1
|
Ji Z, Mi A, Li M, Li Q, Qin C. Aberrant KIF23 expression is associated with adverse clinical outcome and promotes cellular malignant behavior through the Wnt/β-catenin signaling pathway in Colorectal Cancer. J Cancer 2021; 12:2030-2040. [PMID: 33754001 PMCID: PMC7974518 DOI: 10.7150/jca.51565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/29/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose: The aim of the present study was to reveal the clinicopathological significance and prognostic role of kinesin family member 23 (KIF23) in colorectal cancer (CRC) and characterize its biological function and the underlying mechanisms. Methods: Bioinformatics analysis, immunohistochemistry, Western blot and qRT-PCR were utilized to investigate the expression of KIF23 in CRC tissues. The CCK-8 assay, wound healing assay and Matrigel assay were used to detect cell proliferation, migration and invasion in vitro. Western blot, immunofluorescence staining and cell function experiment were performed to explore the underlying mechanism. Results: The overexpression of KIF23 was associated with T stage, N stage, M stage and TNM stage, and CRC patients with high KIF23 expression had a worse prognosis. KIF23 knockdown inhibits CRC cells proliferation, migration and invasion in vitro. The mechanism study determined that KIF23 activates the Wnt/β-catenin signaling pathway by promoting the nuclear translocation of β-catenin to regulate the malignant behavior of CRC cells. Conclusion: These results suggest that KIF23 may act as a putative oncogene and a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Zhiyu Ji
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Aoning Mi
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Mengmeng Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Quanying Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
2
|
Revealing PAK2's Function in the Cell Division through MKLP1's Interactome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8854245. [PMID: 33204722 PMCID: PMC7666706 DOI: 10.1155/2020/8854245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
Cell division-related proteins are essential for the normal development and differentiation of cells and may be related to the occurrence of cancer and the drug resistance mechanism of cancer cells. The mitotic kinesin-like protein 1 (MKLP1) is a kinesin protein that has been involved in the assembly of the midzone/midbody during mitosis and cytokinesis. In this study, we found that the tail domain of MKLP1 exhibited an autoinhibitory effect on its motor activity. Overexpression of the tail domain in HEK293 cells blocked cytokinesis and caused bi-/multinucleation. It is possible that protein binding to the MKLP1 tail relieves this autoinhibition and induces the motility of MKLP1. We used the GST pull-down assay followed by the LC-MS/MS analysis and identified 54 MKLP1 tail domain-specific binding proteins. Further, we confirmed the MS result by coimmunoprecipitation and FRET that a serine/threonine kinase, p21-activated kinase 2 (PAK2), binding to MKLP1. Endogenous PAK2 expression was found to be identical to that of MKLP1 in HEK293 cells during cytokinesis. Finally, functional studies indicated that when PAK2 expression was downregulated by siRNA, MKLP1 underwent a change in its localization away from the midbody, and cell cytokinesis was subsequently impeded. This study presents a novel regulatory mechanism that PAK2 promotes the activation of MKLP1 and contributes to complete cell cytokinesis.
Collapse
|
3
|
Li T, Li Y, Gan Y, Tian R, Wu Q, Shu G, Yin G. Methylation-mediated repression of MiR-424/503 cluster promotes proliferation and migration of ovarian cancer cells through targeting the hub gene KIF23. Cell Cycle 2019; 18:1601-1618. [PMID: 31135262 PMCID: PMC6619937 DOI: 10.1080/15384101.2019.1624112] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one type of gynecological malignancies with extremely high lethal rate. Abnormal proliferation and metastasis are regarded to play important roles in patients' death, whereas we know little about the underlying molecular mechanisms. Under this circumstance, our current study aims to investigate the role of hub genes in ovarian cancer. Bioinformatics analysis of the data from GEO and analyses of ovarian cancer samples were performed. Then, the results showed that KIF23, a hub gene, was mainly related to cell cycle and positively associated with poor prognosis. Meanwhile, both miR-424-5p and miR-503-5p directly targeted to 3'UTR of KIF23 to suppress the expression of KIF23 and inhibit ovarian cancer cell proliferation and migration. Furthermore, we discovered that miR-424/503 was epigenetically repressed by hypermethylation in the promoter regions, which directly modulated the expression of KIF23 to improve the oncogenic performance of cancer cells in vitro. Together, our research certifies that miR-424/503 cluster is silenced by DNA hypermethylation, which promotes the expression of KIF23, thereby regulating the proliferation and migration of ovarian cancer cells. Interposing this process might be a novel approach in cancer therapy.
Collapse
Affiliation(s)
- Tong Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yimin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yaqi Gan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Ruotong Tian
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Qihan Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Wu WD, Yu KW, Zhong N, Xiao Y, She ZY. Roles and mechanisms of Kinesin-6 KIF20A in spindle organization during cell division. Eur J Cell Biol 2019; 98:74-80. [DOI: 10.1016/j.ejcb.2018.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
|
5
|
Krüger LK, Sanchez JL, Paoletti A, Tran PT. Kinesin-6 regulates cell-size-dependent spindle elongation velocity to keep mitosis duration constant in fission yeast. eLife 2019; 8:42182. [PMID: 30806623 PMCID: PMC6391065 DOI: 10.7554/elife.42182] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
The length of the mitotic spindle scales with cell size in a wide range of organisms during embryonic development. Interestingly, in C. elegans embryos, this goes along with temporal regulation: larger cells speed up spindle assembly and elongation. We demonstrate that, similarly in fission yeast, spindle length and spindle dynamics adjust to cell size, which allows to keep mitosis duration constant. Since prolongation of mitosis was shown to affect cell viability, this may resemble a mechanism to regulate mitosis duration. We further reveal how the velocity of spindle elongation is regulated: coupled to cell size, the amount of kinesin-6 Klp9 molecules increases, resulting in an acceleration of spindle elongation in anaphase B. In addition, the number of Klp9 binding sites to microtubules increases overproportionally to Klp9 molecules, suggesting that molecular crowding inversely correlates to cell size and might have an impact on spindle elongation velocity control.
Collapse
Affiliation(s)
| | | | - Anne Paoletti
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Phong Thanh Tran
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
6
|
Abstract
Cytokinesis in metazoan cells is mediated by an actomyosin-based contractile ring that assembles in response to activation of the small GTPase RhoA. The guanine nucleotide exchange factor that activates RhoA during cytokinesis, ECT-2, is highly regulated. In most metazoan cells, with the notable exception of the early
Caenorhabditis elegans embryo, RhoA activation and furrow ingression require the centralspindlin complex. This exception is due to the existence of a parallel pathway for RhoA activation in
C. elegans. Centralspindlin contains CYK-4 which contains a predicted Rho family GTPase-activating protein (GAP) domain. The function of this domain has been the subject of considerable debate. Some publications suggest that the GAP domain promotes RhoA activation (for example, Zhang and Glotzer, 2015; Loria, Longhini and Glotzer, 2012), whereas others suggest that it functions to inactivate the GTPase Rac1 (for example, Zhuravlev
et al., 2017). Here, we review the mechanisms underlying RhoA activation during cytokinesis, primarily focusing on data in
C. elegans. We highlight the importance of considering the parallel pathway for RhoA activation and detailed analyses of
cyk-4 mutant phenotypes when evaluating the role of the GAP domain of CYK-4.
Collapse
Affiliation(s)
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Tao L, Fasulo B, Warecki B, Sullivan W. Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor. Nat Commun 2016; 7:11182. [PMID: 27091402 PMCID: PMC4838857 DOI: 10.1038/ncomms11182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/26/2016] [Indexed: 11/24/2022] Open
Abstract
Centralspindlin is essential for central spindle and cleavage furrow formation. Drosophila centralspindlin consists of a kinesin-6 motor (Pav/kinesin-6) and a GTPase-activating protein (Tum/RacGAP). Centralspindlin localization to the central spindle is mediated by Pav/kinesin-6. While Tum/RacGAP has well-documented scaffolding functions, whether it influences Pav/kinesin-6 function is less well-explored. Here we demonstrate that both Pav/kinesin-6 and the centralspindlin complex (co-expressed Pav/Tum) have strong microtubule bundling activity. Centralspindlin also has robust plus-end-directed motility. In contrast, Pav/kinesin-6 alone cannot move microtubules. However, the addition of Tum/RacGAP or a 65 amino acid Tum/RacGAP fragment to Pav/kinesin-6 restores microtubule motility. Further, ATPase assays reveal that microtubule-stimulated ATPase activity of centralspindlin is seven times higher than that of Pav/kinesin-6. These findings are supported by in vivo studies demonstrating that in Tum/RacGAP-depleted S2 Drosophila cells, Pav/kinesin-6 exhibits severely reduced localization to the central spindle and an abnormal concentration at the centrosomes. Centralspindlin consists of dimeric kinesin-6 and dimeric RacGAP, and is involved in the organization of anaphase midzone microtubules. Here, the authors show that the RacGAP is needed for motor activity at the plus-end of microtubules, but not for the bundling activity associated with kinesin-6.
