1
|
Antiguas A, DeMali KA, Dunnwald M. IRF6 Regulates the Delivery of E-Cadherin to the Plasma Membrane. J Invest Dermatol 2022; 142:314-322. [PMID: 34310950 PMCID: PMC8784568 DOI: 10.1016/j.jid.2021.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/03/2023]
Abstract
IRF6 is a transcription factor that is required for craniofacial development and epidermal morphogenesis. Specifically, Irf6-deficient mice lack the terminally differentiated epidermal layers, leading to an absence of barrier function. This phenotype also includes intraoral adhesions due to the absence of the oral periderm, leading to the mislocalization of E-cadherin and other cell‒cell adhesion proteins of the oral epithelium. However, the mechanisms by which IRF6 controls the localization of cell adhesion proteins are not understood. In this study, we show that in human and murine keratinocytes, loss of IRF6 leads to a breakdown of epidermal sheets after mechanical stress. This defect is due to a reduction of adhesion proteins at the plasma membrane. Dynamin inhibitors rescued the IRF6-dependent resistance of epidermal sheets to mechanical stress, but only inhibition of clathrin-mediated endocytosis rescued the localization of junctional proteins at the membrane. Our data show that E-cadherin recycling but not its endocytosis is affected by loss of IRF6. Overall, we demonstrate a role for IRF6 in the delivery of adhesion proteins to the cell membrane.
Collapse
Affiliation(s)
- Angelo Antiguas
- Department of Anatomy and Cell Biology, The University of Iowa, IA, 52242
| | - Kris A. DeMali
- Department of Biochemistry and Dermatology, The University of Iowa, IA, 52242
| | - Martine Dunnwald
- Department of Anatomy and Cell Biology, The University of Iowa, IA, 52242
| |
Collapse
|
2
|
Mascia A, Gentile F, Izzo A, Mollo N, De Luca M, Bucci C, Nitsch L, Calì G. Rab7 Regulates CDH1 Endocytosis, Circular Dorsal Ruffles Genesis, and Thyroglobulin Internalization in a Thyroid Cell Line. J Cell Physiol 2015; 231:1695-708. [PMID: 26599499 DOI: 10.1002/jcp.25267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 01/02/2023]
Abstract
Rab7 regulates the biogenesis of late endosomes, lysosomes, and autophagosomes. It has been proposed that a functional and physical interaction exists between Rab7 and Rac1 GTPases in CDH1 endocytosis and ruffled border formation. In FRT cells over-expressing Rab7, increased expression and activity of Rac1 was observed, whereas a reduction of Rab7 expression by RNAi resulted in reduced Rac1 activity, as measured by PAK1 phosphorylation. We found that CDH1 endocytosis was extremely reduced only in Rab7 over-expressing cells but was unchanged in Rab7 silenced cells. In Rab7 under or over-expressing cells, Rab7 and LC3B-II co-localized and co-localization in large circular structures occurred only in Rab7 over-expressing cells. These large circular structures occurred in about 10% of the cell population; some of them (61%) showed co-localization of Rab7 with cortactin and f-actin and were identified as circular dorsal ruffles (CDRs), the others as mature autophagosomes. We propose that the over-expression of Rab7 is sufficient to induce CDRs. Furthermore, in FRT cells, we found that the expression of the insoluble/active form of Rab7, rather than Rab5, or Rab8, was inducible by cAMP and that cAMP-stimulated FRT cells showed increased PAK1 phosphorylation and were no longer able to endocytose CDH1. Finally, we demonstrated that Rab7 over-expressing cells are able to endocytose exogenous thyroglobulin via pinocytosis/CDRs more efficiently than control cells. We propose that the major thyroglobulin endocytosis described in thyroid autonomous adenomas due to Rab7 increased expression, occurs via CDRs. J. Cell. Physiol. 231: 1695-1708, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Mascia
- IEOS Istituto di Endocrinologia e Oncologia Sperimentale "G. Salvatore", National Council of Research, Napoli, Italy
| | - Flaviana Gentile
- IEOS Istituto di Endocrinologia e Oncologia Sperimentale "G. Salvatore", National Council of Research, Napoli, Italy
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnologies, University "Federico II", Napoli, Italy
| | - Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnologies, University "Federico II", Napoli, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies, University of Salento (DiSTeBA), Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento (DiSTeBA), Lecce, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnologies, University "Federico II", Napoli, Italy
| | - Gaetano Calì
- IEOS Istituto di Endocrinologia e Oncologia Sperimentale "G. Salvatore", National Council of Research, Napoli, Italy
| |
Collapse
|
3
|
Lehmann GL, Benedicto I, Philp NJ, Rodriguez-Boulan E. Plasma membrane protein polarity and trafficking in RPE cells: past, present and future. Exp Eye Res 2014; 126:5-15. [PMID: 25152359 DOI: 10.1016/j.exer.2014.04.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 10/24/2022]
Abstract
The retinal pigment epithelium (RPE) comprises a monolayer of polarized pigmented epithelial cells that is strategically interposed between the neural retina and the fenestrated choroid capillaries. The RPE performs a variety of vectorial transport functions (water, ions, metabolites, nutrients and waste products) that regulate the composition of the subretinal space and support the functions of photoreceptors (PRs) and other cells in the neural retina. To this end, RPE cells display a polarized distribution of channels, transporters and receptors in their plasma membrane (PM) that is remarkably different from that found in conventional extra-ocular epithelia, e.g. intestine, kidney, and gall bladder. This characteristic PM protein polarity of RPE cells depends on the interplay of sorting signals in the RPE PM proteins and sorting mechanisms and biosynthetic/recycling trafficking routes in the RPE cell. Although considerable progress has been made in our understanding of the RPE trafficking machinery, most available data have been obtained from immortalized RPE cell lines that only partially maintain the RPE phenotype and by extrapolation of data obtained in the prototype Madin-Darby Canine Kidney (MDCK) cell line. The increasing availability of RPE cell cultures that more closely resemble the RPE in vivo together with the advent of advanced live imaging microscopy techniques provides a platform and an opportunity to rapidly expand our understanding of how polarized protein trafficking contributes to RPE PM polarity.
Collapse
Affiliation(s)
- Guillermo L Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave, New York, NY 100652, USA
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave, New York, NY 100652, USA
| | - Nancy J Philp
- Thomas Jefferson University, Department of Pathology, Anatomy, and Cell Biology, Philadelphia, PA 19107, USA.
| | - Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave, New York, NY 100652, USA.
| |
Collapse
|
4
|
Cihil KM, Swiatecka-Urban A. The cell-based L-glutathione protection assays to study endocytosis and recycling of plasma membrane proteins. J Vis Exp 2013:e50867. [PMID: 24378656 PMCID: PMC4048355 DOI: 10.3791/50867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.
Collapse
Affiliation(s)
- Kristine M Cihil
- Department of Nephrology, Children's Hospital of Pittsburgh of UPMC
| | | |
Collapse
|
5
|
Arpitha P, Gao CY, Tripathi BK, Saravanamuthu S, Zelenka P. Cyclin-dependent kinase 5 promotes the stability of corneal epithelial cell junctions. Mol Vis 2013; 19:319-32. [PMID: 23401660 PMCID: PMC3566902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/05/2013] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Although cyclin-dependent kinase 5 (Cdk5) inhibits the formation of junctions containing N-cadherin, the effect of Cdk5 on junctions containing E-cadherin is less clear. The present study investigates the functional significance of Cdk5 in forming and maintaining cell-cell stability in corneal epithelial cells. METHODS A Cdk5-deficient human corneal limbal epithelial cell line was generated by lentiviral transduction of small hairpin RNA specific for Cdk5 (shCdk5-HCLE cells). A blasticidin-inducible vector for expression of Cdk5-specific short hairpin RNA (ShCdk5) was generated by recombination and packaged into non-replicative lentiviral particles for transduction of human corneal limbal epithelial (HCLE) cells. Blasticidin-resistant cells were isolated for analysis. Cell aggregations were performed using HCLE, Cdk5 inhibitor olomoucine, ShCdk5, and MDA-MB 231 cells in the presence and absence of calcium, and particle size was measured using image analysis software. Relative protein concentrations were measured with immunoblotting and quantitative densitometry. Total internal reflection fluorescence (TIRF) microscopy was performed on cells transfected with green fluorescent protein (GFP)-E-cadherin or GFP-p120, and internalization of boundary-localized proteins was analyzed with particle tracking software. The stability of surface-exposed proteins was determined by measuring the recovery of biotin-labeled proteins with affinity chromatography. Rho and Rac activity was measured with affinity chromatography and immunoblotting. RESULTS Examining the effect of Cdk5 on E-cadherin containing epithelial cell-cell adhesions using a corneal epithelial cell line (HCLE), we found that Cdk5 and Cdk5 (pY15) coimmunoprecipitate with E-cadherin and Cdk5 (pY15) colocalizes with E-cadherin at cell-cell junctions. Inhibiting Cdk5 activity in HCLE or suppressing Cdk5 expression in a stable HCLE-derived cell line (ShHCLE) decreased calcium-dependent cell adhesion, promoted the cytoplasmic localization of E-cadherin, and accelerated the loss of surface-biotinylated E-cadherin. TIRF microscopy of GFP-E-cadherin in transfected HCLE cells showed an actively internalized sub-population of E-cadherin, which was not bound to p120 as it was trafficked away from the cell-cell boundary. This population increased in the absence of Cdk5 activity, suggesting that Cdk5 inhibition promotes dissociation of p120/E-cadherin junctional complexes. These effects of Cdk5 inhibition or suppression were accompanied by decreased Rac activity, increased Rho activity, and enhanced binding of E-cadherin to the Rac effector Ras GTPase-activating-like protein (IQGAP1). Cdk5 inhibition also reduced adhesion in a cadherin-deficient cell line (MDA-MB-231) expressing exogenous E-cadherin, although Cdk5 inhibition promoted adhesion when these cells were transfected with N-cadherin, as previous studies of Cdk5 and N-cadherin predicted. Moreover, Cdk5 inhibition induced N-cadherin expression and formation of N-cadherin/p120 complexes in HCLE cells. CONCLUSIONS These results indicate that loss of Cdk5 activity destabilizes junctional complexes containing E-cadherin, leading to internalization of E-cadherin and upregulation of N-cadherin. Thus, Cdk5 activity promotes stability of E-cadherin-based cell-cell junctions and inhibits the E-cadherin-to-N-cadherin switch typical of epithelial-mesenchymal transitions.
