1
|
Muranova LK, Vostrikova VM, Shatov VM, Sluchanko NN, Gusev NB. Interaction of the C-terminal immunoglobulin-like domains (Ig 22-24) of filamin C with human small heat shock proteins. Biochimie 2024; 219:146-154. [PMID: 38016530 DOI: 10.1016/j.biochi.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Small heat shock proteins are the well-known regulators of the cytoskeleton integrity, yet their complexes with actin-binding proteins are underexplored. Filamin C, a dimeric 560 kDa protein, abundant in cardiac and skeletal muscles, crosslinks actin filaments and contributes to Z-disc formation and membrane-cytoskeleton attachment. Here, we analyzed the interaction of a human filamin C fragment containing immunoglobulin-like domains 22-24 (FLNC22-24) with five small heat shock proteins (HspB1, HspB5, HspB6, HspB7, HspB8) and their α-crystallin domains. On size-exclusion chromatography, only HspB7 or its α-crystallin domain formed complexes with FLNC22-24. Despite similar isoelectric points of the small heat shock proteins analyzed, only HspB7 and its α-crystallin domain interacted with FLNC22-24 on native gel electrophoresis. Crosslinking with glutaraldehyde confirmed the formation of complexes between HspB7 (or its α-crystallin domain) and the filamin С fragment, inhibiting intersubunit FLNC crosslinking. These data are consistent with the structure modeling using Alphafold. Thus, the C-terminal fragment (immunoglobulin-like domains 22-24) of filamin C contains the site for HspB7 (or its α-crystallin domain) interaction, which competes with FLNC22-24 dimerization and its probable interaction with different target proteins.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Varvara M Vostrikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Vladislav M Shatov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
2
|
Dave KM, Stolz DB, Venna VR, Quaicoe VA, Maniskas ME, Reynolds MJ, Babidhan R, Dobbins DX, Farinelli MN, Sullivan A, Bhatia TN, Yankello H, Reddy R, Bae Y, Leak RK, Shiva SS, McCullough LD, Manickam DS. Mitochondria-containing extracellular vesicles (EV) reduce mouse brain infarct sizes and EV/HSP27 protect ischemic brain endothelial cultures. J Control Release 2023; 354:368-393. [PMID: 36642252 PMCID: PMC9974867 DOI: 10.1016/j.jconrel.2023.01.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
Ischemic stroke causes brain endothelial cell (BEC) death and damages tight junction integrity of the blood-brain barrier (BBB). We harnessed the innate mitochondrial load of BEC-derived extracellular vesicles (EVs) and utilized mixtures of EV/exogenous 27 kDa heat shock protein (HSP27) as a one-two punch strategy to increase BEC survival (via EV mitochondria) and preserve their tight junction integrity (via HSP27 effects). We demonstrated that the medium-to-large (m/lEV) but not small EVs (sEV) transferred their mitochondrial load, that subsequently colocalized with the mitochondrial network of the recipient primary human BECs. Recipient BECs treated with m/lEVs showed increased relative ATP levels and mitochondrial function. To determine if the m/lEV-meditated increase in recipient BEC ATP levels was associated with m/lEV mitochondria, we isolated m/lEVs from donor BECs pre-treated with oligomycin A (OGM, mitochondria electron transport complex V inhibitor), referred to as OGM-m/lEVs. BECs treated with naïve m/lEVs showed a significant increase in ATP levels compared to untreated OGD cells, OGM-m/lEVs treated BECs showed a loss of ATP levels suggesting that the m/lEV-mediated increase in ATP levels is likely a function of their innate mitochondrial load. In contrast, sEV-mediated ATP increases were not affected by inhibition of mitochondrial function in the donor BECs. Intravenously administered m/lEVs showed a reduction in brain infarct sizes compared to vehicle-injected mice in a mouse middle cerebral artery occlusion model of ischemic stroke. We formulated binary mixtures of human recombinant HSP27 protein with EVs: EV/HSP27 and ternary mixtures of HSP27 and EVs with a cationic polymer, poly (ethylene glycol)-b-poly (diethyltriamine): (PEG-DET/HSP27)/EV. (PEG-DET/HSP27)/EV and EV/HSP27 mixtures decreased the paracellular permeability of small and large molecular mass fluorescent tracers in oxygen glucose-deprived primary human BECs. This one-two punch approach to increase BEC metabolic function and tight junction integrity may be a promising strategy for BBB protection and prevention of long-term neurological dysfunction post-ischemic stroke.
Collapse
Affiliation(s)
- Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Venugopal R Venna
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Victoria A Quaicoe
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Michael E Maniskas
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Michael John Reynolds
- Pittsburgh Heart Lung Blood Vascular Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Riyan Babidhan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Duncan X Dobbins
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Maura N Farinelli
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA; Department of Biochemistry and Molecular Biology, Gettysburg College, Gettysburg, PA, USA
| | - Abigail Sullivan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA; Psychological and Brain Sciences, Villanova University, Villanova, PA, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Hannah Yankello
- Departments of Chemical and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rohan Reddy
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Younsoo Bae
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Kentucky, Lexington, KY, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Sruti S Shiva
- Pittsburgh Heart Lung Blood Vascular Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int J Mol Sci 2022; 23:ijms231911759. [PMID: 36233058 PMCID: PMC9569637 DOI: 10.3390/ijms231911759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.
Collapse
|
4
|
Hoffman LM, Jensen CC, Beckerle MC. Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility. Mol Biol Cell 2022; 33:ar100. [PMID: 35767320 DOI: 10.1091/mbc.e22-02-0057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small heat shock protein HspB1, also known as Hsp25/27, is a ubiquitously expressed molecular chaperone that responds to mechanical cues. Uniaxial cyclic stretch activates the p38 mitogen-activated protein kinase (MAPK) signaling cascade and increases the phosphorylation of HspB1. Similar to the mechanosensitive cytoskeletal regulator zyxin, phospho-HspB1 is recruited to features of the stretch-stimulated actin cytoskeleton. To evaluate the role of HspB1 and its phosphoregulation in modulating cell function, we utilized CRISPR/Cas9-edited HspB1-null cells and determined they were altered in behaviors such as actin cytoskeletal remodeling, cell spreading, and cell motility. In our model system, expression of WT HspB1, but not nonphosphorylatable HspB1, rescued certain characteristics of the HspB1-null cells including the enhanced cell motility of HspB1-null cells and the deficient actin reinforcement of stretch-stimulated HspB1-null cells. The recruitment of HspB1 to high-tension structures in geometrically constrained cells, such as actin comet tails emanating from focal adhesions, also required a phosphorylatable HspB1. We show that mechanical signals activate posttranslational regulation of the molecular chaperone, HspB1, and are required for normal cell behaviors including actin cytoskeletal remodeling, cell spreading, and cell migration.
Collapse
Affiliation(s)
- Laura M Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
5
|
Muranova LK, Shatov VM, Gusev NB. Role of Small Heat Shock Proteins in the Remodeling of Actin Microfilaments. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:800-811. [PMID: 36171660 DOI: 10.1134/s0006297922080119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 06/16/2023]
Abstract
Small heat shock proteins (sHsps) play an important role in the maintenance of proteome stability and, particularly, in stabilization of the cytoskeleton and cell contractile apparatus. Cell exposure to different types of stress is accompanied by the translocation of sHsps onto actin filaments; therefore, it is commonly believed that the sHsps are true actin-binding proteins. Investigations of last years have shown that this assumption is incorrect. Stress-induced translocation of sHsp to actin filaments is not the result of direct interaction of these proteins with intact actin, but results from the chaperone-like activity of sHsps and their interaction with various actin-binding proteins. HspB1 and HspB5 interact with giant elastic proteins titin and filamin thus providing an integrity of the contractile apparatus and its proper localization in the cell. HspB6 binds to the universal adapter protein 14-3-3 and only indirectly affects the structure of actin filament. HspB7 interacts with filamin C and controls actin filament assembly. HspB8 forms tight complex with the universal regulatory and adapter protein Bag3 and participates in the chaperone-assisted selective autophagy (CASA) of actin-binding proteins (e.g., filamin), as well as in the actin-depending processes taking place in mitoses. Hence, the mechanisms of sHsp participation in the maintenance of the contractile apparatus and cytoskeleton are much more complicated and diverse than it has been postulated earlier and are not limited to direct interactions of sHsps with actin. The old hypothesis on the direct binding of sHsps to intact actin should be revised and further detailed investigation on the sHsp interaction with minor proteins participating in the formation and remodeling of actin filaments is required.