Collapse
Affiliation(s)
- Li Tao
- Department of Biology, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Barbara Fasulo
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Brandt Warecki
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - William Sullivan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
8
|
Zhang Y, Liu J, Peng X, Zhu CC, Han J, Luo J, Rui R. KIF20A regulates porcine oocyte maturation and early embryo development. PLoS One 2014; 9:e102898. [PMID: 25036038 PMCID: PMC4103861 DOI: 10.1371/journal.pone.0102898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023] Open
Abstract
KIF20A (Kinesin-like family member 20A), also called mitotic kinesin-like proteins 2 (MKLP2), is a mammalian mitotic kinesin-like motor protein of the Kinesin superfamily proteins (KIFs), which was originally involved in Golgi apparatus dynamics and thought to essential for cell cycle regulation during successful cytokinesis. In the present study, we investigated whether KIF20A has roles on porcine oocyte meiotic maturation and subsequent early embryo development. By immunofluorescence staining, KIF20A was found to exhibit a dynamic localization pattern during meiosis. KIF20A was restricted to centromeres after germinal vesicle breakdown (GVBD), transferred to the midbody at telophase I (TI), and again associated with centromeres at metaphase II (MII). Inhibition of endogenous KIF20A via a specific inhibitor, Paprotrain, resulted in failure of polar body extrusion. Further cell cycle analysis showed that the percentage of oocytes that arrested at early metaphase I (MI) stage increased after KIF20A activity inhibition; however, the proportion of oocytes at anaphase/telophase I (ATI) and MII stages decreased significantly. Our results also showed that KIF20A inhibition did not affect spindle morphology. In addition, KIF20A was localized at the nucleus of early embryos, and KIF20A inhibition resulted in failure of early parthenogenetic embryo development. These results demonstrated that KIF20A is critical for porcine oocyte meiotic maturation and subsequent early embryo development.
Collapse
Affiliation(s)
- Yu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
- College of Animal Sciences and Technology, Nanjing Agricultural University, Jiangsu, China
| | - Jun Liu
- College of Animal Sciences and Technology, Nanjing Agricultural University, Jiangsu, China
| | - Xu Peng
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Cheng-Cheng Zhu
- College of Animal Sciences and Technology, Nanjing Agricultural University, Jiangsu, China
| | - Jun Han
- College of Animal Sciences and Technology, Nanjing Agricultural University, Jiangsu, China
| | - Jia Luo
- Technology Centre of Guangxi Entry-Exit Inspection and Quarantine Bureau, Nanning, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
- * E-mail:
| |
Collapse
|
9
|
Matsuo M, Shimodaira T, Kasama T, Hata Y, Echigo A, Okabe M, Arai K, Makino Y, Niwa SI, Saya H, Kishimoto T. Katanin p60 contributes to microtubule instability around the midbody and facilitates cytokinesis in rat cells. PLoS One 2013; 8:e80392. [PMID: 24303010 PMCID: PMC3841192 DOI: 10.1371/journal.pone.0080392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/02/2013] [Indexed: 12/20/2022] Open
Abstract
The completion of cytokinesis is crucial for mitotic cell division. Cleavage furrow ingression is followed by the breaking and resealing of the intercellular bridge, but the detailed mechanism underlying this phenomenon remains unknown. Katanin is a microtubule-severing protein comprised of an AAA ATPase subunit and an accessory subunit designated as p60 and p80, respectively. Localization of katanin p60 was observed at the midzone to midbody from anaphase to cytokinesis in rat cells, and showed a ring-shaped distribution in the gap between the inside of the contractile ring and the central spindle bundle in telophase. Katanin p60 did not bind with p80 at the midzone or midbody, and localization was shown to be dependent on microtubules. At the central spindle and the midbody, no microtubule growth plus termini were seen with katanin p60, and microtubule density was inversely correlated with katanin p60 density in the region of katanin p60 localization that seemed to lead to microtubule destabilization at the midbody. Inhibition of katanin p60 resulted in incomplete cytokinesis by regression and thus caused the appearance of binucleate cells. These results suggest that katanin p60 contributes to microtubule instability at the midzone and midbody and facilitates cytokinesis in rat cells.
Collapse
Affiliation(s)
- Moe Matsuo
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Tetsuhiro Shimodaira
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | | | - Yukie Hata
- Link Genomics Co., Ltd., Tokyo, Japan
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Ayumi Echigo
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Masaki Okabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | | | | | | | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Toshihiko Kishimoto
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
- Proteome Analysis Center, Faculty of Science, Toho University, Funabashi, Chiba, Japan
- * E-mail:
| |
Collapse
|
10
|
White EA, Glotzer M. Centralspindlin: at the heart of cytokinesis. Cytoskeleton (Hoboken) 2012; 69:882-92. [PMID: 22927365 PMCID: PMC3821549 DOI: 10.1002/cm.21065] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022]
Abstract
The final step in the cell cycle is the formation of two genetically identical daughter cells by cytokinesis. At the heart of cytokinesis in animal cells is the centralspindlin complex which is composed of two proteins, a kinesin-like protein, Mitotic kinesin-like protein 1, and a Rho GTPase activating protein (RhoGAP), CYK-4. Through its targeted localization to a narrow region of antiparallel microtubule overlap immediately following chromosome segregation, centralspindlin initiates central spindle assembly. Centralspindlin has several critical functions during cell division including positioning of the division plane, regulation of Rho family GTPases, as well as midbody assembly and abscission. In this review, we will examine the biochemistry of centralspindlin and its multiple functions during cell division. Remarkably, several of its critical functions are somewhat unexpected. Although endowed with motor domains, centralspindlin has an important role in generating stable, antiparallel microtubule bundles. Although it contains a Rho family GAP domain, it has a central role in the activation of RhoA during cytokinesis. Finally, centralspindlin functions as a motor protein complex, as a scaffold protein for key regulators of abscission and as a conventional RhoGAP. Because of these diverse functions, centralspindlin lies at the heart of the cytokinetic mechanism.
Collapse
Affiliation(s)
- Erin A. White
- Department of Molecular Genetics and Cell Biology, University of
Chicago, CLSC 901, 920 E. 58th St. Chicago, IL 60637
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of
Chicago, CLSC 901, 920 E. 58th St. Chicago, IL 60637
| |
Collapse
|
11
|
Kaplan A, Reiner O. Linking cytoplasmic dynein and transport of Rab8 vesicles to the midbody during cytokinesis by the doublecortin domain-containing 5 protein. J Cell Sci 2011; 124:3989-4000. [PMID: 22159412 DOI: 10.1242/jcs.085407] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Completion of mitosis requires microtubule-dependent transport of membranes to the midbody. Here, we identified a role in cytokinesis for doublecortin domain-containing protein 5 (DCDC5), a member of the doublecortin protein superfamily. DCDC5 is a microtubule-associated protein expressed in both specific and dynamic fashions during mitosis. We show that DCDC5 interacts with cytoplasmic dynein and Rab8 (also known as Ras-related protein Rab-8A), as well as with the Rab8 nucleotide exchange factor Rabin8 (also known as Rab-3A-interacting protein). Following DCDC5 knockdown, the durations of the metaphase to anaphase transition and cytokinesis, and the proportion of multinucleated cells increases, whereas cell viability decreases. Furthermore, knockdown of DCDC5 or addition of a dynein inhibitor impairs the entry of Golgi-complex-derived Rab8-positive vesicles to the midbody. These findings suggest that DCDC5 plays an important role in mediating dynein-dependent transport of Rab8-positive vesicles and in coordinating late cytokinesis.
Collapse
Affiliation(s)
- Anna Kaplan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
12
|
Walczak CE, Heald R. Mechanisms of mitotic spindle assembly and function. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:111-58. [PMID: 18275887 DOI: 10.1016/s0074-7696(07)65003-7] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mitotic spindle is the macromolecular machine that segregates chromosomes to two daughter cells during mitosis. The major structural elements of the spindle are microtubule polymers, whose intrinsic polarity and dynamic properties are critical for bipolar spindle organization and function. In most cell types, spindle microtubule nucleation occurs primarily at two centrosomes, which define the spindle poles, but microtubules can also be generated by the chromosomes and within the spindle itself. Many associated factors help organize the spindle, including molecular motors and regulators of microtubule dynamics. The past decade has provided a wealth of information on the molecular players that are critical for spindle assembly as well as a high-resolution view of the intricate movements and dynamics of the spindle microtubules and the chromosomes. In this chapter we provide a historical account of the key observations leading to current models of spindle assembly, as well as an up-to-date status report on this exciting field.
