pereira
- Department of Bioprocesses and Biotechnology, Universidade Federal do Paraná, Curitiba, Brazil
- Laboratory of Molecular and Systems Biology of Trypanosomatids, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - David da Silva Pires
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Leticia de Sousa Lopes
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Barbara Cordeiro
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Amelie J. Kraus
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universitäat in Munch, Munich, Germany
| | - Karin Navarro Tozzi Cruz
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Simone Guedes Calderano
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Stenio Perdigão Fragoso
- Department of Bioprocesses and Biotechnology, Universidade Federal do Paraná, Curitiba, Brazil
- Laboratory of Molecular and Systems Biology of Trypanosomatids, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - T. Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universitäat in Munch, Munich, Germany
| | - Maria Carolina Elias
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
12
|
Marek M, Ramos-Morales E, Picchi-Constante GFA, Bayer T, Norström C, Herp D, Sales-Junior PA, Guerra-Slompo EP, Hausmann K, Chakrabarti A, Shaik TB, Merz A, Troesch E, Schmidtkunz K, Goldenberg S, Pierce RJ, Mourão MM, Jung M, Schultz J, Sippl W, Zanchin NIT, Romier C. Species-selective targeting of pathogens revealed by the atypical structure and active site of Trypanosoma cruzi histone deacetylase DAC2. Cell Rep 2021; 37:110129. [PMID: 34936867 DOI: 10.1016/j.celrep.2021.110129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Writing and erasing of posttranslational modifications are crucial to phenotypic plasticity and antigenic variation of eukaryotic pathogens. Targeting pathogens' modification machineries, thus, represents a valid approach to fighting parasitic diseases. However, identification of parasitic targets and the development of selective anti-parasitic drugs still represent major bottlenecks. Here, we show that the zinc-dependent histone deacetylases (HDACs) of the protozoan parasite Trypanosoma cruzi are key regulators that have significantly diverged from their human counterparts. Depletion of T. cruzi class I HDACs tcDAC1 and tcDAC2 compromises cell-cycle progression and division, leading to cell death. Notably, tcDAC2 displays a deacetylase activity essential to the parasite and shows major structural differences with human HDACs. Specifically, tcDAC2 harbors a modular active site with a unique subpocket targeted by inhibitors showing substantial anti-parasitic effects in cellulo and in vivo. Thus, the targeting of the many atypical HDACs in pathogens can enable anti-parasitic selective chemical impairment.
Collapse
Affiliation(s)
- Martin Marek
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Elizabeth Ramos-Morales
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | | | - Theresa Bayer
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | | | - Daniel Herp
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Policarpo A Sales-Junior
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | | | - Kristin Hausmann
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | - Alokta Chakrabarti
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Tajith B Shaik
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Annika Merz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Edouard Troesch
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Samuel Goldenberg
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná 81350-010, Brazil
| | - Raymond J Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL -Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Marina M Mourão
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, SE-17165 Solna, Sweden
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | - Nilson I T Zanchin
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná 81350-010, Brazil.
| | - Christophe Romier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France.
| |
Collapse
|
13
|
Picchi-Constante GFA, Guerra-Slompo EP, Tahira AC, Alcantara MV, Amaral MS, Ferreira AS, Batista M, Batista CM, Goldenberg S, Verjovski-Almeida S, Zanchin NIT. Metacyclogenesis defects and gene expression hallmarks of histone deacetylase 4-deficient Trypanosoma cruzi cells. Sci Rep 2021; 11:21671. [PMID: 34737385 PMCID: PMC8569148 DOI: 10.1038/s41598-021-01080-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi—the causative agent of Chagas disease—like other kinetoplastids, relies mostly on post-transcriptional mechanisms for regulation of gene expression. However, trypanosomatids undergo drastic changes in nuclear architecture and chromatin structure along their complex life cycle which, combined with a remarkable set of reversible histone post-translational modifications, indicate that chromatin is also a target for control of gene expression and differentiation signals in these organisms. Chromatin-modifying enzymes have a direct impact on gene expression programs and DNA metabolism. In this work, we have investigated the function of T. cruzi histone deacetylase 4 (TcHDAC4). We show that, although TcHDAC4 is not essential for viability, metacyclic trypomastigote TcHDAC4 null mutants show a thin cell body and a round and less condensed nucleus located very close to the kinetoplast. Sixty-four acetylation sites were quantitatively evaluated, which revealed H2AT85ac, H4K10ac and H4K78ac as potential target sites of TcHDAC4. Gene expression analyses identified three chromosomes with overrepresented regions of differentially expressed genes in the TcHDAC4 knockout mutant compared with the wild type, showing clusters of either up or downregulated genes. The adjacent chromosomal location of some of these genes indicates that TcHDAC4 participates in gene expression regulation during T. cruzi differentiation.
Collapse
Affiliation(s)
| | | | - Ana Carolina Tahira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | | | - Murilo Sena Amaral
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | | | - Michel Batista
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná, 81350-010, Brazil
| | | | - Samuel Goldenberg
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná, 81350-010, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | | |
Collapse
|
14
|
Buendía-Abad M, García-Palencia P, de Pablos LM, Alunda JM, Osuna A, Martín-Hernández R, Higes M. First description of Lotmaria passim and Crithidia mellificae haptomonad stages in the honeybee hindgut. Int J Parasitol 2021; 52:65-75. [PMID: 34416272 DOI: 10.1016/j.ijpara.2021.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022]
Abstract
The remodelling of flagella into attachment structures is a common and important event in the trypanosomatid life cycle. Lotmaria passim and Crithidia mellificae can parasitize Apis mellifera, and as a result they might have a significant impact on honeybee health. However, there are details of their life cycle and the mechanisms underlying their pathogenicity in this host that remain unclear. Here we show that both L. passim promastigotes and C. mellificae choanomastigotes differentiate into haptomonad stages covering the ileum and rectum of honeybees. These haptomonad cells remain attached to the host surface via zonular hemidesmosome-like structures, as revealed by transmission electron microscopy. This work describes for the first known time the haptomonad morphotype of these species and their hemidesmosome-like attachments in A. mellifera, a key trait used by other trypanosomatid species to proliferate in the insect host hindgut.
Collapse
Affiliation(s)
- María Buendía-Abad
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain.
| | - Pilar García-Palencia
- Departamento de Medicina Veterinaria y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Miguel de Pablos
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain
| | - José María Alunda
- Departamento de Sanidad Animal, Grupo ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Osuna
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain; Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha, Albacete, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| |
Collapse
|
15
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Padilla AM, Yao PY, Landry TJ, Cooley GM, Mahaney SM, Ribeiro I, VandeBerg JL, Tarleton RL. High variation in immune responses and parasite phenotypes in naturally acquired Trypanosoma cruzi infection in a captive non-human primate breeding colony in Texas, USA. PLoS Negl Trop Dis 2021; 15:e0009141. [PMID: 33788859 PMCID: PMC8041201 DOI: 10.1371/journal.pntd.0009141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of human Chagas disease, is endemic to the southern region of the United States where it routinely infects many host species. The indoor/outdoor housing configuration used in many non-human primate research and breeding facilities in the southern of the USA provides the opportunity for infection by T. cruzi and thus provides source material for in-depth investigation of host and parasite dynamics in a natural host species under highly controlled and restricted conditions. For cynomolgus macaques housed at such a facility, we used a combination of serial blood quantitative PCR (qPCR) and hemoculture to confirm infection in >92% of seropositive animals, although each method alone failed to detect infection in >20% of cases. Parasite isolates obtained from 43 of the 64 seropositive macaques were of 2 broad genetic types (discrete typing units, (DTU's) I and IV); both within and between these DTU groupings, isolates displayed a wide variation in growth characteristics and virulence, elicited host immune responses, and susceptibility to drug treatment in a mouse model. Likewise, the macaques displayed a diversity in T cell and antibody response profiles that rarely correlated with parasite DTU type, minimum length of infection, or age of the primate. This study reveals the complexity of infection dynamics, parasite phenotypes, and immune response patterns that can occur in a primate group, despite being housed in a uniform environment at a single location, and the limited time period over which the T. cruzi infections were established.
Collapse
Affiliation(s)
- Angel M. Padilla
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Phil Y. Yao
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Tre J. Landry
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Gretchen M. Cooley
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Susan M. Mahaney
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, and Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Brownsville/Edinburg/Harlingen, Texas, United States of America
| | - Isabela Ribeiro
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - John L. VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, and Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Brownsville/Edinburg/Harlingen, Texas, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Muñoz-Calderón A, Silva-Gomes NL, Apodaca S, Alarcón de Noya B, Díaz-Bello Z, Souza LRQ, Costa ADT, Britto C, Moreira OC, Schijman AG. Toward the Establishment of a Single Standard Curve for Quantification of Trypanosoma cruzi Natural Populations Using a Synthetic Satellite Unit DNA Sequence. J Mol Diagn 2021; 23:521-531. [PMID: 33549859 DOI: 10.1016/j.jmoldx.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Accurate diagnostic tools and surrogate markers of parasitologic response to treatment are needed for managing Chagas disease. Quantitative real-time PCR (qPCR) is used for treatment monitoring, but variability in copy dosage and sequences of molecular target genes among different Trypanosoma cruzi strains limit the precision of quantitative measures. To improve qPCR quantification accuracy, we designed and evaluated a synthetic DNA molecule containing a satellite DNA (satDNA) repeat unit as standard for quantification of T. cruzi loads in clinical samples, independently of the parasite strain. Probit regression analysis established for Dm28c (TcI) and CL-Brener (TcVI) stocks similar 95% limit of detection values [0.903 (0.745 to 1.497) and 0.667 (CI, 0.113 to 3.927) copy numbers/μL, respectively] when synthetic DNA was the standard for quantification, allowing direct comparison of loads in samples infected with different discrete typing units. This standard curve was evaluated in 205 samples (38 acute oral and 19 chronic Chagas disease patients) from different geographical areas infected with various genotypes, including samples obtained during treatment follow-up; high agreement with parasitic load trends using standard curves based on DNA extracted from spiked blood with counted parasites was obtained. This qPCR-based quantification strategy will be a valuable tool in phase 3 clinical trials, to follow up patients under treatment or at risk of reactivation, and in experimental models using different parasite strains.