Collapse
Affiliation(s)
- Lydia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladislav M Shatov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Fitzpatrick CJ, Mudhasani RR, Altamura LA, Campbell CE, Tran JP, Beitzel BF, Narayanan A, de la Fuente CL, Kehn-Hall K, Smith JM, Schmaljohn CS, Garrison AR. Junin Virus Activates p38 MAPK and HSP27 Upon Entry. Front Cell Infect Microbiol 2022; 12:798978. [PMID: 35463647 PMCID: PMC9022028 DOI: 10.3389/fcimb.2022.798978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/01/2022] [Indexed: 01/26/2023] Open
Abstract
Junín virus (JUNV), a New World arenavirus, is a rodent-borne virus and the causative agent of Argentine hemorrhagic fever. Humans become infected through exposure to rodent host secreta and excreta and the resulting infection can lead to an acute inflammatory disease with significant morbidity and mortality. Little is understood about the molecular pathogenesis of arenavirus hemorrhagic fever infections. We utilized Reverse Phase Protein Microarrays (RPPA) to compare global alterations in the host proteome following infection with an attenuated vaccine strain, Candid#1 (CD1), and the most parental virulent strain, XJ13, of JUNV in a human cell culture line. Human small airway epithelial cells were infected with CD1 or XJ13 at an MOI of 10, or mock infected. To determine proteomic changes at early timepoints (T = 1, 3, 8 and 24 h), the JUNV infected or mock infected cells were lysed in compatible buffers for RPPA. Out of 113 proteins that were examined by RPPA, 14 proteins were significantly altered following JUNV infection. Several proteins were commonly phosphorylated between the two strains and these correspond to entry and early replication events, to include p38 mitogen-activated protein kinase (MAPK), heat shock protein 27 (HSP27), and nuclear factor kappa B (NFκB). We qualitatively confirmed the alterations of these three proteins following infection by western blot analysis. We also determined that the inhibition of either p38 MAPK, with the small molecule inhibitor SB 203580 or siRNA knockdown, or HSP27, by siRNA knockdown, significantly decreases JUNV replication. Our data suggests that HSP27 phosphorylation at S82 upon virus infection is dependent on p38 MAPK activity. This work sheds light on the nuances of arenavirus replication.
Collapse
Affiliation(s)
- Collin J. Fitzpatrick
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Rajini R. Mudhasani
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Louis A. Altamura
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | | | - Julie P. Tran
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Brett F. Beitzel
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, United States
| | - Cynthia L. de la Fuente
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, United States
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, United States
| | - Jeffrey M. Smith
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Connie S. Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Aura R. Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
- *Correspondence: Aura R. Garrison,
| |
Collapse
|
7
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
8
|
Dias C, Nita E, Faktor J, Tynan AC, Hernychova L, Vojtesek B, Nylandsted J, Hupp TR, Kunath T, Ball KL. CHIP-dependent regulation of the actin cytoskeleton is linked to neuronal cell membrane integrity. iScience 2021; 24:102878. [PMID: 34401662 PMCID: PMC8350547 DOI: 10.1016/j.isci.2021.102878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
CHIP is an E3-ubiquitin ligase that contributes to healthy aging and has been characterized as neuroprotective. To elucidate dominant CHIP-dependent changes in protein steady-state levels in a patient-derived human neuronal model, CHIP function was ablated using gene-editing and an unbiased proteomic analysis conducted to compare knock-out and wild-type isogenic induced pluripotent stem cell (iPSC)-derived cortical neurons. Rather than a broad effect on protein homeostasis, loss of CHIP function impacted on a focused cohort of proteins from actin cytoskeleton signaling and membrane integrity networks. In support of the proteomics, CHIP knockout cells had enhanced sensitivity to induced membrane damage. We conclude that the major readout of CHIP function in cortical neurons derived from iPSC of a patient with elevate α-synuclein, Parkinson's disease and dementia, is the modulation of substrates involved in maintaining cellular "health". Thus, regulation of the actin cytoskeletal and membrane integrity likely contributes to the neuroprotective function(s) of CHIP.
Collapse
Affiliation(s)
- Catarina Dias
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Erisa Nita
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jakub Faktor
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
- University of Gdansk, International Centre for Cancer Vaccine Science, 80-822 Gdansk, Poland
| | - Ailish C. Tynan
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Jesper Nylandsted
- Membrane Integrity Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Ted R. Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- University of Gdansk, International Centre for Cancer Vaccine Science, 80-822 Gdansk, Poland
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kathryn L. Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
9
|
Fu R, Huang Z, Li H, Zhu Y, Zhang H. A Hemidesmosome-to-Cytoplasm Translocation of Small Heat Shock Proteins Provides Immediate Protection against Heat Stress. Cell Rep 2020; 33:108410. [DOI: 10.1016/j.celrep.2020.108410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
|
10
|
Amiri A, Hastert FD, Dietz C. Carcinomas with Occult Metastasis Potential: Diagnosis/Prognosis Accuracy Improvement by Means of Force Spectroscopy. ACTA ACUST UNITED AC 2020; 4:e2000042. [PMID: 32558372 DOI: 10.1002/adbi.202000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/15/2020] [Indexed: 11/12/2022]
Abstract
Accurate diagnosis of cancer stage is inevitable for the following prognosis in patients struggling with these lesions to promote their health and survival rate. Previous studies on survival rate statistics show, in some cases, failure in cancer stage surveys in which metastasis or recurrence of the disease was not accurately prognosed. Morphology study of cancer cells advances the understanding about cancer behavior and its progression, in which, in our previous study on invasive cancer cells, fewer formations of cytoskeleton components compared to their counterparts was observed. Here it is shown that carcinomas with an occult propensity of metastasis depict a number of poorly differentiated cells with decreased amounts of cytoskeleton components in a near-well differentiated population. Force spectroscopy in conjunction with fluorescence microscopy of lung cancer, liver hepatoma, and melanoma provides a general view of these cells' architecture, leading to the conclusion that the scarce abnormal-shaped cells with low formation of structural filaments convey the high risk of metastatic potential of the tumor. The results demonstrate that force spectroscopy complements conventional diagnostic approaches by an accurate cytoskeleton assessment and can improve the following prognosis in epithelial cancers with occult metastasis risk.
Collapse
Affiliation(s)
- Anahid Amiri
- Physics of Surfaces, Department of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, Darmstadt, 64287, Germany
| | - Florian D Hastert
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, Darmstadt, 64287, Germany
| | - Christian Dietz
- Physics of Surfaces, Department of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, Darmstadt, 64287, Germany
| |
Collapse
|
11
|
Mato A, Rodríguez-Vázquez R, López-Pedrouso M, Bravo S, Franco D, Zapata C. The first evidence of global meat phosphoproteome changes in response to pre-slaughter stress. BMC Genomics 2019; 20:590. [PMID: 31315554 PMCID: PMC6637562 DOI: 10.1186/s12864-019-5943-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pre-slaughter stress (PSS) impairs animal welfare and meat quality. Dark, firm and dry (DFD) are terms used to designate poor quality meats induced by PSS. Protein phosphorylation can be a potentially significant mechanism to explain rapid and multiple physiological and biochemical changes linked to PSS-dependent muscle-to-meat conversion. However, the role of reversible phosphorylation in the response to PSS is still little known. In this study, we report a comparative phosphoproteomic analysis of DFD and normal meats at 24 h post-mortem from the longissimus thoracis (LT) bovine muscle of male calves of the Rubia Gallega breed. For this purpose, two-dimensional gel electrophoresis (2-DE), in-gel multiplex identification of phosphoproteins with PRO-Q Diamond phosphoprotein-specific stain, tandem (MALDI-TOF/TOF) mass spectrometry (MS), novel quantitative phosphoproteomic statistics and bioinformatic tools were used. RESULTS Noticeable and statistically significant differences in the extent of protein phosphorylation were detected between sample groups at the qualitative and quantitative levels. Overall phosphorylation rates across significantly changed phosphoproteins were about three times higher in DFD than in normal meat. Significantly changed phosphoproteins involved a variable number of isoforms of 13 myofibrillar and sarcoplasmic nonredundant proteins. However, fast skeletal myosin light chain 2 followed by troponin T, F-actin-capping and small heat shock proteins showed the greatest phosphorylation change, and therefore they were the most important phosphoproteins underlying LT muscle conversion to DFD meat in the Rubia Gallega breed. CONCLUSIONS This is the first study reporting global meat phosphoproteome changes in response to PSS. The results show that reversible phosphorylation is a relevant mechanism underlying PSS response and downstream effects on meat quality. This research opens up novel horizons to unravel the complex molecular puzzle underlying muscle-to-meat conversion in response to PSS.