Collapse
Affiliation(s)
| | - Chun Y. Gao
- National Eye Institute, NIH, Building 5635, Room 1S-02, Fishers Lane, Rockville, MD,National Eye Institute, NIH, Building 6, Bethesda, MD
| | | | | | - Peggy Zelenka
- National Eye Institute, NIH, Building 5635, Room 1S-02, Fishers Lane, Rockville, MD
| |
Collapse
|
6
|
FBL2 regulates amyloid precursor protein (APP) metabolism by promoting ubiquitination-dependent APP degradation and inhibition of APP endocytosis. J Neurosci 2012; 32:3352-65. [PMID: 22399757 DOI: 10.1523/jneurosci.5659-11.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ubiquitin-proteasome pathway is a major protein degradation pathway whose dysfunction is now widely accepted as a cause of neurodegenerative diseases, including Alzheimer's disease. Here we demonstrate that the F-box and leucine rich repeat protein2 (FBL2), a component of the E3 ubiquitin ligase complex, regulates amyloid precursor protein (APP) metabolism through APP ubiquitination. FBL2 overexpression decreased the amount of secreted amyloid β (Aβ) peptides and sAPPβ, whereas FBL2 mRNA knockdown by siRNA increased these levels. FBL2 overexpression also decreased the amount of intracellular Aβ in Neuro2a cells stably expressing APP with Swedish mutation. FBL2 bound with APP specifically at its C-terminal fragment (CTF), which promoted APP/CTF ubiquitination. FBL2 overexpression also accelerated APP proteasome-dependent degradation and decreased APP protein localization in lipid rafts by inhibiting endocytosis. These effects were not observed in an F-box-deleted FBL2 mutant that does not participate in the E3 ubiquitin ligase complex. Furthermore, a reduced insoluble Aβ and Aβ plaque burden was observed in the hippocampus of 7-month-old FBL2 transgenic mice crossed with double-transgenic mice harboring APPswe and PS1(M146V) transgenes. These findings indicate that FBL2 is a novel and dual regulator of APP metabolism through FBL2-dependent ubiquitination of APP.
Collapse
|
7
|
Hazelett CC, Sheff D, Yeaman C. RalA and RalB differentially regulate development of epithelial tight junctions. Mol Biol Cell 2011; 22:4787-800. [PMID: 22013078 PMCID: PMC3237622 DOI: 10.1091/mbc.e11-07-0657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tight junctions (TJs) are structures indispensable to epithelial cells and are responsible for regulation of paracellular diffusion and maintenance of cellular polarity. Although many interactions between TJ constituents have been identified, questions remain concerning how specific functions of TJs are established and regulated. Here we investigated the roles of Ral GTPases and their common effector exocyst complex in the formation of nascent TJs. Unexpectedly, RNA interference-mediated suppression of RalA or RalB caused opposing changes in TJ development. RalA reduction increased paracellular permeability and decreased incorporation of components into TJs, whereas RalB reduction decreased paracellular permeability and increased incorporation of components into TJs. Activities of both Ral GTPases were mediated through the exocyst. Finally, we show that TJ-mediated separation of apical-basal membrane domains is established prior to equilibration of barrier function and that it is unaffected by Ral knockdown or specific composition of TJs.
Collapse
Affiliation(s)
- C Clayton Hazelett
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
8
|
Mykoniatis A, Shen L, Fedor-Chaiken M, Tang J, Tang X, Worrell RT, Delpire E, Turner JR, Matlin KS, Bouyer P, Matthews JB. Phorbol 12-myristate 13-acetate-induced endocytosis of the Na-K-2Cl cotransporter in MDCK cells is associated with a clathrin-dependent pathway. Am J Physiol Cell Physiol 2009; 298:C85-97. [PMID: 19864322 DOI: 10.1152/ajpcell.00118.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In secretory epithelial cells, the basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) plays a major role in salt and fluid secretion. Our laboratory has identified NKCC1 surface expression as an important regulatory mechanism for Cl(-) secretion in the colonic crypt cell line T84, a process also present in native human colonic crypts. We previously showed that activation of protein kinase C (PKC) by carbachol and phorbol 12-myristate 13-acetate (PMA) decreases NKCC1 surface expression in T84 cells. However, the specific endocytic entry pathway has not been defined. We used a Madin-Darby canine kidney (MDCK) cell line stably transfected with enhanced green fluorescent protein (EGFP)-NKCC1 to map NKCC1 entry during PMA exposure. At given times, we fixed and stained the cells with specific markers (e.g., dynamin II, clathrin heavy chain, and caveolin-1). We also used chlorpromazine, methyl-beta-cyclodextrin, amiloride, and dynasore, blockers of the clathrin, caveolin, and macropinocytosis pathways and the vesicle "pinchase" dynamin, respectively. We found that PMA caused dose- and time-dependent NKCC1 endocytosis. After 2.5 min of PMA exposure, approximately 80% of EGFP-NKCC1 endocytic vesicles colocalized with clathrin and approximately 40% colocalized with dynamin II and with the transferrin receptor, the uptake of which is also mediated by clathrin-coated vesicles. We did not observe significant colocalization of EGFP-NKCC1 endocytic vesicles with caveolin-1, a marker of the caveolae-mediated endocytic pathway. We quantified the effect of each inhibitor on PMA-induced EGFP-NKCC1 endocytosis and found that only chlorpromazine and dynasore caused significant inhibition compared with the untreated control (61% and 25%, respectively, at 2.5 min). Together, these results strongly support the conclusion that PMA-stimulated NKCC1 endocytosis is associated with a clathrin pathway.
Collapse
Affiliation(s)
- Andreas Mykoniatis
- The Univ. of Chicago, 5841 S. Maryland Ave., MC 5029, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lakshmana MK, Yoon IS, Chen E, Bianchi E, Koo EH, Kang DE. Novel role of RanBP9 in BACE1 processing of amyloid precursor protein and amyloid beta peptide generation. J Biol Chem 2009; 284:11863-72. [PMID: 19251705 DOI: 10.1074/jbc.m807345200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Accumulation of the amyloid beta (Abeta) peptide derived from the proteolytic processing of amyloid precursor protein (APP) is the defining pathological hallmark of Alzheimer disease. We previously demonstrated that the C-terminal 37 amino acids of lipoprotein receptor-related protein (LRP) robustly promoted Abeta generation independent of FE65 and specifically interacted with Ran-binding protein 9 (RanBP9). In this study we found that RanBP9 strongly increased BACE1 cleavage of APP and Abeta generation. This pro-amyloidogenic activity of RanBP9 did not depend on the KPI domain or the Swedish APP mutation. In cells expressing wild type APP, RanBP9 reduced cell surface APP and accelerated APP internalization, consistent with enhanced beta-secretase processing in the endocytic pathway. The N-terminal half of RanBP9 containing SPRY-LisH domains not only interacted with LRP but also with APP and BACE1. Overexpression of RanBP9 resulted in the enhancement of APP interactions with LRP and BACE1 and increased lipid raft association of APP. Importantly, knockdown of endogenous RanBP9 significantly reduced Abeta generation in Chinese hamster ovary cells and in primary neurons, demonstrating its physiological role in BACE1 cleavage of APP. These findings not only implicate RanBP9 as a novel and potent regulator of APP processing but also as a potential therapeutic target for Alzheimer disease.
Collapse
Affiliation(s)
- Madepalli K Lakshmana
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
10
|
Singh PK, Behrens ME, Eggers JP, Cerny RL, Bailey JM, Shanmugam K, Gendler SJ, Bennett EP, Hollingsworth MA. Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J Biol Chem 2008; 283:26985-95. [PMID: 18625714 DOI: 10.1074/jbc.m805036200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MUC1, a transmembrane mucin, is a key modulator of several signaling pathways that affect oncogenesis, motility, and cell morphology. The interaction of MUC1 cytoplasmic tail (MUC1CT) with signal transducers and its nuclear translocation and subsequent biological responses are believed to be regulated by phosphorylation status, but the precise mechanisms by which this occurs remain poorly defined. We detected a novel association between the Met receptor tyrosine kinase and the MUC1CT. Met catalyzed phosphorylation of tyrosine at YHPM in the MUC1CT. Stimulation of S2-013.MUC1F pancreatic cancer cells with hepatocyte growth factor facilitated nuclear localization of MUC1CT, as determined by real time confocal imaging analysis. MUC1 overexpression also facilitated faster turnover of Met. Phosphorylation of MUC1CT by Met enhanced its interaction with p53, which led to suppression of AP1 transcription factor activity through interactions at the MMP1 promoter, ultimately leading to reduced transcription of MMP1. This correlated with a decrease in hepatocyte growth factor-induced invasiveness when MUC1 was overexpressed. The results demonstrate that MUC1 modulates Met-mediated oncogenic signaling in cancer.