Collapse
Affiliation(s)
- Arturo Muñoz-Calderón
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr Héctor Torres" (INGEBI), Buenos Aires, Argentina
| | - Natalia Lins Silva-Gomes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sofia Apodaca
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr Héctor Torres" (INGEBI), Buenos Aires, Argentina
| | - Belkisyolé Alarcón de Noya
- Sección de Inmunologia, Instituto de Medicina Tropical "Dr Félix Pifano," Universidad Central de Venezuela, Caracas, Venezuela
| | - Zoraida Díaz-Bello
- Sección de Inmunologia, Instituto de Medicina Tropical "Dr Félix Pifano," Universidad Central de Venezuela, Caracas, Venezuela
| | - Leticia Rocha Quintino Souza
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Alexandre Dias Tavares Costa
- Laboratório de Ciências e Tecnologias Aplicadas à Saúde (LaCTAS), Instituto Carlos Chagas (ICC), Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Otacilio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Alejandro G Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr Héctor Torres" (INGEBI), Buenos Aires, Argentina.
| |
Collapse
|
18
|
Genome-Wide Proteomics and Phosphoproteomics Analysis of Trypanosoma cruzi During Differentiation. Methods Mol Biol 2021; 2116:139-159. [PMID: 32221920 DOI: 10.1007/978-1-0716-0294-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Trypanosoma cruzi is a pathogenic protozoan that still has an impact on public health, despite the decrease in the number of infection cases along the years. T. cruzi possesses an heteroxenic life cycle in which it differentiates in at least four forms. Among the differentiation processes, metacyclogenesis has been exploited in different views by researchers. An intriguing question that rises is how metacyclogenesis is triggered and controlled by cell signaling and which are the differentially expressed proteins and posttranslational modifications involved in this process. An important cell signaling pathway is the protein phosphorylation, and it is reinforced in T. cruzi in which the gene expression control occurs almost exclusively posttranscriptionally. Additionally, the number of protein kinases in T. cruzi is relatively high compared to other organisms. A way to approach these questions is evaluating the cells through phosphoproteomics and proteomics. In this chapter, we will describe the steps from the cell protein extraction, digestion and fractionation, phosphopeptide enrichment, to LC-MS/MS analysis as well as a brief overview on peptide identification. In addition, a published method for in vitro metacyclogenesis will be detailed.
Collapse
|
19
|
Lima ARJ, de Araujo CB, Bispo S, Patané J, Silber AM, Elias MC, da Cunha JPC. Nucleosome landscape reflects phenotypic differences in Trypanosoma cruzi life forms. PLoS Pathog 2021; 17:e1009272. [PMID: 33497423 PMCID: PMC7864430 DOI: 10.1371/journal.ppat.1009272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Trypanosoma cruzi alternates between replicative and nonreplicative life forms, accompanied by a shift in global transcription levels and by changes in the nuclear architecture, the chromatin proteome and histone posttranslational modifications. To gain further insights into the epigenetic regulation that accompanies life form changes, we performed genome-wide high-resolution nucleosome mapping using two T. cruzi life forms (epimastigotes and cellular trypomastigotes). By combining a powerful pipeline that allowed us to faithfully compare nucleosome positioning and occupancy, more than 125 thousand nucleosomes were mapped, and approximately 20% of them differed between replicative and nonreplicative forms. The nonreplicative forms have less dynamic nucleosomes, possibly reflecting their lower global transcription levels and DNA replication arrest. However, dynamic nucleosomes are enriched at nonreplicative regulatory transcription initiation regions and at multigenic family members, which are associated with infective-stage and virulence factors. Strikingly, dynamic nucleosome regions are associated with GO terms related to nuclear division, translation, gene regulation and metabolism and, notably, associated with transcripts with different expression levels among life forms. Finally, the nucleosome landscape reflects the steady-state transcription expression: more abundant genes have a more deeply nucleosome-depleted region at putative 5' splice sites, likely associated with trans-splicing efficiency. Taken together, our results indicate that chromatin architecture, defined primarily by nucleosome positioning and occupancy, reflects the phenotypic differences found among T. cruzi life forms despite the lack of a canonical transcriptional control context.
Collapse
Affiliation(s)
- Alex R. J. Lima
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Christiane B. de Araujo
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Saloe Bispo
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - José Patané
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - M. Carolina Elias
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
- * E-mail: (MCE); (JPCC)
| | - Julia P. C. da Cunha
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
- * E-mail: (MCE); (JPCC)
| |
Collapse
|
20
|
de Lima LP, Poubel SB, Yuan ZF, Rosón JN, Vitorino FNDL, Holetz FB, Garcia BA, da Cunha JPC. Improvements on the quantitative analysis of Trypanosoma cruzi histone post translational modifications: Study of changes in epigenetic marks through the parasite's metacyclogenesis and life cycle. J Proteomics 2020; 225:103847. [PMID: 32480077 DOI: 10.1016/j.jprot.2020.103847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/26/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Trypanosome histone N-terminal sequences are very divergent from the other eukaryotes, although they are still decorated by post-translational modifications (PTMs). Here, we used a highly robust workflow to analyze histone PTMs in the parasite Trypanosoma cruzi using mass spectrometry-based (MS-based) data-independent acquisition (DIA). We adapted the workflow for the analysis of the parasite's histone sequences by modifying the software EpiProfile 2.0, improving peptide and PTM quantification accuracy. This workflow could now be applied to the study of 141 T. cruzi modified histone peptides, which we used to investigate the dynamics of histone PTMs along the metacyclogenesis and the life cycle of T. cruzi. Global levels of histone acetylation and methylation fluctuates along metacyclogenesis, however most critical differences were observed between parasite life forms. More than 66 histone PTM changes were detected. Strikingly, the histone PTM pattern of metacyclic trypomastigotes is more similar to epimastigotes than to cellular trypomastigotes. Finally, we highlighted changes at the H4 N-terminus and at H3K76 discussing their impact on the trypanosome biology. Altogether, we have optimized a workflow easily applicable to the analysis of histone PTMs in T. cruzi and generated a dataset that may shed lights on the role of chromatin modifications in this parasite. SIGNIFICANCE: Trypanosomes are unicellular parasites that have divergent histone sequences, no chromosome condensation and a peculiar genome/gene regulation. Genes are transcribed from divergent polycistronic regions and post-transcriptional gene regulation play major role on the establishment of transcripts and protein levels. In this regard, the fact that their histones are decorated with multiple PTMs raises interesting questions about their role. Besides, this digenetic organism must adapt to different environments changing its metabolism accordingly. As metabolism and epigenetics are closely related, the study of histone PTMs in trypanosomes may enlighten this strikingly, and not yet fully understood, interplay. From a biomedical perspective, the comprehensive study of molecular mechanisms associated to the metacyclogenesis process is essential to create better strategies for controlling Chagas disease.
Collapse
Affiliation(s)
- Loyze P de Lima
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Saloe Bispo Poubel
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil; Instituto Carlos Chagas, FIOCRUZ, Rua Algacyr Munhoz Mader, 3775. CIC, Curitiba, PR 81350-010, Brazil
| | - Zuo-Fei Yuan
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juliana Nunes Rosón
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Francisca Nathalia de Luna Vitorino
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Fabiola Barbieri Holetz
- Instituto Carlos Chagas, FIOCRUZ, Rua Algacyr Munhoz Mader, 3775. CIC, Curitiba, PR 81350-010, Brazil
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Díaz-Olmos Y, Batista M, Ludwig A, Marchini FK. Characterising ISWI chromatin remodeler in Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2020; 115:e190457. [PMID: 32428081 PMCID: PMC7233268 DOI: 10.1590/0074-02760190457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Imitation SWItch (ISWI) ATPase is the catalytic subunit in diverse chromatin remodeling complexes. These complexes modify histone-DNA interactions and therefore play a pivotal role in different DNA-dependent processes. In Trypanosoma cruzi, a protozoan that controls gene expression principally post-transcriptionally, the transcriptional regulation mechanisms mediated by chromatin remodeling are poorly understood. OBJECTIVE To characterise the ISWI remodeler in T. cruzi (TcISWI). METHODS A new version of pTcGW vectors was constructed to express green fluorescent protein (GFP)-tagged TcISWI. CRISPR-Cas9 system was used to obtain parasites with inactivated TcISWI gene and we determined TcISWI partners by cryomilling-affinity purification-mass spectrometry (MS) assay as an approximation to start to unravel the function of this protein. FINDINGS Our approach identified known ISWI partners [nucleoplasmin-like protein (NLP), regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP)], previously characterised in T. brucei, and new components in TcISWI complex [DRBD2, DHH1 and proteins containing a domain characteristic of structural maintenance of chromosomes (SMC) proteins]. Data are available via ProteomeXchange with identifier PXD017869. MAIN CONCLUSIONS In addition to its participation in transcriptional silencing, as it was reported in T. brucei, the data generated here provide a framework that suggests a role for TcISWI chromatin remodeler in different nuclear processes in T. cruzi, including mRNA nuclear export control and chromatin compaction. Further work is necessary to clarify the TcISWI functional diversity that arises from this protein interaction study.
