1
|
Morgenstern AR, Peterson LF, Arnold KA, Brewer MG. Differentiation of keratinocytes or exposure to type 2 cytokines diminishes S. aureus internalization. mSphere 2024; 9:e0068523. [PMID: 38501828 PMCID: PMC11036805 DOI: 10.1128/msphere.00685-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft tissue infections. Colonization by this bacterium is increased in individuals with chronic cutaneous diseases such as atopic dermatitis, psoriasis, and bullous pemphigoid. The greater abundance of S. aureus on the skin of subjects with atopic dermatitis in particular has been linked to recurrent cutaneous infections. The primary cell type of the epidermal layer of the skin is the keratinocyte, and it is thought that S. aureus internalized in keratinocytes associates with an increased incidence of skin infections. This study addresses whether keratinocyte differentiation and/or inflammation, two important characteristics altered in cutaneous diseases, influence bacterial internalization. To do this, S. aureus internalization was measured in immortalized and primary keratinocytes that were differentiated using high Ca2+-containing media and/or exposed to cytokines characteristic of atopic dermatitis (IL-4 and IL-13) or psoriasis (IL-17A and IL-22) skin. Our results indicate that S. aureus internalization is uniquely decreased upon keratinocyte differentiation, since this was not observed with another skin-resident bacterium, S. epidermidis. Additionally, treatment with IL-4 + IL-13 diminished bacterial internalization. We interpret this decrease as a mechanism of keratinocyte-based bacterial killing since a similar number of bacterial genomes were detected in cytokine-treated cells, but less viable internalized S. aureus was recovered. Finally, of the receptors reported for S. aureus binding/internalizing into keratinocytes, expression of the α5 component of the α5β1 integrin was in greatest accordance with the number of internalized bacteria in the context of keratinocyte differentiation.IMPORTANCEIndividuals with chronic cutaneous diseases demonstrate heightened susceptibility for severe and recurrent infections from Staphylococcus aureus. What drives this altered susceptibility remains poorly understood. Previous publications have detected S. aureus as deep as the dermal layer of skin in subjects with atopic dermatitis, suggesting that the cutaneous environment of this disease enables deeper bacterial infiltration than occurs in healthy individuals. This observation indicates that S. aureus has greater opportunity to interact with multiple skin cell types in individuals with chronic inflammatory skin diseases. Identifying the characteristics of the skin that influence bacterial internalization, a common method to establish reservoirs and evade the immune response, is critical for our understanding of S. aureus pathogenesis. The significance of this research is the novel identification of epidermal characteristics that influence S. aureus internalization. With this knowledge, methods can be developed to identify patient populations at greater risk for cutaneous infections.
Collapse
Affiliation(s)
| | - Liam F. Peterson
- Department of Pathology & Laboratory Medicine, University of Rochester, Rochester, New York, USA
| | - Kimberly A. Arnold
- Department of Dermatology, University of Rochester, Rochester, New York, USA
| | - Matthew G. Brewer
- Department of Dermatology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
2
|
Zuidema A, Wang W, Kreft M, Te Molder L, Hoekman L, Bleijerveld OB, Nahidiazar L, Janssen H, Sonnenberg A. Mechanisms of integrin αVβ5 clustering in flat clathrin lattices. J Cell Sci 2018; 131:jcs221317. [PMID: 30301780 DOI: 10.1242/jcs.221317] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2023] Open
Abstract
The family of integrin transmembrane receptors is essential for the normal function of multicellular organisms by facilitating cell-extracellular matrix adhesion. The vitronectin-binding integrin αVβ5 localizes to focal adhesions (FAs) as well as poorly characterized flat clathrin lattices (FCLs). Here, we show that, in human keratinocytes, αVβ5 is predominantly found in FCLs, and formation of the αVβ5-containing FCLs requires the presence of vitronectin as ligand, Ca2+, and the clathrin adaptor proteins ARH (also known as LDLRAP1), Numb and EPS15/EPS15L1. Integrin chimeras, containing the extracellular and transmembrane domains of β5 and the cytoplasmic domains of β1 or β3, almost exclusively localize in FAs. Interestingly, lowering actomyosin-mediated contractility promotes integrin redistribution to FLCs in an integrin tail-dependent manner, while increasing cellular tension favors αVβ5 clustering in FAs. Our findings strongly indicate that clustering of integrin αVβ5 in FCLs is dictated by the β5 subunit cytoplasmic domain, cellular tension and recruitment of specific adaptor proteins to the β5 subunit cytoplasmic domains.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Wei Wang
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lisa Te Molder
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Liesbeth Hoekman
- Mass spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Onno B Bleijerveld
- Mass spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Leila Nahidiazar
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Hans Janssen
- Electron Microscopy Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
3
|
β-1,3/1,4-Glucan Lichenan from Cetraria islandica (L.) ACH. induces cellular differentiation of human keratinocytes. Fitoterapia 2018; 129:226-236. [DOI: 10.1016/j.fitote.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
|
4
|
Petry L, Kippenberger S, Meissner M, Kleemann J, Kaufmann R, Rieger UM, Wellenbrock S, Reichenbach G, Zöller N, Valesky E. Directing adipose-derived stem cells into keratinocyte-like cells: impact of medium composition and culture condition. J Eur Acad Dermatol Venereol 2018; 32:2010-2019. [PMID: 29705993 DOI: 10.1111/jdv.15010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Adipose-derived stem cells (ASC) are known to transdifferentiate into a wide range of different cell species in vitro including along the epidermal lineage. This property makes them a promising tool for regenerative medicine to restore the epidermal barrier. OBJECTIVE This study is dedicated to identify in vitro conditions enabling transdifferentiation to a keratinocyte-like phenotype. In particular, the impact of different culture conditions (media compositions, 2D, 3D cultures) and extracellular matrix (ECM) molecules was evaluated. METHODS Adipose-derived stem cells derived from subcutaneous abdominal fat were characterized by stemness-associated markers and subjected to different media. Epithelial differentiation in 2D cultures was monitored by pan-cytokeratin expression using flow cytometry and immunocytochemistry. To evaluate the impact of different ECM molecules on epidermal stratification, 3D cultures were produced, lifted to the air-liquid interface (ALI) and examined by histological analysis and quantitative real-time RT-PCR. RESULTS We identified a medium composition containing retinoic acid, hydrocortisone, ascorbic acid and BMP-4 enabling maximum pan-cytokeratin expression in 2D cultures. Moreover, adhesion to type IV collagen further promotes the pan-cytokeratin expression. When cultures were lifted to the ALI, significant stratification was observed, particularly in supports coated with type IV collagen or fibronectin. Moreover, epidermal differentiation markers (involucrin, cytokeratin 1 and 14) become induced. CONCLUSION Conditions with hampered wound healing such as non-healing ulcers demand new treatment regimes. The here introduced optimized protocols for transdifferentiation of ASC into keratinocyte-like cells may help to establish more effective treatment procedures.
Collapse
Affiliation(s)
- L Petry
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - S Kippenberger
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - M Meissner
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - J Kleemann
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - R Kaufmann
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - U M Rieger
- Department of Plastic & Aesthetic, Reconstructive & Hand Surgery, AGAPLESION Markus Hospital, Frankfurt/Main, Germany
| | - S Wellenbrock
- Department of Plastic & Aesthetic, Reconstructive & Hand Surgery, AGAPLESION Markus Hospital, Frankfurt/Main, Germany
| | - G Reichenbach
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - N Zöller
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - E Valesky
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
5
|
Mohammed-Saeid W, Chitanda J, Al-Dulaymi M, Verrall R, Badea I. Design and Evaluation of RGD-Modified Gemini Surfactant-Based Lipoplexes for Targeted Gene Therapy in Melanoma Model. Pharm Res 2017. [PMID: 28643235 DOI: 10.1007/s11095-017-2197-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE We have developed and evaluated novel peptide-targeted gemini surfactant-based lipoplexes designed for melanoma gene therapy. METHODS Integrin receptor targeting peptide, cyclic-arginylglycylaspartic acid (cRGD), was either chemically coupled to a gemini surfactant backbone or physically co-formulated with lipoplexes. Several formulations and transfection techniques were developed. Transfection efficiency and cellular toxicity of the lipoplexes were evaluated in an in vitro human melanoma model. Physicochemical properties were examined using dynamic light scattering, zeta-potential, and small-angle X-ray scattering measurements. RESULTS RGD-modified gemini surfactant based lipoplexes showed significant enhancement in gene transfection activity in A375 cell lines compared to the standard non-targeted formulation, especially when RGD was chemically conjugated to the gemini surfactant (RGD-G). The RGD had no effect on the cell toxicity profile of the lipoplex systems. Targeting specificity was confirmed by using an excess of free RGD and negative control peptide (RAD) and was demonstrated by using normal human epidermal keratinocytes. Physicochemical characterization showed that all nanoparticles were in the optimal size range for cellular uptake and there were no significant differences between RGD-modified and standard lipoplexes. CONCLUSIONS These findings indicate the potential of RGD-modified gemini surfactant-based lipoplexes for use in melanoma gene therapy as an alternative to conventional chemotherapy.