Collapse
Affiliation(s)
- Ariadna Mato
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Rodríguez-Vázquez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Susana Bravo
- Proteomics Laboratory, CHUS, 15782 Santiago de Compostela, Spain
| | - Daniel Franco
- Meat Technology Center of Galicia, 32900 Ourense, Spain
| | - Carlos Zapata
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Sci 2018; 144:74-90. [DOI: 10.1016/j.meatsci.2018.04.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023]
|
13
|
Reddy VS, Madala SK, Trinath J, Reddy GB. Extracellular small heat shock proteins: exosomal biogenesis and function. Cell Stress Chaperones 2018; 23:441-454. [PMID: 29086335 PMCID: PMC5904088 DOI: 10.1007/s12192-017-0856-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| |
Collapse
|
14
|
Sarkar S, Roy S. Flubendiamide induces transgenerational compound eye alterations in Drosophila melanogaster. Interdiscip Toxicol 2017; 10:142-147. [PMID: 30147421 PMCID: PMC6102675 DOI: 10.1515/intox-2017-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022] Open
Abstract
Pesticides are one of the major sources of environmental toxicity and contamination. This study reports potential of lepidopteran insecticide formulation, named Flubendiamide, in altering compound eye architecture and bristle pattern orientation for four consecutive generations (P, F1, F2 and F3) in a non-target diptera, Drosophila melanogaster Meigen (Diptera: Drosophilidae). The concentrations of the insecticide formulation selected for treatment of Drosophila (50 and 100 μg/mL) were in accordance with practiced Indian field doses (50 μg/mL for rice and 100 μg/mL for cotton). This study showed trans-generational insecticide-induced changes in the morphology of the compound eyes of the non-target insect D. melanogaster.
Collapse
Affiliation(s)
- Saurabh Sarkar
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Sumedha Roy
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
15
|
Yang L, Chai CZ, Yan Y, Duan YD, Henz A, Zhang BL, Backlund A, Yu BY. Spasmolytic Mechanism of Aqueous Licorice Extract on Oxytocin-Induced Uterine Contraction through Inhibiting the Phosphorylation of Heat Shock Protein 27. Molecules 2017; 22:molecules22091392. [PMID: 28850076 PMCID: PMC6151720 DOI: 10.3390/molecules22091392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022] Open
Abstract
Licorice derived from the roots and rhizomes of Glycyrrhiza uralensis Fisch. (Fabaceae), is one of the most widely-used traditional herbal medicines in China. It has been reported to possess significant analgesic activity for treating spastic pain. The aim of this study is to investigate the spasmolytic molecular mechanism of licorice on oxytocin-induced uterine contractions and predict the relevant bioactive constituents in the aqueous extract. The aqueous extraction from licorice inhibited the amplitude and frequency of uterine contraction in a concentration-dependent manner. A morphological examination showed that myometrial smooth muscle cells of oxytocin-stimulated group were oval-shaped and arranged irregularly, while those with a single centrally located nucleus of control and licorice-treated groups were fusiform and arranged orderly. The percentage of phosphorylation of HSP27 at Ser-15 residue increased up to 50.33% at 60 min after oxytocin stimulation. Furthermore, this increase was significantly suppressed by licorice treatment at the concentration of 0.2 and 0.4 mg/mL. Colocalization between HSP27 and α-SMA was observed in the myometrial tissues, especially along the actin bundles in the oxytocin-stimulated group. On the contrary, the colocalization was no longer shown after treatment with licorice. Additionally, employing ChemGPS-NP provided support for a preliminary assignment of liquiritigenin and isoliquiritigenin as protein kinase C (PKC) inhibitors in addition to liquiritigenin, isoliquiritigenin, liquiritin and isoliquiritin as MAPK-activated protein kinase 2 (MK2) inhibitors. These assigned compounds were docked with corresponding crystal structures of respective proteins with negative and low binding energy, which indicated a high affinity and tight binding capacity for the active site of the kinases. These results suggest that licorice exerts its spasmolytic effect through inhibiting the phosphorylation of HSP27 to alter the interaction between HSP27 and actin. Furthermore, our results provide support for the prediction that potential bioactive constituents from aqueous licorice extract inhibit the relevant up-stream kinases that phosphorylate HSP27.
Collapse
Affiliation(s)
- Lu Yang
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
- Divsion of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden.
| | - Cheng-Zhi Chai
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China.
| | - Ying-Dan Duan
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| | - Astrid Henz
- Divsion of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden.
| | - Bo-Li Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Anders Backlund
- Divsion of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden.
| | - Bo-Yang Yu
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| |
Collapse
|
16
|
Hoffman L, Jensen CC, Yoshigi M, Beckerle M. Mechanical signals activate p38 MAPK pathway-dependent reinforcement of actin via mechanosensitive HspB1. Mol Biol Cell 2017; 28:2661-2675. [PMID: 28768826 PMCID: PMC5620374 DOI: 10.1091/mbc.e17-02-0087] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/12/2023] Open
Abstract
Mechanical force induces protein phosphorylations, subcellular redistributions, and actin remodeling. We show that mechanical activation of the p38 MAPK pathway leads to phosphorylation of HspB1 (hsp25/27), which redistributes to cytoskeletal structures, and contributes to the actin cytoskeletal remodeling induced by mechanical stimulation. Despite the importance of a cell’s ability to sense and respond to mechanical force, the molecular mechanisms by which physical cues are converted to cell-instructive chemical information to influence cell behaviors remain to be elucidated. Exposure of cultured fibroblasts to uniaxial cyclic stretch results in an actin stress fiber reinforcement response that stabilizes the actin cytoskeleton. p38 MAPK signaling is activated in response to stretch, and inhibition of p38 MAPK abrogates stretch-induced cytoskeletal reorganization. Here we show that the small heat shock protein HspB1 (hsp25/27) is phosphorylated in stretch-stimulated mouse fibroblasts via a p38 MAPK-dependent mechanism. Phosphorylated HspB1 is recruited to the actin cytoskeleton, displaying prominent accumulation on actin “comet tails” that emanate from focal adhesions in stretch-stimulated cells. Site-directed mutagenesis to block HspB1 phosphorylation inhibits the protein’s cytoskeletal recruitment in response to mechanical stimulation. HspB1-null cells, generated by CRISPR/Cas9 nuclease genome editing, display an abrogated stretch-stimulated actin reinforcement response and increased cell migration. HspB1 is recruited to sites of increased traction force in cells geometrically constrained on micropatterned substrates. Our findings elucidate a molecular pathway by which a mechanical signal is transduced via activation of p38 MAPK to influence actin remodeling and cell migration via a zyxin-independent process.