Collapse
Affiliation(s)
- Yirys Díaz-Olmos
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brazil
| | - Michel Batista
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brazil
| | - Adriana Ludwig
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brazil
| | - Fabricio K Marchini
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brazil
| |
Collapse
|
22
|
Silva-Gomes NL, Rampazzo RDCP, Moreira CMDN, Porcino GN, Dos Santos CMB, Krieger MA, Vasconcelos EG, Fragoso SP, Moreira OC. Knocking Down TcNTPDase-1 Gene Reduces in vitro Infectivity of Trypanosoma cruzi. Front Microbiol 2020; 11:434. [PMID: 32256481 PMCID: PMC7094052 DOI: 10.3389/fmicb.2020.00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 01/06/2023] Open
Abstract
Ecto-Nucleoside Triphosphate Diphosphohydrolases are enzymes that hydrolyze tri- and/or diphosphate nucleosides. Evidences pointed out to their participation in Trypanosoma cruzi virulence, infectivity, and purine acquisition. In this study, recombinant T. cruzi knocking out or overexpressing the TcNTPDase-1 gene were built, and the role of TcNTPDase-1 in the in vitro interaction with VERO cells was investigated. Results show that epimastigote forms of hemi-knockout parasites showed about 50% lower level of TcNTPDase-1 gene expression when compared to the wild type, while the T. cruzi overexpressing this gene reach 20 times higher gene expression. In trypomastigote forms, the same decreasing in TcNTPDase-1 gene expression was observed to the hemi-knockout parasites. The in vitro infection assays showed a reduction to 51.6 and 59.9% at the adhesion and to 25.2 and 26.4% at the endocytic indexes to the parasites knockout to one or other allele (Hygro and Neo hemi-knockouts), respectively. In contrast, the infection assays with T. cruzi overexpressing TcNTPDase-1 from the WT or Neo hemi-knockout parasites showed an opposite result, with the increasing to 287.7 and 271.1% at the adhesion and to 220.4 and 186.7% at the endocytic indexes, respectively. The parasitic load estimated in infected VERO cells by quantitative real time PCR corroborated these findings. Taken together, the partial silencing and overexpression of the TcNTPDase-1 gene generated viable parasites with low and high infectivity rates, respectively, corroborating that the enzyme encoded for this gene plays an important role to the T. cruzi infectivity.
Collapse
Affiliation(s)
- Natália Lins Silva-Gomes
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Gabriane Nascimento Porcino
- Laboratory of Structure and Function of Proteins, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Marco Aurélio Krieger
- Laboratory of Functional Genomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Eveline Gomes Vasconcelos
- Laboratory of Structure and Function of Proteins, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stenio Perdigão Fragoso
- Laboratory of Molecular Biology of Trypanosomatids, Carlos Chagas Institute, Curitiba, Brazil
| | - Otacilio C Moreira
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Ramirez-Barrios R, Susa EK, Smoniewski CM, Faacks SP, Liggett CK, Zimmer SL. A link between mitochondrial gene expression and life stage morphologies in Trypanosoma cruzi. Mol Microbiol 2020; 113:1003-1021. [PMID: 31961979 DOI: 10.1111/mmi.14466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
The protozoan Trypanosoma cruzi has a complicated dual-host life cycle, and starvation can trigger transition from the replicating insect stage to the mammalian-infectious nonreplicating insect stage (epimastigote to trypomastigote differentiation). Abundance of some mature RNAs derived from its mitochondrial genome increase during culture starvation of T. cruzi for unknown reasons. Here, we examine T. cruzi mitochondrial gene expression in the mammalian intracellular replicating life stage (amastigote), and uncover implications of starvation-induced changes in gene expression. Mitochondrial RNA levels in general were found to be lowest in actively replicating amastigotes. We discovered that mitochondrial respiration decreases during starvation in insect stage cells, despite the previously observed increases in mitochondrial mRNAs encoding electron transport chain (ETC) components. Surprisingly, T. cruzi epimastigotes in replete medium grow at normal rates when we genetically compromised their ability to perform insertion/deletion editing and thereby generate mature forms of some mitochondrial mRNAs. However, these cells, when starved, were impeded in the epimastigote to trypomastigote transition. Further, they experience a short-flagella phenotype that may also be linked to differentiation. We hypothesize a scenario where levels of mature RNA species or editing in the single T. cruzi mitochondrion are linked to differentiation by a yet-unknown signaling mechanism.
Collapse
Affiliation(s)
- Roger Ramirez-Barrios
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Emily K Susa
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Clara M Smoniewski
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Sean P Faacks
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Charles K Liggett
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| |
Collapse
|
24
|
Lucena ACR, Amorim JC, de Paula Lima CV, Batista M, Krieger MA, de Godoy LMF, Marchini FK. Quantitative phosphoproteome and proteome analyses emphasize the influence of phosphorylation events during the nutritional stress of Trypanosoma cruzi: the initial moments of in vitro metacyclogenesis. Cell Stress Chaperones 2019; 24:927-936. [PMID: 31368045 PMCID: PMC6717228 DOI: 10.1007/s12192-019-01018-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation is an important event in cell signaling that is modulated by kinases and phosphatases. In Trypanosoma cruzi, the etiological agent of Chagas disease, approximately 2% of the protein-coding genes encode for protein kinases. This parasite has a heteroxenic life cycle with four different development stages. In the midgut of invertebrate vector, epimastigotes differentiate into metacyclic trypomastigotes in a process known as metacyclogenesis. This process can be reproduced in vitro by submitting parasites to nutritional stress (NS). Aiming to contribute to the elucidation of mechanisms that trigger metacyclogenesis, we applied super-SILAC (super-stable isotope labeling by amino acids in cell culture) and LC-MS/MS to analyze different points during NS. This analysis resulted in the identification of 4205 protein groups and 3643 phosphopeptides with the location of 4846 phosphorylation sites. Several phosphosites were considered modulated along NS and are present in proteins associated with various functions, such as fatty acid synthesis and the regulation of protein expression, reinforcing the importance of phosphorylation and signaling events to the parasite. These modulated sites may be triggers of metacyclogenesis.
Collapse
Affiliation(s)
- Aline Castro Rodrigues Lucena
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Juliana Carolina Amorim
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Carla Vanessa de Paula Lima
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Michel Batista
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Marco Aurelio Krieger
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Lyris Martins Franco de Godoy
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Fabricio Klerynton Marchini
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
| |
Collapse
|
25
|
Filosa JN, Berry CT, Ruthel G, Beverley SM, Warren WC, Tomlinson C, Myler PJ, Dudkin EA, Povelones ML, Povelones M. Dramatic changes in gene expression in different forms of Crithidia fasciculata reveal potential mechanisms for insect-specific adhesion in kinetoplastid parasites. PLoS Negl Trop Dis 2019; 13:e0007570. [PMID: 31356610 PMCID: PMC6687205 DOI: 10.1371/journal.pntd.0007570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/08/2019] [Accepted: 06/22/2019] [Indexed: 01/08/2023] Open
Abstract
Kinetoplastids are a group of parasites that includes several medically-important species. These human-infective species are transmitted by insect vectors in which the parasites undergo specific developmental transformations. For each species, this includes a stage in which parasites adhere to insect tissue via a hemidesmosome-like structure. Although this structure has been described morphologically, it has never been molecularly characterized. We are using Crithidia fasciculata, an insect parasite that produces large numbers of adherent parasites inside its mosquito host, as a model kinetoplastid to investigate both the mechanism of adherence and the signals required for differentiation to an adherent form. An advantage of C. fasciculata is that adherent parasites can be generated both in vitro, allowing a direct comparison to cultured swimming forms, as well as in vivo within the mosquito. Using RNAseq, we identify genes associated with adherence in C. fasciculata. As almost all of these genes have orthologs in other kinetoplastid species, our findings may reveal shared mechanisms of adherence, allowing investigation of a crucial step in parasite development and disease transmission. In addition, dual-RNAseq allowed us to explore the interaction between the parasites and the mosquito. Although the infection is well-tolerated, anti-microbial peptides and other components of the mosquito innate immune system are upregulated. Our findings indicate that C. fasciculata is a powerful model system for probing kinetoplastid-insect interactions. Kinetoplastids are single-celled parasites that cause devastating human diseases worldwide. Although this group includes many species that infect a variety of hosts, they have a great deal of shared biology. One relatively unexplored aspect of the kinetoplastid life cycle is their ability to adhere to insect tissue. For pathogenic species, adherence is critical for transmission by insect vectors. We have used an insect parasite called Crithidia fasciculata as a model kinetoplastid to reveal shared mechanisms of insect adherence. We have compared gene expression profiles of motile, non-adherent C. fasciculata to those of C. fasciculata adhered to non-living substrates and those attached to the hindgut of mosquitoes. Through this analysis, we have identified a large number of candidate proteins that may mediate adhesion in these and related parasites. In addition, our findings suggest that the mosquito immune system is responding to the presence of parasites in the gut. These results establish a new, robust system to explore the interaction between kinetoplastids and their insect hosts.