Collapse
Affiliation(s)
- Waleed Mohammed-Saeid
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Room 3D01.5, Saskatoon, Saskatchewan, S7N 5E5, Canada.,College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Jackson Chitanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mays Al-Dulaymi
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Room 3D01.5, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Ronald Verrall
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Room 3D01.5, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
6
|
Jakobsen M, Askou AL, Stenderup K, Rosada C, Dagnæs-Hansen F, Jensen TG, Corydon TJ, Mikkelsen JG, Aagaard L. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin. Hum Gene Ther Methods 2016. [PMID: 26204415 DOI: 10.1089/hgtb.2014.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.
Collapse
Affiliation(s)
- Maria Jakobsen
- 1 Department of Biomedicine, Aarhus University , Denmark .,2 Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , Denmark
| | | | - Karin Stenderup
- 3 Department of Dermatology, Aarhus University Hospital , Aarhus, Denmark
| | - Cecilia Rosada
- 3 Department of Dermatology, Aarhus University Hospital , Aarhus, Denmark
| | | | | | | | | | - Lars Aagaard
- 1 Department of Biomedicine, Aarhus University , Denmark
| |
Collapse
|
7
|
Cereceres S, Touchet T, Browning MB, Smith C, Rivera J, Höök M, Whitfield-Cargile C, Russell B, Cosgriff-Hernandez E. Chronic Wound Dressings Based on Collagen-Mimetic Proteins. Adv Wound Care (New Rochelle) 2015; 4:444-456. [PMID: 26244101 DOI: 10.1089/wound.2014.0614] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/27/2015] [Indexed: 12/26/2022] Open
Abstract
Objective: Chronic wounds are projected to reach epidemic proportions due to the aging population and the increasing incidence of diabetes. There is a strong clinical need for an improved wound dressing that can balance wound moisture, promote cell migration and proliferation, and degrade at an appropriate rate to minimize the need for dressing changes. Approach: To this end, we have developed a bioactive, hydrogel microsphere wound dressing that incorporates a collagen-mimetic protein, Scl2GFPGER, to promote active wound healing. A redesigned Scl2GFPGER, engineered collagen (eColGFPGER), was created to reduce steric hindrance of integrin-binding motifs and increase overall stability of the triple helical backbone, thereby resulting in increased cell adhesion to substrates. Results: This study demonstrates the successful modification of the Scl2GFPGER protein to eColGFPGER, which displayed enhanced stability and integrin interactions. Fabrication of hydrogel microspheres provided a matrix with adaptive moisture technology, and degradation rates have potential for use in human wounds. Innovation: This collagen-mimetic wound dressing was designed to permit controlled modulation of cellular interactions and degradation rate without impact on other physical properties. Its fabrication into uniform hydrogel microspheres provides a bioactive dressing that can readily conform to irregular wounds. Conclusion: Overall, this new eColGFPGER shows strong promise in the generation of bioactive hydrogels for wound healing as well as a variety of tissue scaffolds.
Collapse
Affiliation(s)
- Stacy Cereceres
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Tyler Touchet
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Mary Beth Browning
- Institute for Bioscience and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Clayton Smith
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Jose Rivera
- Institute for Bioscience and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Magnus Höök
- Institute for Bioscience and Technology, Texas A&M Health Science Center, Houston, Texas
| | | | - Brooke Russell
- Institute for Bioscience and Technology, Texas A&M Health Science Center, Houston, Texas
| | | |
Collapse
|
8
|
Zacharski DM, Brandt S, Esch S, König S, Mormann M, Ulrich-Merzenich G, Hensel A. Xyloglucan from Tropaeolum majus Seeds Induces Cellular Differentiation of Human Keratinocytes by Inhibition of EGFR Phosphorylation and Decreased Activity of Transcription Factor CREB. Biomacromolecules 2015; 16:2157-67. [PMID: 26068019 DOI: 10.1021/acs.biomac.5b00553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Xyloglucan XG (molecular weight 462 kDa, 1,4-/1,4,6-(pGlc) linked backbone, side chains of 1-pXyl, 1,2-pXyl, 1-p-Gal) was isolated from the seeds of Tropaeolum majus. XG (100 μg/mL) induced terminal cellular differentiation of human keratinocytes, as demonstrated by immunofluorescence staining and Western blot using cytokeratin 10 and involucrin as marker proteins. Differentiation was also induced by XG-derived oligosaccharides (degree of polymerization 7-9). Quantitative real-time polymerase chain reaction (qPCR) revealed the induction of gene expression of typical differentiation markers (cytokeratin, filaggrin, involucrin, loricrin, transglutaminase) in a time-dependent manner. Whole human genome microarray indicated that most of upregulated genes were related to differentiation processes. Microarray findings on selected genes were subsequently confirmed by qPCR. For identification of the molecular target of xyloglucan PAGE of keratinocyte membrane preparations was performed, followed by blotting with fluorescein isothiocyanate-labeled XG. XG interacting proteins were characterized by MS. Peptide fragments of epidermal growth factor receptor (EGFR) and integrin β4 were identified. Subsequent phospho-kinase array indicated that phosphorylation of EGFR and transcription factor cAMP response element-binding protein (CREB) was decreased in the XG-treated cells. Thus, the XG-induced differentiation of keratinocytes is proposed to be mediated by the inhibition of the phosphorylation of EGFR, leading to a dimished CREB activation, which is essential for the activation of cellular differentiation.
Collapse
Affiliation(s)
- Dominika M Zacharski
- ‡University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - Simone Brandt
- ‡University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - Stefan Esch
- ‡University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - Simone König
- §University of Münster, Interdisciplinary Centre for Clinical Research, Core Unit Proteomics, Röntgenstr. 21, D-48149 Münster, Germany
| | - Michael Mormann
- #University of Münster, Institute for Hygiene, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Gudrun Ulrich-Merzenich
- ∥University Clinic Centre Bonn, Medical Clinic III, Centre for Internal Medicine, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Andreas Hensel
- ‡University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| |
Collapse
|
9
|
Integrin-mediated adhesion and mechano-sensing in cutaneous wound healing. Cell Tissue Res 2014; 360:571-82. [DOI: 10.1007/s00441-014-2064-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022]
|
10
|
Tjin MS, Chua AWC, Ma DR, Lee ST, Fong E. Human epidermal keratinocyte cell response on integrin-specific artificial extracellular matrix proteins. Macromol Biosci 2014; 14:1125-34. [PMID: 24789105 DOI: 10.1002/mabi.201400015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/10/2014] [Indexed: 11/11/2022]
Abstract
Cell-matrix interactions play critical roles in regulating cellular behavior in wound repair and regeneration of the human skin. In particular, human skin keratinocytes express several key integrins such as alpha5beta1, alpha3beta1, and alpha2beta1 for binding to the extracellular matrix (ECM) present in the basement membrane in uninjured skin. To mimic these key integrin-ECM interactions, artificial ECM (aECM) proteins containing functional domains derived from laminin 5, type IV collagen, fibronectin, and elastin are prepared. Human skin keratinocyte cell responses on the aECM proteins are specific to the cell-binding domain present in each construct. Keratinocyte attachment to the aECM protein substrates is also mediated by specific integrin-material interactions. In addition, the aECM proteins are able to support the proliferation of keratinocyte stem cells, demonstrating their promise for use in skin tissue engineering.