Collapse
Affiliation(s)
- Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
13
|
Sickles DW, Sperry AO, Testino A, Friedman M. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle. Toxicol Appl Pharmacol 2007; 222:111-21. [PMID: 17540427 DOI: 10.1016/j.taap.2007.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 11/17/2022]
Abstract
The microtubule (MT) motor protein kinesin is a vital component of cells and organs expressing acrylamide (ACR) toxicity. As a mechanism of its potential carcinogenicity, we determined whether kinesins involved in cell division are inhibited by ACR similar to neuronal kinesin [Sickles, D.W., Brady, S.T., Testino, A.R., Friedman, M.A., and Wrenn, R.A. (1996). Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. Journal of Neuroscience Research 46, 7-17.] Kinesin-related genes were isolated from rat testes [Navolanic, P.M., and Sperry, A.O. (2000). Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biology of Reproduction 62, 1360-1369.], their kinesin-like proteins expressed in bacteria using recombinant DNA techniques and the effects of ACR, glycidamide (GLY) and propionamide (a non-neurotoxic metabolite) on the function of two of the identified kinesin motors were tested. KIFC5A MT bundling activity, required for mitotic spindle formation, was measured in an MT-binding assay. Both ACR and GLY caused a similar concentration-dependent reduction in the binding of MT; concentrations of 100 microM ACR or GLY reduced its activity by 60%. KRP2 MT disassembling activity was assayed using the quantity of tubulin disassembled from taxol-stabilized MT. Both ACR and GLY inhibited KRP2-induced MT disassembly. GLY was substantially more potent; significant reductions of 60% were achieved by 500 microM, a comparable inhibition by ACR required a 5 mM concentration. Propionamide had no significant effect on either kinesin, except KRP2 at 10 mM. This is the first report of ACR inhibition of a mitotic/meiotic motor protein. ACR (or GLY) inhibition of kinesin may be an alternative mechanism to DNA adduction in the production of cell division defects and potential carcinogenicity. We conclude that ACR may act on multiple kinesin family members and produce toxicities in organs highly dependent on microtubule-based functions.
Collapse
Affiliation(s)
- Dale W Sickles
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912-2000, USA.
| | | | | | | |
Collapse
|
14
|
Zhu C, Bossy-Wetzel E, Jiang W. Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells. Biochem J 2005; 389:373-81. [PMID: 15796717 PMCID: PMC1175114 DOI: 10.1042/bj20050097] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The INCENP (inner centromere protein) is a chromosomal passenger protein that plays multiple roles in regulating mitosis and cytokinesis. The MKLP1 (mitotic kinesin-like protein) is a component of centralspindlin complex that has been implicated in assembly of midzone/midbody during mitosis and is essential for cytokinesis. In the present study, we investigated functions of INCNEP and MKLP1 and their interplay in regulating spindle midzone/midbody formation and cytokinesis in human cells. Immunofluorescence and live-cell imaging analyses have shown that, in addition to multiple chromosome segregation defects, cells that lacked INCENP by RNAi (RNA interference) exhibit abnormal spindle midzone/midbody formation, resulting in formation of binucleated/multinucleated cells. Suppression of MKLP1 expression by siRNA (small interfering RNA) did not cause any abnormality of chromosome segregation and midzone formation, but abrogated midbody formation and completion of cytokinesis. Furthermore, we show that INCENP is required for recruiting MKLP1 to the spindle midzone/midbody. Three-dimensional reconstruction imaging analysis suggests that recruitment of MKLP1 to the midzone/midbody by INCENP is a crucial step for the midbody formation and completion of cytokinesis in mammalian cells.
Collapse
Affiliation(s)
- Changjun Zhu
- *Program of Cancer Genetics and Epigenetics, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Ella Bossy-Wetzel
- †Program of Neurodegenerative Disease Research, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Wei Jiang
- *Program of Cancer Genetics and Epigenetics, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Maiato H, Sampaio P, Sunkel CE. Microtubule-associated proteins and their essential roles during mitosis. ACTA ACUST UNITED AC 2005; 241:53-153. [PMID: 15548419 DOI: 10.1016/s0074-7696(04)41002-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microtubules play essential roles during mitosis, including chromosome capture, congression, and segregation. In addition, microtubules are also required for successful cytokinesis. At the heart of these processes is the ability of microtubules to do work, a property that derives from their intrinsic dynamic behavior. However, if microtubule dynamics were not properly regulated, it is certain that microtubules alone could not accomplish any of these tasks. In vivo, the regulation of microtubule dynamics is the responsibility of microtubule-associated proteins. Among these, we can distinguish several classes according to their function: (1) promotion and stabilization of microtubule polymerization, (2) destabilization or severance of microtubules, (3) functioning as linkers between various structures, or (4) motility-related functions. Here we discuss how the various properties of microtubule-associated proteins can be used to assemble an efficient mitotic apparatus capable of ensuring the bona fide transmission of the genetic information in animal cells.
Collapse
Affiliation(s)
- Hélder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
16
|
Liu X, Zhou T, Kuriyama R, Erikson RL. Molecular interactions of Polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1. J Cell Sci 2004; 117:3233-46. [PMID: 15199097 DOI: 10.1242/jcs.01173] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polo-like kinases and kinesin-like motor proteins are among the many proteins implicated in the execution of cytokinesis. Polo-like-kinase 1 (Plk1) interacts with the mitotic kinesin-like motor protein CHO1/MKLP-1 during anaphase and telophase, and CHO1/MKLP-1 is a Plk1 substrate in vitro. Here, we explore the molecular interactions of these two key contributors to mitosis and cytokinesis. Using the transient transfection approach, we show that the C-terminus of Plk1 binds CHO1/MKLP-1 in a Polo-box-dependent manner and that the stalk domain of CHO1/MKLP-1 is responsible for its binding to Plk1. The stalk domain was found to localize with Plk1 to the mid-body, and Plk1 appears to be mislocalized in CHO1/MKLP-1-depleted cells during late mitosis. We showed that Ser904 and Ser905 are two major Plk1 phosphorylation sites. Using the vector-based RNA interference approach, we showed that depletion of CHO1/MKLP-1 causes the formation of multinucleate cells with more centrosomes, probably because of a defect in the early phase of cytokinesis. Overexpression of a non-Plk1-phosphorylatable CHO1 mutant caused cytokinesis defects, presumably because of dominant negative effect of the construct. Finally, CHO1-depletion-induced multinucleation could be partially rescued by co-transfection of a non-degradable hamster wild-type CHO1 construct, but not an unphosphorylatable mutant. These data provide more detailed information about the interaction between Plk1 and CHO1/MKLP-1, and the significance of this is discussed.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Glomerular podocytes are highly specialized cells with a complex cytoarchitecture. Their most prominent features are interdigitated foot processes with filtration slits in between. These are bridged by the slit diaphragm, which plays a major role in establishing the selective permeability of the glomerular filtration barrier. Injury to podocytes leads to proteinuria, a hallmark of most glomerular diseases. New technical approaches have led to a considerable increase in our understanding of podocyte biology including protein inventory, composition and arrangement of the cytoskeleton, receptor equipment, and signaling pathways involved in the control of ultrafiltration. Moreover, disturbances of podocyte architecture resulting in the retraction of foot processes and proteinuria appear to be a common theme in the progression of acquired glomerular disease. In hereditary nephrotic syndromes identified over the last 2 years, all mutated gene products were localized in podocytes. This review integrates our recent physiological and molecular understanding of the role of podocytes during the maintenance and failure of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Hermann Pavenstädt
- Division of Nephrology, Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | | | | |
Collapse
|
18
|
Canman JC, Sharma N, Straight A, Shannon KB, Fang G, Salmon ED. Anaphase onset does not require the microtubule-dependent depletion of kinetochore and centromere-binding proteins. J Cell Sci 2002; 115:3787-95. [PMID: 12235289 DOI: 10.1242/jcs.00057] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spindle checkpoint proteins, such as Mad2 and BubR1, and the motors dynein/dynactin and CENP-E usually leave kinetochores prior to anaphase onset by microtubule-dependent mechanisms. Likewise, 'chromosome passenger proteins' including INCENP are depleted from the centromeres after anaphase onset and then move to the midzone complex, an event that is essential for cytokinesis. Here we test whether the cell cycle changes that occur at anaphase onset require or contribute to the depletion of kinetochore and centromere proteins independent of microtubules. This required the development of a novel non-antibody method to induce precocious anaphase onset in vivo by using a bacterially expressed fragment of the spindle checkpoint protein Mad1 capable of activating the APC/C, called GST-Mad1F10. By injecting PtK1 cells in nocodazole with GST-Mad1F10 and processing the cells for immunofluorescence microscopy after anaphase sister chromatid separation in nocodazole we found that Mad2, BubR1, cytoplasmic dynein, CENP-E and the 3F3/2 phosphoepitope remain on kinetochores. Thus depletion of these proteins (or phosphoepitope) at kinetochores is not required for anaphase onset and anaphase onset does not produce their depletion independent of microtubules. In contrast, both microtubules and anaphase onset are required for depletion of the 'chromosome passenger' protein INCENP from centromeres, as INCENP does not leave the chromosomes prior to anaphase onset in the presence or absence of microtubules, but does leave the centromeres after anaphase onset in the presence of microtubules.