Collapse
Affiliation(s)
- John N. Filosa
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Corbett T. Berry
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wesley C. Warren
- University of Missouri, Bond Life Sciences Center, Columbia, Missouri, United States of America
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter J. Myler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth A. Dudkin
- Department of Biology, Penn State Brandywine, Media, Pennsylvania, United States of America
| | - Megan L. Povelones
- Department of Biology, Penn State Brandywine, Media, Pennsylvania, United States of America
- * E-mail: (MLP); (MP)
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MLP); (MP)
| |
Collapse
|
26
|
Cámara MDLM, Balouz V, Centeno Cameán C, Cori CR, Kashiwagi GA, Gil SA, Macchiaverna NP, Cardinal MV, Guaimas F, Lobo MM, de Lederkremer RM, Gallo-Rodriguez C, Buscaglia CA. Trypanosoma cruzi surface mucins are involved in the attachment to the Triatoma infestans rectal ampoule. PLoS Negl Trop Dis 2019; 13:e0007418. [PMID: 31107901 PMCID: PMC6544316 DOI: 10.1371/journal.pntd.0007418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/31/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023] Open
Abstract
Background Trypanosoma cruzi, the agent of Chagas disease, is a protozoan parasite transmitted to humans by blood-sucking triatomine vectors. However, and despite its utmost biological and epidemiological relevance, T. cruzi development inside the digestive tract of the insect remains a poorly understood process. Methods/Principle findings Here we showed that Gp35/50 kDa mucins, the major surface glycoproteins from T. cruzi insect-dwelling forms, are involved in parasite attachment to the internal cuticle of the triatomine rectal ampoule, a critical step leading to its differentiation into mammal-infective forms. Experimental evidence supporting this conclusion could be summarized as follows: i) native and recombinant Gp35/50 kDa mucins directly interacted with hindgut tissues from Triatoma infestans, as assessed by indirect immunofluorescence assays; ii) transgenic epimastigotes over-expressing Gp35/50 kDa mucins on their surface coat exhibited improved attachment rates (~2–3 fold) to such tissues as compared to appropriate transgenic controls and/or wild-type counterparts; and iii) certain chemically synthesized compounds derived from Gp35/50 kDa mucins were able to specifically interfere with epimastigote attachment to the inner lining of T. infestans rectal ampoules in ex vivo binding assays, most likely by competing with or directly blocking insect receptor(s). A solvent-exposed peptide (smugS peptide) from the Gp35/50 kDa mucins protein scaffolds and a branched, Galf-containing trisaccharide (Galfβ1–4[Galpβ1–6]GlcNAcα) from their O-linked glycans were identified as main adhesion determinants for these molecules. Interestingly, exogenous addition of a synthetic Galfβ1–4[Galpβ1–6]GlcNAcα derivative or of oligosaccharides containing this structure impaired the attachment of Dm28c but not of CL Brener epimastigotes to triatomine hindgut tissues; which correlates with the presence of Galf residues on the Gp35/50 kDa mucins’ O-glycans on the former but not the latter parasite clone. Conclusion/Significance These results provide novel insights into the mechanisms underlying T. cruzi-triatomine interplay, and indicate that inter-strain variations in the O-glycosylation of Gp35/50 kDa mucins may lead to differences in parasite differentiation and hence, in parasite transmissibility to the mammalian host. Most importantly, our findings point to Gp35/50 kDa mucins and/or the Galf biosynthetic pathway, which is absent in mammals and insects, as appealing targets for the development of T. cruzi transmission-blocking strategies. Chagas disease, caused by the protozoan Trypanosoma cruzi, is a life-long and debilitating neglected illness of major significance to Latin America public health, for which no vaccine or adequate drugs are yet available. In this scenario, identification of novel drug targets and/or strategies aimed at controlling parasite transmission are urgently needed. By using ex vivo binding assays together with different biochemical and genetic approaches, we herein show that Gp35/50 kDa mucins, the major T. cruzi epimastigote surface glycoproteins, specifically adhere to the internal cuticle of the rectal ampoule of the triatomine vector, a critical step leading to their differentiation into mammal-infective metacyclic forms. Ex vivo binding assays in the presence of chemically synthesized analogs allowed the identification of a solvent-exposed peptide and a branched, galactofuranose (Galf)-containing trisaccharide (Galfβ1–4[Galpβ1–6]GlcNAcα) as major Gp35/50 kDa mucins adhesion determinants. Overall, these results provide novel insights into the mechanisms underlying the complex T. cruzi-triatomine interplay. In addition, and since the presence of Galf-based glycotopes on the O-glycans of Gp35/50 kDa mucins is restricted to certain parasite strains/clones, they also indicate that the Galfβ1–4[Galpβ1–6]GlcNAcα motif may contribute to the well-established phenotypic variability among T. cruzi isolates. Most importantly, and taking into account that Galf residues are not found in mammals, we propose Gp35/50 kDa mucins and/or Galf biosynthesis as appealing and novel targets for the development of T. cruzi transmission-blocking strategies.
Collapse
Affiliation(s)
- María de los Milagros Cámara
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Camila Centeno Cameán
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Carmen R. Cori
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Gustavo A. Kashiwagi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Santiago A. Gil
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, C1428EGA Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, C1428EGA Buenos Aires, Argentina
| | - Francisco Guaimas
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Maite Mabel Lobo
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Rosa M. de Lederkremer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
27
|
Cytosolic Fe-superoxide dismutase safeguards Trypanosoma cruzi from macrophage-derived superoxide radical. Proc Natl Acad Sci U S A 2019; 116:8879-8888. [PMID: 30979807 DOI: 10.1073/pnas.1821487116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (CD), contains exclusively Fe-dependent superoxide dismutases (Fe-SODs). During T. cruzi invasion to macrophages, superoxide radical (O2 •-) is produced at the phagosomal compartment toward the internalized parasite via NOX-2 (gp91-phox) activation. In this work, T. cruzi cytosolic Fe-SODB overexpressers (pRIBOTEX-Fe-SODB) exhibited higher resistance to macrophage-dependent killing and enhanced intracellular proliferation compared with wild-type (WT) parasites. The higher infectivity of Fe-SODB overexpressers compared with WT parasites was lost in gp91-phox -/- macrophages, underscoring the role of O2 •- in parasite killing. Herein, we studied the entrance of O2 •- and its protonated form, perhydroxyl radical [(HO2 •); pKa = 4.8], to T. cruzi at the phagosome compartment. At the acidic pH values of the phagosome lumen (pH 5.3 ± 0.1), high steady-state concentrations of O2 •- and HO2 • were estimated (∼28 and 8 µM, respectively). Phagosomal acidification was crucial for O2 •- permeation, because inhibition of the macrophage H+-ATPase proton pump significantly decreased O2 •- detection in the internalized parasite. Importantly, O2 •- detection, aconitase inactivation, and peroxynitrite generation were lower in Fe-SODB than in WT parasites exposed to external fluxes of O2 •- or during macrophage infections. Other mechanisms of O2 •- entrance participate at neutral pH values, because the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid decreased O2 •- detection. Finally, parasitemia and tissue parasite burden in mice were higher in Fe-SODB-overexpressing parasites, supporting the role of the cytosolic O2 •--catabolizing enzyme as a virulence factor for CD.
Collapse
|
28
|
Silva CSD, Carbajal-de-la-Fuente AL, Almeida CE, Gonçalves TCM, Santos-Mallet JRD. Morphobiological, morphometric and ultrastructural characterization of sylvatic Trypanosoma cruzi isolates from Rio de Janeiro state, Brazil. BRAZ J BIOL 2019; 79:294-303. [DOI: 10.1590/1519-6984.181719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/17/2017] [Indexed: 11/22/2022] Open
Abstract
Abstract Triatoma vitticeps is a triatomine with geographic distribution restrict to Brazil, which exhibits high prevalence of Trypanosoma cruzi natural infection. Of special epidemiologic concern, this species often invades households in the states of Rio de Janeiro, Minas Gerais and Espírito Santo. The objective of this study was to evaluate morphological and ultrastructural parameters on three T. cruzi isolates obtained from wild T. vitticeps specimens. The growth and cell differentiation of the parasite was evaluated through epimastigote and trypomastigote forms obtained in the growth curves for three distinct isolates. The maximum growth showed differences at the 20th day of the curve. Our in vitro results show a heterogeneity, regarding these features for samples cultivated under the same conditions. Morphometric analyzes based on the shape of epimastigotes and trypomastigotes corroborated such differentiation. These results highlight the need of better understanding the meaning of this diversity under an eco-epidemiological perspective.
Collapse
Affiliation(s)
- C. Santos da Silva
- Fundação Oswaldo Cruz, Brasil; Universidade Federal Rural do Rio de Janeiro, Brasil
| | | | | | | | | |
Collapse
|
29
|
Tavares de Oliveira M, Taciana Santos Silva K, Xavier Neves L, de Ornelas Toledo MJ, Castro-Borges W, de Lana M. Differential expression of proteins in genetically distinct Trypanosoma cruzi samples (TcI and TcII DTUs) isolated from chronic Chagas disease cardiac patients. Parasit Vectors 2018; 11:611. [PMID: 30497493 PMCID: PMC6267078 DOI: 10.1186/s13071-018-3181-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, a hemoflagellate protozoan parasite and the etiological agent of Chagas disease (CD), exhibits great genetic and biological diversity. Infected individuals may present clinical manifestations with different levels of severity. Several hypotheses have been proposed to attempt to correlate the diversity of clinical signs and symptoms to the genetic variability of T. cruzi. This work aimed to investigate the differential expression of proteins from two distinct genetic groups of T. cruzi (discrete typing units TcI and TcII), isolated from chronically infected individuals displaying the cardiac form of CD. For this purpose, epimastigote forms of the two isolates were cultured in vitro and the cells recovered for protein extraction. Comparative two-dimensional (2D) gel electrophoreses were performed and differentially expressed spots selected for identification by mass spectrometry, followed by database searching and protein categorization. RESULTS The 2D electrophoretic profiles revealed the complex composition of the T. cruzi extracted proteome. Protein spots were distributed along the entire pH and molecular mass ranges attesting for the integrity of the protein preparations. In total, 46 differentially expressed proteins were identified present in 40 distinct spots found in the comparative gel analyses. Of these, 16 displayed upregulation in the gel from TcI-typed parasites and 24 appeared overexpressed in the gel from TcII-typed parasites. Functional characterization of differentially expressed proteins revealed major alterations associated with stress response, lipid and amino acid metabolism in parasites of the TcII isolate, whilst those proteins upregulated in the TcI sample were primarily linked to central metabolic pathways. CONCLUSIONS The comparative 2D-gel electrophoresis allowed detection of major differences in protein expression between two T. cruzi isolates, belonging to the TcI and TcII genotypes. Our findings suggest that patients displaying the cardiac form of the disease harbor parasites capable of exhibiting distinct proteomic profiles. This should be of relevance to disease prognosis and treatment.