Collapse
Affiliation(s)
- Monica Suryana Tjin
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, 639798, Singapore
| | | | | | | | | |
Collapse
|
11
|
Choi HS, Gibbs SL, Lee JH, Kim SH, Ashitate Y, Liu F, Hyun H, Park G, Xie Y, Bae S, Henary M, Frangioni JV. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol 2013; 31:148-53. [PMID: 23292608 DOI: 10.1038/nbt.2468] [Citation(s) in RCA: 399] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/30/2012] [Indexed: 11/09/2022]
Abstract
The signal-to-background ratio (SBR) is the key determinant of sensitivity, detectability and linearity in optical imaging. As signal strength is often constrained by fundamental limits, background reduction becomes an important approach for improving the SBR. We recently reported that a zwitterionic near-infrared (NIR) fluorophore, ZW800-1, exhibits low background. Here we show that this fluorophore provides a much-improved SBR when targeted to cancer cells or proteins by conjugation with a cyclic RGD peptide, fibrinogen or antibodies. ZW800-1 outperforms the commercially available NIR fluorophores IRDye800-CW and Cy5.5 in vitro for immunocytometry, histopathology and immunoblotting and in vivo for image-guided surgery. In tumor model systems, a tumor-to-background ratio of 17.2 is achieved at 4 h after injection of ZW800-1 conjugated to cRGD compared to ratios of 5.1 with IRDye800-CW and 2.7 with Cy5.5. Our results suggest that introducing zwitterionic properties into targeted fluorophores may be a general strategy for improving the SBR in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Hak Soo Choi
- Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The role of integrins in the development and homeostasis of the epidermis and skin appendages. Acta Naturae 2013; 5:22-33. [PMID: 24455180 PMCID: PMC3890986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Integrins play a critical role in the regulation of adhesion, migration, proliferation, and differentiation of cells. Because of the variety of the functions they play in the cell, they are necessary for the formation and maintenance of tissue structure integrity. The trove of data accumulated by researchers suggests that integrins participate in the morphogenesis of the epidermis and its appendages. The development of mice with tissue-specific integrin genes knockout and determination of the genetic basis for a number of skin diseases in humans showed the significance of integrins in the biology, physiology, and morphogenesis of the epidermis and hair follicles. This review discusses the data on the role of different classes of integrin receptors in the biology of epidermal cells, as well as the development of the epidermis and hair follicles.
Collapse
|
13
|
Gladden AB, Hebert AM, Schneeberger EE, McClatchey AI. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell 2010; 19:727-39. [PMID: 21074722 DOI: 10.1016/j.devcel.2010.10.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 08/18/2010] [Accepted: 09/11/2010] [Indexed: 11/27/2022]
Abstract
The neurofibromatosis type 2 (NF2) tumor suppressor, Merlin, is a FERM (Four point one, Ezrin, Radixin, Moesin) domain-containing protein whose loss results in defective morphogenesis and tumorigenesis in multiple tissues. Like the closely related ERM proteins (Ezrin, Radixin, and Moesin), Merlin may organize the plasma membrane by assembling membrane protein complexes and linking them to the cortical actin cytoskeleton. We previously found that Merlin is a critical mediator of contact-dependent inhibition of proliferation and is required for the establishment of stable adherens junctions (AJs) in cultured cells. Here, we delineate the molecular function of Merlin in AJ establishment in epidermal keratinocytes in vitro and confirm that a role in AJ establishment is an essential function of Merlin in vivo. Our studies reveal that Merlin can associate directly with α-catenin and link it to Par3, thereby providing an essential link between the AJ and the Par3 polarity complex during junctional maturation.
Collapse
Affiliation(s)
- Andrew B Gladden
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
14
|
Lang SH, Anderson E, Fordham R, Collins AT. Modeling the prostate stem cell niche: an evaluation of stem cell survival and expansion in vitro. Stem Cells Dev 2010; 19:537-46. [PMID: 20102283 DOI: 10.1089/scd.2009.0291] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The goal of this work was to engineer a clinically relevant in vitro model of human prostate stem cells (PSCs) that could be used to interrogate the mechanisms of stem cell control. We, therefore, compared the growth potential of stem cells in 3D culture (where the conditions would favor a quiescent state) with monolayer culture that has previously been demonstrated to induce PSC division. We found a fundamental difference between cultures of primary, adult PSCs grown as monolayers compared to those grown as spheres. The first supported the expansion and maintenance of PSCs from single cells while the latter did not. In an attempt to determine the mechanisms governing stem cell control, several known stem cell activators (including IFNalpha, FGF2, anti-TGFbeta, and dihydrotestosterone) were studied. However, cell division was not observed. CD133+ cells derived from a prostate cell line did not grow as spheres from single cells but did grow from aggregates. We conclude that PSCs can be expanded and maintained in monolayer culture from single cells, but that PSCs are growth quiescent when grown as spheres. It is likely that the physical arrangement of cells in monolayer provides an injury-type response, which can activate stem cells into cycle.
Collapse
Affiliation(s)
- Shona H Lang
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | | | | | | |
Collapse
|
15
|
Bush KA, Pins GD. Carbodiimide conjugation of fibronectin on collagen basal lamina analogs enhances cellular binding domains and epithelialization. Tissue Eng Part A 2010; 16:829-38. [PMID: 19778179 DOI: 10.1089/ten.tea.2009.0514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To improve the regenerative potential of biomaterials used as bioengineered scaffolds, it is necessary to strategically incorporate biologically active molecules that promote in vivo cellular processes that lead to a fully functional tissue. This work evaluates the effects of strategically binding fibronectin (FN) to collagen basal lamina analogs to enhance keratinocyte functions necessary for complete skin regeneration. We found that FN that was passively adsorbed to collagen-glycosaminoglycan basal lamina analogs enhanced epithelial thickness and keratinocyte proliferation compared with nontreated basal lamina analogs at 3 days of air/liquid (A/L) interface culture. Additionally, we evaluated the availability of FN cellular binding site domains when FN was either passively adsorbed or [1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride] conjugated to basal lamina analogs fabricated from collagen-glycosaminoglycan coprecipitate or self-assembled type I collagen. It was found that 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride conjugation of FN significantly enhanced FN binding site presentation as well as epithelial thickness. Overall, the results gained from this study will be used to improve the regenerative capacity of basal lamina analogs for bioengineered skin substitutes as well as the development of bioengineered scaffolds for other tissue engineering applications.
Collapse
Affiliation(s)
- Katie A Bush
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01606, USA
| | | |
Collapse
|
16
|
Bush KA, Driscoll PF, Soto ER, Lambert CR, McGimpsey WG, Pins GD. Designing tailored biomaterial surfaces to direct keratinocyte morphology, attachment, and differentiation. J Biomed Mater Res A 2009; 90:999-1009. [PMID: 18655147 DOI: 10.1002/jbm.a.32168] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Precisely engineering the surface chemistry of biomaterials to modulate the adsorption and functionality of biochemical signaling molecules that direct cellular functions is critical in the development of tissue engineered scaffolds. Specifically, this study describes the use of functionalized self-assembled monolayers (SAMs) as a model system to assess the effects of biomaterial surface properties on controlling fibronectin (FN) conformation and concentration as well as keratinocyte function. By systematically analyzing FN adsorption at low and saturated surface densities, we distinguished between SAM-dependent effects of FN concentration and conformation on presenting cellular binding domains that direct cellular functions. Quantitative image analyses of immunostained samples showed that modulating the availability of the FN synergy site directly correlated with changes in keratinocyte attachment, spreading, and differentiation, through integrin-mediated signaling mechanisms. The results of this study will be used to elucidate design features that can be incorporated into dermal equivalents and percutaneous implants to enhance the rate of re-epithelialization and tissue regeneration. Furthermore, these findings indicate that SAM-based model systems are a valuable tool for designing and investigating the development of scaffolds that regulate the conformation of extracellular matrix cues and cellular functions that accelerate the rate of tissue regeneration.
Collapse
Affiliation(s)
- K A Bush
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
17
|
Fujimoto E, Tajima S. Reciprocal regulation of LOX and LOXL2 expression during cell adhesion and terminal differentiation in epidermal keratinocytes. J Dermatol Sci 2009; 55:91-8. [DOI: 10.1016/j.jdermsci.2009.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/06/2009] [Accepted: 03/19/2009] [Indexed: 01/16/2023]
|
18
|
Bennett RD, Mauer AS, Pittelkow MR, Strehler EE. Calmodulin-like protein upregulates myosin-10 in human keratinocytes and is regulated during epidermal wound healing in vivo. J Invest Dermatol 2008; 129:765-9. [PMID: 18818677 DOI: 10.1038/jid.2008.288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Epidermal wound healing is required for normal skin barrier function. Cell motility is a key factor in the ability of keratinocytes to heal epithelial damage. Calmodulin-like protein (CLP) is an epithelial-specific Ca(2+)-binding protein that is regulated during terminal keratinocyte differentiation. CLP is a specific light chain of unconventional myosin-10 (Myo10) and its expression increases filopodial length, filopodial number, and Myo10-dependent cell motility in vitro. However, the effects of CLP expression on keratinocyte motility are unknown. Here we used cultured human keratinocytes to study the role of CLP in regulating Myo10 and the effects of Myo10 and CLP on cell migration. CLP and Myo10 expression were correlated in vitro and required for keratinocyte motility in wound-healing assays. We examined the localization of CLP in wounded skin by immunohistochemistry and found an upregulation and peripheral localization of CLP in the basal and suprabasal cells adjacent to and immediately over the wound bed in vivo. The results suggest that increased CLP expression and CLP-mediated Myo10 function are important for skin differentiation and wound reepithelialization.