Collapse
Affiliation(s)
- Julie C Canman
- University of North Carolina, Department of Biology, 607 Fordham Hall, CB3280, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cytokinesis is the final event of the cell division cycle, and its completion results in irreversible partition of a mother cell into two daughter cells. Cytokinesis was one of the first cell cycle events observed by simple cell biological techniques; however, molecular characterization of cytokinesis has been slowed by its particular resistance to in vitro biochemical approaches. In recent years, the use of genetic model organisms has greatly advanced our molecular understanding of cytokinesis. While the outcome of cytokinesis is conserved in all dividing organisms, the mechanism of division varies across the major eukaryotic kingdoms. Yeasts and animals, for instance, use a contractile ring that ingresses to the cell middle in order to divide, while plant cells build new cell wall outward to the cortex. As would be expected, there is considerable conservation of molecules involved in cytokinesis between yeast and animal cells, while at first glance, plant cells seem quite different. However, in recent years, it has become clear that some aspects of division are conserved between plant, yeast, and animal cells. In this review we discuss the major recent advances in defining cytokinesis, focusing on deciding where to divide, building the division apparatus, and dividing. In addition, we discuss the complex problem of coordinating the division cycle with the nuclear cycle, which has recently become an area of intense research. In conclusion, we discuss how certain cells have utilized cytokinesis to direct development.
Collapse
Affiliation(s)
- David A Guertin
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
20
|
Faruki S, Cole RW, Rieder CL. Separating centrosomes interact in the absence of associated chromosomes during mitosis in cultured vertebrate cells. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:107-21. [PMID: 12112153 DOI: 10.1002/cm.10036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We detail here how "free" centrosomes, lacking associated chromosomes, behave during mitosis in PtK(2) homokaryons stably expressing GFP-alpha-tubulin. As free centrosomes separate during prometaphase, their associated astral microtubules (Mts) interact to form a spindle-shaped array that is enriched for cytoplasmic dynein and Eg5. Over the next 30 min, these arrays become progressively depleted of Mts until the two centrosomes are linked by a single bundle, containing 10-20 Mts, that persists for > 60 min. The overlapping astral Mts within this bundle are loosely organized, and their plus ends terminate near its midzone, which is enriched for an ill-defined matrix material. At this time, the distance between the centrosomes is not defined by external forces because these organelles remain stationary when the bundle connecting them is severed by laser microsurgery. However, since the centrosomes move towards one another in response to monastrol treatment, the kinesin-like motor protein Eg5 is involved. From these results, we conclude that separating asters interact during prometaphase of mitosis to form a spindle-shaped Mt array, but that in the absence of chromosomes this array is unstable. An analysis of the existing data suggests that the stabilization of spindle Mts during mitosis in vertebrates does not involve the chromatin (i.e., the RCC1/RanGTP pathway), but instead some other chromosomal component, e.g., kinetochores.
Collapse
Affiliation(s)
- Shamsa Faruki
- Division of Molecular Medicine, Wadsworth Center for Laboratories and Research, Empire State Plaza, Albany, New York, USA
| | | | | |
Collapse
|
21
|
Matuliene J, Kuriyama R. Kinesin-like protein CHO1 is required for the formation of midbody matrix and the completion of cytokinesis in mammalian cells. Mol Biol Cell 2002; 13:1832-45. [PMID: 12058052 PMCID: PMC117607 DOI: 10.1091/mbc.01-10-0504] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CHO1 is a mammalian kinesin-like motor protein of the MKLP1 subfamily. It associates with the spindle midzone during anaphase and concentrates to a midbody matrix during cytokinesis. CHO1 was originally implicated in karyokinesis, but the invertebrate homologues of CHO1 were shown to function in the midzone formation and cytokinesis. To analyze the role of the protein in mammalian cells, we mutated the ATP-binding site of CHO1 and expressed it in CHO cells. Mutant protein (CHO1F') was able to interact with microtubules via ATP-independent microtubule-binding site(s) but failed to accumulate at the midline of the central spindle and affected the localization of endogenous CHO1. Although the segregation of chromosomes, the bundling of midzone microtubules, and the initiation of cytokinesis proceeded normally in CHO1F'-expressing cells, the completion of cytokinesis was inhibited. Daughter cells were frequently entering interphase while connected by a microtubule-containing cytoplasmic bridge from which the dense midbody matrix was missing. Depletion of endogenous CHO1 via RNA-mediated interference also affected the formation of midbody matrix in dividing cells, caused the disorganization of midzone microtubules, and resulted in abortive cytokinesis. Thus, CHO1 may not be required for karyokinesis, but it is essential for the proper midzone/midbody formation and cytokinesis in mammalian cells.
Collapse
Affiliation(s)
- Jurgita Matuliene
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
22
|
Kuriyama R, Gustus C, Terada Y, Uetake Y, Matuliene J. CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. J Cell Biol 2002; 156:783-90. [PMID: 11877456 PMCID: PMC2173305 DOI: 10.1083/jcb.200109090] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
CHO1 is a kinesin-like protein of the mitotic kinesin-like protein (MKLP)1 subfamily present in central spindles and midbodies in mammalian cells. It is different from other subfamily members in that it contains an extra approximately 300 bp in the COOH-terminal tail. Analysis of the chicken genomic sequence showed that heterogeneity is derived from alternative splicing, and exon 18 is expressed in only the CHO1 isoform. CHO1 and its truncated isoform MKLP1 are coexpressed in a single cell. Surprisingly, the sequence encoded by exon 18 possesses a capability to interact with F-actin, suggesting that CHO1 can associate with both microtubule and actin cytoskeletons. Microinjection of exon 18-specific antibodies did not result in any inhibitory effects on karyokinesis and early stages of cytokinesis. However, almost completely separated daughter cells became reunited to form a binulceate cell, suggesting that the exon 18 protein may not have a role in the formation and ingression of the contractile ring in the cortex. Rather, it might be involved directly or indirectly in the membrane events necessary for completion of the terminal phase of cytokinesis.
Collapse
Affiliation(s)
- Ryoko Kuriyama
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
23
|
Chen MC, Zhou Y, Detrich HW. Zebrafish mitotic kinesin-like protein 1 (Mklp1) functions in embryonic cytokinesis. Physiol Genomics 2002; 8:51-66. [PMID: 11842131 DOI: 10.1152/physiolgenomics.00042.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To understand the functions of microtubule motors in vertebrate development, we are investigating the kinesin-like proteins (KLPs) of the zebrafish, Danio rerio. Here we describe the structure, intracellular distribution, and function of zebrafish mitotic KLP1 (Mklp1). The zebrafish mklp1 gene that encodes this 867-amino acid protein maps to a region of zebrafish linkage group 18 that is syntenic with part of human chromosome 15. In zebrafish AB9 fibroblasts and in COS-7 cells, the zebrafish Mklp1 protein decorates spindle microtubules at metaphase, redistributes to the spindle midzone during anaphase, and becomes concentrated in the midbody during telophase and cytokinesis. The motor is detected consistently in interphase nuclei of COS cells and occasionally in those of AB9 cells. Nuclear targeting of Mklp1 is conferred by two basic motifs located in the COOH terminus of the motor. In cleaving zebrafish embryos, green fluorescent protein (GFP)-tagged Mklp1 is found in the nucleus in interphase and associates with microtubules of the spindle midbody in cytokinesis. One- or two-cell embryos injected with synthetic mRNAs encoding dominant-negative variants of GFP-Mklp1 frequently fail to complete cytokinesis during cleavage, resulting in formation of multinucleated blastomeres. Our results indicate that the zebrafish Mklp1 motor performs a critical function that is required for completion of embryonic cytokinesis.