Collapse
Affiliation(s)
- Maykon Tavares de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP, Ouro Preto, MG 35400-000 Brazil
| | - Karina Taciana Santos Silva
- Departamento de Farmácia, Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP, Ouro Preto, MG 35400-000 Brazil
| | - Leandro Xavier Neves
- Programa de Pós-Graduação em Biotecnologia do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000, Ouro Preto, MG Brazil
| | - Max Jean de Ornelas Toledo
- Departamento de Ciências Básicas da Saúde – Parasitologia, Universidade Estadual de Maringá, CEP: 87020-900, Maringá, Paraná, PR Brazil
| | - William Castro-Borges
- Programa de Pós-Graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP, Ouro Preto, MG 35400-000 Brazil
- Programa de Pós-Graduação em Biotecnologia do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000, Ouro Preto, MG Brazil
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000, Ouro Preto, MG Brazil
| | - Marta de Lana
- Programa de Pós-Graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP, Ouro Preto, MG 35400-000 Brazil
- Departamento de Análises Clínicas, Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000, Ouro Preto, MG Brazil
| |
Collapse
|
30
|
Proteome-Wide Analysis of Trypanosoma cruzi Exponential and Stationary Growth Phases Reveals a Subcellular Compartment-Specific Regulation. Genes (Basel) 2018; 9:genes9080413. [PMID: 30111733 PMCID: PMC6115888 DOI: 10.3390/genes9080413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 12/17/2022] Open
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, cycles through different life stages characterized by defined molecular traits associated with the proliferative or differentiation state. In particular, T. cruzi epimastigotes are the replicative forms that colonize the intestine of the Triatomine insect vector before entering the stationary phase that is crucial for differentiation into metacyclic trypomastigotes, which are the infective forms of mammalian hosts. The transition from proliferative exponential phase to quiescent stationary phase represents an important step that recapitulates the early molecular events of metacyclogenesis, opening new possibilities for understanding this process. In this study, we report a quantitative shotgun proteomic analysis of the T. cruzi epimastigote in the exponential and stationary growth phases. More than 3000 proteins were detected and quantified, highlighting the regulation of proteins involved in different subcellular compartments. Ribosomal proteins were upregulated in the exponential phase, supporting the higher replication rate of this growth phase. Autophagy-related proteins were upregulated in the stationary growth phase, indicating the onset of the metacyclogenesis process. Moreover, this study reports the regulation of N-terminally acetylated proteins during growth phase transitioning, adding a new layer of regulation to this process. Taken together, this study reports a proteome-wide rewiring during T. cruzi transit from the replicative exponential phase to the stationary growth phase, which is the preparatory phase for differentiation.
Collapse
|
31
|
Wippel HH, Malgarin JS, Martins SDT, Vidal NM, Marcon BH, Miot HT, Marchini FK, Goldenberg S, Alves LR. The Nuclear RNA-binding Protein RBSR1 Interactome in Trypanosoma cruzi. J Eukaryot Microbiol 2018; 66:244-253. [PMID: 29984450 DOI: 10.1111/jeu.12666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, has been widely studied, reflecting both its medical importance and the particular features that make this pathogen an attractive model for basic biological studies. The repression of transcripts by messenger ribonucleoprotein (mRNP) complexes is an important pathway of post-transcriptional regulation in eukaryotes, including T. cruzi. RBSR1 is a serine-arginine (SR)-rich RNA-binding protein (RBP) in T. cruzi that contains one RNA-recognition motif (RRM); this protein has a primarily nuclear localization and is developmentally regulated, not being detected in metacyclic trypomastigotes. RBSR1 interacts with other RBPs, such as UBP1 and UBP2, and the nuclear SR-protein TRRM1. Phylogenetic analysis indicated that RBSR1 is orthologous to the human splicing factor SRSF7, what might indicate its possible involvement in pre-RNA processing. Accordingly, ribonomics data showed the enrichment of snoRNAs and snRNAs in the RBSR1 immunoprecipiatation complex, hence reinforcing the supposition that this protein might be involved in RNA processing in the nucleus.
Collapse
Affiliation(s)
- Helisa H Wippel
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Juliane S Malgarin
- Molecular Biology Institute of Paraná, IBMP, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Sharon de Toledo Martins
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Newton M Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland, 20894
| | - Bruna H Marcon
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Hálisson T Miot
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Fabricio K Marchini
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Samuel Goldenberg
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Lysangela R Alves
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| |
Collapse
|
32
|
Romaniuk MA, Frasch AC, Cassola A. Translational repression by an RNA-binding protein promotes differentiation to infective forms in Trypanosoma cruzi. PLoS Pathog 2018; 14:e1007059. [PMID: 29864162 PMCID: PMC6002132 DOI: 10.1371/journal.ppat.1007059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 06/14/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023] Open
Abstract
Trypanosomes, protozoan parasites of medical importance, essentially rely on post-transcriptional mechanisms to regulate gene expression in insect vectors and vertebrate hosts. RNA binding proteins (RBPs) that associate to the 3'-UTR of mature mRNAs are thought to orchestrate master developmental programs for these processes to happen. Yet, the molecular mechanisms by which differentiation occurs remain largely unexplored in these human pathogens. Here, we show that ectopic inducible expression of the RBP TcUBP1 promotes the beginning of the differentiation process from non-infective epimastigotes to infective metacyclic trypomastigotes in Trypanosoma cruzi. In early-log epimastigotes TcUBP1 promoted a drop-like phenotype, which is characterized by the presence of metacyclogenesis hallmarks, namely repositioning of the kinetoplast, the expression of an infective-stage virulence factor such as trans-sialidase, increased resistance to lysis by human complement and growth arrest. Furthermore, TcUBP1-ectopic expression in non-infective late-log epimastigotes promoted full development into metacyclic trypomastigotes. TcUBP1-derived metacyclic trypomastigotes were infective in cultured cells, and developed normally into amastigotes in the cytoplasm. By artificial in vivo tethering of TcUBP1 to the 3' untranslated region of a reporter mRNA we were able to determine that translation of the reporter was reduced by 8-fold, while its mRNA abundance was not significantly compromised. Inducible ectopic expression of TcUBP1 confirmed its role as a translational repressor, revealing significant reduction in the translation rate of multiple proteins, a reduction of polysomes, and promoting the formation of mRNA granules. Expression of TcUBP1 truncated forms revealed the requirement of both N and C-terminal glutamine-rich low complexity sequences for the development of the drop-like phenotype in early-log epimastigotes. We propose that a rise in TcUBP1 levels, in synchrony with nutritional deficiency, can promote the differentiation of T. cruzi epimastigotes into infective metacyclic trypomastigotes.
Collapse
Affiliation(s)
- Maria Albertina Romaniuk
- Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
| | - Alberto Carlos Frasch
- Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
| | - Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
33
|
Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form. Mol Biochem Parasitol 2018; 221:1-9. [DOI: 10.1016/j.molbiopara.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 01/23/2023]
|
34
|
Valenzuela L, Sepúlveda S, Ponce I, Galanti N, Cabrera G. The overexpression of TcAP1 endonuclease confers resistance to infective Trypanosoma cruzi trypomastigotes against oxidative DNA damage. J Cell Biochem 2018; 119:5985-5995. [PMID: 29575156 DOI: 10.1002/jcb.26795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/20/2018] [Indexed: 01/22/2023]
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease survives to DNA damage generated by ROS/RNS inside to their different hosts. In recent eukaryotes, oxidative DNA damage is repaired mainly by the Base Excision Repair (BER) pathway, being essential the apurinic/apyrimidinic endonuclease activity. Using a pTREX-gfp vector, the nucleotide sequence that encodes T. cruzi AP endonuclease TcAP1 (orthologue of human APE1) and a putative TcAP1 dominant negative (TcAP1DN), were transfectedand expressed in T. cruzi epimastigotes. TcAP1-GFP and TcAP1DN-GFP were expressed in those modified epimastigotes and found in the parasite nucleus. The endonucleases were purified under native conditions and the AP endonuclease activity was evaluated. While TcAP1 presents the expected AP endonuclease activity TcAP1DN does not. Moreover, TcAP1DN partially inhibits in vitro TcAP1 enzymatic activity. Transfected epimastigotes expressing TcAP1-GFP and TcAP1DN-GFP were differentiated to infective trypomastigotes. The infective parasites maintained both proteins (TcAP1-GFP and TcAP1DN-GFP) in the nucleus. The overexpression of TcAP1-GFP in epimastigotes and trypomastigotes increases the viability of both parasite forms when exposed to oxidative stress while the expression of TcAP1DN-GFP did not show any in vivo inhibitory effect, suggesting that endogenous TcAP1 constitutive expression overcomes the TcAP1DN inhibitory activity. Our results show that TcAP1 is important for trypomastigote survival under oxidative conditions similar to those found in infected mammalian cells, then increasing its permanence in the infected cells and the possibility of development of Chagas disease.