Collapse
Affiliation(s)
- Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Semënov MV, Zhang X, He X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem 2008; 283:21427-32. [PMID: 18505732 DOI: 10.1074/jbc.m800014200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DKK1 is a secreted protein that antagonizes Wnt signaling and plays essential roles in vertebrate embryogenesis including head induction, skeletal development, and limb patterning. DKK1 is also implicated in osteoporosis, arthritis, and cancer and represents a potential therapeutic target for the treatment of these diseases. DKK1 is a high affinity antagonistic ligand for LRP6, which is a Wnt coreceptor that acts together with the Frizzled serpentine receptor to initiate Wnt signal transduction. Two different models have been proposed to account for the mechanism by which DKK1 antagonizes LRP6 function. One model suggests that DKK1 binding to LRP6 disrupts Wnt-induced Frizzled-LRP6 complex formation, whereas the other model proposes that DKK1 interaction with LRP6 promotes LRP6 internalization and degradation, thereby reducing the cell surface LRP6 level. To clarify the molecular basis of DKK1 action, we examined how DKK1 affects the endogenous LRP6 in several mammalian cell lines including mouse embryonic fibroblasts. Here we show that DKK1 inhibits Wnt signaling but induces neither LRP6 down-regulation from the cell surface nor reduction of total LRP6 protein level and that DKK1 has no effect on the rate of continuous internalization of LRP6 and the half-life (about 4.7 h) of LRP6. We conclude that DKK1 inhibition of LRP6 is independent of LRP6 internalization and degradation.
Collapse
Affiliation(s)
- Mikhail V Semënov
- F. M. Kirby Neurobiology Center, Children's Hospital Boston and Department of Neurology, Harvard Medical School, 61 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
12
|
Parisiadou L, Bethani I, Michaki V, Krousti K, Rapti G, Efthimiopoulos S. Homer2 and Homer3 interact with amyloid precursor protein and inhibit Abeta production. Neurobiol Dis 2008; 30:353-364. [PMID: 18387811 DOI: 10.1016/j.nbd.2008.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 11/18/2022] Open
Abstract
The study of Amyloid Precursor Protein (APP) processing has been the focus of considerable interest, since it leads to Abeta peptide generation, the main constituent of neuritic plaques found in brains of Alzheimer's disease patients. Therefore, the identification of novel APP binding partners that regulate Abeta peptide production represents a pharmaceutical target aiming at reducing Alphabeta pathology. In this study, we provide evidence that Homer2 and Homer3 but not Homer1 proteins interact specifically with APP. Their expression inhibits APP processing and reduces secretion of Abeta peptides. In addition, they decrease the levels of cell surface APP and inhibit maturation of APP and beta-secretase (BACE1). The effects of Homer2 and Homer3 on APP trafficking to the cell surface and/or on APP and BACE1 maturation could be part of the mechanism by which the expression of these proteins leads to the significant reduction of Abeta peptide production.
Collapse
Affiliation(s)
- Loukia Parisiadou
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 157 84 Panepistimiopolis, Ilisia, Athens, Greece
| | - Ioanna Bethani
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 157 84 Panepistimiopolis, Ilisia, Athens, Greece
| | - Vasiliki Michaki
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 157 84 Panepistimiopolis, Ilisia, Athens, Greece
| | - Kaliopi Krousti
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 157 84 Panepistimiopolis, Ilisia, Athens, Greece
| | - Georgia Rapti
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 157 84 Panepistimiopolis, Ilisia, Athens, Greece
| | - Spiros Efthimiopoulos
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 157 84 Panepistimiopolis, Ilisia, Athens, Greece.
| |
Collapse
|
13
|
Nishimura N, Sasaki T. Cell-surface biotinylation to study endocytosis and recycling of occludin. Methods Mol Biol 2008; 440:89-96. [PMID: 18369939 DOI: 10.1007/978-1-59745-178-9_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dynamic turnover of adherens junctions (AJs) and tight junctions (TJs) is essential for epithelial morphogenesis during normal development and differentiation. Although the endocytic recycling of E-cadherin is characterized and implicated in AJ turnover, the molecular basis for TJ turnover is poorly understood. Occludin and claudins are distinct transmembrane proteins localized to the TJs. Although claudins are an indispensable structural component of TJ strands, depletion of occludin in mice reveals well-developed TJ strands and complex histological abnormalities. To examine the intracellular transport of transmembrane proteins to and from the cell surface, cell-surface biotinylation is a proven powerful method. Using this method, we successfully demonstrated that occludin was endocytosed and recycled back to the cell surface in both fibroblastic baby hamster kidney (BHK) and epithelial MTD-1A cells. The endocytic recycling of occludin as well as the formation of functional TJs was dependent on Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2). We describe the method to study the intracellular transport of occludin to and from the cell surface in both fibroblastic and epithelial cells.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Department of Biochemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | |
Collapse
|
14
|
Shen Y, Hirsch DS, Sasiela CA, Wu WJ. Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. J Biol Chem 2007; 283:5127-37. [PMID: 18057010 DOI: 10.1074/jbc.m703300200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E-cadherins play an essential role in maintaining epithelial polarity by forming Ca2+-dependent adherens junctions between epithelial cells. Here, we report that Ca2+ depletion induces E-cadherin ubiquitination and lysosomal degradation and that Cdc42 plays an important role in regulating this process. We demonstrate that Ca2+ depletion induces activation of Cdc42. This in turn up-regulates epidermal growth factor receptor (EGFR) signaling to mediate Src activation, leading to E-cadherin ubiquitination and lysosomal degradation. Silencing Cdc42 blocks activation of EGFR and Src induced by Ca2+ depletion, resulting in a reduction in E-cadherin degradation. The role of Cdc42 in regulating E-cadherin ubiquitination and degradation is underscored by the fact that constitutively active Cdc42(F28L) increases the activity of EGFR and Src and significantly enhances E-cadherin ubiquitination and lysosomal degradation. Furthermore, we found that GTP-dependent binding of Cdc42 to E-cadherin is critical for Cdc42 to induce the dissolution of adherens junctions. Our data support a model that activation of Cdc42 contributes to mesenchyme-like phenotype by targeting of E-cadherin for lysosomal degradation.
Collapse
Affiliation(s)
- Yi Shen
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland 20892-4555, USA
| | | | | | | |
Collapse
|
15
|
Mankouri J, Taneja TK, Smith AJ, Ponnambalam S, Sivaprasadarao A. Kir6.2 mutations causing neonatal diabetes prevent endocytosis of ATP-sensitive potassium channels. EMBO J 2006; 25:4142-51. [PMID: 16902404 PMCID: PMC1560363 DOI: 10.1038/sj.emboj.7601275] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 07/20/2006] [Indexed: 11/09/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels couple the metabolic status of a cell to its membrane potential-a property that endows pancreatic beta-cells with the ability to regulate insulin secretion in accordance with changes in blood glucose. The channel comprises four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1). Here, we report that KATP channels undergo rapid internalisation from the plasma membrane by clathrin-mediated endocytosis. We present several lines of evidence to demonstrate that endocytosis is mediated by a tyrosine based signal (330YSKF333) located in the carboxy-terminus of Kir6.2 and that SUR1 has no direct role. We show that genetic mutations, Y330C and F333I, which cause permanent neonatal diabetes mellitus, disrupt this motif and abrogate endocytosis of reconstituted mutant channels. The resultant increase in the surface density of KATP channels would predispose beta-cells to hyperpolarise and may account for reduced insulin secretion in these patients. The data imply that endocytosis of KATP channels plays a crucial role in the (patho)-physiology of insulin secretion.
Collapse
Affiliation(s)
- Jamel Mankouri
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Leeds University, Leeds, UK
| | - Tarvinder K Taneja
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Leeds University, Leeds, UK
| | - Andrew J Smith
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Leeds University, Leeds, UK
| | - Sreenivasan Ponnambalam
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds University, Leeds, UK
| | - Asipu Sivaprasadarao
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Leeds University, Leeds, UK
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Leeds University, Leeds LS2 9JT, UK. Tel.: +44 0 113 343 4326; Fax: +44 0 113 343 4228; E-mail:
| |
Collapse
|
16
|
Galet C, Ascoli M. A constitutively active mutant of the human lutropin receptor (hLHR-L457R) escapes lysosomal targeting and degradation. Mol Endocrinol 2006; 20:2931-45. [PMID: 16803865 PMCID: PMC1626098 DOI: 10.1210/me.2006-0138] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Using biochemical and imaging approaches, we examined the postendocytotic fate of the complex formed by human choriogonadotropin (hCG) and a constitutively active mutant of the human lutropin receptor (hLHR-L457R) found in a boy with precocious puberty and Leydig cell hyperplasia. After internalization, some of the complex formed by the hLHR-wild type (hLHR-wt) and hCG recycles to the cell surface, and some is found in lysosomes where the hormone is degraded. In contrast, the complex formed by the hLHR-L457R and hCG is not routed to the lysosomes, most of it is recycled to the cell surface and hormone degradation is barely detectable. For both, hLHR-wt and -L457R, there is an hCG-induced loss of cell surface receptors that accompanies internalization but this loss cannot be prevented by leupeptin. The removal of recycling motifs of the hLHR by truncation of the C-terminal tail at residue 682 greatly enhances the lysosomal accumulation of the hormone-receptor complexes formed by the hLHR-wt or the L457R mutant, the degradation of the internalized hormone, and the loss of cell surface receptors. The degradation of the hormone internalized by these mutants as well as the loss of cell surface receptors is largely prevented by leupeptin. These results highlight a previously unrecognized complexity in the postendocytotic trafficking of the hLHR and document a clear difference between the properties of the constitutively active mutant and the agonist-activated hLHR-wt. This lack of lysosomal degradation of the L457R mutant could contribute to its constitutive activity by prolonging the duration of signaling.