Collapse
Affiliation(s)
- Ming-Chyuan Chen
- Department of Biology, Northeastern University, Children's Hospital and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Abstract
Cytokinesis creates two daughter cells endowed with a complete set of chromosomes and cytoplasmic organelles. This conceptually simple event is mediated by a complex and dynamic interplay between the microtubules of the mitotic spindle, the actomyosin cytoskeleton, and membrane fusion events. For many decades the study of cytokinesis was driven by morphological studies on specimens amenable to physical manipulation. The studies led to great insights into the cellular structures that orchestrate cell division, but the underlying molecular machinery was largely unknown. Molecular and genetic approaches have now allowed the initial steps in the development of a molecular understanding of this fundamental event in the life of a cell. This review provides an overview of the literature on cytokinesis with a particular emphasis on the molecular pathways involved in the division of animal cells.
Collapse
Affiliation(s)
- M Glotzer
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 1, A-1030 Vienna, Austria.
| |
Collapse
|
25
|
Kamimoto T, Zama T, Aoki R, Muro Y, Hagiwara M. Identification of a novel kinesin-related protein, KRMP1, as a target for mitotic peptidyl-prolyl isomerase Pin1. J Biol Chem 2001; 276:37520-8. [PMID: 11470801 DOI: 10.1074/jbc.m106207200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitosis utilizes a number of kinesin-related proteins (KRPs). Here we report the identification of a novel KRP termed KRMP1, which has a deduced 1780-amino acid sequence composed of ternary domains. The amino-terminal head domain is most similar to the kinesin motor domain of the MKLP-1 subfamily and has an intrinsic ATPase activity that is diminished by substituting the consensus Lys-168 with Arg. The central stalk domain is predicted to form a long alpha-helical coiled-coil, and can interact with each other in vivo. An in vivo labeling experiment revealed that KRMP1 is phosphorylated, and we also found that the region within the tail domain containing Thr-1604 as the cdc2 kinase phosphorylation site differs from the bimC box conserved in the bimC subfamily of KRPs. Immunofluorescence analysis showed that endogenous KRMP1 was localized predominantly to the cytoplasm during interphase and dispersed throughout the cell during mitosis. Consistent with this finding, overexpressed KRMP1 was detected in a complicated nuclear or cytoplasmic pattern reflecting multiple nuclear localization/export signals. Furthermore, KRMP1 interacted with the mitotic peptidyl-prolyl isomerase Pin1 in vivo, and an in vitro interaction was detected between the tail domain of KRMP1 and the WW domain of Pin1. Overexpression of KRMP1 caused COS-7 cells to arrest at G(2)-M, and co-expression of Pin1 reversed this effect, indicating their physiological interaction. Together, our results suggest that KRMP1 is a mitotic target regulated by Pin1 and vice versa.
Collapse
Affiliation(s)
- T Kamimoto
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
26
|
Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A 2001; 98:7004-11. [PMID: 11416179 PMCID: PMC34614 DOI: 10.1073/pnas.111145398] [Citation(s) in RCA: 455] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intracellular transport is essential for morphogenesis and functioning of the cell. The kinesin superfamily proteins (KIFs) have been shown to transport membranous organelles and protein complexes in a microtubule- and ATP-dependent manner. More than 30 KIFs have been reported in mice. However, the nomenclature of KIFs has not been clearly established, resulting in various designations and redundant names for a single KIF. Here, we report the identification and classification of all KIFs in mouse and human genome transcripts. Previously unidentified murine KIFs were found by a PCR-based search. The identification of all KIFs was confirmed by a database search of the total human genome. As a result, there are a total of 45 KIFs. The nomenclature of all KIFs is presented. To understand the function of KIFs in intracellular transport in a single tissue, we focused on the brain. The expression of 38 KIFs was detected in brain tissue by Northern blotting or PCR using cDNA. The brain, mainly composed of highly differentiated and polarized cells such as neurons and glia, requires a highly complex intracellular transport system as indicated by the increased number of KIFs for their sophisticated functions. It is becoming increasingly clear that the cell uses a number of KIFs and tightly controls the direction, destination, and velocity of transportation of various important functional molecules, including mRNA. This report will set the foundation of KIF and intracellular transport research.
Collapse
Affiliation(s)
- H Miki
- Department of Cell Biology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
27
|
Fontijn RD, Goud B, Echard A, Jollivet F, van Marle J, Pannekoek H, Horrevoets AJ. The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol Cell Biol 2001; 21:2944-55. [PMID: 11283271 PMCID: PMC86922 DOI: 10.1128/mcb.21.8.2944-2955.2001] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several members of the kinesin superfamily are known to play a prominent role in the motor-driven transport processes that occur in mitotic cells. Here we describe a new mitotic human kinesin-like protein, RB6K (Rabkinesin 6), distantly related to MKLP-1. Expression of RB6K is regulated during the cell cycle at both the mRNA and protein level and, similar to cyclin B, shows a maximum during M phase. Isolation of the RB6K promoter allowed identification of a CDE-CHR element and promoter activity was shown to be maximal during M phase. Immunofluorescence microscopy using antibodies raised against RB6K showed a weak signal in interphase Golgi but a 10-fold higher signal in prophase nuclei. During M phase, the newly synthesized RB6K does not colocalise with Rab6. In later stages of mitosis RB6K localized to the spindle midzone and appeared on the midbodies during cytokinesis. The functional significance of this localization during M phase was revealed by antibody microinjection studies which resulted exclusively in binucleate cells, showing a complete failure of cytokinesis. These results substantiate a crucial role for RB6K in late anaphase B and/or cytokinesis, clearly distinct from the role of MKLP-1.
Collapse
Affiliation(s)
- R D Fontijn
- Department of Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Chui KK, Rogers GC, Kashina AM, Wedaman KP, Sharp DJ, Nguyen DT, Wilt F, Scholey JM. Roles of two homotetrameric kinesins in sea urchin embryonic cell division. J Biol Chem 2000; 275:38005-11. [PMID: 11006281 DOI: 10.1074/jbc.m005948200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To improve our understanding of the roles of microtubule cross-linking motors in mitosis, we analyzed two sea urchin embryonic kinesin-related proteins. It is striking to note that both of these proteins behave as homotetramers, but one behaves as a more compact molecule than the other. These observations suggest that these two presumptive motors could cross-link microtubules into bundles with different spacing. Both motors localize to mitotic spindles, and antibody microinjection experiments suggest that they have mitotic functions. Thus, one of these kinesin-related proteins may cross-link spindle microtubules into loose bundles that are "tightened" by the other.
Collapse
Affiliation(s)
- K K Chui
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Proper division of the cell requires coordination between chromosome segregation by the mitotic spindle and cleavage of the cell by the cytokinetic apparatus. Interactions between the mitotic spindle, the contractile ring and the plasma membrane ensure that the cleavage furrow is properly placed between the segregating chromosomes and that new membrane compartments are formed to produce two daughter cells. The microtubule midzone is able to stimulate the cortex of the cell to ensure proper ingression and completion of the cleavage furrow. Specialized microtubule structures are responsible for directing membrane vesicles to the site of cell cleavage, and vesicle fusion is required for the proper completion of cytokinesis.
Collapse
Affiliation(s)
- A F Straight
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
30
|
Severson AF, Hamill DR, Carter JC, Schumacher J, Bowerman B. The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 2000; 10:1162-71. [PMID: 11050384 DOI: 10.1016/s0960-9822(00)00715-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The Aurora/Ipl1p-related kinase AIR-2 is required for mitotic chromosome segregation and cytokinesis in early Caenorhabditis elegans embryos. Previous studies have relied on non-conditional mutations or RNA-mediated interference (RNAi) to inactivate AIR-2. It has therefore not been possible to determine whether AIR-2 functions directly in cytokinesis or if the cleavage defect results indirectly from the failure to segregate DNA. One intriguing hypothesis is that AIR-2 acts to localize the mitotic kinesin-like protein ZEN-4 (also known as CeMKLP1), which later functions in cytokinesis. RESULTS Using conditional alleles, we established that AIR-2 is required at metaphase or early anaphase for normal segregation of chromosomes, localization of ZEN-4, and cytokinesis. ZEN-4 is first required late in cytokinesis, and also functions to maintain cell separation through much of the subsequent interphase. DNA segregation defects alone were not sufficient to disrupt cytokinesis in other mutants, suggesting that AIR-2 acts specifically during cytokinesis through ZEN-4. AIR-2 and ZEN-4 shared similar genetic interactions with the formin homology (FH) protein CYK-1, suggesting that AIR-2 and ZEN-4 function in a single pathway, in parallel to a contractile ring pathway that includes CYK-1. Using in vitro co-immunoprecipitation experiments, we found that AIR-2 and ZEN-4 interact directly. CONCLUSIONS AIR-2 has two functions during mitosis: one in chromosome segregation, and a second, independent function in cytokinesis through ZEN-4. AIR-2 and ZEN-4 may act in parallel to a second pathway that includes CYK-1.