Collapse
Affiliation(s)
- Lucía Valenzuela
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Soía Sepúlveda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Iván Ponce
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Gonçalves CS, Ávila AR, de Souza W, Motta MCM, Cavalcanti DP. Revisiting the Trypanosoma cruzi metacyclogenesis: morphological and ultrastructural analyses during cell differentiation. Parasit Vectors 2018; 11:83. [PMID: 29409544 PMCID: PMC5801705 DOI: 10.1186/s13071-018-2664-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
Background Trypanosoma cruzi uses several strategies to survive in different hosts. A key step in the life-cycle of this parasite is metacyclogenesis, which involves various morphological, biochemical, and genetic changes that induce the differentiation of non-pathogenic epimastigotes into pathogenic metacyclic trypomastigotes. During metacyclogenesis, T. cruzi displays distinct morphologies and ultrastructural features, which have not been fully characterized. Results We performed a temporal description of metacyclogenesis using different microscopy techniques that resulted in the identification of three intermediate forms of T. cruzi: intermediates I, II and III. Such classification was based on morphological and ultrastructural aspects as the location of the kinetoplast in relation to the nucleus, kinetoplast shape and kDNA topology. Furthermore, we suggested that metacyclic trypomastigotes derived from intermediate forms that had already detached from the substrate. We also found that changes in the kinetoplast morphology and kDNA arrangement occurred only after the repositioning of this structure toward the posterior region of the cell body. These changes occurred during the later stages of differentiation. In contrast, changes in the nucleus shape began as soon as metacyclogenesis was initiated, while changes in nuclear ultrastructure, such as the loss of the nucleolus, were only observed during later stages of differentiation. Finally, we found that kDNA networks of distinct T. cruzi forms present different patterns of DNA topology. Conclusions Our study of T. cruzi metacyclogenesis revealed important aspects of the morphology and ultrastructure of this intriguing cell differentiation process. This research expands our understanding of this parasite’s fascinating life-cycle. It also highlights the study of T. cruzi as an important and exciting model system for investigating diverse aspects of cellular, molecular, and evolutionary biology.
Collapse
Affiliation(s)
- Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil.,Laboratório de Microbiologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia- Inmetro, Rio de Janeiro, RJ, Brazil
| | - Andrea Rodrigues Ávila
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danielle Pereira Cavalcanti
- Laboratório de Microbiologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia- Inmetro, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
36
|
Schmidt JC, Manhães L, Fragoso SP, Pavoni DP, Krieger MA. Involvement of STI1 protein in the differentiation process of Trypanosoma cruzi. Parasitol Int 2017; 67:131-139. [PMID: 29081390 DOI: 10.1016/j.parint.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
The protozoan Trypanosoma cruzi is a parasite exposed to several environmental stressors inside its invertebrate and vertebrate hosts. Although stress conditions are involved in its differentiation processes, little information is available about the stress response proteins engaged in these activities. This work reports the first known association of the stress-inducible protein 1 (STI1) with the cellular differentiation process in a unicellular eukaryote. Albeit STI1 expression is constitutive in epimastigotes and metacyclic trypomastigotes, higher protein levels were observed in late growth phase epimastigotes subjected to nutritional stress. Analysis by indirect immunofluorescence revealed that T. cruzi STI1 (TcSTI1) is located throughout the cell cytoplasm, with some cytoplasmic granules appearing in greater numbers in late growing epimastigotes and late growing epimastigotes subjected to nutritional stress. We observed that part of the fluorescence signal from both TcSTI1 and TcHSP70 colocalized around the nucleus. Gene silencing of sti1 in Trypanosoma brucei did not affect cell growth. Similarly, the growth of T. cruzi mutant parasites with a single allele sti1 gene knockout was not affected. However, the differentiation of epimastigotes in metacyclic trypomastigotes (metacyclogenesis) was compromised. Lower production rates and numbers of metacyclic trypomastigotes were obtained from the mutant parasites compared with the wild-type parasites. These data indicate that reduced levels of TcSTI1 decrease the rate of in vitro metacyclogenesis, suggesting that this protein may participate in the differentiation process of T. cruzi.
Collapse
Affiliation(s)
- Juliana C Schmidt
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil; Health Science Department, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, Santa Catarina, Brazil
| | - Lauro Manhães
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil
| | - Stenio P Fragoso
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil
| | - Daniela P Pavoni
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil.
| | - Marco A Krieger
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil; Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, Paraná, Brazil
| |
Collapse
|
37
|
Amorim JC, Batista M, da Cunha ES, Lucena ACR, Lima CVDP, Sousa K, Krieger MA, Marchini FK. Quantitative proteome and phosphoproteome analyses highlight the adherent population during Trypanosoma cruzi metacyclogenesis. Sci Rep 2017; 7:9899. [PMID: 28852088 PMCID: PMC5574995 DOI: 10.1038/s41598-017-10292-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/02/2017] [Indexed: 11/15/2022] Open
Abstract
Trypanosoma cruzi metacyclogenesis is a natural process that occurs inside the triatomine vector and corresponds to the differentiation of non-infective epimastigotes into infective metacyclic trypomastigotes. The biochemical alterations necessary for the differentiation process have been widely studied with a focus on adhesion and nutritional stress. Here, using a mass spectrometry approach, a large-scale phospho(proteome) study was performed with the aim of understanding the metacyclogenesis processes in a quantitative manner. The results indicate that major modulations in the phospho(proteome) occur under nutritional stress and after 12 and 24 h of adhesion. Significant changes involve key cellular processes, such as translation, oxidative stress, and the metabolism of macromolecules, including proteins, lipids, and carbohydrates. Analysis of the signalling triggered by kinases and phosphatases from 7,336 identified phosphorylation sites demonstrates that 260 of these sites are modulated throughout the differentiation process, and some of these modulated proteins have previously been identified as drug targets in trypanosomiasis treatment. To the best of our knowledge, this study provides the first quantitative results highlighting the modulation of phosphorylation sites during metacyclogenesis and the greater coverage of the proteome to the parasite during this process. The data are available via ProteomeXchange with identifier number PXD006171.
Collapse
Affiliation(s)
- Juliana C Amorim
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Michel Batista
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.,Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Elizabeth S da Cunha
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Aline C R Lucena
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Carla V de Paula Lima
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Karla Sousa
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Marco A Krieger
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Fabricio K Marchini
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil. .,Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
| |
Collapse
|
38
|
Moreira CMDN, Batista CM, Fernandes JC, Kessler RL, Soares MJ, Fragoso SP. Knockout of the gamma subunit of the AP-1 adaptor complex in the human parasite Trypanosoma cruzi impairs infectivity and differentiation and prevents the maturation and targeting of the major protease cruzipain. PLoS One 2017; 12:e0179615. [PMID: 28759609 PMCID: PMC5536268 DOI: 10.1371/journal.pone.0179615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022] Open
Abstract
The AP-1 Adaptor Complex assists clathrin-coated vesicle assembly in the trans-Golgi network (TGN) of eukaryotic cells. However, the role of AP-1 in the protozoan Trypanosoma cruzi-the Chagas disease parasite-has not been addressed. Here, we studied the function and localization of AP-1 in different T. cruzi life cycle forms, by generating a gene knockout of the large AP-1 subunit gamma adaptin (TcAP1-γ), and raising a monoclonal antibody against TcAP1-γ. Co-localization with a Golgi marker and with the clathrin light chain showed that TcAP1-γ is located in the Golgi, and it may interact with clathrin in vivo, at the TGN. Epimastigote (insect form) parasites lacking TcAP1-γ (TcγKO) have reduced proliferation and differentiation into infective metacyclic trypomastigotes (compared with wild-type parasites). TcγKO parasites have also displayed significantly reduced infectivity towards mammalian cells. Importantly, TcAP1-γ knockout impaired maturation and transport to lysosome-related organelles (reservosomes) of a key cargo-the major cysteine protease cruzipain, which is important for parasite nutrition, differentiation and infection. In conclusion, the defective processing and transport of cruzipain upon AP-1 ablation may underlie the phenotype of TcγKO parasites.
Collapse
Affiliation(s)
| | | | | | - Rafael Luis Kessler
- Laboratory of Functional Genomics. Instituto Carlos Chagas/Fiocruz, Curitiba - PR, Brazil
| | - Maurilio José Soares
- Laboratory of Cell Biology, Instituto Carlos Chagas/Fiocruz, Curitiba - PR, Brazil
| | - Stenio Perdigão Fragoso
- Laboratory of Molecular Biology of Trypanosomatids, Instituto Carlos Chagas/Fiocruz, Curitiba - PR, Brazil
| |
Collapse
|
39
|
Kessler RL, Contreras VT, Marliére NP, Aparecida Guarneri A, Villamizar Silva LH, Mazzarotto GACA, Batista M, Soccol VT, Krieger MA, Probst CM. Recently differentiated epimastigotes fromTrypanosoma cruziare infective to the mammalian host. Mol Microbiol 2017; 104:712-736. [DOI: 10.1111/mmi.13653] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Víctor Tulio Contreras
- Laboratorio de Protozoología, Centro de Biología Molecular de Parásitos, Facultad Ciencias de la Salud; Universidad de Carabobo; Valencia Venezuela
| | - Newmar Pinto Marliére
- Vector Behavior and Pathogen Interaction Group; Centro de Pesquisas René Rachou, Fiocruz; Belo Horizonte Minas Gerais Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group; Centro de Pesquisas René Rachou, Fiocruz; Belo Horizonte Minas Gerais Brazil
| | | | | | | | - Vanete Thomaz Soccol
- Programa de Pós-Graduação em Processos Biotecnológicos e Biotecnologia, Centro Politécnico; Universidade Federal do Paraná; Curitiba PR Brazil
| | | | | |
Collapse
|
40
|
Polymorphisms of blood forms and in vitro metacyclogenesis of Trypanosoma cruzi I, II, and IV. Exp Parasitol 2017; 176:8-15. [PMID: 28212811 DOI: 10.1016/j.exppara.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 11/20/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of American trypanosomiasis has broad biological and genetic diversity. Remaining to be studied are polymorphisms of the blood forms and metacyclogenesis of different T. cruzi discrete typing units (DTUs). Our goal was to evaluate the relationship between T. cruzi DTUs, the morphology of blood trypomastigotes, and in vitro metacyclogenesis. T. cruzi strains that pertained to DTUs TcI, TcII, and TcIV from different Brazilian states were used. Parameters that were related to the morphology of eight strains were assessed in thin blood smears that were obtained from mice that were inoculated with blood or culture forms, depending on strain. The metacyclogenesis of 12 strains was measured using smears with Liver Infusion Tryptose culture medium and M16 culture medium (which is poor in nutrients and has a low pH) at the exponential phase of growth, both stained with Giemsa. The morphological pattern of TcII strains was consistent with broad forms of the parasite. In TcIV strains, slender forms predominated. The Y strain (TcII) was morphologically more similar to TcIV. Significant differences in polymorphisms were observed between DTUs. Metacyclogenesis parameters, although displaying large standard deviations, differed between the DTUs, with the following descending rank order: TcII > TcI > TcIV. The mean numbers of metacyclic trypomastigotes for TcII were significantly higher than the other DTUs. Although the DTUs presented overlapping characteristics, the general pattern was that different DTUs exhibited significantly different morphologies and metacyclogenesis, suggesting that the genetic diversity of T. cruzi could be related to parameters that are associated with the evolution of infection in mammalian hosts and its ability to disperse in nature.