Collapse
Affiliation(s)
- Laura Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Masaaki Yoshigi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Mary Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 .,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Pediatrics, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
17
|
Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood-brain barrier disruption after ischemic brain injury. Proc Natl Acad Sci U S A 2017; 114:E1243-E1252. [PMID: 28137866 DOI: 10.1073/pnas.1621174114] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The damage borne by the endothelial cells (ECs) forming the blood-brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs-namely, uncontrolled actin polymerization and subsequent disassembly of junctional proteins, are a possible cause of the early onset BBB breach that arises within 30-60 min of reperfusion after transient focal ischemia. Here, we investigated the role of heat shock protein 27 (HSP27) as a direct inhibitor of actin polymerization and protectant against BBB disruption after ischemia/reperfusion (I/R). Using in vivo and in vitro models, we found that targeted overexpression of HSP27 specifically within ECs-but not within neurons-ameliorated BBB impairment 1-24 h after I/R. Mechanistically, HSP27 suppressed I/R-induced aberrant actin polymerization, stress fiber formation, and junctional protein translocation in brain microvascular ECs, independent of its protective actions against cell death. By preserving BBB integrity after I/R, EC-targeted HSP27 overexpression attenuated the infiltration of potentially destructive neutrophils and macrophages into brain parenchyma, thereby improving long-term stroke outcome. Notably, early poststroke administration of HSP27 attached to a cell-penetrating transduction domain (TAT-HSP27) rapidly elevated HSP27 levels in brain microvessels and ameliorated I/R-induced BBB disruption and subsequent neurological deficits. Thus, the present study demonstrates that HSP27 can function at the EC level to preserve BBB integrity after I/R brain injury. HSP27 may be a therapeutic agent for ischemic stroke and other neurological conditions involving BBB breakdown.
Collapse
|
18
|
The Potential Functions of Small Heat Shock Proteins in the Uterine Musculature during Pregnancy. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:95-116. [PMID: 28389752 DOI: 10.1007/978-3-319-51409-3_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The small heat shock protein B (HSPB) family is comprised of eleven members with many being induced by physiological stressors. In addition to being molecular chaperones, it is clear these proteins also play important roles in cell death regulation, cytoskeletal rearrangements, and immune system activation. These processes are important for the uterine smooth muscle or myometrium during pregnancy as it changes from a quiescent tissue, during the majority of pregnancy, to a powerful and contractile tissue at labor. The initiation and progression of labor within the myometrium also appears to require an inflammatory response as it is infiltrated by immune cells and it produces pro-inflammatory mediators. This chapter summarizes current knowledge on the expression of HSPB family members in the myometrium during pregnancy and speculates on the possible roles of these proteins during myometrial programming and transformation of the myometrium into a possible immune regulatory tissue.
Collapse
|
19
|
La Padula V, Staszewski O, Nestel S, Busch H, Boerries M, Roussa E, Prinz M, Krieglstein K. HSPB3 protein is expressed in motoneurons and induces their survival after lesion-induced degeneration. Exp Neurol 2016; 286:40-49. [PMID: 27567740 DOI: 10.1016/j.expneurol.2016.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/08/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
Abstract
The human small heat shock proteins (HSPBs) form a family of molecular chaperones comprising ten members (HSPB1-HSPB10), whose functions span from protein quality control to cytoskeletal dynamics and cell death control. Mutations in HSPBs can lead to human disease and particularly point mutations in HSPB1 and HSPB8 are known to lead to peripheral neuropathies. Recently, a missense mutation (R7S) in yet another member of this family, HSPB3, was found to cause an axonal motor neuropathy (distal hereditary motor neuropathy type 2C, dHMN2C). Until now, HSPB3 protein localization and function in motoneurons (MNs) have not yet been characterized. Therefore, we studied the endogenous HSPB3 protein distribution in the spinal cords of chicken and mouse embryos and in the postnatal nervous system (central and peripheral) of chicken, mouse and human. We further investigated the impact of wild-type and mutated HSPB3 on MN cell death via overexpressing these genes in ovo in an avian model of MN degeneration, the limb-bud removal. Altogether, our findings represent a first step for a better understanding of the cellular and molecular mechanisms leading to dHMN2C.
Collapse
Affiliation(s)
- Veronica La Padula
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albertstraße 17, 79104 Freiburg, Germany.
| | - Ori Staszewski
- Institute of Neuropathology, Neurozentrum, Breisacherstraße 64, 79106 Freiburg, Germany.
| | - Sigrun Nestel
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Albertstraße 17, 79104 Freiburg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albertstraße 17, 79104 Freiburg, Germany; Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Albertstraße 17, 79104 Freiburg, Germany.
| | - Marco Prinz
- Institute of Neuropathology, Neurozentrum, Breisacherstraße 64, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albertstraße 17, 79104 Freiburg, Germany.
| |
Collapse
|
20
|
Piri N, Kwong JMK, Gu L, Caprioli J. Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res 2016; 52:22-46. [PMID: 27017896 PMCID: PMC4842330 DOI: 10.1016/j.preteyeres.2016.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Heat shock proteins (HSPs) belong to a superfamily of stress proteins that are critical constituents of a complex defense mechanism that enhances cell survival under adverse environmental conditions. Cell protective roles of HSPs are related to their chaperone functions, antiapoptotic and antinecrotic effects. HSPs' anti-apoptotic and cytoprotective characteristics, their ability to protect cells from a variety of stressful stimuli, and the possibility of their pharmacological induction in cells under pathological stress make these proteins an attractive therapeutic target for various neurodegenerative diseases; these include Alzheimer's, Parkinson's, Huntington's, prion disease, and others. This review discusses the possible roles of HSPs, particularly HSP70 and small HSPs (alpha A and alpha B crystallins) in enhancing the survival of retinal ganglion cells (RGCs) in optic neuropathies such as glaucoma, which is characterized by progressive loss of vision caused by degeneration of RGCs and their axons in the optic nerve. Studies in animal models of RGC degeneration induced by ocular hypertension, optic nerve crush and axotomy show that upregulation of HSP70 expression by hyperthermia, zinc, geranyl-geranyl acetone, 17-AAG (a HSP90 inhibitor), or through transfection of retinal cells with AAV2-HSP70 effectively supports the survival of injured RGCs. RGCs survival was also stimulated by overexpression of alpha A and alpha B crystallins. These findings provide support for translating the HSP70- and alpha crystallin-based cell survival strategy into therapy to protect and rescue injured RGCs from degeneration associated with glaucomatous and other optic neuropathies.
Collapse
Affiliation(s)
- Natik Piri
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | - Jacky M K Kwong
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Gu
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Joseph Caprioli
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Kondo Y, Higa-Nakamine S, Maeda N, Toku S, Kakinohana M, Sugahara K, Kukita I, Yamamoto H. Stimulation of Cell Migration by Flagellin Through the p38 MAP Kinase Pathway in Cultured Intestinal Epithelial Cells. J Cell Biochem 2015; 117:247-58. [DOI: 10.1002/jcb.25272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Yutaka Kondo
- Department of Emergency Medicine; Graduate School of Medicine; University of the Ryukyus; Okinawa 903-0215 Japan
- Department of Biochemistry; Graduate School of Medicine; University of the Ryukyus; Okinawa 903-0215 Japan
| | - Sayomi Higa-Nakamine
- Department of Biochemistry; Graduate School of Medicine; University of the Ryukyus; Okinawa 903-0215 Japan
| | - Noriko Maeda
- Department of Biochemistry; Graduate School of Medicine; University of the Ryukyus; Okinawa 903-0215 Japan
| | - Seikichi Toku
- Department of Biochemistry; Graduate School of Medicine; University of the Ryukyus; Okinawa 903-0215 Japan
| | - Manabu Kakinohana
- Department of Anesthesiology; Graduate School of Medicine; University of the Ryukyus; Okinawa 903-0215 Japan
| | - Kazuhiro Sugahara
- Department of Anesthesiology; Graduate School of Medicine; University of the Ryukyus; Okinawa 903-0215 Japan
| | - Ichiro Kukita
- Department of Emergency Medicine; Graduate School of Medicine; University of the Ryukyus; Okinawa 903-0215 Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry; Graduate School of Medicine; University of the Ryukyus; Okinawa 903-0215 Japan
| |
Collapse
|
22
|
Tang DD. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res 2015; 16:134. [PMID: 26517982 PMCID: PMC4628321 DOI: 10.1186/s12931-015-0296-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
23
|
Kameritsch P, Kiemer F, Beck H, Pohl U, Pogoda K. Cx43 increases serum induced filopodia formation via activation of p21-activated protein kinase 1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2907-17. [PMID: 26255026 DOI: 10.1016/j.bbamcr.2015.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 01/02/2023]
Abstract
In a previous study we could show that connexin 43 (Cx43) expression increased the migration of cells in a channel-independent manner involving the MAPK p38. We analyzed here the mechanism by which Cx43 enhanced p38 activation and migration related changes of the actin cytoskeleton. HeLa cells were used as a model system for the controlled expression of Cx43 and truncated Cx43 proteins. The expression of Cx43 altered the actin cytoskeleton organization in response to serum stimulation. Cx43 expressing HeLa cells had significantly more filopodial protrusions per cell than empty-vector transfected control cells. The expression of the channel incompetent carboxyl tail of Cx43 was sufficient to enhance the filopodia formation whereas the N-terminal, channel-building part, had no such effect. The enhanced filopodia formation was p38 dependent since the p38 blocker SB203580 significantly diminished it. Immunoprecipitation revealed an interaction of the upstream regulator of p38, p21-activated protein kinase 1 (PAK1), with Cx43 resulting in an enhanced phosphorylation of PAK1. Moreover, p38 activation, filopodia formation and cell migration were significantly reduced by blocking the PAK1 activity with its pharmacological inhibitor, IPA-3. The p38 target Hsp27, which favors the actin polymerization in its phosphorylated form, was significantly more phosphorylated characterizing it as a potential candidate molecule to enhance the serum-induced actin polymerization in Cx43 expressing cells. Our results provide a novel mechanism by which Cx43 can modify actin cytoskeletal dynamics and may thereby enhance cell migration.