Collapse
Affiliation(s)
- Colette Galet
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, 2-319B Bowen Science Building, 51 Newton Road, Iowa City, Iowa 52242-1109, USA
| | | |
Collapse
|
17
|
Parisiadou L, Efthimiopoulos S. Expression of mDab1 promotes the stability and processing of amyloid precursor protein and this effect is counteracted by X11alpha. Neurobiol Aging 2006; 28:377-88. [PMID: 16458391 DOI: 10.1016/j.neurobiolaging.2005.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
The cytoplasmic tail of amyloid precursor protein (APP) possesses the NPTY motif to which several phosphotyrosine-binding domain-containing proteins bind, including X11alpha and mDab1. X11alpha has been shown to slow cellular APP processing and reduce secretion of Abeta peptides. However, the effect of mDab1 on APP processing has not been determined. Here, we show that mDab1 increases the levels of cellular mature APP and promotes its processing by the secretases in both transiently transfected HEK 293 cells and in neuroglioma U251 cells. These effects derive specifically from the interaction of APP with mDab1 since they are not observed in APP deletion mutants lacking the interaction module NPTY. We further demonstrate that mDab1 enhances cell surface expression of APP, possibly by interfering with its endocytosis. Interestingly, X11alpha and mDab1 exert opposing effects on APP processing. However, when both proteins are co-expressed the effect of X11alpha overrides that of mDab1. Taken together, these results suggest that the relative stoichiometry and binding affinity of the adaptor proteins determines the final outcome on APP metabolism.
Collapse
Affiliation(s)
- Loukia Parisiadou
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, 157 84 Panepistimiopolis, Ilisia, Athens, Greece
| | | |
Collapse
|
18
|
Doumanov JA, Daubrawa M, Unden H, Graeve L. Identification of a basolateral sorting signal within the cytoplasmic domain of the interleukin-6 signal transducer gp130. Cell Signal 2005; 18:1140-6. [PMID: 16274960 DOI: 10.1016/j.cellsig.2005.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/09/2005] [Indexed: 01/30/2023]
Abstract
Interleukin-6-type cytokine receptors are expressed in polarized cells such as hepatocytes and intestinal cells. For the interleukin-6-receptor gp80 and its signal transducer gp130, a preferential basolateral localization was demonstrated in Madin-Darby canine kidney (MDCK) cells and two basolateral sorting signals were identified within the cytoplasmic domain of gp80. The cytoplasmic tail of gp130 is responsible for signaling via the Janus kinase/signal transducer and activator of transcription pathway. In addition, it mediates the internalization of the receptor complex which is dependent on a di-leucine motif. Truncated gp130 lacking the cytoplasmic domain is sorted apically in MDCK cells. For identification of the basolateral sorting signal(s) of gp130, a series of deletion mutants in the cytoplasmic domain of gp130 have been generated and stably expressed in MDCK cells. Biotinylation analyses of these mutants show that a ten amino acids sequence between amino acids 782 and 792 which contains the di-leucine internalization motif is also essential for a basolateral sorting. Accordingly, we detect apical delivery of a gp130 mutant in which the di-leucine motif has been exchanged by two alanines (gp130LL/AA). These findings indicate that the di-leucine motif which directs the internalization of the IL-6 receptor complex also mediates the basolateral sorting of the signal transducer gp130.
Collapse
Affiliation(s)
- Jordan A Doumanov
- Institut für Biologische Chemie und Ernährungswissenschaft, Universität Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
19
|
Buk DM, Renner O, Graeve L. Increased association with detergent-resistant membranes/lipid rafts of apically targeted mutants of the interleukin-6 receptor gp80. Eur J Cell Biol 2005; 84:819-31. [PMID: 16270750 DOI: 10.1016/j.ejcb.2005.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Interleukin (IL)-6 is an important cytokine in inflammatory processes, differentiation and growth. The IL-6 receptor complex comprises the specific IL-6 receptor (gp80) and two molecules of the signal tranducing component gp130 which transduces the signal into the nucleus via the Jak-STAT pathway. Both, gp80 and gp130 are sorted preferentially to the basolateral membrane of polarised Madin-Darby canine kidney (MDCK) cells. Previously, we have shown that gp130 partially localises to detergent-resistant membranes (DRMs)/lipid rafts and that lipid raft integrity is crucial for signalling to occur. Here we now demonstrate that wild-type gp80 is associated with DRMs only to a minor extent. However, gp80 mutants which lack parts of the cytoplasmic domain and therefore are more apically expressed than the wild type show an increased affinity for the liquid-ordered membrane domain. Studies with non-polarised MDCK cells suggest that the lipid raft association of the different mutants of gp80 precedes the establishment of cell polarity. Our findings suggest that lipid rafts play a role in the sorting of apically targeted gp80.
Collapse
Affiliation(s)
- Deborah M Buk
- Institut für Biologische Chemie und Ernährungswissenschaft, Universität Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | | | | |
Collapse
|
20
|
Del Castillo IC, Fedor-Chaiken M, Song JC, Starlinger V, Yoo J, Matlin KS, Matthews JB. Dynamic regulation of Na(+)-K(+)-2Cl(-) cotransporter surface expression by PKC-{epsilon} in Cl(-)--secretory epithelia. Am J Physiol Cell Physiol 2005; 289:C1332-42. [PMID: 16000638 DOI: 10.1152/ajpcell.00580.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In secretory epithelia, activation of PKC by phorbol ester and carbachol negatively regulates Cl(-) secretion, the transport event of secretory diarrhea. Previous studies have implicated the basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) as a target of PKC-dependent inhibition of Cl(-) secretion. In the present study, we examined the regulation of surface expression of NKCC1 in response to the activation of PKC. Treatment of confluent T84 intestinal epithelial cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (PMA) reduced the amount of NKCC1 accessible to basolateral surface biotinylation. Loss of cell surface NKCC1 was due to internalization as shown by 1) the resistance of biotinylated NKCC1 to surface biotin stripping after incubation with PMA and 2) indirect immunofluorescent labeling. PMA-induced internalization of NKCC1 is dependent on the epsilon-isoform of PKC as determined on the basis of sensitivity to a panel of PKC inhibitors. The effect of PMA on surface expression of NKCC1 was specific because PMA did not significantly alter the amount of Na(+)-K(+)-ATPase or E-cadherin available for surface biotinylation. After extended PMA exposure (>2 h), NKCC1 became degraded in a proteasome-dependent fashion. Like PMA, carbachol reduced the amount of NKCC1 accessible to basolateral surface biotinylation in a PKC-epsilon-dependent manner. However, long-term exposure to carbachol did not result in degradation of NKCC1; rather, NKCC1 that was internalized after exposure to carbachol was recycled back to the cell membrane. PKC-epsilon-dependent alteration of NKCC1 surface expression represents a novel mechanism for regulating Cl(-) secretion.
Collapse
Affiliation(s)
- Isabel Calvo Del Castillo
- Dept. of Surgery, Univ. of Cincinnati Medical Center, 231 Albert B. Sabin Way, PO Box 670558, Cincinnati, OH 45267-0558, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Deora AA, Gravotta D, Kreitzer G, Hu J, Bok D, Rodriguez-Boulan E. The basolateral targeting signal of CD147 (EMMPRIN) consists of a single leucine and is not recognized by retinal pigment epithelium. Mol Biol Cell 2004; 15:4148-65. [PMID: 15215314 PMCID: PMC515348 DOI: 10.1091/mbc.e04-01-0058] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CD147, a type I integral membrane protein of the immunoglobulin superfamily, exhibits reversed polarity in retinal pigment epithelium (RPE). CD147 is apical in RPE in contrast to its basolateral localization in extraocular epithelia. This elicited our interest in understanding the basolateral sorting signals of CD147 in prototypic Madin-Darby canine kidney (MDCK) cells. The cytoplasmic domain of CD147 has basolateral sorting information but is devoid of well-characterized basolateral signals, such as tyrosine and di-leucine motifs. Hence, we carried out systematic site-directed mutagenesis to delineate basolateral targeting information in CD147. Our detailed analysis identified a single leucine (252) as the basolateral targeting motif in the cytoplasmic tail of CD147. Four amino acids (243-246) N-terminal to leucine 252 are also critical basolateral determinants of CD147, because deletion of these amino acids leads to mistargeting of CD147 to the apical membranes. We ruled out the involvement of adaptor complex 1B (AP1B) in the basolateral trafficking of CD147, because LLC-PK1 cells lacking AP1B, target CD147 basolaterally. At variance with MDCK cells, the human RPE cell line ARPE-19 does not distinguish between CD147 (WT) and CD147 with leucine 252 mutated to alanine and targets both proteins apically. Thus, our study identifies an atypical basolateral motif of CD147, which comprises a single leucine and is not recognized by RPE cells. This unusual basolateral sorting signal will be useful in unraveling the specialized sorting machinery of RPE cells.