Collapse
Affiliation(s)
- Richard D Bennett
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
19
|
CLARK R, ASHCROFT G, SPENCER MJ, LARJAVA H, FERGUSON M. Re-epithelialization of normal human excisional wounds is associated with a switch from αvβ5 to αvβ6 integrins. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1996.d01-931.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Roh C, Roche M, Guo Z, Photopoulos C, Tao Q, Lyle S. Multi-potentiality of a new immortalized epithelial stem cell line derived from human hair follicles. In Vitro Cell Dev Biol Anim 2008; 44:236-44. [PMID: 18568376 DOI: 10.1007/s11626-008-9084-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 01/22/2008] [Indexed: 12/17/2022]
Abstract
We previously demonstrated that keratin 15 expressing cells present in the bulge region of hair follicles exhibit properties of adult stem cells. We have now established and characterized an immortalized adult epithelial stem cell line derived from cells isolated from the human hair follicle bulge region. Telogen hair follicles from human skin were microdissected to obtain an enriched population of keratin 15 positive skin stem cells. By expressing human papillomavirus 16 E6/E7 genes in these stem cells, we have been able to culture the cells for >30 passages and maintain a stable phenotype after 12 mo of continuous passage. The cell line was compared to primary stem cells for expression of stem cell specific proteins, for in vitro stem cell properties, and for their capacity to differentiate into different cell lineages. This new cell line, named Tel-E6E7 showed similar expression patterns to normal skin stem cells and maintained in vitro properties of stem cells. The cells can differentiate into epidermal, sebaceous gland, and hair follicle lineages. Intact beta-catenin dependent signaling, which is known to control in vivo hair differentiation in rodents, is maintained in this cell line. The Tel-E6E7 cell line may provide the basis for valid, reproducible in vitro models for studies on stem cell lineage determination and differentiation.
Collapse
Affiliation(s)
- Cecilia Roh
- Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Characterization of Bipotential Epidermal Progenitors Derived from Human Sebaceous Gland: Contrasting Roles of c-Myc and β-Catenin. Stem Cells 2008; 26:1241-52. [DOI: 10.1634/stemcells.2007-0651] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Kloepper J, Hendrix S, Bodó E, Tiede S, Humphries M, Philpott M, Fässler R, Paus R. Functional role of β1 integrin-mediated signalling in the human hair follicle. Exp Cell Res 2008; 314:498-508. [DOI: 10.1016/j.yexcr.2007.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 10/02/2007] [Accepted: 10/23/2007] [Indexed: 12/17/2022]
|
23
|
|
24
|
Kubo M, Clark RAF, Katz AB, Taichman LB, Jin Z, Zhao Y, Moriguchi T. Transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to gelatin. Arch Dermatol Res 2006; 299:13-24. [PMID: 17146626 DOI: 10.1007/s00403-006-0718-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/28/2006] [Indexed: 10/23/2022]
Abstract
alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.
Collapse
Affiliation(s)
- Miyoko Kubo
- Department of Plastic and Reconstructive Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, 701-0192, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Mignogna M, Lanza A, Rossiello L, Ruocco V, Ahmed AR. Comparison of reactivity and epitope recognition between sera from American and Italian patients with oral pemphigoid. Clin Exp Immunol 2006; 145:28-35. [PMID: 16792670 PMCID: PMC1941997 DOI: 10.1111/j.1365-2249.2006.03103.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mucous membrane pemphigoid (MMP) (also known as cicatricial pemphigoid) is a rare autoimmune mucocutaneous blistering disease that affects mucous membranes derived from stratified squamous epithelium and the skin. A subset of MMP affects only the oral cavity and is referred to as the oral pemphigoid (OP). MMP and OP are characterized by subepithelial vesicles on histology and in vivo deposition of immunoglobulins and complement at the basement membrane zone (BMZ) on immunopathology. Previous studies have shown that sera of patients with MMP bind to human integrin beta4, while sera of patients with oral pemphigoid bind to the integrin alpha6 component of the heterodimer. The prognosis in MMP is grave but excellent in OP. In this study we compare the binding of sera from patients with OP from Boston, MA, USA to Naples, Italy, and attempt to identify an epitope to which the anti-integrin alpha6 human autoantibody binds. Our results indicate that the sera from Boston and Naples are identical in their reactivity. They recognize a fragment I (AA 23-462) and its subfragment IB (AA 217-462) only, in the human integrin alpha6 molecule. Blocking studies, immunoprecipitation and immunoabsorbtion studies confirm the presence of this single 245 AA region. Antibodies to subfragment IB cause BMZ separation in organ culture using normal human oral mucosa as substrate. This preliminary study indicates that patients on both continents may have similar reactivity and suggests that an intercontinental study group could be established to advance our understanding of the pathogenesis of OP and the biology of anti-alpha6 integrin autoantibodies.
Collapse
Affiliation(s)
- M Mignogna
- Center for Blistering Diseases, Department of Medicine, New England Baptist Hospital, Boston, MA 02120, USA
| | | | | | | | | |
Collapse
|
26
|
Lee CH, Chen JS, Sun YL, Liao WT, Zheng YW, Chai CZ, Chen GS, Yu HS. Defective beta1-integrins expression in arsenical keratosis and arsenic-treated cultured human keratinocytes. J Cutan Pathol 2006; 33:129-38. [PMID: 16420308 DOI: 10.1111/j.0303-6987.2006.00361.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND beta1-integrins, which localize to the basolateral surface of basal keratinocytes, are important in the differentiation control and proliferation of the epidermis. Many cutaneous diseases with perturbed differentiation, including arsenical keratosis, show altered patterns of integrin distribution and expression. Arsenic may induce arsenical keratosis through the differentiation and apoptosis aberration by integrins. The purpose of this study is to investigate the role of integrin and arsenic in the pathogenesis of arsenical keratosis. METHODS Twenty-five specimens obtained from 25 patients with arsenical keratosis disease were studied. Immunohistochemistry staining to beta1, alpha2beta1, or alpha3beta1 integrins was performed in arsenical keratosis and clinically normal perilesional skin. Western blotting was used to assess the expression of integrin beta1 and focal adhesion kinase (FAK) in arsenic-treated cultured keratinocytes. RESULTS A decreased expression of beta1, alpha2beta1, or alpha3beta1 integrins was demonstrated in arsenical keratosis and clinical normal perilesional skin in a large proportion of arsenical keratosis cases studied. The expressions of integrin beta1 and FAK were both decreased in arsenic-treated keratinocytes. CONCLUSIONS Our results suggest that arsenic induces abnormal differentiation in arsenical keratosis via the effects of integrin expression in keratinocytes.
Collapse
Affiliation(s)
- Chih-Hung Lee
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Roh C, Tao Q, Photopoulos C, Lyle S. In vitro differences between keratinocyte stem cells and transit-amplifying cells of the human hair follicle. J Invest Dermatol 2006; 125:1099-105. [PMID: 16354178 DOI: 10.1111/j.0022-202x.2005.23958.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial stem cells within the human hair follicle are critical for hair development, hair cycling, wound healing, and tumorigenesis. We and others have previously shown that the hair follicle bulge area contains keratinocyte stem cells, whereas the hair matrix represents the proliferating and differentiating transit-amplifying (TA) cell compartment. In order to better characterize the phenotypic differences between human keratinocyte stem cells and their daughter TA cells, we compared the in vitro properties of cell adhesion, cell migration, clonogenicity, and in vitro life span. Epithelial outgrowths from the hair matrix appeared within 2 d of explant, whereas stem cell outgrowths appeared between 7 and 10 d after explant. Both populations form colonies; however, stem cells from telogen follicles formed more total colonies, and more colonies greater than 3 mm. Upon subculture, stem cells formed colonies until passage 6 and terminally differentiated at passage 7, whereas TA cells only formed colonies until passage 2. Stem cells express more beta1 integrin and adhere more rapidly to collagen IV. Most strikingly, TA cells showed a 7-fold greater mobility on migration assays than stem cells (0.704 vs 0.102 microm per min). These results help define the human hair follicle stem cell and TA cell phenotypes and correlate with the in vivo properties of these compartments.