Collapse
Affiliation(s)
- Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| | - Felizitas Kiemer
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany.
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany.
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 München, Germany.
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| |
Collapse
|
24
|
Voll EA, Ogden IM, Pavese JM, Huang X, Xu L, Jovanovic BD, Bergan RC. Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression. Oncotarget 2015; 5:2648-63. [PMID: 24798191 PMCID: PMC4058034 DOI: 10.18632/oncotarget.1917] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer (PCa) is the most common form of cancer in American men. Mortality from PCa is caused by the movement of cancer cells from the primary organ to form metastatic tumors at distant sites. Heat shock protein 27 (HSP27) is known to increase human PCa cell invasion and its overexpression is associated with metastatic disease. The role of HSP27 in driving PCa cell movement from the prostate to distant metastatic sites is unknown. Increased HSP27 expression increased metastasis as well as primary tumor mass. In vitro studies further examined the mechanism of HSP27-induced metastatic behavior. HSP27 did not affect cell detachment, adhesion, or migration, but did increase cell invasion. Cell invasion was dependent upon matrix metalloproteinase 2 (MMP-2), whose expression was increased by HSP27. In vivo, HSP27 induced commensurate changes in MMP-2 expression in tumors. These findings demonstrate that HSP27 drives metastatic spread of cancer cells from the prostate to distant sites, does so across a continuum of expression levels, and identifies HSP27-driven increases in MMP-2 expression as functionally relevant. These findings add to prior studies demonstrating that HSP27 increases PCa cell motility, growth and survival. Together, they demonstrate that HSP27 plays an important role in PCa progression.
Collapse
Affiliation(s)
- Eric A Voll
- Department of Medicine, Northwestern University, 303 E Superior, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
25
|
Nishi H, Maeda N, Izumi S, Higa-Nakamine S, Toku S, Kakinohana M, Sugahara K, Yamamoto H. Differential regulation of epidermal growth factor receptor by hydrogen peroxide and flagellin in cultured lung alveolar epithelial cells. Eur J Pharmacol 2015; 748:133-42. [DOI: 10.1016/j.ejphar.2014.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023]
|
26
|
Guilbert SM, Varlet AA, Fuchs M, Lambert H, Landry J, Lavoie JN. Regulation of Actin-Based Structure Dynamics by HspB Proteins and Partners. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Wang H, Liu J, Lin S, Wang B, Xing M, Guo Z, Xu L. MCLR-induced PP2A inhibition and subsequent Rac1 inactivation and hyperphosphorylation of cytoskeleton-associated proteins are involved in cytoskeleton rearrangement in SMMC-7721 human liver cancer cell line. CHEMOSPHERE 2014; 112:141-153. [PMID: 25048900 DOI: 10.1016/j.chemosphere.2014.03.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
Cyanobacteria-derived toxin microcystin-LR (MCLR) has been widely investigated in its effects on normal cells, there is little information concerning its effects on cancer cells. In the present study, the SMMC-7721 human liver cancer cell line treated with MCLR was used to investigate the change of PP2A, cytoskeleton rearrangement, phosphorylation levels of PP2A substrates that related with cytoskeleton stability and explored underlying mechanisms. Here, we confirmed that MCLR entered into SMMC-7721 cells, bound to PP2A/C subunit and inhibited the activity of PP2A. The upregulation of phosphorylation of the PP2A/C subunit and PP2A regulation protein α4, as well as the change in the association of PP2A/C with α4, were responsible for the decrease in PP2A activity. Another novel finding is that the rearrangement of filamentous actin and microtubules led by MCLR may attribute to the increased phosphorylation of HSP27, VASP and cofilin due to PP2A inhibition. As a result of weakened interactions with PP2A and alterations in its subcellular localization, Rac1 may contribute to the cytoskeletal rearrangement induced by MCLR in SMMC-7721 cells. The current paper presents the first report demonstrating the characteristic of PP2A in MCLR exposed cancer cells, which were more susceptible to MCLR compared with the normal cell lines we previously found, which may be owing to the absence of some type of compensatory mechanisms. The hyperphosphorylation of cytoskeleton-associated proteins and Rac1 inactivation which were induced by inhibition of PP2A are shown to be involved in cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinghui Liu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shuyan Lin
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Beilei Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingluan Xing
- Zhejiang Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zonglou Guo
- Department of Biosystem Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lihong Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Dowell ML, Lavoie TL, Solway J, Krishnan R. Airway smooth muscle: a potential target for asthma therapy. Curr Opin Pulm Med 2014; 20:66-72. [PMID: 24247041 DOI: 10.1097/mcp.0000000000000011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Asthma is a major public health problem that afflicts nearly one in 20 people worldwide. Despite available treatments, asthma symptoms remain poorly controlled in a significant minority of asthma patients, especially those with severe disease. Accordingly, much ongoing effort has been directed at developing new therapeutic strategies; these efforts are described in detail below. RECENT FINDINGS Although mucus hypersecretion is an important component of asthma pathobiology, the primary mechanism of morbidity and mortality in asthma is excessive narrowing of the airway. The key end- effector of excessive airway narrowing is airway smooth muscle (ASM) contraction; overcoming ASM contraction is therefore a prominent therapeutic strategy. Here, we review exciting new advances aimed at ASM relaxation. SUMMARY Exciting advances in ASM biology have identified new therapeutic targets for the prevention or reversal of bronchoconstriction in asthma.
Collapse
Affiliation(s)
- Maria L Dowell
- aDepartment of Medicine bDepartment of Pediatrics, University of Chicago, Chicago, Illinois, USA cCenter for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
29
|
Moreno-Domínguez A, El-Yazbi AF, Zhu HL, Colinas O, Zhong XZ, Walsh EJ, Cole DM, Kargacin GJ, Walsh MP, Cole WC. Cytoskeletal reorganization evoked by Rho-associated kinase- and protein kinase C-catalyzed phosphorylation of cofilin and heat shock protein 27, respectively, contributes to myogenic constriction of rat cerebral arteries. J Biol Chem 2014; 289:20939-52. [PMID: 24914207 PMCID: PMC4110300 DOI: 10.1074/jbc.m114.553743] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
Our understanding of the molecular events contributing to myogenic control of diameter in cerebral resistance arteries in response to changes in intravascular pressure, a fundamental mechanism regulating blood flow to the brain, is incomplete. Myosin light chain kinase and phosphatase activities are known to be increased and decreased, respectively, to augment phosphorylation of the 20-kDa regulatory light chain subunits (LC20) of myosin II, which permits cross-bridge cycling and force development. Here, we assessed the contribution of dynamic reorganization of the actin cytoskeleton and thin filament regulation to the myogenic response and serotonin-evoked constriction of pressurized rat middle cerebral arteries. Arterial diameter and the levels of phosphorylated LC(20), calponin, caldesmon, cofilin, and HSP27, as well as G-actin content, were determined. A decline in G-actin content was observed following pressurization from 10 mm Hg to between 40 and 120 mm Hg and in three conditions in which myogenic or agonist-evoked constriction occurred in the absence of a detectable change in LC20 phosphorylation. No changes in thin filament protein phosphorylation were evident. Pressurization reduced G-actin content and elevated the levels of cofilin and HSP27 phosphorylation. Inhibitors of Rho-associated kinase and PKC prevented the decline in G-actin; reduced cofilin and HSP27 phosphoprotein content, respectively; and blocked the myogenic response. Furthermore, phosphorylation modulators of HSP27 and cofilin induced significant changes in arterial diameter and G-actin content of myogenically active arteries. Taken together, our findings suggest that dynamic reorganization of the cytoskeleton involving increased actin polymerization in response to Rho-associated kinase and PKC signaling contributes significantly to force generation in myogenic constriction of cerebral resistance arteries.
