1
|
Kim JH, Yang HJ, Lee HJ, Song YS. Differentially Expressed mRNA in Streptozotocin-Induced Diabetic Bladder Using RNA Sequencing Analysis. Int Neurourol J 2023; 27:159-166. [PMID: 37798882 PMCID: PMC10556430 DOI: 10.5213/inj.2346122.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE To detect elements governing the pathogenesis of diabetic cystopathy (DC), mRNA sequencing was carried out for bladder tissues from normal rats and those with induced diabetes mellitus (DM). This research therefore offers possible underlying molecular pathways for the advancement of DC in relation to differential mRNA expression, together with visceral functional and architectural alterations noted in individuals with this condition. METHODS An intraperitoneal injection of streptozotocin (STZ) was utilized to provoke DM in male Sprague-Dawley rats. Dysregulation and significant variations between normal rats and those with induced DM were then identified by a fold change of ≥ 1.5 with a false discovery rate P < 0.05. Hierarchical clustering/heat map and Gene Ontology/DAVID reference sources were generated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein-protein interaction analysis were then performed. RESULTS The diabetic rodent group exhibited a greater residual urine volume (4.0 ± 0.4 mL) than their control counterparts (0.7 ± 0.2 mL, P < 0.01) at 12 weeks after diagnosis of diabetes. Expression analysis revealed 16 upregulated and 4 downregulated genes in STZDM bladder samples. A notable increase in expression was seen in PTHLH, TNFAIP6, PRC1, MAPK10, LOC686120, CASQ2, ACTG2, PDLIM3, FCHSD1, DBN1, NKD2, PDLIM7, ATF4, RBPMS2, ITGB1 and HSPB8. A notable decrease in expression was seen in SREBLF1, PBGFR1, PBLD1 and CELF1. Major genetic themes associated with mRNA upregulation and downregulation ware identified via Gene Ontology analysis and KEGG pathways. Protein to protein interaction analysis detected PDLIM3, PDLIM7, ITGB1, ACTG2 as core high frequency nodes within the network. CONCLUSION Changes in mRNA expression together with biological process and pathways that contribute to the etiologies underlying visceral impairment of the bladder in DM are evident. Our strategy is promising for recognizing mRNAs exclusive to the bladder in DM that might offer useful targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Hee Jo Yang
- Department of Urology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University School of Medicine, Cheonan, Korea
| | - Hong J. Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Peterson RJ, Koval M. Above the Matrix: Functional Roles for Apically Localized Integrins. Front Cell Dev Biol 2021; 9:699407. [PMID: 34485286 PMCID: PMC8414885 DOI: 10.3389/fcell.2021.699407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Integrins are transmembrane proteins that are most typically thought of as integrating adhesion to the extracellular matrix with intracellular signaling and cell regulation. Traditionally, integrins are found at basolateral and lateral cell surfaces where they facilitate binding to the ECM and intercellular adhesion through cytosolic binding partners that regulate organization of actin microfilaments. However, evidence is accumulating that integrins also are apically localized, either endogenously or due to an exogenous stimulus. Apically localized integrins have been shown to regulate several processes by interacting with proteins such as connexins, tight junction proteins, and polarity complex proteins. Integrins can also act as receptors to mediate endocytosis. Here we review these newly appreciated roles for integrins localized to the apical cell surface.