Collapse
|
41
|
Guarneri AA, Lorenzo MG. Triatomine physiology in the context of trypanosome infection. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:66-76. [PMID: 27401496 DOI: 10.1016/j.jinsphys.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Triatomines are hematophagous insects that feed on the blood of vertebrates from different taxa, but can occasionally also take fluids from invertebrate hosts, including other insects. During the blood ingestion process, these insects can acquire diverse parasites that can later be transmitted to susceptible vertebrates if they complete their development inside bugs. Trypanosoma cruzi, the etiological agent of Chagas disease, and Trypanosoma rangeli are protozoan parasites transmitted by triatomines, the latter only transmitted by Rhodnius spp. The present work makes an extensive revision of studies evaluating triatomine-trypanosome interaction, with special focus on Rhodnius prolixus interacting with the two parasites. The sequences of events encompassing the development of these trypanosomes inside bugs and the consequent responses of insects to this infection, as well as many pathological effects produced by the parasites are discussed.
Collapse
Affiliation(s)
- Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil.
| | - Marcelo Gustavo Lorenzo
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
42
|
Smircich P, Eastman G, Bispo S, Duhagon MA, Guerra-Slompo EP, Garat B, Goldenberg S, Munroe DJ, Dallagiovanna B, Holetz F, Sotelo-Silveira JR. Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics 2015; 16:443. [PMID: 26054634 PMCID: PMC4460968 DOI: 10.1186/s12864-015-1563-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 04/22/2015] [Indexed: 12/02/2022] Open
Abstract
Background Due to the absence of transcription initiation regulation of protein coding genes transcribed by RNA polymerase II, posttranscriptional regulation is responsible for the majority of gene expression changes in trypanosomatids. Therefore, cataloging the abundance of mRNAs (transcriptome) and the level of their translation (translatome) is a key step to understand control of gene expression in these organisms. Results Here we assess the extent of regulation of the transcriptome and the translatome in the Chagas disease causing agent, Trypanosoma cruzi, in both the non-infective (epimastigote) and infective (metacyclic trypomastigote) insect’s life stages using RNA-seq and ribosome profiling. The observed steady state transcript levels support constitutive transcription and maturation implying the existence of distinctive posttranscriptional regulatory mechanisms controlling gene expression levels at those parasite stages. Meanwhile, the downregulation of a large proportion of the translatome indicates a key role of translation control in differentiation into the infective form. The previously described proteomic data correlate better with the translatomes than with the transcriptomes and translational efficiency analysis shows a wide dynamic range, reinforcing the importance of translatability as a regulatory step. Translation efficiencies for protein families like ribosomal components are diminished while translation of the transialidase virulence factors is upregulated in the quiescent infective metacyclic trypomastigote stage. Conclusions A large subset of genes is modulated at the translation level in two different stages of Trypanosoma cruzi life cycle. Translation upregulation of virulence factors and downregulation of ribosomal proteins indicates different degrees of control operating to prepare the parasite for an infective life form. Taking together our results show that translational regulation, in addition to regulation of steady state level of mRNA, is a major factor playing a role during the parasite differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1563-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Smircich
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay. .,Department of Genetics. School of Medicine, Universidad de la República, Montevideo, Uruguay.
| | - Guillermo Eastman
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay.
| | - Saloe Bispo
- Laboratory of Gene Expression Regulation Studies Carlos Chagas Institute, FIOCRUZ, Curitiba, 81350-010, Brazil.
| | - María Ana Duhagon
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay. .,Department of Genetics. School of Medicine, Universidad de la República, Montevideo, Uruguay.
| | - Eloise P Guerra-Slompo
- Laboratory of Gene Expression Regulation Studies Carlos Chagas Institute, FIOCRUZ, Curitiba, 81350-010, Brazil.
| | - Beatriz Garat
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay.
| | - Samuel Goldenberg
- Laboratory of Gene Expression Regulation Studies Carlos Chagas Institute, FIOCRUZ, Curitiba, 81350-010, Brazil.
| | - David J Munroe
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Bruno Dallagiovanna
- Laboratory of Gene Expression Regulation Studies Carlos Chagas Institute, FIOCRUZ, Curitiba, 81350-010, Brazil.
| | - Fabiola Holetz
- Laboratory of Gene Expression Regulation Studies Carlos Chagas Institute, FIOCRUZ, Curitiba, 81350-010, Brazil.
| | - Jose R Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay. .,Department of Cell and Molecular Biology, School of Sciences, Universidad de la Republica, Montevideo, Uruguay.
| |
Collapse
|
43
|
Alves LR, Oliveira C, Goldenberg S. Eukaryotic translation elongation factor-1 alpha is associated with a specific subset of mRNAs in Trypanosoma cruzi. BMC Microbiol 2015; 15:104. [PMID: 25986694 PMCID: PMC4436862 DOI: 10.1186/s12866-015-0436-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/05/2015] [Indexed: 11/17/2022] Open
Abstract
Background Regulation of gene expression in trypanosomatids is mainly posttranscriptional. Tight regulation of mRNA stability and access to polysomes allows Trypanosoma cruzi to adapt to different environmental conditions during its life cycle. Posttranscriptional regulation requires association between mRNAs and specific proteins to form mRNP complexes. Proteins that lack a canonical RNA-binding domain, such as eukaryotic elongation factor-1α (EF-1α), may also associate with mRNPs. EF-1α is conserved in many organisms, and it plays roles in many cellular processes other than translation, including RNA transport, the cell cycle, and apoptosis. Results In a previous study, EF-1α was found associated with mRNP-forming mRNAs in polysome-free fractions both in epimastigotes growing under normal conditions and in nutritionally stressed parasites. This finding suggested the possibility that EF-1α has a non-canonical function. Thus, we investigated the dynamics of EF-1α in association with T. cruzi epimastigote mRNAs under normal and stressed nutritional conditions. EF-1α is expressed throughout the parasite life cycle, but it shows a slight decrease in protein levels in the metacyclic trypomastigote form. The protein is cytoplasmically localized with a granular pattern in all forms analyzed. Following puromycin treatment, EF-1α migrated with the heaviest gradient fractions in a sucrose polysome profile, indicating that its association with large protein complexes was independent of the translation machinery. We next characterized the EF-1α-associated mRNAs in unstressed and stressed epimastigotes. We observed that specific subsets of mRNAs were associated with EF-1α-mRNPs in unstressed or stressed epimastigotes. Some mRNAs were identified in both physiological conditions, whereas others were condition-specific. Gene ontology analysis identified enrichment of gene sets involved in single-organism metabolic processes, amino acid metabolic processes, ATP and metal ion binding, glycolysis, glutamine metabolic processes, and cobalt and iron ion binding. Conclusion These results indicate that in T. cruzi, as in other eukaryotes, EF-1α may play a non-canonical cellular role. We observed the enrichment of functionally related transcripts bound to EF-1α in normal growth conditions as well as in nutritionally stressed cell indicating a potential role of EF-1α mRNP in stress response. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0436-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Camila Oliveira
- Instituto Carlos Chagas, Fiocruz - PR, Curitiba, Parana, Brazil
| | | |
Collapse
|
44
|
Hamedi A, Botelho L, Britto C, Fragoso SP, Umaki ACS, Goldenberg S, Bottu G, Salmon D. In vitro metacyclogenesis of Trypanosoma cruzi induced by starvation correlates with a transient adenylyl cyclase stimulation as well as with a constitutive upregulation of adenylyl cyclase expression. Mol Biochem Parasitol 2015; 200:9-18. [PMID: 25912925 DOI: 10.1016/j.molbiopara.2015.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
The Trypanosoma cruzi adenylyl cyclase (AC) multigene family encodes different isoforms (around 15) sharing a variable large N-terminal domain, which is extracellular and receptor-like, followed by a transmembrane helix and a conserved C-terminal catalytic domain. It was proposed that these key enzymes in the cAMP signalling pathway allow the parasite to sense its changing extracellular milieu in order to rapidly adapt to its new environment, which is generally achieved through a differentiation process. One of the critical differentiation events the parasitic protozoan T. cruzi undergoes during its life cycle, known as metacyclogenesis, occurs in the digestive tract of the insect and corresponds to the differentiation from noninfective epimastigotes to infective metacyclic trypomastigote forms. By in vitro monitoring the activity of AC during metacyclogenesis, we showed that both the activity of AC and the intracellular cAMP content follow a similar pattern of transient stimulation in a two-step process, with a first activation peak occurring during the first hours of nutritional stress and a second peak between 6 and 48 h, corresponding to the cellular adhesion. During this differentiation process, a general mechanism of upregulation of AC expression of both mRNA and protein is triggered and in particular for a major subclass of these enzymes that are present in various gene copies commonly associated to the THT gene clusters. Although the scattered genome distribution of these gene copies is rather unusual in trypanosomatids and seems to be a recent acquisition in the evolution of the T. cruzi clade, their encoded product redistributed on the flagellum of the parasite upon differentiation could be important to sense the extracellular milieu.