Collapse
Affiliation(s)
| | - Ahmed F. El-Yazbi
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Hai-Lei Zhu
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Olaia Colinas
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - X. Zoë Zhong
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Emma J. Walsh
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Dylan M. Cole
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Gary J. Kargacin
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Michael P. Walsh
- Biochemistry & Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - William C. Cole
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| |
Collapse
|
30
|
Kayser J, Haslbeck M, Dempfle L, Krause M, Grashoff C, Buchner J, Herrmann H, Bausch AR. The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks. Biophys J 2014; 105:1778-85. [PMID: 24138853 DOI: 10.1016/j.bpj.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/02/2013] [Accepted: 09/09/2013] [Indexed: 01/07/2023] Open
Abstract
The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation.
Collapse
Affiliation(s)
- Jona Kayser
- Lehrstuhl für Zellbiophysik, Technische Universität München, Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Silencing heat shock protein 27 (HSP27) inhibits the proliferation and migration of vascular smooth muscle cells in vitro. Mol Cell Biochem 2014; 390:115-21. [DOI: 10.1007/s11010-014-1962-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
|
32
|
Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014; 588:517-30. [PMID: 24440355 DOI: 10.1016/j.febslet.2014.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
Investigations undertaken over the past years have led scientists to introduce the concept of protein quality control (PQC) systems, which are responsible for polypeptide processing. The PQC system monitors proteostasis and involves activity of different chaperones such as small heat shock proteins (sHSPs). These proteins act during normal conditions as housekeeping proteins regulating cellular processes, and during stress conditions. They also mediate the removal of toxic misfolded polypeptides and thereby prevent development of pathogenic states. It is postulated that sHSPs are involved in muscle development. They could act via modulation of myogenesis or by maintenance of the structural integrity of signaling complexes. Moreover, mutations in genes coding for sHSPs lead to pathological states affecting muscular tissue functioning. This review focuses on the question how sHSPs, still relatively poorly understood proteins, contribute to the development and function of three types of muscle tissue: skeletal, cardiac and smooth.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Teresa Jagla
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| |
Collapse
|
33
|
Lomiwes D, Farouk M, Wiklund E, Young O. Small heat shock proteins and their role in meat tenderness: A review. Meat Sci 2014; 96:26-40. [DOI: 10.1016/j.meatsci.2013.06.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/07/2013] [Indexed: 01/28/2023]
|
34
|
Song IS, Kang SS, Kim ES, Park HM, Choi CY, Tchah H, Kim JY. Heat shock protein 27 phosphorylation is involved in epithelial cell apoptosis as well as epithelial migration during corneal epithelial wound healing. Exp Eye Res 2014; 118:36-41. [DOI: 10.1016/j.exer.2013.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/18/2013] [Accepted: 11/05/2013] [Indexed: 12/27/2022]
|
35
|
Lam PY, Harvie EA, Huttenlocher A. Heat shock modulates neutrophil motility in zebrafish. PLoS One 2013; 8:e84436. [PMID: 24367659 PMCID: PMC3868611 DOI: 10.1371/journal.pone.0084436] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/15/2013] [Indexed: 01/24/2023] Open
Abstract
Heat shock is a routine method used for inducible gene expression in animal models including zebrafish. Environmental temperature plays an important role in the immune system and infection progression of ectotherms. In this study, we analyzed the impact of short-term heat shock on neutrophil function using zebrafish (Danio rerio) as an animal model. Short-term heat shock decreased neutrophil recruitment to localized Streptococcus iniae infection and tail fin wounding. Heat shock also increased random neutrophil motility transiently and increased the number of circulating neutrophils. With the use of the translating ribosome affinity purification (TRAP) method for RNA isolation from specific cell types such as neutrophils, macrophages and epithelial cells, we found that heat shock induced the immediate expression of heat shock protein 70 (hsp70) and a prolonged expression of heat shock protein 27 (hsp27). Heat shock also induced cell stress as detected by the splicing of X-box binding protein 1 (xbp1) mRNA, a marker for endoplasmic reticulum (ER) stress. Exogenous expression of Hsp70, Hsp27 and spliced Xbp1 in neutrophils or epithelial cells did not reproduce the heat shock induced effects on neutrophil recruitment. The effect of heat shock on neutrophils is likely due to a combination of complex changes, including, but not limited to changes in gene expression. Our results indicate that routine heat shock can alter neutrophil function in zebrafish. The findings suggest that caution should be taken when employing a heat shock-dependent inducible system to study the innate immune response.
Collapse
Affiliation(s)
- Pui-ying Lam
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth A. Harvie
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
This article examines the role of the endothelial cytoskeleton in the lung's ability to restrict fluid and protein to vascular space at normal vascular pressures and thereby to protect lung alveoli from lethal flooding. The barrier properties of microvascular endothelium are dependent on endothelial cell contact with other vessel-wall lining cells and with the underlying extracellular matrix (ECM). Focal adhesion complexes are essential for attachment of endothelium to ECM. In quiescent endothelial cells, the thick cortical actin rim helps determine cell shape and stabilize endothelial adherens junctions and focal adhesions through protein bridges to actin cytoskeleton. Permeability-increasing agonists signal activation of "small GTPases" of the Rho family to reorganize the actin cytoskeleton, leading to endothelial cell shape change, disassembly of cortical actin rim, and redistribution of actin into cytoplasmic stress fibers. In association with calcium- and Src-regulated myosin light chain kinase (MLCK), stress fibers become actinomyosin-mediated contractile units. Permeability-increasing agonists stimulate calcium entry and induce tyrosine phosphorylation of VE-cadherin (vascular endothelial cadherin) and β-catenins to weaken or pull apart endothelial adherens junctions. Some permeability agonists cause latent activation of the small GTPases, Cdc42 and Rac1, which facilitate endothelial barrier recovery and eliminate interendothelial gaps. Under the influence of Cdc42 and Rac1, filopodia and lamellipodia are generated by rearrangements of actin cytoskeleton. These motile evaginations extend endothelial cell borders across interendothelial gaps, and may initiate reannealing of endothelial junctions. Endogenous barrier protective substances, such as sphingosine-1-phosphate, play an important role in maintaining a restrictive endothelial barrier and counteracting the effects of permeability-increasing agonists.