Collapse
Affiliation(s)
- Raven J Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Titus AS, Venugopal H, Ushakumary MG, Wang M, Cowling RT, Lakatta EG, Kailasam S. Discoidin Domain Receptor 2 Regulates AT1R Expression in Angiotensin II-Stimulated Cardiac Fibroblasts via Fibronectin-Dependent Integrin-β1 Signaling. Int J Mol Sci 2021; 22:ijms22179343. [PMID: 34502259 PMCID: PMC8431251 DOI: 10.3390/ijms22179343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
This study probed the largely unexplored regulation and role of fibronectin in Angiotensin II-stimulated cardiac fibroblasts. Using gene knockdown and overexpression approaches, Western blotting, and promoter pull-down assay, we show that collagen type I-activated Discoidin Domain Receptor 2 (DDR2) mediates Angiotensin II-dependent transcriptional upregulation of fibronectin by Yes-activated Protein in cardiac fibroblasts. Furthermore, siRNA-mediated fibronectin knockdown attenuated Angiotensin II-stimulated expression of collagen type I and anti-apoptotic cIAP2, and enhanced cardiac fibroblast susceptibility to apoptosis. Importantly, an obligate role for fibronectin was observed in Angiotensin II-stimulated expression of AT1R, the Angiotensin II receptor, which would link extracellular matrix (ECM) signaling and Angiotensin II signaling in cardiac fibroblasts. The role of fibronectin in Angiotensin II-stimulated cIAP2, collagen type I, and AT1R expression was mediated by Integrin-β1-integrin-linked kinase signaling. In vivo, we observed modestly reduced basal levels of AT1R in DDR2-null mouse myocardium, which were associated with the previously reported reduction in myocardial Integrin-β1 levels. The role of fibronectin, downstream of DDR2, could be a critical determinant of cardiac fibroblast-mediated wound healing following myocardial injury. In summary, our findings suggest a complex mechanism of regulation of cardiac fibroblast function involving two major ECM proteins, collagen type I and fibronectin, and their receptors, DDR2 and Integrin-β1.
Collapse
Affiliation(s)
- Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Harikrishnan Venugopal
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Mereena George Ushakumary
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA; (M.W.); (E.G.L.)
| | - Randy T. Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, La Jolla, CA 92093, USA;
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA; (M.W.); (E.G.L.)
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
- Correspondence:
| |
Collapse
|
4
|
Figliuolo da Paz V, Ghishan FK, Kiela PR. Emerging Roles of Disabled Homolog 2 (DAB2) in Immune Regulation. Front Immunol 2020; 11:580302. [PMID: 33178208 PMCID: PMC7593574 DOI: 10.3389/fimmu.2020.580302] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Disabled-2 (DAB2) is a clathrin and cargo binding endocytic adaptor protein recognized for its multifaceted roles in signaling pathways involved in cellular differentiation, proliferation, migration, tumor suppression, and other fundamental homeostatic cellular mechanisms. The requirement for DAB2 in the canonical TGFβ signaling in fibroblasts suggested that a similar mechanism may exist in immune cells and that DAB2 may contribute to immunological tolerance and suppression of inflammatory responses. In this review, we synthesize the current state of knowledge on the roles of DAB2 in the cells of the innate and adaptive immune system, with particular focus on antigen presenting cells (APCs; macrophages and dendritic cells) and regulatory T cells (Tregs). The emerging role of DAB2 in the immune system is that of an immunoregulatory molecule with significant roles in Treg-mediated immunosuppression, and suppression of TLR signaling in APC. DAB2 itself is downregulated by inflammatory stimuli, an event that likely contributes to the immunogenic function of APC. However, contrary findings have been described in neuroinflammatory disorders, thus suggesting a highly context-specific roles for DAB2 in immune cell regulation. There is need for better understanding of DAB2 regulation and its roles in different immune cells, their specialized sub-populations, and their responses under specific inflammatory conditions.