Collapse
Affiliation(s)
- Cecilia Roh
- Pathology Department, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
28
|
Rashid KA, Stern JNH, Ahmed AR. Identification of an Epitope within Human Integrin α6 Subunit for the Binding of Autoantibody and Its Role in Basement Membrane Separation in Oral Pemphigoid. THE JOURNAL OF IMMUNOLOGY 2006; 176:1968-77. [PMID: 16424229 DOI: 10.4049/jimmunol.176.3.1968] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oral pemphigoid (OP) is a rare chronic autoimmune disease characterized by blisters and erosive lesions in the oral mucosa. We identified an epitope for the binding of OP autoantibodies within the integrin alpha6 subunit, by cloning four overlapping fragments (A, B, C, and D). Immunoperoxidase studies demonstrated that all of the fragments were present in the oral mucosa. Sera of 20 patients with active OP were studied. All sera bound to integrin alpha6 in DU145 cell lysate by immunoprecipitation and immunoblot assay. The same sera bound only to fragment A and its subfragment A2 on an immunoblot assay. The specificity of the binding was further characterized by blocking and cross-absorption studies. A 14-aa synthetic peptide A2.1, within fragment A2, bound to all the test sera. The sera in this study bound to only one epitope. Controls were sera samples from 10 healthy volunteers and 40 patients with other variants of mucous membrane pemphigoid and mAb GoH3 and BQ16 to integrin alpha6. Control sera did not bind to the full-length integrin alpha6 subunit nor any of the cloned fragments. The OP patient sera and immunoaffinity-purified OP sera, rabbit antisera against fragments A and A2, and mAb GoH3 produced basement membrane separation of oral mucosa in organ culture. This study identifies a peptide within the extracellular domain of integrin alpha6 molecule, to which Abs in the sera from patients with OP bind, and which may play an important role in the pathogenesis of OP.
Collapse
Affiliation(s)
- Khwaja Aftab Rashid
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | |
Collapse
|
29
|
Bush KA, Downing BR, Walsh SE, Pins GD. Conjugation of extracellular matrix proteins to basal lamina analogs enhances keratinocyte attachment. J Biomed Mater Res A 2006; 80:444-52. [PMID: 17013864 DOI: 10.1002/jbm.a.30933] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dermal-epidermal junction of skin contains extracellular matrix proteins that are involved in initiating and controlling keratinocyte signaling events such as attachment, proliferation, and terminal differentiation. To characterize the relationship between extracellular matrix proteins and keratinocyte attachment, a biomimetic design approach was used to precisely tailor the surface of basal lamina analogs with biochemistries that emulate the native biochemical composition found at the dermal-epidermal junction. A high-throughput screening device was developed by our laboratory that allows for the simultaneous investigation of the conjugation of individual extracellular matrix proteins (e.g. collagen type I, collagen type IV, laminin, or fibronectin) as well as their effect on keratinocyte attachment, on the surface of an implantable collagen membrane. Fluorescence microscopy coupled with quantitative digital image analyses indicated that the extracellular matrix proteins adsorbed to the collagen-GAG membranes in a dose-dependent manner. To determine the relationship between extracellular matrix protein signaling cues and keratinocyte attachment, cells were seeded on protein-conjugated collagen-GAG membranes and a tetrazolium-based colorimetric assay was used to quantify viable keratinocyte attachment. Our results indicate that keratinocyte attachment was significantly enhanced on the surfaces of collagen membranes that were conjugated with fibronectin and type IV collagen. These findings define a set of design parameters that will enhance keratinocyte binding efficiency on the surface of collagen membranes and ultimately improve the rate of epithelialization for dermal equivalents.
Collapse
Affiliation(s)
- Katie A Bush
- Worcester Polytechnic Institute, Biomedical Engineering, Worcester, Massachusetts, USA
| | | | | | | |
Collapse
|
30
|
Gonzalez Guerrico AM, Jaffer ZM, Page RE, Braunewell KH, Chernoff J, Klein-Szanto AJP. Visinin-like protein-1 is a potent inhibitor of cell adhesion and migration in squamous carcinoma cells. Oncogene 2005; 24:2307-16. [PMID: 15735716 DOI: 10.1038/sj.onc.1208476] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor cell invasion is a highly integrated and complex process comprising several biologically distinct functions such as cell adhesion, motility, proteolysis, etc. Visinin-like protein-1 (VILIP-1), a member of the neuronal EF-hand calcium-sensor protein family, plays a role in regulating tumor cell invasiveness of mouse squamous cell carcinoma (SCC). VILIP-1 enhances cyclic adenosine monophosphate levels through PKA induction. However, the mechanism by which VILIP-1 reduces cell invasiveness is not well understood. In this study, we show that VILIP-1 decreased cell adhesion and migration/invasiveness of highly invasive mouse SCC cells. Forced expression of VILIP-1 reduced cell adhesion to fibronectin in parallel to downregulating alphav and alpha5 integrin subunit levels. VILIP-1 overexpression also led to decreased migration ability. Conversely, short hairpin RNA-mediated VILIP-1 knock-down of SCC cells' characterized by little or no invasiveness, correlated with increased adhesion to fibronectin and enhanced expression of alphav and alpha5 integrin subunits together with increased cell migration. Function-blocking assays with inhibitory anti-alpha5 and anti-alphav integrin antibodies showed that both subunits contributed to cell adhesion, migration, and invasiveness of highly invasive SCC cell lines. These results point to a critical role of VILIP-1 in regulating cell adhesion and migration by downregulation of fibronectin receptor expression. Decreased or absent VILIP-1 expression in SCC cell subpopulations may lead to a more advanced malignant phenotype characterized by changes in adhesive ability and increased cell motility, suggestive of a tumor suppressor function.
Collapse
|
31
|
Carter LA, MacDonald JL, Roskams AJ. Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J Neurosci 2004; 24:5670-83. [PMID: 15215289 PMCID: PMC6729216 DOI: 10.1523/jneurosci.0330-04.2004] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem cells of adult regenerative organs share a common goal but few established conserved mechanisms. Within the neural stem cell niche of the mouse olfactory epithelium, we identified a combination of extracellular matrix (ECM) receptors that regulate adhesion and mitosis in non-neural stem cells [intercellular adhesion molecule-1 (ICAM-1), beta1, beta4, and alpha-1, -3, and -6 integrins] and on horizontal basal cells (HBCs), candidate olfactory neuro-epithelial progenitors. Using ECM receptors as our guide, we recreated a defined microenvironment in vitro that mimics olfactory basal lamina and, when supplemented with epidermal growth factor, transforming growth factor alpha, and leukemia inhibitory factor, allows us to preferentially expand multiple clonal adherent colony phenotypes from individual ICAM-1+ and ICAM-1+/beta1 integrin+-selected HBCs. The most highly mitotic colony-forming HBCs demonstrate multipotency, spontaneously generating more ICAM-positive presumptive HBCs, a combination of olfactory neuroglial progenitors, and neurons of olfactory and potentially nonolfactory phenotypes. HBCs thus possess a conserved adhesion receptor expression profile similar to non-neural stem cells, preferential self-replication in an in vitro environment mimicking their in vivo niche, and contain subpopulations of cells that can produce multiple differentiated neuronal and glial progeny from within and beyond the olfactory system in vitro.
Collapse
Affiliation(s)
- Lindsay A Carter
- Department of Zoology and Center for Molecular Medicine and Therapeutics, University of British Columbia, V6T 1Z4 Vancouver, Canada
| | | | | |
Collapse
|
32
|
Li CY, Abu-Ali S, Sugiura T, Shiratsuchi T, Sasaki M, Shirasuna K. Integrin Expression and Migration of Adenoid Cystic Carcinoma Cells in Response to Basement Membrane Components. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1348-8643(04)80003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Vespa A, Darmon AJ, Turner CE, D'Souza SJA, Dagnino L. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes. J Biol Chem 2003; 278:11528-35. [PMID: 12547824 DOI: 10.1074/jbc.m208337200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.
Collapse
Affiliation(s)
- Alisa Vespa
- Department of Physiology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
34
|
van de Mark K, Chen JS, Steliou K, Perrine SP, Faller DV. Alpha-lipoic acid induces p27Kip-dependent cell cycle arrest in non-transformed cell lines and apoptosis in tumor cell lines. J Cell Physiol 2003; 194:325-40. [PMID: 12548552 DOI: 10.1002/jcp.10205] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
alpha-Lipoic acid is a naturally-occurring co-factor found in a number of multi-enzyme complexes regulating metabolism. We report here that alpha-lipoic acid induces hyperacetylation of histones in vivo and has differential effects on the growth and viability of normal versus transformed cell lines. The human tumor cell lines FaDu and Jurkat, as well as a Ki-v-Ras-transformed Balb/c-3T3 murine mesenchymal cell line, all initiated apoptosis following exposure to alpha-lipoic acid. In contrast, treatment of non-transformed cell lines with alpha-lipoic acid resulted only in reversible cell cycle arrest in G0/G1. Treatment with butyrate, another short-chain fatty acid, induced a G0/G1 arrest in both transformed and non-transformed cell lines. alpha-Lipoic acid caused a post-translational elevation in the levels of the cyclin-dependent kinase inhibitor p27Kip1. Studies using p27Kip1-deficient MEF cells demonstrated that p27Kip1 was required for the alpha-lipoic acid-mediated cell cycle arrest. The mechanism of apoptosis was independent of Fas-mediated signaling, as alpha-lipoic acid-treated Jurkat cell mutants deficient in Fas or FADD retained sensitivity to apoptosis. The differential selectivity of the pro-apoptotic effects of alpha-lipoic acid for transformed cells supports its potential use in the treatment of neoplastic disorders.