Collapse
Affiliation(s)
- Stephen M Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| | | |
Collapse
|
37
|
Sun X, Zhou Z, Fink DJ, Mata M. HspB1 silences translation of PDZ-RhoGEF by enhancing miR-20a and miR-128 expression to promote neurite extension. Mol Cell Neurosci 2013; 57:111-9. [PMID: 24141048 DOI: 10.1016/j.mcn.2013.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 11/17/2022] Open
Abstract
HspB1 is a small heat shock protein implicated in neuronal survival and neurite growth; mutations in HspB1 have been identified in hereditary motor neuronopathies and Charcot Marie Tooth Type 2 neuropathies. In cortical neurons we found that expression of HspB1 decreased RhoA activity and RhoA-GTP protein, and reversed the inhibition of neurite extension induced by NogoA. HspB1 decreased PDZ-RhoGEF, a RhoA specific guanine nucleotide exchange factor, while other regulators of RhoA activity were unchanged. The decrease in PDZ-RhoGEF was independent of proteasomal or lysosomal degradation pathways and was not associated with changes in PDZ-RhoGEF mRNA. We sequenced the 3'UTR of rat PDZ-RhoGEF and found binding sites for miRNAs miR-20a, miR-128 and miR-132. Expression of these microRNAs was substantially increased in cortical neurons transfected with HspB1. Co-transfection of HspB1 with specific inhibitors of miR-20a or miR-128 prevented the decrease in PDZ-RhoGEF and blocked the neurite growth promoting effects of HspB1. Using the 3'UTR of PDZ-RhoGEF mRNA in a luciferase reporter construct we observed that HspB1, miR-20a and miR-128 each inhibited luciferase expression. We conclude that HspB1 regulates RhoA activity through modulation of PDZ-RhoGEF levels achieved by translational control through enhanced expression of specific miRNAs (miR-20a and miR-128). Regulation of RhoA activity by translational silencing of PDZ-RhoGEF may be the mechanism through which HspB1 is involved in regulation of neurite growth. As RhoA-GTPase plays a regulatory role in the organization and stability of cytoskeletal networks through its downstream effectors, the results suggest a possible mechanism linking HspB1 mutations and axonal cytoskeletal pathology.
Collapse
Affiliation(s)
- Xiankui Sun
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; GRECC VA Ann Arbor Healthcare System, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.
Collapse
|
39
|
Simon S, Dimitrova V, Gibert B, Virot S, Mounier N, Nivon M, Kretz-Remy C, Corset V, Mehlen P, Arrigo AP. Analysis of the dominant effects mediated by wild type or R120G mutant of αB-crystallin (HspB5) towards Hsp27 (HspB1). PLoS One 2013; 8:e70545. [PMID: 23950959 PMCID: PMC3741289 DOI: 10.1371/journal.pone.0070545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022] Open
Abstract
Several human small heat shock proteins (sHsps) are phosphorylated oligomeric chaperones that enhance stress resistance. They are characterized by their ability to interact and form polydispersed hetero-oligomeric complexes. We have analyzed the cellular consequences of the stable expression of either wild type HspB5 or its cataracts and myopathies inducing R120G mutant in growing and oxidative stress treated HeLa cells that originally express only HspB1. Here, we describe that wild type and mutant HspB5 induce drastic and opposite effects on cell morphology and oxidative stress resistance. The cellular distribution and phosphorylation of these polypeptides as well as the oligomerization profile of the resulting hetero-oligomeric complexes formed by HspB1 with the two types of exogenous polypeptides revealed the dominant effects induced by HspB5 polypeptides towards HspB1. The R120G mutation enhanced the native size and salt resistance of HspB1-HspB5 complex. However, in oxidative conditions the interaction between HspB1 and mutant HspB5 was drastically modified resulting in the aggregation of both partners. The mutation also induced the redistribution of HspB1 phosphorylated at serine 15, originally observed at the level of the small oligomers that do not interact with wild type HspB5, to the large oligomeric complex formed with mutant HspB5. This phosphorylation stabilized the interaction of HspB1 with mutant HspB5. A dominant negative effect towards HspB1 appears therefore as an important event in the cellular sensitivity to oxidative stress mediated by mutated HspB5 expression. These observations provide novel data that describe how a mutated sHsp can alter the protective activity of another member of this family of chaperones.
Collapse
Affiliation(s)
- Stéphanie Simon
- Hôpital Henri Mondor University, Créteil, France
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Valeriya Dimitrova
- Department of Clinical Research, Division of Pediatric Hematology/Oncology, Insel Spital, Institute of Pathology, Bern University, Bern, Switzerland
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Benjamin Gibert
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
| | - Sophie Virot
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Nicole Mounier
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Mathieu Nivon
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Carole Kretz-Remy
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Véronique Corset
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
| | - Patrick Mehlen
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
| | - André-Patrick Arrigo
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
40
|
Clarke JP, Mearow KM. Cell stress promotes the association of phosphorylated HspB1 with F-actin. PLoS One 2013; 8:e68978. [PMID: 23874834 PMCID: PMC3707891 DOI: 10.1371/journal.pone.0068978] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/10/2013] [Indexed: 01/18/2023] Open
Abstract
Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin) polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s) with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.
Collapse
Affiliation(s)
- Joseph P Clarke
- Division of Biomedical Sciences, Neurosciences Graduate Program, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | |
Collapse
|
41
|
Almeida-Souza L, Asselbergh B, De Winter V, Goethals S, Timmerman V, Janssens S. HSPB1 facilitates the formation of non-centrosomal microtubules. PLoS One 2013; 8:e66541. [PMID: 23826100 PMCID: PMC3691211 DOI: 10.1371/journal.pone.0066541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
The remodeling capacity of microtubules (MT) is essential for their proper function. In mammals, MTs are predominantly formed at the centrosome, but can also originate from non-centrosomal sites, a process that is still poorly understood. We here show that the small heat shock protein HSPB1 plays a role in the control of non-centrosomal MT formation. The HSPB1 expression level regulates the balance between centrosomal and non-centrosomal MTs. The HSPB1 protein can be detected specifically at sites of de novo forming non-centrosomal MTs, while it is absent from the centrosomes. In addition, we show that HSPB1 binds preferentially to the lattice of newly formed MTs in vitro, suggesting that its function occurs by stabilizing MT seeds. Our findings open new avenues for the understanding of the role of HSPB1 in the development, maintenance and protection of cells with specialized non-centrosomal MT arrays.
Collapse
Affiliation(s)
- Leonardo Almeida-Souza
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Bob Asselbergh
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vicky De Winter
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Sofie Goethals
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
- * E-mail: (VT); (SJ)
| | - Sophie Janssens
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- GROUP-ID Consortium, Laboratory for Immunoregulation and Mucosal Immunology, University of Ghent, Ghent, Belgium
- Department of Molecular Biomedical Research, VIB, Ghent, Belgium
- * E-mail: (VT); (SJ)
| |
Collapse
|
42
|
Seit-Nebi AS, Datskevich P, Gusev NB. Commentary on paper: Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity? (Wettstein et al.). Int J Biochem Cell Biol 2013. [DOI: 10.1016/j.biocel.2012.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Gavrilova LP, Korpacheva II, Semushina SG, Yashin VA. Heat shock induces simultaneous rearrangements of all known cytoskeletal filaments in normal interphase fibroblasts. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x13010045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Abstract
PURPOSE The 27-kDa heat shock protein (HSP27) has been implicated in wound healing in multiple tissues. We investigated the expression and localization of phosphorylated HSP27 during epithelial wound healing in the murine cornea. METHODS Corneas of 8- to 10-week-old C57BL6 mice were wounded by epithelial debridement (n = 40). Unwounded corneas served as controls (n = 3). After 3, 7, and 14 days, phosphorylated HSP27 localization in wounded corneas was observed by confocal immunohistochemistry and double immunogold labeling transmission immunoelectron microscopy. Western blot analysis was performed to determine expression levels of phosphorylated HSP27 in scraped epithelia. Phosphorylated HSP27 localization was also separately performed with confocal immunohistochemistry 8 hours after epithelial debridement to investigate the early epithelial wound-healing process. RESULTS In unwounded corneas, phosphorylated HSP27 was localized only to the superficial epithelium. In contrast, phosphorylated HSP27 was localized in the basal and superficial epithelia 3 days after corneal epithelial wounding. After 7 and 14 days, HSP27 localization was similar to that in unwounded controls. Expression levels of phosphorylated HSP27 were greater in wounded corneal epithelia on day 3 than in unwounded controls and on day 14. After 8 hours, phosphorylated HSP27 expression was prominent in the leading edge of migrating corneal epithelium. CONCLUSIONS Constitutive expression of phosphorylated HSP27 is limited to the superficial corneal epithelium in unwounded murine corneas. Changes in HSP27 epithelial distribution and expression levels after corneal epithelial wounding suggest that phosphorylated HSP27 plays a role in early phase of corneal epithelial wound healing.