Collapse
Affiliation(s)
| | - Fayez K Ghishan
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Pawel R Kiela
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Fu H, Sun Y, Shao Y, Saredy J, Cueto R, Liu L, Drummer C, Johnson C, Xu K, Lu Y, Li X, Meng S, Xue ER, Tan J, Jhala NC, Yu D, Zhou Y, Bayless KJ, Yu J, Rogers TJ, Hu W, Snyder NW, Sun J, Qin X, Jiang X, Wang H, Yang X. Interleukin 35 Delays Hindlimb Ischemia-Induced Angiogenesis Through Regulating ROS-Extracellular Matrix but Spares Later Regenerative Angiogenesis. Front Immunol 2020; 11:595813. [PMID: 33154757 PMCID: PMC7591706 DOI: 10.3389/fimmu.2020.595813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL) 35 is a novel immunosuppressive heterodimeric cytokine in IL-12 family. Whether and how IL-35 regulates ischemia-induced angiogenesis in peripheral artery diseases are unrevealed. To fill this important knowledge gap, we used loss-of-function, gain-of-function, omics data analysis, RNA-Seq, in vivo and in vitro experiments, and we have made the following significant findings: i) IL-35 and its receptor subunit IL-12RB2, but not IL-6ST, are induced in the muscle after hindlimb ischemia (HLI); ii) HLI-induced angiogenesis is improved in Il12rb2-/- mice, in ApoE-/-/Il12rb2-/- mice compared to WT and ApoE-/- controls, respectively, where hyperlipidemia inhibits angiogenesis in vivo and in vitro; iii) IL-35 cytokine injection as a gain-of-function approach delays blood perfusion recovery at day 14 after HLI; iv) IL-35 spares regenerative angiogenesis at the late phase of HLI recovery after day 14 of HLI; v) Transcriptome analysis of endothelial cells (ECs) at 14 days post-HLI reveals a disturbed extracellular matrix re-organization in IL-35-injected mice; vi) IL-35 downregulates three reactive oxygen species (ROS) promoters and upregulates one ROS attenuator, which may functionally mediate IL-35 upregulation of anti-angiogenic extracellular matrix proteins in ECs; and vii) IL-35 inhibits human microvascular EC migration and tube formation in vitro mainly through upregulating anti-angiogenic extracellular matrix-remodeling proteins. These findings provide a novel insight on the future therapeutic potential of IL-35 in suppressing ischemia/inflammation-triggered inflammatory angiogenesis at early phase but sparing regenerative angiogenesis at late phase.
Collapse
Affiliation(s)
- Hangfei Fu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinyuan Li
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Eric R Xue
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Judy Tan
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nirag C Jhala
- Department of Pathology & Laboratory Medicine Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Jun Yu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathaniel W Snyder
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xuebin Qin
- National Primate Research Center, Tulane University, Covington, LA, United States
| | - Xiaohua Jiang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Qiu Z, Sheesley P, Ahn JH, Yu EJ, Lee M. A Novel Mutation in an NPXY Motif of β Integrin Reveals Phenotypes Similar to him-4/hemicentin. Front Cell Dev Biol 2019; 7:247. [PMID: 31720287 PMCID: PMC6827421 DOI: 10.3389/fcell.2019.00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/08/2019] [Indexed: 11/13/2022] Open
Abstract
Integrin, an αβ heterodimeric cell surface receptor for the extracellular matrix (ECM), carries two tyrosine phosphorylation motifs in the cytoplasmic tail of the β subunit. NPXY (Asn-Pro-x-Tyr) is a conserved tyrosine phosphorylation motif that binds to the phospho-tyrosine binding (PTB) domain. We generated a tyrosine to glutamic acid (E) mutation to modify tyrosine (Y) into a negatively charged amino NPXY in the βpat-3 integrin of Caenorhabditis elegans. The transgenic rescue animal displayed defects in gonad migration and tail morphology. Also, the mutant animals produced a high number of males, suggesting that the Y to E mutation in βpat-3 integrin causes a phenotype similar to that of Him mutant. Further analyses revealed that males of pat-3(Y804E) and him-4/hemicentin share additional phenotypes such as abnormal gonad and unsuccessful mating. A pat-3 transgenic rescue mutant with a non-polar phenylalanine (F) in NPXY, pat-3(Y792/804F), suppressed the high male number, defective mating, inviable zygote, and the abnormal gonad of him-4 mutants, indicating that Y to F mutation in both NPXY motifs suppressed the him-4 phenotypes. This finding supports the idea that the ECM determines the activation state in integrin NPXY motifs; him-4/hemicentin may directly or indirectly interact with integrins and maintain the NPXY non-charged. Our findings provide new insight into a suppressive role of an ECM molecule in integrin NPXY phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | - Myeongwoo Lee