Collapse
Affiliation(s)
- Karyn van de Mark
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
35
|
Bajaj B, Behshad S, Andreadis ST. Retroviral gene transfer to human epidermal keratinocytes correlates with integrin expression and is significantly enhanced on fibronectin. Hum Gene Ther 2002; 13:1821-31. [PMID: 12396615 DOI: 10.1089/104303402760372927] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human epidermal keratinocytes are an important target for gene therapy because they can be easily expanded in culture and used to generate skin substitutes for the treatment of wounds, genetic diseases of the skin, and for delivery of proteins to the systemic circulation. Although retroviral transduction results in permanent genetic modification, differentiation and loss of transduced cells from the epidermis results in temporary transgene expression. To ensure permanent genetic modification, epidermal stem cells must be transduced with high efficiency. We evaluated gene transfer on two different substrates and found that the efficiency of gene transfer is substantially higher on a substrate of recombinant fibronectin (FN), when compared to tissue culture plastic (TCP). The rate of retroviral transduction on FN is four times faster than transduction on tissue culture plates and is independent of polybrene (PB). The transduction efficiency correlates with the levels of expression of integrin subunits alpha5, alpha2, and beta1, which have been shown to correlate with stem cell phenotype. Notably, cells that adhere rapidly to FN are transduced more efficiently than slowly adherent cells. In addition, integrin-blocking antibodies decrease the efficiency of gene transfer in a dose-dependent manner. Our results suggest that FN may enhance retroviral gene transfer to the least differentiated cells, thereby increasing the potential of genetically modified keratinocytes to treat short- and long-term disease states.
Collapse
Affiliation(s)
- Bharat Bajaj
- Bioengineering Laboratory, Department of Chemical Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | | | | |
Collapse
|
36
|
Abstract
Mammalian epidermis is renewed throughout life by proliferation of a multipotential stem cell population and terminal differentiation of stem cell progeny. In recent years, extracellular matrix receptors of the integrin family have been identified as important regulators of epidermal homeostasis, influencing the balance between stem cell renewal and differentiation. Integrin expression is altered when the epidermis is damaged or diseased, and there is good evidence that specific integrins can contribute positively or negatively to pathogenesis. In this review I summarize what is known about the expression and function of epidermal integrins, and highlight the challenges for future research.
Collapse
Affiliation(s)
- Fiona M Watt
- Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| |
Collapse
|
37
|
Grose R, Hutter C, Bloch W, Thorey I, Watt FM, Fässler R, Brakebusch C, Werner S. A crucial role of β1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 2002; 129:2303-15. [PMID: 11959837 DOI: 10.1242/dev.129.9.2303] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Integrins are ubiquitous transmembrane receptors that play crucial roles in cell-cell and cell-matrix interactions. In this study, we have determined the effects of the loss of β1 integrins in keratinocytes in vitro and during cutaneous wound repair. Flow cytometry of cultured β1-deficient keratinocytes confirmed the absence of β1 integrins and showed downregulation of α6β4 but not of αv integrins. β1-null keratinocytes were characterised by poor adhesion to various substrates, by a reduced proliferation rate and by a strongly impaired migratory capacity. In vivo, the loss of β1 integrins in keratinocytes caused a severe defect in wound healing. β1-null keratinocytes showed impaired migration and were more densely packed in the hyperproliferative epithelium. Surprisingly, their proliferation rate was not reduced in early wounds and even increased in late wounds. The failure in re-epithelialisation resulted in a prolonged inflammatory response, leading to dramatic alterations in the expression of important wound-regulated genes. Ultimately, β1-deficient epidermis did cover the wound bed, but the epithelial architecture was abnormal. These findings demonstrate a crucial role of β1 integrins in keratinocyte migration and wound re-epithelialisation.
Movies available on-line
Collapse
Affiliation(s)
- Richard Grose
- Institute of Cell Biology, Department of Biology, ETH-Zürich, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Thomas GJ, Speight PM. Cell adhesion molecules and oral cancer. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:479-98. [PMID: 11806518 DOI: 10.1177/10454411010120060301] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell adhesion molecules (CAMs) are found on the surfaces of all cells, where they bind to extracellular matrix molecules or to receptors on other cells. As well as having a structural role, CAMs function as signaling receptors, transducing signals initiated by cellular interactions which regulate many diverse processes, including cell division, migration, and differentiation. Cell adhesion molecules are essential for maintaining stable tissue structure. However, cell adhesion must be dynamic to facilitate the mobility and turnover of cells. In dynamic situations, cells alter their cell-cell and cell-matrix interactions by virtue of altered expression and function of CAMs. The expression of CAMs is normally tightly regulated, thereby controlling cell proliferation, mobility, differentiation, and survival. Many of these processes are misregulated in malignant tumors, and it has been shown that many of the characteristics of tumor cells are attributable to the aberrant expression or function of CAMs. Integrins and E-cadherin are the most important CAMs expressed by stratified squamous epithelium. Altered expression of these molecules has been found in oral carcinoma, where loss of CAM expression is often seen in poorly differentiated lesions. However, up-regulation of certain integrins, such as alphavbeta6, has consistently been found in oral cancer, suggesting that it may play an active role in disease progression.
Collapse
Affiliation(s)
- G J Thomas
- Department of Oral Pathology, Eastman Dental Institute for Oral Health Care Sciences, University College London, UK
| | | |
Collapse
|
39
|
Davies D, Holley MC. Differential expression of alpha 3 and alpha 6 integrins in the developing mouse inner ear. J Comp Neurol 2002; 445:122-32. [PMID: 11891657 DOI: 10.1002/cne.10161] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of the mammalian inner ear involves a complex series of cell-cell and cell-extracellular matrix interactions. These interactions are likely to be mediated by families of adhesion molecules, including the integrins. We have studied the expression of three integrin subunits known to be expressed on epithelia in a number of tissues (namely, alpha3, alpha6, and beta4) during the development of the murine inner ear. At E10.5, both alpha3 and alpha6 were expressed in the epithelial layers of the otocyst. The expression of alpha6 was concentrated in an anterioventral region of the epithelium and in a proportion of the cells forming the cochlear-vestibular and facial ganglia. By E12.5, alpha6 showed a more restricted expression, confined mainly to the pro-sensory epithelia and the neural processes from the cochlear-vestibular ganglion. In contrast, alpha3 was expressed in epithelia adjacent to the pro-sensory areas. This reciprocal expression pattern was maintained until birth. Between birth and P6, a switch in expression occurred such that alpha3 was upregulated and alpha6 was downregulated in the sensory epithelia of both the auditory and vestibular systems. At this stage, alpha3 was expressed in all the epithelia lining the scala media, thus defining the endolymph compartment. The expression of beta4 was restricted to epithelial/mesenchymal borders throughout the developmental stages studied, suggesting that alpha6 expression observed within the epithelium and neuronal tissue was alpha6beta1. The early expression and changing pattern of alpha3 and alpha6 integrins during development of the mammalian inner ear suggests that they may be involved in the molecular processes that define epithelial boundaries and guide sensory innervation.
Collapse
MESH Headings
- Animals
- Animals, Newborn/embryology
- Animals, Newborn/genetics
- Animals, Newborn/metabolism
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Ear, Inner/embryology
- Ear, Inner/growth & development
- Ear, Inner/metabolism
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/physiology
- Female
- Gene Expression Regulation, Developmental/physiology
- Integrin alpha3
- Integrin alpha6
- Integrins/biosynthesis
- Integrins/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Pregnancy
Collapse
Affiliation(s)
- Dawn Davies
- Department of Physiology, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, United Kingdom.
| | | |
Collapse
|
40
|
D'Souza SJA, Vespa A, Murkherjee S, Maher A, Pajak A, Dagnino L. E2F-1 is essential for normal epidermal wound repair. J Biol Chem 2002; 277:10626-32. [PMID: 11790795 DOI: 10.1074/jbc.m111956200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E2F factors are involved in proliferation and apoptosis. To understand the role of E2F-1 in the epidermis, we screened wild type and E2F-1(-/-) keratinocyte mRNA for genes differentially expressed in the two cell populations. We demonstrate the reduced expression of integrins alpha(5), alpha(6), beta(1), and beta(4) in E2F-1(-/-) keratinocytes associated with reduced activation of Jun terminal kinase and Erk upon integrin stimulation. As a consequence of altered integrin expression and function, E2F-1(-/-) keratinocytes also show impaired migration, adhesion to extracellular matrix proteins, and a blunted chemotactic response to transforming growth factor-gamma1. E2F-1(-/-) keratinocytes, but not dermal fibroblasts, exhibit altered patterns of proliferation, including significant delays in transit through both G(1) and S phases of the cell cycle. Recognizing that proliferation and migration are key for proper wound healing in vivo, we postulated that E2F-1(-/-) mice may exhibit abnormal epidermal repair upon injury. Consistent with our hypothesis, E2F-1(-/-) mice exhibited impaired cutaneous wound healing. This defect is associated with substantially reduced local inflammatory responses and rates of re-epithelialization. Thus, we demonstrate that E2F-1 is indispensable for a hitherto unidentified cell type-specific and unique role in keratinocyte proliferation, adhesion, and migration as well as in proper wound repair and epidermal regeneration in vivo.