Collapse
|
45
|
Abisambra JF, Jinwal UK, Jones JR, Blair LJ, Koren J, Dickey CA. Exploiting the diversity of the heat-shock protein family for primary and secondary tauopathy therapeutics. Curr Neuropharmacol 2012; 9:623-31. [PMID: 22654720 PMCID: PMC3263456 DOI: 10.2174/157015911798376226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022] Open
Abstract
The heat shock protein (Hsp) family is an evolutionarily conserved system that is charged with preventing unfolded or misfolded proteins in the cell from aggregating. In Alzheimer’s disease, extracellular accumulation of the amyloid β peptide (Aβ) and intracellular aggregation of the microtubule associated protein tau may result from mechanisms involving chaperone proteins like the Hsps. Due to the ability of Hsps to regulate aberrantly accumulating proteins like Aβ and tau, therapeutic strategies are emerging that target this family of chaperones to modulate their pathobiology. This article focuses on the use of Hsp-based therapeutics for treating primary and secondary tauopathies like Alzheimer’s disease. It will particularly focus on the pharmacological targeting of the Hsp70/90 system and the value of manipulating Hsp27 for treating Alzheimer’s disease.
Collapse
Affiliation(s)
- Jose F Abisambra
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | | | | | | | | | | |
Collapse
|
46
|
Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? Int J Biochem Cell Biol 2012; 44:1680-6. [PMID: 22683760 DOI: 10.1016/j.biocel.2012.05.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 12/23/2022]
Abstract
The cytoskeleton is a highly complex network of three major intracellular filaments, microfilaments (MFs), microtubules (MTs) and intermediate filaments (IFs). This network plays a key role in the control of cell shape, division, functions and interactions in animal organs and tissues. Dysregulation of the network can contribute to numerous human diseases. Although small HSPs (sHSPs) and in particular HSP27 (HSPB1) or αB-crystallin (HSPB5) display a wide range of cellular properties, they are mostly known for their ability to protect cells under stress conditions. Mutations in some sHSPs have been found to affect their ability to interact with cytoskeleton proteins, leading to IF aggregation phenotypes that mimick diseases related to disorders in IF proteins (i.e. desmin, vimentin and neuro-filaments). The aim of this review is to discuss new findings that point towards the possible involvement of IFs in the cytoprotective functions of sHSPs, both in physiological and pathological settings, including the likelihood that sHSPs such as HSPB1 may play a role during epithelial-to-mesenchymal transition (EMT) during fibrosis or cancer progression. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
|
47
|
Szelenyi ER, Urso ML. Time-course analysis of injured skeletal muscle suggests a critical involvement of ERK1/2 signaling in the acute inflammatory response. Muscle Nerve 2012; 45:552-61. [PMID: 22431089 DOI: 10.1002/mus.22323] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The coupling and timing of pro- and anti-inflammatory processes in skeletal muscle injury is poorly understood. We investigated the temporal response and regulated processes of extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38, and IkappaB kinase (IKK) α/β signaling pathways after traumatic injury. METHODS Traumatic freeze injury was delivered to the tibialis anterior (TA) muscle in C57BL/6J mice, and injured and uninjured TA muscles were analyzed 3-72 h into the recovery period. RESULTS Significant increases in pro-inflammatory cytokine transcription accompanied IKKβ phosphorylation, robust ERK pathway activation, and reduced heat shock protein (Hsp) protein expression at 3-24 h. At 24 h, ERK activation was abolished concomitantly with a significant increase in mitogen-activated protein kinase phosphatase-1 (MKP-1). After 24 h, cytokine transcription along with ERK1/2 and IKKβ phosphorylation remained suppressed, whereas Hsp protein expression rose to significant levels by 72 h and associated with IKKβ. CONCLUSIONS Results indicate a bimodal regulation of ERK1/2 in acute inflammation in which it is supportive from 3 to 24 h, and suppressive from 24 to 72 h.
Collapse
Affiliation(s)
- Eric R Szelenyi
- U.S. Army Research Institute of Environmental Medicine, 42 Kansas Street, Building 42, Natick, Massachusetts 01760, USA
| | | |
Collapse
|
48
|
Immunohistochemical expression of heat shock protein27 in the mouse dental pulp after immediate teeth separation. Eur J Med Res 2012; 16:495-500. [PMID: 22027643 PMCID: PMC3351807 DOI: 10.1186/2047-783x-16-11-495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Aim After immediate teeth separation, expression of HSP27 in the mouse dental pulp was examined. Immunohistochemistry was performed to examine the incidence of HSP27 expression. Materials and methods A total of 36 8-week-old ddY mice were used as experimental subjects and a wedge was inserted in between maxillary right molars. The wedge was removed 30 min or 3 h after insertion. Animals were immediately sacrificed after the removal of wedge or until 1 week later and serial sections from paraffin-embedded tissues were prepared. Immunohistochemistry was carried out to examine the expression of HSP27. The untreated side served as the control. Results In the control group, the endothelial cells and some pulp fibroblasts weakly expressed HSP27 suggesting that the expression is due to mechanical stress brought about by physiological masticatory force and pressure from the tongue. In both 30 min and 3 h experimental groups, HSP27 expression was highest at 24 h after wedge removal and the expression remained the same or started to decrease thereafter. The expression decreased at the same level as that of the control group 1 week after wedge removal. Conclusion HSP27 may serve as an indicator of stimulus strong enough to show its expression.
Collapse
|
49
|
Montagna GN, Matuschewski K, Buscaglia CA. Small heat shock proteins in cellular adhesion and migration: evidence from Plasmodium genetics. Cell Adh Migr 2012; 6:78-84. [PMID: 22568951 DOI: 10.4161/cam.20101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cellular locomotion and adhesion critically depend on regulated turnover of filamentous actin. Biochemical data from diverse model systems support a role for the family of small heat shock proteins (HSPBs) in microfilament regulation. The small chaperones could either act directly, through competition with the motor myosin, or indirectly, through modulation of actin depolymerizing factor/cofilin activity. However, a direct link between HSPBs and actin-based cellular motility remained to be established. In a recent experimental genetics study, we provided evidence for regulation of Plasmodium motility by HSPB6/Hsp20. The infectious forms of malaria parasites, termed sporozoites, display fast and continuous substrate-dependent motility, which is largely driven by turnover of actin microfilaments. Sporozoite gliding locomotion is essential to avoid destruction by host defense mechanisms and to ultimately reach a hepatocyte, the target cell, where to transform and replicate. Genetic ablation of Plasmodium HSP20 dramatically changed sporozoite speed and substrate adhesion, resulting in impaired natural malaria transmission. In this article, we discuss the function of Hsp20 in this fast-moving unicellular protozoan and implications for the roles of HSPBs in adhesion and migration of eukaryotic cells.
Collapse
|
50
|
Mymrikov EV, Seit-Nebi AS, Gusev NB. Large potentials of small heat shock proteins. Physiol Rev 2011; 91:1123-59. [PMID: 22013208 DOI: 10.1152/physrev.00023.2010] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modern classification of the family of human small heat shock proteins (the so-called HSPB) is presented, and the structure and properties of three members of this family are analyzed in detail. Ubiquitously expressed HSPB1 (HSP27) is involved in the control of protein folding and, when mutated, plays a significant role in the development of certain neurodegenerative disorders. HSPB1 directly or indirectly participates in the regulation of apoptosis, protects the cell against oxidative stress, and is involved in the regulation of the cytoskeleton. HSPB6 (HSP20) also possesses chaperone-like activity, is involved in regulation of smooth muscle contraction, has pronounced cardioprotective activity, and seems to participate in insulin-dependent regulation of muscle metabolism. HSPB8 (HSP22) prevents accumulation of aggregated proteins in the cell and participates in the regulation of proteolysis of unfolded proteins. HSPB8 also seems to be directly or indirectly involved in regulation of apoptosis and carcinogenesis, contributes to cardiac cell hypertrophy and survival and, when mutated, might be involved in development of neurodegenerative diseases. All small heat shock proteins play important "housekeeping" roles and regulate many vital processes; therefore, they are considered as attractive therapeutic targets.
Collapse
Affiliation(s)
- Evgeny V Mymrikov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation
| | | | | |
Collapse
|