Collapse
Affiliation(s)
- A F Severson
- Institute of Molecular Biology, University of Oregon, Eugene, 97403, USA
| | | | | | | | | |
Collapse
|
31
|
Wein H, Bass HW, Cande WZ. DSK1, a kinesin-related protein involved in anaphase spindle elongation, is a component of a mitotic spindle matrix. CELL MOTILITY AND THE CYTOSKELETON 2000; 41:214-24. [PMID: 9829776 DOI: 10.1002/(sici)1097-0169(1998)41:3<214::aid-cm3>3.0.co;2-p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
DSK1 is a kinesin-related protein that is involved in anaphase spindle elongation in the diatom Cylindrotheca fuisiformis [Wein et al., 1996: J. Cell Biol. 113:595-604]. DSK1 staining appeared to be concentrated in the gap that forms as the two half-spindles separate, suggesting that DSK1 may be part of a non-microtubule spindle matrix. We set out to investigate this possibility using three-dimensional high-resolution fluorescence microscopy, and biochemical methods of tubulin extraction. Three-dimensional fluorescence microscopy reveals that DSK1 remains in the midzone after the bulk of the microtubules from the two half-spindles have left the region. Biochemical studies show that CaCl2 extraction of tubulin from a mitotic spindle preparation does not extract similar proportions of DSK1 protein. Immunofluorescence confirms that this CaCl2 extraction leaves behind spindle-like bars that are recognized by anti-DSK1, but not by anti-tubulin antibodies. We conclude that DSK1 is part of, or attached to, a non-microtubule scaffold in the diatom central spindle. This discovery has implications for both the structural organization of the mitotic spindle and the mechanism of spindle elongation.
Collapse
Affiliation(s)
- H Wein
- Federation of American Scientists, Washington, DC, USA
| | | | | |
Collapse
|
32
|
Sharp DJ, Rogers GC, Scholey JM. Roles of motor proteins in building microtubule-based structures: a basic principle of cellular design. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:128-41. [PMID: 10722882 DOI: 10.1016/s0167-4889(00)00014-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Eukaryotic cells must build a complex infrastructure of microtubules (MTs) and associated proteins to carry out a variety of functions. A growing body of evidence indicates that a major function of MT-associated motor proteins is to assemble and maintain this infrastructure. In this context, we examine the mechanisms utilized by motors to construct the arrays of MTs and associated proteins contained within the mitotic spindle, neuronal processes, and ciliary axonemes. We focus on the capacity of motors to drive the 'sliding filament mechanism' that is involved in the construction and maintenance of spindles, axons and dendrites, and on a type of particle transport called 'intraflagellar transport' which contributes to the assembly and maintenance of axonemes.
Collapse
Affiliation(s)
- D J Sharp
- Section of Molecular and Cellular Biology, University of California-Davis, One Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
33
|
Boman AL, Kuai J, Zhu X, Chen J, Kuriyama R, Kahn RA. Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion. CELL MOTILITY AND THE CYTOSKELETON 1999; 44:119-32. [PMID: 10506747 DOI: 10.1002/(sici)1097-0169(199910)44:2<119::aid-cm4>3.0.co;2-c] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Arf proteins comprise a family of 21-kDa GTP-binding proteins with many proposed functions in mammalian cells, including the regulation of several steps of membrane transport, maintenance of organelle integrity, and activation of phospholipase D. We performed a yeast two-hybrid screen of human cDNA libraries using a dominant activating allele, [Q71L], of human Arf3 as bait. Eleven independent isolates contained plasmids encoding the C-terminal tail of mitotic kinesin-like protein-1 (MKLP1). Further deletion mapping allowed the identification of an 88 amino acid Arf3 binding domain in the C-terminus of MKLP1. This domain has no clear homology to other Arf binding proteins or to other proteins in the protein databases. The C-terminal domain of MKLP1 was expressed and purified from bacteria as a GST fusion protein and shown to bind Arf3 in a GTP-dependent fashion. A screen for mutations in Arf3 that specifically lost the ability to bind MKLP1 identified 10 of 14 point mutations in the GTP-sensitive switch I or switch II regions of Arf3. Two-hybrid assays of the C-terminal domain of MKLP1 with each of the human Arf isoforms revealed strong interaction with each. Taken together, these data are all supportive of the conclusion that activated Arf proteins bind to the C-terminal "tail" domain of MKLP1.
Collapse
Affiliation(s)
- A L Boman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322-3050, USA
| | | | | | | | | | | |
Collapse
|
34
|
Deavours BE, Walker RA. Nuclear localization of C-terminal domains of the kinesin-like protein MKLP-1. Biochem Biophys Res Commun 1999; 260:605-8. [PMID: 10403813 DOI: 10.1006/bbrc.1999.0952] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The successful execution of mitosis in mammalian cells requires the activities of numerous kinesin-like proteins. The Mitotic Kinesin-Like Protein-1 (MKLP-1) localizes to the spindle equator and is believed to participate in the separation of spindle poles during anaphase B. Injection of antibodies against MKLP-1 into dividing cells results in cell cycle arrest, suggesting that MKLP-1 is essential for mitosis. To further characterize MKLP-1, constructs encoding C-terminal domains of MKLP-1 were expressed as fusions to the green fluorescent protein and localized in HeLa cells. All constructs localized to the nucleus indicating the presence of at least one nuclear localization sequence in the C-terminus of the protein. C-terminal domains of MKLP-1 expressed in insect cells also localized to the nucleus as shown by subcellular fractionation. These proteins remained tightly associated with the nucleus following both detergent and salt extraction, suggesting a tight interaction with a component of the nucleus.
Collapse
Affiliation(s)
- B E Deavours
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- R Kuriyama
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
36
|
Affiliation(s)
- P Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst 01003, USA
| |
Collapse
|
37
|
Affiliation(s)
- P W Baas
- Department of Anatomy, The University of Wisconsin Medical School, Madison 53706, USA.
| |
Collapse
|
38
|
Kobayashi N, Reiser J, Kriz W, Kuriyama R, Mundel P. Nonuniform microtubular polarity established by CHO1/MKLP1 motor protein is necessary for process formation of podocytes. J Cell Biol 1998; 143:1961-70. [PMID: 9864367 PMCID: PMC2175224 DOI: 10.1083/jcb.143.7.1961] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Podocytes are unique cells that are decisively involved in glomerular filtration. They are equipped with a complex process system consisting of major processes and foot processes whose function is insufficiently understood (Mundel, P., and W. Kriz. 1995. Anat. Embryol. 192:385-397). The major processes of podocytes contain a microtubular cytoskeleton. Taking advantage of a recently established cell culture system for podocytes with preserved ability to form processes (Mundel, P., J. Reiser, A. Zúñiga Mejía Borja, H. Pavenstädt, G.R. Davidson, W. Kriz, and R. Zeller. 1997b. Exp. Cell Res. 36:248-258), we studied the functional significance of the microtubular system in major processes. The following data were obtained: (a) Microtubules (MTs) in podocytes show a nonuniform polarity as revealed by hook-decoration. (b) CHO1/ MKLP1, a kinesin-like motor protein, is associated with MTs in podocytes. (c) Treatment of differentiating podocytes with CHO1/MKLP1 antisense oligonucleotides abolished the formation of processes and the nonuniform polarity of MTs. (d) During the recovery from taxol treatment, taxol-stabilized (nocodazole- resistant) MT fragments were distributed in the cell periphery along newly assembled nocodazole-sensitive MTs. A similar distribution pattern of CHO1/MKLP1 was found under these circumstances, indicating its association with MTs. (e) In the recovery phase after complete depolymerization, MTs reassembled exclusively at centrosomes. Taken together, these findings lead to the conclusion that the nonuniform MT polarity in podocytes established by CHO1/MKLP1 is necessary for process formation.
Collapse
Affiliation(s)
- N Kobayashi
- Department of Anatomy and Cell Biology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
39
|
Carmena M, Riparbelli MG, Minestrini G, Tavares AM, Adams R, Callaini G, Glover DM. Drosophila polo kinase is required for cytokinesis. J Cell Biol 1998; 143:659-71. [PMID: 9813088 PMCID: PMC2148135 DOI: 10.1083/jcb.143.3.659] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A number of lines of evidence point to a predominance of cytokinesis defects in spermatogenesis in hypomorphic alleles of the Drosophila polo gene. In the pre-meiotic mitoses, cytokinesis defects result in cysts of primary spermatocytes with reduced numbers of cells that can contain multiple centrosomes. These are connected by a correspondingly reduced number of ring canals, structures formed by the stabilization of the cleavage furrow. The earliest defects during the meiotic divisions are a failure to form the correct mid-zone and mid-body structures at telophase. This is accompanied by a failure to correctly localize the Pavarotti kinesin- like protein that functions in cytokinesis, and of the septin Peanut and of actin to be incorporated into a contractile ring. In spite of these defects, cyclin B is degraded and the cells exit M phase. The resulting spermatids are frequently binuclear or tetranuclear, in which case they develop either two or four axonemes, respectively. A significant proportion of spermatids in which cytokinesis has failed may also show the segregation defects previously ascribed to polo1 mutants. We discuss these findings in respect to conserved functions for the Polo-like kinases in regulating progression through M phase, including the earliest events of cytokinesis.