Collapse
Affiliation(s)
- Sudhir Jude Anthony D'Souza
- Department of Pharmacology, Child Health Research Institute, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Sashiyama H, Shino Y, Sakao S, Shimada H, Kobayashi S, Ochiai T, Shirasawa H. Alteration of integrin expression relates to malignant progression of human papillomavirus-immortalized esophageal keratinocytes. Cancer Lett 2002; 177:21-8. [PMID: 11809527 DOI: 10.1016/s0304-3835(01)00771-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To investigate cellular changes related to the malignant progression of keratinocytes, we studied the serum-resistant clones from CHEK-1, a human papillomavirus type 16 E6/E7-immortalized esophageal cell line cultured in a serum-free medium. Established clones exhibited morphologic variety. Slow growing clones presented in cuboidal shapes with tight cellular adhesion and highly expressed alpha2 and alpha6beta4 integrins. Moderately proliferating clones showed loose intercellular adhesion and reduced expression of alpha2 integrin. Spindle-shaped, rapidly proliferating clones with prominent actin stress fibers demonstrated reduced alpha6 and alpha4 integrin expression in addition to alpha2 integrin and showed anchorage-independent growth. Reduced expression of alpha2 integrin was observed between 50 and 100 population doubling lengths (PDLs) during the immortalization of CHEK-1. These results suggest that the reductions of alpha2 and alpha6beta4 integrins are related to changes seen during immortalization and malignant progression.
Collapse
Affiliation(s)
- Hiroshi Sashiyama
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Plzák J, Haninec P, Smetana K, Holíková Z, André S, Kuwabara I, Liu FT, Gabius HJ. Craniopharyngioma: a case report and comparative galectin histochemical analysis. THE HISTOCHEMICAL JOURNAL 2002; 34:117-22. [PMID: 12495217 DOI: 10.1023/a:1020934329211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Craniopharyngioma is a rare benign tumour originating from Rathke's pouch. This paper reports a tumour case studied with a set of markers defining protein-carbohydrate recognition. Expression of endogenous lectins and their reactive glycoligands is under differentiation-dependent control in many cell types. These parameters can be related to the degree of cell differentiation in tumours. Therefore, the expression patterns of endogenous lectins, namely galectins-1, -3, and -7, in the craniopharyngioma case were determined. Galectins-1 and -3 were also used to reveal glycoconjugates in cells and extracellular matrices, an approach that has heretofore relied largely on plant lectins. The staining pattern of craniopharyngioma is compared with that of two other types of ectodermally derived tumours, namely basal and squamous cell carcinomas. Clusters of polygonal and flattened cells with morphological characteristics of differentiated cells in the craniopharyngioma and the majority of poorly differentiated cells in squamous cell carcinomas were reactive with galectin-3. No binding of this probe was observed in cells of basal cell carcinomas and the majority of craniopharyngioma cells. In view of the lack of accessible binding in the basal layer of normal squamous epithelia where proliferative cells (including stem cells) are located, galectin-3 binding could be used to distinguish basal from suprabasal cells of squamous epithelial cells.
Collapse
Affiliation(s)
- Jan Plzák
- 1st Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mochizuki R, Kamiyama M, Arai KY, Arai K, Uehara K. Expression of desmosomal proteins in rat keratinocytes during in vitro differentiation. J Vet Med Sci 2002; 64:123-7. [PMID: 11913548 DOI: 10.1292/jvms.64.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The keratinocyte, the major component of the epidermis, expresses several proteins that characterize the keratinization during the differentiation. Proliferation and differentiation of cultured human keratinocytes are known to be regulated by the Ca2+ concentration in the culture medium. However, informations about the rat keratinocyte are relatively limited and their physiology is still an open question. To elucidate the characteristics of the rat keratinocyte, we established rat keratinocyte culture system and examined effects of extracellular calcium concentration on the expression of differentiation-related proteins. Keratinocytes were isolated from the newborn rat skin with 0.25% trypsin, followed by separation with a Percoll density gradient. The separated cells were grown in MCDB 153 medium containing several growth factors and Ca(2+)-free fetal bovine serum, then stimulated with Ca2+. Immunoblotting demonstrated strong expression of beta1 integrin in unstimulated cells, suggesting that the primary culture of rat keratinocytes was successfully established. Expression of desmoglein and transglutaminase was increased by Ca2+ stimulation, whereas beta1 integrin expression was decreased in response to increasing concentrations of Ca2+. These observations indicate that cultured rat keratinocytes maintain the ability to differentiate in vitro, which is similar to that of the basal keratinocytes in the epidermis.
Collapse
Affiliation(s)
- Rika Mochizuki
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | |
Collapse
|
44
|
Kubo M, Van de Water L, Plantefaber LC, Mosesson MW, Simon M, Tonnesen MG, Taichman L, Clark RA. Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. J Invest Dermatol 2001; 117:1369-81. [PMID: 11886497 DOI: 10.1046/j.0022-202x.2001.01551.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During cutaneous wound repair the epidermis avoids the fibrin-rich clot; rather it migrates down the collagen-rich dermal wound margin and over fibronectin-rich granulation tissue. The mechanism(s) underlying keratinocyte movement in this precise pathway has not been previously addressed. Here we demonstrate that cultured human keratinocytes do not express functional fibrinogen/fibrin receptors, specifically alpha v beta 3. Biologic modifiers known to induce integrin expression or activation did not induce adhesion to fibrin, fibrinogen, or its fragments. Epidermal explant outgrowth and single epidermal cell migration failed to occur on either fibrin or fibrinogen. Surprisingly, fibrin and fibrinogen mixed at physiologic molar ratios with fibronectin abrogated keratinocyte attachment to fibronectin. Keratinocytes transduced with the beta 3 integrin subunit cDNA, expressed alpha v beta 3 on their surface and attached to and spread on fibrinogen and fibrin. beta-gal cDNA-transduced keratinocytes did not demonstrate this activity. Furthermore, beta 3 cDNA-transduced keratinocyte adhesion to fibrin was inhibited by LM609 monoclonal antibody to alpha v beta 3 in a concentration-dependent fashion. From these data, we conclude that normal human keratinocytes cannot interact with fibrinogen and its derivatives due to the lack of alpha v beta 3. Thus, fibrinogen and fibrin are authentic anti-adhesive for keratinocytes. This may be a fundamental reason why the migrating epidermis dissects the fibrin eschar from wounds.
Collapse
Affiliation(s)
- M Kubo
- Department of Dermatology, School of Medicine, SUNY at Stony Brook, Stony Brook, New York, New York 11794-8165, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Although hemostasis is the major role of fibrin in wound repair, once the clot is present the wound cells must deal with it. The invasion and clearing of fibrin by these cells involves multiple complex processes that may go array XXX and delay wound repair. A good example, of the latter is leg ulcers. These chronic wounds contain a plethora of proteases that digest fibronectin and growth factors in the fibrin clot resulting in a corrupt provisional matrix that no longer supports reepithelialization or granulation tissue formation. Every good wound care provider knows that these wounds will not heal unless the corrupt matrix is removed by vigorous debridement that stimulates the accumulation of a competent provisional matrix.