Collapse
Affiliation(s)
- Ami A Deora
- Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
22
|
Claypool SM, Dickinson BL, Wagner JS, Johansen FE, Venu N, Borawski JA, Lencer WI, Blumberg RS. Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fcgamma-receptor. Mol Biol Cell 2004; 15:1746-59. [PMID: 14767057 PMCID: PMC379272 DOI: 10.1091/mbc.e03-11-0832] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 01/05/2004] [Accepted: 01/18/2004] [Indexed: 12/26/2022] Open
Abstract
The human MHC class I-related neonatal Fc receptor, hFcRn, mediates bidirectional transport of IgG across mucosal barriers. Here, we find that at steady state hFcRn distributes predominantly to an apical intracellular compartment and almost exclusively to the basolateral cell surface of polarized epithelial cells. It moves only transiently to the apical membrane. Ligand binding does not redistribute the steady state location of the receptor. Removal of the cytoplasmic tail that contains di-leucine and tryptophan-based endocytosis motifs or incubation at low temperature (18 degrees C) redistributes the receptor apically. The rates of endocytosis of the full-length hFcRn from the apical or basolateral membrane domains, however, are equal. Thus, the strong cell surface polarity displayed by hFcRn results from dominant basolateral sorting by motifs in the cytoplasmic tail that nonetheless allows for a cycle of bidirectional transcytosis.
Collapse
Affiliation(s)
- Steven M Claypool
- Harvard Medical School, Program in Immunology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Buk DM, Waibel M, Braig C, Martens AS, Heinrich PC, Graeve L. Polarity and lipid raft association of the components of the ciliary neurotrophic factor receptor complex in Madin-Darby canine kidney cells. J Cell Sci 2004; 117:2063-75. [PMID: 15054106 DOI: 10.1242/jcs.01049] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) signals via a tripartite receptor complex consisting of the glycosyl-phosphatidylinositol (GPI)-anchored CNTF receptor (CNTF-R), the leukaemia inhibitory factor receptor (LIF-R) and the interleukin-6 (IL-6) signal transducer gp130. We have recently reported that gp130 is endogenously expressed in the polarised epithelial model cell line Madin-Darby canine kidney (MDCK) and we have demonstrated a preferential basolateral localisation of this protein. In the present study we show that MDCK cells also express the LIF-R and respond to stimulation with human LIF by activation of tyrosine phosphorylation of signal transducer and activator of transcription-3 (STAT3), both however in an unpolarised fashion. This suggests that MDCK cells may be target cells for LIF. We have furthermore stably expressed the human CNTF-R in MDCK cells and by two different assays we found an apical localisation. Consistent with these findings, stimulation of CNTF-R-positive cells resulted only in an activation of STAT3 when CNTF was added apically. These data demonstrate that each subunit of the CNTF receptor complex has a distinct distribution in polarised cells which may reflect the different roles the respective cytokines play in vivo. Since it is currently believed that lipid rafts are involved in signal transduction as well as protein sorting we studied the association of the three receptor complex components with membrane rafts using different protocols. Whereas the CNTF-R cofractionated quantitatively with lipid rafts independently of the method used, gp130 and the LIF-R were found to associate with lipid rafts only partially when detergents were used for isolation. These findings could indicate that either the three receptor complex subunits are localised to the same kind of raft but with different affinities to the liquid-ordered environment, or that they are localised to different types of rafts. CNTF-, LIF-, and IL-6-dependent STAT3 activation was sensitive to the cholesterol-depleting drug methyl-beta-cyclodextrin (MCD) suggesting that the integrity of lipid rafts is important for IL-6-type cytokine-induced STAT activation.
Collapse
Affiliation(s)
- Deborah M Buk
- Institut für Biologische Chemie und Ernährungswissenschaft, Universität Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Le TL, Joseph SR, Yap AS, Stow JL. Protein kinase C regulates endocytosis and recycling of E-cadherin. Am J Physiol Cell Physiol 2002; 283:C489-99. [PMID: 12107059 DOI: 10.1152/ajpcell.00566.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
E-cadherin is a major component of adherens junctions in epithelial cells. We showed previously that a pool of cell surface E-cadherin is constitutively internalized and recycled back to the surface. In the present study, we investigated the potential role of protein kinase C (PKC) in regulating the trafficking of surface E-cadherin in Madin-Darby canine kidney cells. Using surface biotinylation and immunofluorescence, we found that treatment of cells with phorbol esters increased the rate of endocytosis of E-cadherin, resulting in accumulation of E-cadherin in apically localized early or recycling endosomes. The recycling of E-cadherin back to the surface was also decreased in the presence of phorbol esters. Phorbol ester-induced endocytosis of E-cadherin was blocked by specific inhibitors, implicating novel PKC isozymes, such as PKC-epsilon in this pathway. PKC activation led to changes in the actin cytoskeleton facilitating E-cadherin endocytosis. Depolymerization of actin increased endocytosis of E-cadherin, whereas the PKC-induced uptake of E-cadherin was blocked by the actin stabilizer jasplakinolide. Our findings show that PKC regulates vital steps of E-cadherin trafficking, its endocytosis, and its recycling.
Collapse
Affiliation(s)
- Tam Luan Le
- Institute for Molecular Bioscience, Department of Biochemistry, University of Queensland, Brisbane 4072, Queensland, Australia
| | | | | | | |
Collapse
|
25
|
Lisanti M, Sargiacomo M. Biotinylation and Analysis of Membrane‐Bound and Soluble Proteins. ACTA ACUST UNITED AC 2001; Chapter 8:Unit 8.16. [DOI: 10.1002/0471142735.im0816s36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M.P. Lisanti
- Whitehead Institute for Biomedical Research Cambridge Massachusetts
| | | |
Collapse
|
26
|
Moll M, Klenk HD, Herrler G, Maisner A. A Single Amino Acid Change in the Cytoplasmic Domains of Measles Virus Glycoproteins H and F Alters Targeting, Endocytosis, and Cell Fusion in Polarized Madin-Darby Canine Kidney Cells. J Biol Chem 2001; 276:17887-94. [PMID: 11359789 DOI: 10.1074/jbc.m010183200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As we have shown previously, release of measles virus (MV) from polarized epithelial cells is not determined by the viral envelope proteins H and F. Although virus budding is restricted to the apical surfaces, both proteins were abundantly expressed on the basolateral surface of Madin-Darby canine kidney cells. In this report, we provide evidence that the basolateral expression of the viral proteins is of biological importance for the MV infection of polarized epithelial cells. We demonstrate that both MV glycoproteins possess a basolateral targeting signal that is dependent upon the unique tyrosine in the cytoplasmic tails. These tyrosines are shown to be also part of an endocytosis signal. In MV-infected cells, internalization of the glycoproteins was not observed, indicating that recognition of the endocytosis signals is disturbed by viral factors. In contrast, basolateral transport was not substantially hindered, resulting in efficient cell-to-cell fusion of polarized Madin-Darby canine kidney cells. Thus, recognition of the signals for endocytosis and polarized transport is differently regulated in infected cells. Mutation of the basolateral sorting signal in one of the MV glycoproteins prevented fusion of polarized cells. These results suggest that basolateral expression of the MV glycoproteins favors virus spread in epithelia.
Collapse
Affiliation(s)
- M Moll
- Institut für Virologie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
27
|
Martens AS, Bode JG, Heinrich PC, Graeve L. The cytoplasmic domain of the interleukin-6 receptor gp80 mediates its basolateral sorting in polarized madin-darby canine kidney cells. J Cell Sci 2000; 113 ( Pt 20):3593-602. [PMID: 11017875 DOI: 10.1242/jcs.113.20.3593] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The IL-6 receptor complex is expressed in different polarized epithelial cells such as liver hepatocytes and intestinal cells. It consists of two subunits: gp80, which binds the ligand, and gp130, which is responsible for signal transduction. In stably transfected Madin-Darby canine kidney (MDCK) cells we have studied the localization of the human IL-6 receptor subunits and found that gp80 and gp130 are predominantly expressed at the basolateral membrane. Analysis of MDCK cells expressing truncated forms of gp80 or gp130 showed that loss of the cytoplasmic domains results in apical delivery. Expression of deletion mutants of gp80 in MDCK cells led to the identification of two discontinous motifs responsible for basolateral sorting: a membrane-proximal tyrosine-based motif (YSLG) and a more membrane-distal dileucine-type motif (LI). Activation of signal transducer and activator of transcription-3 (STAT-3) only occurred via basolaterally located gp80, suggesting that endogenous gp130 is also constrained to the basolateral plasma membrane. Our identification of a basolateral sorting signal within the cytoplasmic region of gp80 for the first time attributes a function to this domain.