Collapse
Affiliation(s)
- M Carmena
- CRC Cell Cycle Group, Cancer Research Campaign Laboratories, Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, Dundee DD1 4HN, Scotland
| | | | | | | | | | | | | |
Collapse
|
40
|
Powers J, Bossinger O, Rose D, Strome S, Saxton W. A nematode kinesin required for cleavage furrow advancement. Curr Biol 1998; 8:1133-6. [PMID: 9778533 PMCID: PMC3209536 DOI: 10.1016/s0960-9822(98)70470-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Dividing cells need to coordinate the separation of chromosomes with the formation of a cleavage plane. There is evidence that microtubule bundles in the interzone region of the anaphase spindle somehow control both the location and the assembly of the cleavage furrow [1-3]. A microtubule motor that concentrates in the interzone, MKLP1, has previously been implicated in the assembly of both the metaphase spindle and the cleavage furrow [4-6]. To gain insight into mechanisms that might underlie interdependence of the spindle and the cleavage furrow, we used RNA-mediated interference (RNAi) to study the effects of eliminating MKLP1 from Caenorhabditis elegans embryos. Surprisingly, in MKLP1(RNAi) embryos, spindle formation appears normal until late anaphase. Microtubule bundles form in the spindle interzone and the cleavage furrow assembles; anaphase and cleavage furrow ingression initially appear normal. The interzone bundles do not gather into a stable midbody, however, and furrow contraction always fails before complete closure. This sequence of relatively normal mitosis and a late failure of cytokinesis continues for many cell cycles. These and additional results suggest that the interzone microtubule bundles need MKLP1 to encourage the advance and stable closure of the cleavage furrow.
Collapse
Affiliation(s)
- J Powers
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
41
|
Raich WB, Moran AN, Rothman JH, Hardin J. Cytokinesis and midzone microtubule organization in Caenorhabditis elegans require the kinesin-like protein ZEN-4. Mol Biol Cell 1998; 9:2037-49. [PMID: 9693365 PMCID: PMC25457 DOI: 10.1091/mbc.9.8.2037] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1998] [Accepted: 06/05/1998] [Indexed: 11/11/2022] Open
Abstract
Members of the MKLP1 subfamily of kinesin motor proteins localize to the equatorial region of the spindle midzone and are capable of bundling antiparallel microtubules in vitro. Despite these intriguing characteristics, it is unclear what role these kinesins play in dividing cells, particularly within the context of a developing embryo. Here, we report the identification of a null allele of zen-4, an MKLP1 homologue in the nematode Caenorhabditis elegans, and demonstrate that ZEN-4 is essential for cytokinesis. Embryos deprived of ZEN-4 form multinucleate single-celled embryos as they continue to cycle through mitosis but fail to complete cell division. Initiation of the cytokinetic furrow occurs at the normal time and place, but furrow propagation halts prematurely. Time-lapse recordings and microtubule staining reveal that the cytokinesis defect is preceded by the dissociation of the midzone microtubules. We show that ZEN-4 protein localizes to the spindle midzone during anaphase and persists at the midbody region throughout cytokinesis. We propose that ZEN-4 directly cross-links the midzone microtubules and suggest that these microtubules are required for the completion of cytokinesis.
Collapse
Affiliation(s)
- W B Raich
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
42
|
Adams RR, Tavares AA, Salzberg A, Bellen HJ, Glover DM. pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev 1998; 12:1483-94. [PMID: 9585508 PMCID: PMC316841 DOI: 10.1101/gad.12.10.1483] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations in the Drosophila gene pavarotti result in the formation of abnormally large cells in the embryonic nervous system. In mitotic cycle 16, cells of pav mutant embryos undergo normal anaphase but then develop an abnormal telophase spindle and fail to undertake cytokinesis. We show that the septin Peanut, actin, and the actin-associated protein Anillin, do not become correctly localized in pav mutants. pav encodes a kinesin-like protein, PAV-KLP, related to the mammalian MKLP-1. In cellularized embryos, the protein is localized to centrosomes early in mitosis, and to the midbody region of the spindle in late anaphase and telophase. We show that Polo kinase associates with PAV-KLP with which it shows an overlapping pattern of subcellular localization during the mitotic cycle and this distribution is disrupted in pav mutants. We suggest that PAV-KLP is required both to establish the structure of the telophase spindle to provide a framework for the assembly of the contractile ring, and to mobilize mitotic regulator proteins.
Collapse
Affiliation(s)
- R R Adams
- Cancer Research Campaign (CRC) Laboratories, Cell Cycle Genetics Research Group, Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, Dundee DD1 4HN, UK.
| | | | | | | | | |
Collapse
|
43
|
Giansanti MG, Bonaccorsi S, Williams B, Williams EV, Santolamazza C, Goldberg ML, Gatti M. Cooperative interactions between the central spindle and the contractile ring during Drosophila cytokinesis. Genes Dev 1998; 12:396-410. [PMID: 9450933 PMCID: PMC316479 DOI: 10.1101/gad.12.3.396] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1997] [Accepted: 11/14/1997] [Indexed: 02/05/2023]
Abstract
We analyzed male meiosis in mutants of the chickadee (chic) locus, a Drosophila melanogaster gene that encodes profilin, a low molecular weight actin-binding protein that modulates F-actin polymerization. These mutants are severely defective in meiotic cytokinesis. During ana-telophase of both meiotic divisions, they exhibit a central spindle less dense than wild type; certain chic allelic combinations cause almost complete disappearance of the central spindle. Moreover, chic mutant spermatocytes fail to form an actomyosin contractile ring. To further investigate the relationships between the central spindle and the contractile ring, we examined meiosis in the cytokinesis-defective mutants KLP3A and diaphanous and in testes treated with cytochalasin B. In all cases, we found that the central spindle and the contractile ring in meiotic ana-telophases were simultaneously absent. Together, these results suggest a cooperative interaction between elements of the actin-based contractile ring and the central spindle microtubules: When one of these structures is disrupted, the proper assembly of the other is also affected. In addition to effects on the central spindle and the cytokinetic apparatus, we observed another consequence of chic mutations: A large fraction of chic spermatocytes exhibit abnormal positioning and delayed migration of asters to the cell poles. A similar phenotype was seen in testes treated with cytochalasin B and has been noted previously in mutants at the twinstar locus, a gene that encodes a Drosophila member of the cofilin/ADF family of actin-severing proteins. These observations all indicate that proper actin assembly is necessary for centrosome separation and migration.
Collapse
Affiliation(s)
- M G Giansanti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Universitá di Roma "La Sapienza," 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Sharp DJ, Yu W, Ferhat L, Kuriyama R, Rueger DC, Baas PW. Identification of a microtubule-associated motor protein essential for dendritic differentiation. J Cell Biol 1997; 138:833-43. [PMID: 9265650 PMCID: PMC2138050 DOI: 10.1083/jcb.138.4.833] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/1997] [Revised: 06/10/1997] [Indexed: 02/05/2023] Open
Abstract
The quintessential feature of the dendritic microtubule array is its nonuniform pattern of polarity orientation. During the development of the dendrite, a population of plus end-distal microtubules first appears, and these microtubules are subsequently joined by a population of oppositely oriented microtubules. Studies from our laboratory indicate that the latter microtubules are intercalated within the microtubule array by their specific transport from the cell body of the neuron during a critical stage in development (Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol. 130:93- 104). In addition, we have established that the mitotic motor protein termed CHO1/MKLP1 has the appropriate properties to transport microtubules in this manner (Sharp, D.J., R. Kuriyama, and P.W. Baas. 1996. J. Neurosci. 16:4370-4375). In the present study we have sought to determine whether CHO1/MKLP1 continues to be expressed in terminally postmitotic neurons and whether it is required for the establishment of the dendritic microtubule array. In situ hybridization analyses reveal that CHO1/MKLP1 is expressed in postmitotic cultured rat sympathetic and hippocampal neurons. Immunofluorescence analyses indicate that the motor is absent from axons but is enriched in developing dendrites, where it appears as discrete patches associated with the microtubule array. Treatment of the neurons with antisense oligonucleotides to CHO1/MKLP1 suppresses dendritic differentiation, presumably by inhibiting the establishment of their nonuniform microtubule polarity pattern. We conclude that CHO1/MKLP1 transports microtubules from the cell body into the developing dendrite with their minus ends leading, thereby establishing the nonuniform microtubule polarity pattern of the dendrite.