Collapse
Affiliation(s)
- R A Clark
- Department of Dermatology, SUNY at Stony Brook, Stony Brook, NY 11794-8165, USA
| |
Collapse
|
46
|
D'Souza SJ, Pajak A, Balazsi K, Dagnino L. Ca2+ and BMP-6 signaling regulate E2F during epidermal keratinocyte differentiation. J Biol Chem 2001; 276:23531-8. [PMID: 11319226 DOI: 10.1074/jbc.m100780200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The epidermis consists of a squamous epithelium continuously replenished by committed stem cells, which can either self-renew or differentiate. We demonstrated previously that E2F genes are differentially expressed in developing epidermis (Dagnino, L., Fry, C. J., Bartley, S. M., Farnham, P., Gallie, B. L., and Phillips, R. A. (1997) Cell Growth Differ. 8, 553-563). Thus, we hypothesized that various E2F proteins likely play distinct growth regulatory roles in the undifferentiated stem cells and in terminally differentiated keratinocytes. To further understand the function of E2F genes in epidermal morphogenesis, we have examined the expression, regulation, and protein-protein interactions of E2F factors in undifferentiated cultured murine primary keratinocytes or in cells induced to differentiate with Ca(2+) or BMP-6 (bone morphogenetic protein 6). We find similar patterns of E2F regulation with both differentiating agents and demonstrate a switch in expression from E2F-1, -2, and -3 in undifferentiated, proliferating cells to E2F-5 in terminally differentiated keratinocytes. Inhibition of keratinocyte proliferation by transforming growth factor-beta1 did not enhance E2F-5 protein levels, suggesting that this response is specific to differentiation rather than reversible cell cycle withdrawal. E2F-5 up-regulation is also accompanied by formation of heteromeric nuclear complexes containing E2F5, p130, and histone deacetylase (HDAC) 1. Overexpression of E2F5 specifically inhibited DNA synthesis in undifferentiated keratinocytes in an HDAC-dependent manner, suggesting that E2F-5.p130.HDAC1 complexes are likely involved in the permanent withdrawal from the cell cycle of keratinocytes responding to differentiation stimuli.
Collapse
Affiliation(s)
- S J D'Souza
- Departments of Pharmacology/Toxicology and Paediatrics, Child Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
47
|
Thomas GJ, Poomsawat S, Lewis MP, Hart IR, Speight PM, Marshall JF. alpha v beta 6 Integrin upregulates matrix metalloproteinase 9 and promotes migration of normal oral keratinocytes. J Invest Dermatol 2001; 116:898-904. [PMID: 11407978 DOI: 10.1046/j.1523-1747.2001.01352.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The integrin alpha v beta 6 is a fibronectin receptor that is undetectable on normal keratinocytes in situ, but is increased significantly in wound healing and in culture-established keratinocytes, suggesting that it may promote changes associated with cell motility. Using normal human oral keratinocytes we have shown that cultured cells express relatively high levels of alpha v beta 6 and this integrin has a functional role in both cell adhesion and migration towards fibronectin. We provide experimental evidence that the increased expression of alpha v beta 6 by normal human oral keratinocytes results in coordinate changes, which promote a more migratory phenotype. Thus increased expression of alpha v beta 6 results in a fibronectin-dependent increase in pro-matrix metalloproteinase 9, matrix metalloproteinase 9 activity increases normal human oral keratinocyte migration, and this may be further dependent on plasmin activation. The results suggest a key role for alpha v beta 6 in these processes and indicate a coordinated link between alpha v beta 6 expression and upregulation of matrix metalloproteinase 9. It appears that alpha v beta 6 may function in normal human oral keratinocyte migration through matrix-metalloproteinase-9-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- G J Thomas
- Department of Oral Pathology, Eastman Dental Institute, University College London, UK
| | | | | | | | | | | |
Collapse
|
48
|
Harwood FL, Monosov AZ, Goomer RS, Gelberman RH, Winters SC, Silva MJ, Amiel D. Integrin expression is upregulated during early healing in a canine intrasynovial flexor tendon repair and controlled passive motion model. Connect Tissue Res 2001; 39:309-16. [PMID: 11063010 DOI: 10.3109/03008209809021505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To explore crucial early molecular events involved in contact healing of the intrasynovial flexor tendon, integrin expression was evaluated at the transcriptional and post-transcriptional levels during the first two weeks following injury, repair and controlled passive motion in a canine model. Specifically, immunohistochemical and reverse transcription polymerase chain reaction (RT-PCR) techniques were employed to evaluate expression of the fibronectin, vitronectin and endothelial cell binding integrin receptor subunits alpha5, alphav and alpha6, along with the common beta1 subunit. The two techniques revealed increasing expression of the four subunits over the two week post-repair period. Immunohistochemistry revealed that beta1 and alpha5 expression was concentrated in the epitenon layer near the repair site and interiorly within the wound area, while alpha6 was associated with capillary-forming endothelial cells near the wound. RT-PCR and quantitation by NIH image analysis demonstrated peak messenger RNA expression of beta1 and alpha5 at ten days post-repair and peak expression of alpha6 and alphav at 15 days. The results in this study correlate well with previous results demonstrating increased fibronectin deposition and angiogenesis during the same time period in a similar injury/repair model.
Collapse
Affiliation(s)
- F L Harwood
- Department of Orthopaedics, Connective Tissue Biochemistry, University of California San Diego, La Jolla 92093-0630, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
DiPersio CM, Shao M, Di Costanzo L, Kreidberg JA, Hynes RO. Mouse keratinocytes immortalized with large T antigen acquire alpha3beta1 integrin-dependent secretion of MMP-9/gelatinase B. J Cell Sci 2000; 113 ( Pt 16):2909-21. [PMID: 10910775 DOI: 10.1242/jcs.113.16.2909] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Remodeling of the extracellular matrix during tissue development, wound repair and tumor cell invasion depends on the coordinated regulation of cell adhesion receptors, matrix proteins and enzymes that proteolyse the extracellular matrix. Integrin alpha3beta1 is a major receptor on epidermal keratinocytes for laminin-5 in the cutaneous basement membrane and is required for normal basement membrane organization during skin development. alpha3beta1 is also expressed at high levels in the majority of adherent transformed cells and in most tumors, and it could have similar roles in extracellular matrix remodeling during tumorigenesis and cell invasion. In the present study, we show that alpha3beta1 expression is required in immortalized mouse keratinocytes (MK) for the production of the matrix metalloproteinase MMP-9/gelatinase B, an MMP that is coexpressed with alpha3beta1 in epithelial cell carcinomas and during wound healing, and contributes to the invasive potential of some tumor cells. MMP-9 was expressed in MK cells derived from wild-type mice, but not in MK cells derived from alpha3-null mice. Reconstitution of alpha3beta1 expression in alpha3-null MK cells through transfection with the alpha3 subunit restored MMP-9 secretion, indicating an alpha3beta1-dependent pathway for MMP-9 production. alpha3beta1-dependent expression of MMP-9 was associated with the immortalized phenotype, since nonimmortalized, primary keratinocytes required soluble growth factors, but not alpha3beta1, for efficient expression of MMP-9. Our results suggest that an alpha3beta1-independent pathway(s) for MMP-9 production is suppressed in keratinocytes immortalized with large T antigen, and that an alpha3beta1-dependent pathway is required for sustained production of MMP-9 in the absence of other pathways.
Collapse
Affiliation(s)
- C M DiPersio
- Howard Hughes Medical Institute, Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
50
|
Hamidi S, Salo T, Kainulainen T, Epstein J, Lerner K, Larjava H. Expression of alpha(v)beta6 integrin in oral leukoplakia. Br J Cancer 2000; 82:1433-40. [PMID: 10780523 PMCID: PMC2363375 DOI: 10.1054/bjoc.1999.1130] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The distribution of alpha(v)beta6 integrin was examined in oral leukoplakia, lichen planus and squamous cell carcinomas using immunohistochemistry. Controls included oral mucosal wounds, chronically inflamed and normal oral mucosa. Integrins beta1, beta3, beta4, beta5, fibronectin and tenascin were also studied. The integrin alpha(v)beta6 was highly expressed throughout the whole lesion of 90% of the squamous cell carcinomas but was not present in any of the normal specimens. alpha(v)beta6 integrin was also expressed in 41% of the leukoplakia specimens, and 85% of the lichen planus samples, but in none of the tissues with inflammatory hyperplasia or chronic inflammation. The expression of beta1 integrins was localized in the basal layer, and that of the beta4 at the cell surface facing the basement membrane of all specimens. The integrins beta3 and beta5 were absent from all normal and leukoplakia specimens. Fibronectin and tenascin were present in the connective tissue underneath the epithelium of all the sections, and their expression was similar in both alpha(v)beta6-positive and alpha(v)beta6-negative tissues. A group of 28 leukoplakia patients were followed 1-4 years after first diagnosis. In this group, initially alpha(v)beta6 integrin-positive leukoplakia specimens had high tendency for disease progression while alpha(v)beta6-negative specimens did not progress. These results suggest that the expression of alpha(v)beta6 integrin could be associated in the malignant transformation of oral leukoplakias.
Collapse
Affiliation(s)
- S Hamidi
- Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|