Collapse
Affiliation(s)
- A S Martens
- Institute of Biochemistry, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule, Pauwelsstrasse 30, Germany.
| | | | | | | |
Collapse
|
28
|
Zaliauskiene L, Kang S, Brouillette CG, Lebowitz J, Arani RB, Collawn JF. Down-regulation of cell surface receptors is modulated by polar residues within the transmembrane domain. Mol Biol Cell 2000; 11:2643-55. [PMID: 10930460 PMCID: PMC14946 DOI: 10.1091/mbc.11.8.2643] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How recycling receptors are segregated from down-regulated receptors in the endosome is unknown. In previous studies, we demonstrated that substitutions in the transferrin receptor (TR) transmembrane domain (TM) convert the protein from an efficiently recycling receptor to one that is rapidly down regulated. In this study, we demonstrate that the "signal" within the TM necessary and sufficient for down-regulation is Thr(11)Gln(17)Thr(19) (numbering in TM). Transplantation of these polar residues into the wild-type TR promotes receptor down-regulation that can be demonstrated by changes in protein half-life and in receptor recycling. Surprisingly, this modification dramatically increases the TR internalization rate as well ( approximately 79% increase). Sucrose gradient centrifugation and cross-linking studies reveal that propensity of the receptors to self-associate correlates with down-regulation. Interestingly, a number of cell surface proteins that contain TM polar residues are known to be efficiently down-regulated, whereas recycling receptors for low-density lipoprotein and transferrin conspicuously lack these residues. Our data, therefore, suggest a simple model in which specific residues within the TM sequences dramatically influence the fate of membrane proteins after endocytosis, providing an alternative signal for down-regulation of receptor complexes to the well-characterized cytoplasmic tail targeting signals.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/drug effects
- Antigens, Differentiation, B-Lymphocyte/physiology
- Chick Embryo
- Cross-Linking Reagents/pharmacology
- Down-Regulation/drug effects
- Endocytosis/drug effects
- Endocytosis/physiology
- Fibroblasts
- Half-Life
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/drug effects
- Histocompatibility Antigens Class II/physiology
- Lysosomes/drug effects
- Lysosomes/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/metabolism
- Receptors, Transferrin/chemistry
- Receptors, Transferrin/drug effects
- Receptors, Transferrin/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
Collapse
Affiliation(s)
- L Zaliauskiene
- Department of Cell Biology, Comprehensive Cancer Center, University of Alabama at Birmingham, 35294-0005, USA
| | | | | | | | | | | |
Collapse
|
29
|
Georgakopoulos A, Marambaud P, Efthimiopoulos S, Shioi J, Cui W, Li HC, Schütte M, Gordon R, Holstein GR, Martinelli G, Mehta P, Friedrich VL, Robakis NK. Presenilin-1 forms complexes with the cadherin/catenin cell-cell adhesion system and is recruited to intercellular and synaptic contacts. Mol Cell 1999; 4:893-902. [PMID: 10635315 DOI: 10.1016/s1097-2765(00)80219-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In MDCK cells, presenilin-1 (PS1) accumulates at intercellular contacts where it colocalizes with components of the cadherin-based adherens junctions. PS1 fragments form complexes with E-cadherin, beta-catenin, and alpha-catenin, all components of adherens junctions. In confluent MDCK cells, PS1 forms complexes with cell surface E-cadherin; disruption of Ca(2+)-dependent cell-cell contacts reduces surface PS1 and the levels of PS1-E-cadherin complexes. PS1 overexpression in human kidney cells enhances cell-cell adhesion. Together, these data show that PS1 incorporates into the cadherin/catenin adhesion system and regulates cell-cell adhesion. PS1 concentrates at intercellular contacts in epithelial tissue; in brain, it forms complexes with both E- and N-cadherin and concentrates at synaptic adhesions. That PS1 is a constituent of the cadherin/catenin complex makes that complex a potential target for PS1 FAD mutations.
Collapse
Affiliation(s)
- A Georgakopoulos
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huan Y, van Adelsberg J. Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest 1999; 104:1459-68. [PMID: 10562308 PMCID: PMC481982 DOI: 10.1172/jci5111] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1998] [Accepted: 10/05/1999] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease characterized by cyst formation in kidney tubules and other ductular epithelia. Cells lining the cysts have abnormalities in cell proliferation and cell polarity. The majority of ADPKD cases are caused by mutations in the PKD1 gene, which codes for polycystin-1, a large integral membrane protein of unknown function that is expressed on the plasma membrane of renal tubular epithelial cells in fetal kidneys. Because signaling from cell-cell and cell-matrix adhesion complexes regulates cell proliferation and polarity, we speculated that polycystin-1 might interact with these complexes. We show here that polycystin-1 colocalized with the cell adhesion molecules E-cadherin and alpha-, beta-, and gamma-catenin. Polycystin-1 coprecipitated with these proteins and comigrated with them on sucrose density gradients, but it did not colocalize, coprecipitate, or comigrate with focal adhesion kinase, a component of the focal adhesion. We conclude that polycystin-1 is in a complex containing E-cadherin and alpha-, beta-, and gamma-catenin. These observations raise the question of whether the defects in cell proliferation and cell polarity observed in ADPKD are mediated by E-cadherin or the catenins.
Collapse
Affiliation(s)
- Y Huan
- Department of Medicine, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
31
|
Le TL, Yap AS, Stow JL. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J Cell Biol 1999; 146:219-32. [PMID: 10402472 PMCID: PMC2199726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
E-Cadherin plays critical roles in many aspects of cell adhesion, epithelial development, and the establishment and maintenance of epithelial polarity. The fate of E-cadherin once it is delivered to the basolateral cell surface, and the mechanisms which govern its participation in adherens junctions, are not well understood. Using surface biotinylation and recycling assays, we observed that some of the cell surface E-cadherin is actively internalized and is then recycled back to the plasma membrane. The pool of E-cadherin undergoing endocytosis and recycling was markedly increased in cells without stable cell-cell contacts, i.e., in preconfluent cells and after cell contacts were disrupted by depletion of extracellular Ca2+, suggesting that endocytic trafficking of E-cadherin is regulated by cell-cell contact. The reformation of cell junctions after replacement of Ca2+ was then found to be inhibited when recycling of endocytosed E-cadherin was disrupted by bafilomycin treatment. The endocytosis and recycling of E-cadherin and of the transferrin receptor were similarly inhibited by potassium depletion and by bafilomycin treatment, and both proteins were accumulated in intracellular compartments by an 18 degrees C temperature block, suggesting that endocytosis may occur via a clathrin-mediated pathway. We conclude that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E-cadherin for junction formation in development, tissue remodeling, and tumorigenesis.
Collapse
Affiliation(s)
- Tam Luan Le
- Centre for Molecular and Cellular Biology, The University of Queensland, Brisbane, 4072 Queensland, Australia
- Department of Biochemistry, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Alpha S. Yap
- Centre for Molecular and Cellular Biology, The University of Queensland, Brisbane, 4072 Queensland, Australia
- Department of Physiology and Pharmacology, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Jennifer L. Stow
- Centre for Molecular and Cellular Biology, The University of Queensland, Brisbane, 4072 Queensland, Australia
- Department of Biochemistry, The University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
32
|
Abstract
E-Cadherin plays critical roles in many aspects of cell adhesion, epithelial development, and the establishment and maintenance of epithelial polarity. The fate of E-cadherin once it is delivered to the basolateral cell surface, and the mechanisms which govern its participation in adherens junctions, are not well understood. Using surface biotinylation and recycling assays, we observed that some of the cell surface E-cadherin is actively internalized and is then recycled back to the plasma membrane. The pool of E-cadherin undergoing endocytosis and recycling was markedly increased in cells without stable cell-cell contacts, i.e., in preconfluent cells and after cell contacts were disrupted by depletion of extracellular Ca2+, suggesting that endocytic trafficking of E-cadherin is regulated by cell-cell contact. The reformation of cell junctions after replacement of Ca2+ was then found to be inhibited when recycling of endocytosed E-cadherin was disrupted by bafilomycin treatment. The endocytosis and recycling of E-cadherin and of the transferrin receptor were similarly inhibited by potassium depletion and by bafilomycin treatment, and both proteins were accumulated in intracellular compartments by an 18°C temperature block, suggesting that endocytosis may occur via a clathrin-mediated pathway. We conclude that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E-cadherin for junction formation in development, tissue remodeling, and tumorigenesis.
Collapse
Affiliation(s)
- Tam Luan Le
- Centre for Molecular and Cellular Biology, The University of Queensland, Brisbane, 4072 Queensland, Australia
- Department of Biochemistry, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Alpha S. Yap
- Centre for Molecular and Cellular Biology, The University of Queensland, Brisbane, 4072 Queensland, Australia
- Department of Physiology and Pharmacology, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Jennifer L. Stow
- Centre for Molecular and Cellular Biology, The University of Queensland, Brisbane, 4072 Queensland, Australia
- Department of Biochemistry, The University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
33
|
Perego C, Vanoni C, Villa A, Longhi R, Kaech SM, Fröhli E, Hajnal A, Kim SK, Pietrini G. PDZ-mediated interactions retain the epithelial GABA transporter on the basolateral surface of polarized epithelial cells. EMBO J 1999; 18:2384-93. [PMID: 10228153 PMCID: PMC1171321 DOI: 10.1093/emboj/18.9.2384] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The PDZ target motifs located in the C-terminal end of many receptors and ion channels mediate protein-protein interactions by binding to specific PDZ-containing proteins. These interactions are involved in the localization of surface proteins on specialized membrane domains of neuronal and epithelial cells. However, the molecular mechanism responsible for this PDZ protein-dependent polarized localization is still unclear. This study first demonstrated that the epithelial gamma-aminobutyric acid (GABA) transporter (BGT-1) contains a PDZ target motif that mediates the interaction with the PDZ protein LIN-7 in Madin-Darby canine kidney (MDCK) cells, and then investigated the role of this interaction in the basolateral localization of the transporter. It was found that although the transporters from which the PDZ target motif was deleted were still targeted to the basolateral surface, they were not retained but internalized in an endosomal recycling compartment. Furthermore, an interfering BGT peptide determined the intracellular relocation of the native transporter. These data indicate that interactions with PDZ proteins determine the polarized surface localization of target proteins by means of retention and not targeting mechanisms. PDZ proteins may, therefore, act as a sort of membrane protein sorting machinery which, by recognizing retention signals (the PDZ target sequences), prevents protein internalization.