Collapse
Affiliation(s)
- Afsaneh Hamedi
- Fiocruz, Instituto Oswaldo Cruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Larisse Botelho
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
| | - Stenio Perdigão Fragoso
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil
| | | | - Samuel Goldenberg
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil
| | - Guy Bottu
- Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
45
|
De Paula Lima CV, Batista M, Kugeratski FG, Vincent IM, Soares MJ, Probst CM, Krieger MA, Marchini FK. LM14 defined medium enables continuous growth of Trypanosoma cruzi. BMC Microbiol 2014; 14:238. [PMID: 25213265 PMCID: PMC4172853 DOI: 10.1186/s12866-014-0238-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, alternates between distinct morphological and functional forms during its life cycle. Axenic multiplication and differentiation processes of this protozoan parasite can be reproduced in vitro, enabling the isolation and study of the different evolutionary forms. Although there are several publications attempting the cultivation of T. cruzi under chemically defined conditions, in our experience none of the published media are capable of maintaining T. cruzi in continuous growth. RESULTS In this work we modified a known chemically defined medium for Trypanosoma brucei growth. The resulting LM14 and LM14B defined media enabled cultivation of five different strains of T. cruzi for more than forty passages until now. The parasite's biological characteristics such as morphology and differentiation to metacyclic trypomastigotes were maintained when defined media is used. CONCLUSIONS The establishment of a defined medium for T. cruzi cultivation is an important tool for basic biological research allowing several different approaches, providing new perspectives for further studies related to cell biology of this parasite.
Collapse
|
46
|
Golgi UDP-GlcNAc:polypeptide O-α-N-Acetyl-d-glucosaminyltransferase 2 (TcOGNT2) regulates trypomastigote production and function in Trypanosoma cruzi. EUKARYOTIC CELL 2014; 13:1312-27. [PMID: 25084865 DOI: 10.1128/ec.00165-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All life cycle stages of the protozoan parasite Trypanosoma cruzi are enveloped by mucin-like glycoproteins which, despite major changes in their polypeptide cores, are extensively and similarly O-glycosylated. O-Glycan biosynthesis is initiated by the addition of αGlcNAc to Thr in a reaction catalyzed by Golgi UDP-GlcNAc:polypeptide O-α-N-acetyl-d-glucosaminyltransferases (ppαGlcNAcTs), which are encoded by TcOGNT1 and TcOGNT2. We now directly show that TcOGNT2 is associated with the Golgi apparatus of the epimastigote stage and is markedly downregulated in both differentiated metacyclic trypomastigotes (MCTs) and cell culture-derived trypomastigotes (TCTs). The significance of downregulation was examined by forced continued expression of TcOGNT2, which resulted in a substantial increase of TcOGNT2 protein levels but only modestly increased ppαGlcNAcT activity in extracts and altered cell surface glycosylation in TCTs. Constitutive TcOGNT2 overexpression had no discernible effect on proliferating epimastigotes but negatively affected production of both types of trypomastigotes. MCTs differentiated from epimastigotes at a low frequency, though they were apparently normal based on morphological and biochemical criteria. However, these MCTs exhibited an impaired ability to produce amastigotes and TCTs in cell culture monolayers, most likely due to a reduced infection frequency. Remarkably, inhibition of MCT production did not depend on TcOGNT2 catalytic activity, whereas TCT production was inhibited only by active TcOGNT2. These findings indicate that TcOGNT2 downregulation is important for proper differentiation of MCTs and functioning of TCTs and that TcOGNT2 regulates these functions by using both catalytic and noncatalytic mechanisms.
Collapse
|
47
|
Alves LR, Oliveira C, Mörking PA, Kessler RL, Martins ST, Romagnoli BAA, Marchini FK, Goldenberg S. The mRNAs associated to a zinc finger protein from Trypanosoma cruzi shift during stress conditions. RNA Biol 2014; 11:921-33. [PMID: 25180711 PMCID: PMC4179965 DOI: 10.4161/rna.29622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Trypanosome gene expression is regulated almost exclusively at the posttranscriptional level, through mRNA stability, storage and degradation. Here, we characterize the ribonucleoprotein complex (mRNPs) corresponding to the zinc finger protein TcZC3H39 from T. cruzi comparing cells growing in normal conditions and under nutritional stress. The nutritional stress is a key step during T. cruzi differentiation from epimastigote form to human infective metacyclic trypomastigote form. The mechanisms by which the stress, altogether with other stimuli, triggers differentiation is not well understood. This work aims to characterize the TcZC3H39 protein during stress response. Using cells cultured in normal and stress conditions, we observed a dynamic change in TcZC3H39 granule distribution, which appeared broader in stressed epimastigotes. The protein core of the TcZC3H39-mRNP is composed of ribosomes, translation factors and RBPs. The TcZC3H39-mRNP could act sequestering highly expressed mRNAs and their associated ribosomes, potentially slowing translation in stress conditions. A shift were observed in the mRNAs associated with TcZC3H39: the number of targets in unstressed epimastigotes was smaller than that in stressed parasites, with no clear functional clustering in normal conditions. By contrast, in stressed parasites, the targets of TcZC3H39 were mRNAs encoding ribosomal proteins and a remarkable enrichment in mRNAs for the cytochrome c complex (COX), highly expressed mRNAs in the replicative form. This identification of a new component of RNA granules in T. cruzi, the TcZC3H39 protein, provides new insight into the mechanisms involved in parasite stress responses and the regulation of gene expression during T. cruzi differentiation.
Collapse
|
48
|
Rojas R, Segovia C, Trombert AN, Santander J, Manque P. The effect of tunicamycin on the glucose uptake, growth, and cellular adhesion in the protozoan parasite Crithidia fasciculata. Curr Microbiol 2014; 69:541-8. [PMID: 24894907 DOI: 10.1007/s00284-014-0620-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/08/2014] [Indexed: 01/17/2023]
Abstract
Crithidia fasciculata represents a very interesting model organism to study biochemical, cellular, and genetic processes unique to members of the family of the Trypanosomatidae. Thus, C. fasciculata parasitizes several species of insects and has been widely used to test new therapeutic strategies against parasitic infections. By using tunicamycin, a potent inhibitor of glycosylation in asparaginyl residues of glycoproteins (N-glycosylation), we demonstrate that N-glycosylation in C. fasciculata cells is involved in modulating glucose uptake, dramatically impacting growth, and cell adhesion. C. fasciculata treated with tunicamycin was severely affected in their ability to replicate and to adhere to polystyrene substrates and losing their ability to aggregate into small and large groups. Moreover, under tunicamycin treatment, the parasites were considerably shorter and rounder and displayed alterations in cytoplasmic vesicles formation. Furthermore, glucose uptake was significantly impaired in a tunicamycin dose-dependent manner; however, no cytotoxic effect was observed. Interestingly, this effect was reversible. Thus, when tunicamycin was removed from the culture media, the parasites recovered its growth rate, cell adhesion properties, and glucose uptake. Collectively, these results suggest that changes in the tunicamycin-dependent glycosylation levels can influence glucose uptake, cell growth, and adhesion in the protozoan parasite C. fasciculata.
Collapse
Affiliation(s)
- Robert Rojas
- Nucleus for Microbiology and Immunity, Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Campus Huechuraba, Camino La Pirámide 5750, Huechuraba, Santiago, Chile,
| | | | | | | | | |
Collapse
|
49
|
An historical perspective on how advances in microscopic imaging contributed to understanding the Leishmania Spp. and Trypanosoma cruzi host-parasite relationship. BIOMED RESEARCH INTERNATIONAL 2014; 2014:565291. [PMID: 24877115 PMCID: PMC4022312 DOI: 10.1155/2014/565291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/10/2014] [Indexed: 12/15/2022]
Abstract
The literature has identified complex aspects of intracellular host-parasite relationships, which require systematic, nonreductionist approaches and spatial/temporal information. Increasing and integrating temporal and spatial dimensions in host cell imaging have contributed to elucidating several conceptual gaps in the biology of intracellular parasites. To access and investigate complex and emergent dynamic events, it is mandatory to follow them in the context of living cells and organs, constructing scientific images with integrated high quality spatiotemporal data. This review discusses examples of how advances in microscopy have challenged established conceptual models of the intracellular life cycles of Leishmania spp. and Trypanosoma cruzi protozoan parasites.
Collapse
|
50
|
Jimenez V. Dealing with environmental challenges: mechanisms of adaptation in Trypanosoma cruzi. Res Microbiol 2014; 165:155-65. [PMID: 24508488 DOI: 10.1016/j.resmic.2014.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
Protozoan parasites have a significant impact upon global health, infecting millions of people around the world. With limited therapeutic options and no vaccines available, research efforts are focused upon unraveling cellular mechanisms essential for parasite survival. During its life cycle, Trypanosoma cruzi, the causal agent of Chagas disease, is exposed to multiple external conditions and different hosts. Environmental cues are linked to the differentiation process allowing the parasite to complete its life cycle. Successful transmission depends on the ability of the cells to trigger adaptive responses and cope with stressors while regulating proliferation and transition to different life stages. This review focuses upon different aspects of the stress response in T. cruzi, proposing new hypotheses regarding cross-talk and cross-tolerance with respect to environmental changes and discussing open questions and future directions.
Collapse
Affiliation(s)
- Veronica Jimenez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, McCarthy Hall 307, 92831 Fullerton, CA, USA.
| |
Collapse
|