Collapse
Affiliation(s)
- D J Sharp
- Department of Anatomy and Program in Neuroscience, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The spindle assembly checkpoint monitors proper chromosome attachment to spindle microtubules and is conserved from yeast to humans. Checkpoint components reside on kinetochores of chromosomes and show changes in phosphorylation and localization as cells proceed through mitosis. Adaptation to prolonged checkpoint arrest can occur by inhibitory phosphorylation of Cdc2.
Collapse
Affiliation(s)
- A D Rudner
- Department of Physiology, Box 0444, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0444, USA.
| | | |
Collapse
|
46
|
Expression of a kinesin-related motor protein induces Sf9 cells to form dendrite-like processes with nonuniform microtubule polarity orientation. J Neurosci 1996. [PMID: 8699247 DOI: 10.1523/jneurosci.16-14-04370.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The microtubules (MTs) within neuronal processes are highly organized with regard to their polarity and yet are not attached to any detectable nucleating structure. Axonal MTs are uniformly oriented with their plus ends distal to the cell body, whereas dendritic MTs are of both orientations. Here, we sought to test the capacity of motor-driven MT transport to organize distinct MT patterns during process outgrowth. We focused on CHO1/MKLP1, a kinesin-related protein present in the midzonal region of the mitotic spindle where MTs of opposite orientation overlap. Insect ovarian Sf9 cells induced to express the N-terminal portion of the molecule form MT-rich processes with a morphology similar to that of neuronal dendrites (Kuriyama et al., 1994). Nascent processes contain uniformly plus-end-distal MTs, but these are joined by minus-end-distal MTs as the processes continue to develop. Thus, this CHO1/MKLP1 fragment establishes a nonuniform MT polarity pattern and does so by a similar sequence of events as occurs with the dendrite, the antecedent of which is a short process with a uniform MT polarity orientation. Two lines of evidence suggest that these results are elicited by motor-driven MT transport. First, there is a depletion of MTs from the cell body during process outgrowth. Second, the same polarity pattern is obtained when net MT assembly is suppressed pharmacologically during process formation. Collectively, these findings provide precedent for the idea that motor-driven transport can organize MTs into distinct patterns of polarity orientation during process outgrowth.
Collapse
|
47
|
Sharp DJ, Kuriyama R, Baas PW. Expression of a kinesin-related motor protein induces Sf9 cells to form dendrite-like processes with nonuniform microtubule polarity orientation. J Neurosci 1996; 16:4370-5. [PMID: 8699247 PMCID: PMC6578863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The microtubules (MTs) within neuronal processes are highly organized with regard to their polarity and yet are not attached to any detectable nucleating structure. Axonal MTs are uniformly oriented with their plus ends distal to the cell body, whereas dendritic MTs are of both orientations. Here, we sought to test the capacity of motor-driven MT transport to organize distinct MT patterns during process outgrowth. We focused on CHO1/MKLP1, a kinesin-related protein present in the midzonal region of the mitotic spindle where MTs of opposite orientation overlap. Insect ovarian Sf9 cells induced to express the N-terminal portion of the molecule form MT-rich processes with a morphology similar to that of neuronal dendrites (Kuriyama et al., 1994). Nascent processes contain uniformly plus-end-distal MTs, but these are joined by minus-end-distal MTs as the processes continue to develop. Thus, this CHO1/MKLP1 fragment establishes a nonuniform MT polarity pattern and does so by a similar sequence of events as occurs with the dendrite, the antecedent of which is a short process with a uniform MT polarity orientation. Two lines of evidence suggest that these results are elicited by motor-driven MT transport. First, there is a depletion of MTs from the cell body during process outgrowth. Second, the same polarity pattern is obtained when net MT assembly is suppressed pharmacologically during process formation. Collectively, these findings provide precedent for the idea that motor-driven transport can organize MTs into distinct patterns of polarity orientation during process outgrowth.
Collapse
Affiliation(s)
- D J Sharp
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706, USA
| | | | | |
Collapse
|
48
|
Vaisberg EA, Grissom PM, McIntosh JR. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J Cell Biol 1996; 133:831-42. [PMID: 8666668 PMCID: PMC2120833 DOI: 10.1083/jcb.133.4.831] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We describe two dynein heavy chain (DHC)-like polypeptides (DHCs 2 and 3) that are distinct from the heavy chain of conventional cytoplasmic dynein (DHC1) but are expressed in a variety of mammalian cells that lack axonemes. DHC2 is a distant member of the "cytoplasmic" branch of the dynein phylogenetic tree, while DHC3 shares more sequence similarity with dynein-like polypeptides that have been thought to be axonemal. Each cytoplasmic dynein is associated with distinct cellular organelles. DHC2 is localized predominantly to the Golgi apparatus. Moreover, the Golgi disperses upon microinjection of antibodies to DHC2, suggesting that this motor is involved in establishing proper Golgi organization. DCH3 is associated with as yet unidentified structures that may represent transport intermediates between two or more cytoplasmic compartments. Apparently, specific cytoplasmic dyneins, like individual members of the kinesin superfamily, play unique roles in the traffic of cytomembranes.
Collapse
Affiliation(s)
- E A Vaisberg
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA.
| | | | | |
Collapse
|
49
|
Wein H, Foss M, Brady B, Cande WZ. DSK1, a novel kinesin-related protein from the diatom Cylindrotheca fusiformis that is involved in anaphase spindle elongation. J Biophys Biochem Cytol 1996; 133:595-604. [PMID: 8636234 PMCID: PMC2120814 DOI: 10.1083/jcb.133.3.595] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have identified an 80-kD protein that is involved in mitotic spindle elongation in the diatom Cylindrotheca fusiformis. DSK1 (Diatom Spindle Kinesin 1) was isolated using a peptide antibody raised against a conserved region in the motor domain of the kinesin superfamily. By sequence homology, DSK1 belongs to the central motor family of kinesin-related proteins. Immunoblots using an antibody raised against a non-conserved region of DSK1 show that DSK1 is greatly enriched in mitotic spindle preparations. Anti-DSK1 stains in diatom central spindle with a bias toward the midzone, and staining is retained in the spindle midzone during spindle elongation in vitro. Furthermore, preincubation with anti-DSK1 blocks function in an in vitro spindle elongation assay. This inhibition of spindle elongation can be rescued by preincubating concurrently with the fusion protein against which anti-DSK1 was raised. We conclude that DSK1 is involved in spindle elongation and is likely to be responsible for pushing hal-spindles apart in the spindle midzone.
Collapse
Affiliation(s)
- H Wein
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| | | | | | | |
Collapse
|
50
|
Barton NR, Goldstein LS. Going mobile: microtubule motors and chromosome segregation. Proc Natl Acad Sci U S A 1996; 93:1735-42. [PMID: 8700828 PMCID: PMC39850 DOI: 10.1073/pnas.93.5.1735] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Proper chromosome segregation in eukaryotes depends upon the mitotic and meiotic spindles, which assemble at the time of cell division and then disassemble upon its completion. These spindles are composed in large part of microtubules, which either generate force by controlled polymerization and depolymerization or transduce force generated by molecular microtubule motors. In this review, we discuss recent insights into chromosome segregation mechanisms gained from the analyses of force generation during meiosis and mitosis. These analyses have demonstrated that members of the kinesin superfamily and the dynein family are essential in all organisms for proper chromosome and spindle behavior. It is also apparent that forces generated by microtubule polymerization and depolymerization are capable of generating forces sufficient for chromosome movement in vitro; whether they do so in vivo is as yet unclear. An important realization that has emerged is that some spindle activities can be accomplished by more than one motor so that functional redundancy is evident. In addition, some meiotic or mitotic movements apparently occur through the cooperative action of independent semiredundant processes. Finally, the molecular characterization of kinesin-related proteins has revealed that variations both in primary sequence and in associations with other proteins can produce motor complexes that may use a variety of mechanisms to transduce force in association with microtubules. Much remains to be learned about the regulation of these activities and the coordination of opposing and cooperative events involved in chromosome segregation; this set of problems represents one of the most important future frontiers of research.
Collapse
Affiliation(s)
- N R Barton
- Howard Hughes Medical Institute, Department of Pharmacology, University of California San Diego, La Jolla 92093-0683, USA
| | | |
Collapse
|