Collapse
Affiliation(s)
- C Perego
- CNR Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thiel S, Dahmen H, Martens A, Müller-Newen G, Schaper F, Heinrich PC, Graeve L. Constitutive internalization and association with adaptor protein-2 of the interleukin-6 signal transducer gp130. FEBS Lett 1998; 441:231-4. [PMID: 9883890 DOI: 10.1016/s0014-5793(98)01559-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The transmembrane protein gp130 is the common signalling receptor subunit for the interleukin-6 (IL-6)-type cytokines. It has recently been shown that the cytoplasmic domain of gp130 contains a dileucine internalization motif and that endocytosis of gp130 occurs signal-independent. Here, we have studied whether gp130 itself undergoes constitutive internalization or whether its endocytosis is stimulated by formation of the IL-6/IL-6R/gp130 complex. Using two different assays, we found that gp130 is internalized independent from IL-6/IL-6R stimulation. In addition, we show that gp130 is constitutively associated with the cell surface adaptor complex AP-2. Our findings strongly suggest endocytosis of gp130 to be constitutive.
Collapse
Affiliation(s)
- S Thiel
- Institut für Biochemie der RWTH Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Harder T, Kellner R, Parton RG, Gruenberg J. Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol Biol Cell 1997; 8:533-45. [PMID: 9188103 PMCID: PMC276102 DOI: 10.1091/mbc.8.3.533] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Annexin II is an abundant protein which is present in the cytosol and on the cytoplasmic face of plasma membrane and early endosomes. It is generally believed that this association occurs via Ca(2+)-dependent binding to lipids, a mechanism typical for the annexin protein family. Although previous studies have shown that annexin II is involved in early endosome dynamics and organization, the precise biological role of the protein is unknown. In this study, we found that approximately 50% of the total cellular annexin was associated with membranes in a Ca(2+)-independent manner. This binding was extremely tight, since it resisted high salt and, to some extent, high pH treatments. We found, however, that membrane-associated annexin II could be quantitatively released by low concentrations of the cholesterol-sequestering agents filipin and digitonin. Both treatments released an identical and limited set of proteins but had no effects on other membrane-associated proteins. Among the released proteins, we identified, in addition to annexin II itself, the cortical cytoskeletal proteins alpha-actinin, ezrin and moesin, and membrane-associated actin. Our biochemical and immunological observations indicate that these proteins are part of a complex containing annexin II and that stability of the complex is sensitive to cholesterol sequestering agents. Since annexin II is tightly membrane-associated in a cholesterol-dependent manner, and since it seems to interact physically with elements of the cortical actin cytoskeleton, we propose that the protein serves as interface between membranes containing high amounts of cholesterol and the actin cytoskeleton.
Collapse
Affiliation(s)
- T Harder
- Institut für Physiologische Chemie und Pathobiochemie, University of Mainz, Germany
| | | | | | | |
Collapse
|
36
|
Lisanti MP, Tang Z, Scherer PE, Sargiacomo M. Caveolae purification and glycosylphosphatidylinositol-linked protein sorting in polarized epithelia. Methods Enzymol 1995; 250:655-68. [PMID: 7651184 DOI: 10.1016/0076-6879(95)50103-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M P Lisanti
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
37
|
Mu JZ, Fallon RJ, Swanson PE, Carroll SB, Danaher M, Alpers DH. Expression of an endogenous asialoglycoprotein receptor in a human intestinal epithelial cell line, Caco-2. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1222:483-91. [PMID: 8038219 DOI: 10.1016/0167-4889(94)90058-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously shown that rat asialoglycoprotein receptor expressed in the intestine and liver differ in mRNA size, cell surface distribution, and ratio of compositional protein subunits. In this study, we examined a well characterized intestinal epithelial cell line, Caco-2, as a potential model for studying endogenous receptor in a polarized cell line. Both subunits H1 and H2 of human asialoglycoprotein receptor were detected in Caco-2 cells by Western blots using subunit-specific antisera raised against the hepatic receptor. Antigenic receptor level in fully differentiated Caco-2 cells was approx. 1/3 to 1/2 the level of hepatic HepG2 cells H1 was the dominant subunit in both cell lines. The apparent size of H1 and H2 in Caco-2 cells was not the same as that in HepG2 cells, due to differences in N-linked glycosylation. Consistent with this finding, Northern blot analysis showed that receptor mRNA in the two cell types was of identical size. In pulse-chase experiments H1 was first detected as a 'high-mannose' precursor (40 kDa) in Caco-2 cells that was converted to mature H1 (43 kDa) with a half-life of approx. 60 min. Antigenic levels of H1 and H2 in undifferentiated Caco-2 cells were low, but increased rapidly during cell differentiation, reaching a peak level at 7 days after confluence. Immunocytochemical staining and domain-selective cell surface biotinylation assays showed that the ASGP-R was predominantly localized in the basolateral domain. The receptor in Caco-2 cells was capable of mediating specific uptake and degradation of [125I]asialoorosomucoid. The ligand uptake capacity of the basolateral surface of was approx. 10-fold higher than the apical. These characteristics (H1 subunit and basolateral predominance) of the receptor in Caco-2 cells, resembles the hepatic receptor. We conclude that Caco-2 cells endogenously express in ectopic hepatic-type functional asialoglycoprotein receptor.
Collapse
Affiliation(s)
- J Z Mu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | | | | | | | | | | |
Collapse
|
38
|
Gerhartz C, Dittrich E, Stoyan T, Rose-John S, Yasukawa K, Heinrich PC, Graeve L. Biosynthesis and half-life of the interleukin-6 receptor and its signal transducer gp130. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:265-74. [PMID: 8033901 DOI: 10.1111/j.1432-1033.1994.tb18991.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interleukin-6 (IL-6) exerts its action via a receptor complex composed of a ligand-binding subunit (gp80) and a signal transducer (gp130) which both belong to the hematopoietic receptor super-family. Very little is known about the biosynthesis and the biological half-lives of proteins of this superfamily. Therefore, we studied the biosynthesis and maturation of the interleukin-6 receptor and its signaling subunit gp130 by pulse chase experiments in stably transfected Madin-Darby canine kidney cells. We found that both proteins are synthesized as precursors with apparent molecular masses of 67 kDa and 130 kDa, respectively. These receptor forms are processed within 45-60 min into mature proteins of 82 kDa and 150 kDa containing complex-type oligosaccharides. The signal transducer gp130 shows a similar maturation in human hepatoma cells HepG2. The IL-6 receptor appears at the cell surface 45 min after completion of its synthesis in the endoplasmic reticulum. In both cell types studied, gp80 and gp130 are rapidly turned over with half-lives of 2-3 h. These half-lives were unaffected by the presence of the ligand IL-6.
Collapse
Affiliation(s)
- C Gerhartz
- Institut für Biochemie, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Dempsey P, Coffey R. Basolateral targeting and efficient consumption of transforming growth factor-alpha when expressed in Madin-Darby canine kidney cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89472-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Kong CT, Varde A, Lever JE. Targeting of recombinant Na+/glucose cotransporter (SGLT1) to the apical membrane. FEBS Lett 1993; 333:1-4. [PMID: 8224142 DOI: 10.1016/0014-5793(93)80363-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A full-length Na+/glucose cotransporter cDNA (SGLT1) from rabbit intestine was subcloned into the pMAMneo mammalian expression vector and transfected by Ca2+ precipitation into Madin-Darby canine kidney (MDCK) cells. Stable MDCK transfectants isolated after clonal isolation and selection in G418 exhibited dexamethasone-inducible Na+/glucose cotransport activity under regulation of the MMTV promoter of the vector. Transfectants expressed the recombinant 75 kDa Na+/glucose cotransporter subunit as shown by Western blot, and SGLT1 mRNA as shown by Northern blot, but these were undetectable in untransfected MDCK cells. Over 93% of total recombinant transport activity was targeted to the apical membrane. This indicates that the primary amino acid sequence of SGLT1 contains the information necessary to target this transporter to the apical membrane.
Collapse
Affiliation(s)
- C T Kong
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225
| | | | | |
Collapse
|
41
|
Coupaye-Gerard B, Kleyman TR. Differential arrival of newly synthesized apical and basolateral plasma membrane proteins in the epithelial cell line A6. J Membr Biol 1993; 135:225-35. [PMID: 8271262 DOI: 10.1007/bf00211094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The labeling of specific cell surface proteins with biotin was used to examine both protein distribution and delivery of newly synthesized proteins to the apical and basolateral cell surface in A6 cells. Steady-state metabolic labeling with [35S]methionine followed by specific cell surface biotinylation demonstrated polarization of membrane proteins. The delivery of newly synthesized proteins to the apical or basolateral cell surface was examined by metabolic labeling with [35S]methionine using a pulse-chase protocol in combination with specific cell surface biotinylation. Newly synthesized biotinylated proteins at the apical cell surface reached a maximum after a 5 min chase, and then fell over the remainder of a 2 hr chase. The bulk flow of newly synthesized proteins to the basolateral membrane slowly rose to a maximum after 90 min. The detergent Triton X-114 was used to examine delivery of hydrophilic and hydrophobic proteins to the cell surface. Delivery of both hydrophilic and hydrophobic proteins to the apical cell surface reached a maximum 5 to 10 min into the chase period. The arrival of hydrophilic proteins at the basolateral surface showed early delivery and a maximum peak delivery at 120 min into the chase period. In contrast, only an early peak of delivery of newly synthesized hydrophobic proteins to the basolateral membrane was observed.
Collapse
Affiliation(s)
- B Coupaye-Gerard
- Department of Medicine, University of Pennsylvania, Philadelphia
| | | |
Collapse
|
42
|
Verrey F, Drickamer K. Determinants of oligomeric structure in the chicken liver glycoprotein receptor. Biochem J 1993; 292 ( Pt 1):149-55. [PMID: 8503842 PMCID: PMC1134281 DOI: 10.1042/bj2920149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The oligomeric state of the chicken liver receptor (chicken hepatic lectin), which mediates endocytosis of glycoproteins terminating with N-acetylglucosamine, has been investigated using physical methods as well as chemical cross-linking. Receptor isolated from liver and from transfected rat fibroblasts expressing the full-length polypeptide is a homotrimer immediately following solubilization in non-ionic detergent, but forms the previously observed hexamer during purification. These results are most consistent with the presence of a trimer of receptor polypeptides in liver membranes and in transfected cells. Analysis of truncated receptors reveals that the C-terminal extracellular portion of this type-II transmembrane protein does not form stable oligomers when isolated from the membrane anchor and cytoplasmic tail. The behaviour of chimeric receptors, in which the cytoplasmic tail of the glycoprotein receptor is replaced with the corresponding segments of rat liver asialoglycoprotein receptor or the beta-subunit of Na+,K(+)-ATPase, or with unrelated sequences from globin, indicates that the cytoplasmic tail influences oligomer stability. Replacement of N-terminal portions of the receptor with corresponding segments of influenza virus neuraminidase results in formation of tetramers, suggesting that the membrane anchor and flanking sequences are important determinants of oligomer formation.
Collapse
Affiliation(s)
- F Verrey
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | | |
Collapse
|
43
|
Shioi J, Refolo LM, Efthimiopoulos S, Robakis NK. Chondroitin sulfate proteoglycan form of cellular and cell-surface Alzheimer amyloid precursor. Neurosci Lett 1993; 154:121-4. [PMID: 8361624 DOI: 10.1016/0304-3940(93)90186-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The biological function of the amyloid precursor protein (APP) is still not fully understood. Recently, we reported that secreted truncated APP occurs in a chondroitin sulfate proteoglycan form. Here we present evidence that full length APP-chondroitin sulfate proteoglycan is present on the cell surface of C6 glioma cells. In addition, densitometric quantitation of Western blots showed that approximately 50% of the mature cell-associated full length APP is in the proteoglycan form. These findings suggest that the proteoglycan nature of APP may be important for the implementation of its biological function.
Collapse
Affiliation(s)
- J Shioi
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029
| | | | | | | |
Collapse
|
44
|
Ricin-resistant Madin-Darby canine kidney cells missort a major endogenous apical sialoglycoprotein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53126-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Vesicular stomatitis virus glycoprotein contains a dominant cytoplasmic basolateral sorting signal critically dependent upon a tyrosine. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53695-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Weisz O, Machamer C, Hubbard A. Rat liver dipeptidylpeptidase IV contains competing apical and basolateral targeting information. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41667-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Abstract
We observed that the structural organization of early endosomes was significantly modified after cell surface biotinylation followed by incubation in the presence of low concentrations of avidin. Under these conditions early endosomes increased in size to form structures which extended over several micrometers and which had an intra-luminal content with a characteristic electron-dense appearance. The modified early endosomes were not formed when either avidin or biotinylation was omitted, suggesting that they resulted from the cross-linking of internalized biotinylated proteins by avidin. Accumulation of a fluid-phase tracer was increased after the avidin-biotin treatment (145% after 45 min). Both recycling and transport to the late endosomes still occurred, albeit to a somewhat lower extent than in control cells. Quantitative electron microscopy showed that the volume of the endosomal compartment was increased approximately 1.5-fold but that the surface area of the compartment decreased relative to its volume after avidin-biotin treatment. Finally, overexpression of a rab5 mutant, which is known to inhibit early endosome fusion in vitro, prevented the formation of these structures in vivo and caused early endosome fragmentation. Altogether, our data suggest that early endosomes exhibit a high plasticity in vivo. Cross-linking appears to interfere with this dynamic process but does not arrest membrane traffic to/from early endosomes.
Collapse
Affiliation(s)
- R G Parton
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
48
|
Wall DA, Holguin R. Expression of the chicken hepatic glycoprotein receptor in Xenopus oocytes: conservation of ligand and receptor targeting signals. J Cell Biochem 1992; 48:248-61. [PMID: 1400611 DOI: 10.1002/jcb.240480305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have obtained expression of the beta-N-acetylglucosamine-binding receptor from chicken hepatocytes in Xenopus oocytes by injecting mRNA synthesized in vitro from a full length cDNA cloned into an expression vector (Mellow et al: J. Biol Chem 263: 5468-5473, 1988). Immunoprecipitation of the receptor after labeling of oocytes with [35S]-methionine for times ranging from 6 to 72 h revealed 4-5 closely spaced bands of 25-30 kDa after SDS-PAGE. Although these bands were largely resistant to endoglycosidase H cleavage, endoglycosidase F reduced the size of all bands to a single species at 23-24 kDa, indicating that they resulted from heterogeneity in glycosylation of a single polypeptide. Incubation of oocytes expressing this receptor with [125I]-GlcNAc-BSA resulted in 1.8 to 10 x higher levels of cell-associated ligand in mRNA-injected vs. water-injected control oocytes, 2-35% of cell-associated counts was removed by EGTA rinse at 20 degrees C, suggesting that most ligand was inaccessible (presumably intracellular). Immunoprecipitation of sucrose gradient fractions detected receptor molecules predominantly in a light organelle at 1.09-1.12 g/cc (the density of early endosomes and plasma membrane vesicles), with no evidence of the receptor in much heavier yolk platelet fractions even in the presence of ligand. In contrast, internalized [125I]-GlcNAc-BSA was found either at the top of the gradients or in organelles at 1.09-1.17 g/cc and in yolk platelets. TCA precipitation indicated that much intracellular ligand was degraded to acid-soluble fragments. Addition of vitellogenin (the yolk protein precursor) to the medium together with the [125I]-GlcNAc-BSA shifted much of the ligand into yolk platelets. These data indicate that the chicken glycoprotein receptor expressed in oocytes mediates binding and internalization of this ligand into an organelle in which ligand-receptor dissociation occurs, allowing for separation of these two molecules into different compartments. The behavior of ligand in Xenopus oocytes expressing the chicken receptor closely resembles its behavior in hepatocytes.
Collapse
Affiliation(s)
- D A Wall
- Department of Drug Delivery, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406-0939
| | | |
Collapse
|
49
|
Nabi IR, Le Bivic A, Fambrough D, Rodriguez-Boulan E. An endogenous MDCK lysosomal membrane glycoprotein is targeted basolaterally before delivery to lysosomes. J Cell Biol 1991; 115:1573-84. [PMID: 1757463 PMCID: PMC2289220 DOI: 10.1083/jcb.115.6.1573] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using surface immunoprecipitation at 37 degrees C to "catch" the transient apical or basolateral appearance of an endogenous MDCK lysosomal membrane glycoprotein, the AC17 antigen, we demonstrate that the bulk of newly synthesized AC17 antigen is polarly targeted from the Golgi apparatus to the basolateral plasma membrane or early endosomes and is then transported to lysosomes via the endocytic pathway. The AC17 antigen exhibits very similar properties to members of the family of lysosomal-associated membrane glycoproteins (LAMPs). Parallel studies of an avian LAMP, LEP100, transfected into MDCK cells revealed colocalization of the two proteins to lysosomes, identical biosynthetic and degradation rates, and similar low levels of steady-state expression on both the apical (0.8%) and basolateral (2.1%) membranes. After treatment of the cells with chloroquine, newly synthesized AC17 antigen, while still initially targeted basolaterally, appears stably in both the apical and basolateral domains, consistent with the depletion of the AC17 antigen from lysosomes and its recycling in a nonpolar fashion to the cell surface.
Collapse
Affiliation(s)
- I R Nabi
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York 10021
| | | | | | | |
Collapse
|
50
|
Han JR, Liu MC. Polarized secretion of tyrosine-sulphated proteins and free tyrosine O-sulphate by filter-grown Madin-Darby canine kidney (MDCK) cells. Biochem J 1991; 279 ( Pt 1):289-95. [PMID: 1930147 PMCID: PMC1151578 DOI: 10.1042/bj2790289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Filter-grown Madin-Darby canine kidney (MDCK) cells labelled for 24 h with [35S]sulphate were found to secrete macromolecules [35S]sulphated on their carbohydrate moieties predominantly into the basolateral medium, whereas the tyrosine-[35S]sulphated proteins synthesized were predominantly secreted into the apical medium. In contrast with the predominant apical secretin of tyrosine-[35S]sulphated proteins, the free tyrosine O-[35S]sulphate (Tyr[35S]) was released mostly into the basolateral medium. A time-lapse study using prelabelled MDCK cells incubated in fresh medium revealed that, during the 48 h time course monitored, the release of tyrosine-[35S]sulphated proteins into the apical medium was faster and quantitatively greater than that into the basolateral medium. During the same time there was a concomitant release, predominantly into the basolateral medium, of the free Tyr[35S] derived from the degradation of tyrosine-[35S]sulphated proteins. An endocytotic degradation experiment was performed to demonstrate the endocytosis of tyrosine-sulphated proteins and their degradation to generate free TyrS. It was found that free Tyr[35S] was generated and released when an apically secreted (or basolaterally secreted) tyrosine-[35S]sulphated protein preparation was added to the apical medium (or the basolateral medium) of unlabelled filter-grown MDCK cells. In both cases, the free Tyr[35S] generated was predominantly released into the basolateral medium similar to the results obtained in the time-lapse study.
Collapse
Affiliation(s)
- J R Han
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019
| | | |
Collapse
|