- Department of Biology, Baylor University, Waco, TX, United States
| |
Collapse
|
7
|
Integrin-Mediated TGFβ Activation Modulates the Tumour Microenvironment. Cancers (Basel) 2019; 11:cancers11091221. [PMID: 31438626 PMCID: PMC6769837 DOI: 10.3390/cancers11091221] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/26/2022] Open
Abstract
TGFβ (transforming growth factor-beta) is a pleotropic cytokine with contrasting effects in cancer. In normal tissue and early tumours, TGFβ acts as a tumour suppressor, limiting proliferation and inducing apoptosis. However, these effects are eventually abrogated by the loss or inactivation of downstream signalling within the TGFβ pathway, and in established tumours, TGFβ then acts as a tumour promotor through multiple mechanisms including inducing epithelial-to-mesenchymal transition (EMT), promoting formation of cancer-associated fibroblasts (CAFs) and increasing angiogenesis. TGFβ is secrereted as a large latent complex and is embedded in the extracellular matrix or held on the surface of cells and must be activated before mediating its multiple functions. Thus, whilst TGFβ is abundant in the tumour microenvironment (TME), its functionality is regulated by local activation. The αv-integrins are major activators of latent-TGFβ. The potential benefits of manipulating the immune TME have been highlighted by the clinical success of immune-checkpoint inhibitors in a number of solid tumour types. TGFβ is a potent suppressor of T-cell-mediated immune surveillance and a key cause of resistance to checkpoint inhibitors. Therefore, as certain integrins locally activate TGFβ, they are likely to have a role in the immunosuppressive TME, although this remains to be confirmed. In this review, we discussed the role of TGFβ in cancer, the role of integrins in activating TGFβ in the TME, and the potential benefits of targeting integrins to augment immunotherapies.
Collapse
|
8
|
van der Beek J, Jonker C, van der Welle R, Liv N, Klumperman J. CORVET, CHEVI and HOPS – multisubunit tethers of the endo-lysosomal system in health and disease. J Cell Sci 2019; 132:132/10/jcs189134. [DOI: 10.1242/jcs.189134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Multisubunit tethering complexes (MTCs) are multitasking hubs that form a link between membrane fusion, organelle motility and signaling. CORVET, CHEVI and HOPS are MTCs of the endo-lysosomal system. They regulate the major membrane flows required for endocytosis, lysosome biogenesis, autophagy and phagocytosis. In addition, individual subunits control complex-independent transport of specific cargoes and exert functions beyond tethering, such as attachment to microtubules and SNARE activation. Mutations in CHEVI subunits lead to arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, while defects in CORVET and, particularly, HOPS are associated with neurodegeneration, pigmentation disorders, liver malfunction and various forms of cancer. Diseases and phenotypes, however, vary per affected subunit and a concise overview of MTC protein function and associated human pathologies is currently lacking. Here, we provide an integrated overview on the cellular functions and pathological defects associated with CORVET, CHEVI or HOPS proteins, both with regard to their complexes and as individual subunits. The combination of these data provides novel insights into how mutations in endo-lysosomal proteins lead to human pathologies.
Collapse
Affiliation(s)
- Jan van der Beek
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Caspar Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Reini van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
9
|
Wujak L, Böttcher RT, Pak O, Frey H, El Agha E, Chen Y, Schmitt S, Bellusci S, Schaefer L, Weissmann N, Fässler R, Wygrecka M. Low density lipoprotein receptor-related protein 1 couples β1 integrin activation to degradation. Cell Mol Life Sci 2018; 75:1671-1685. [PMID: 29116364 PMCID: PMC11105666 DOI: 10.1007/s00018-017-2707-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
Low density lipoprotein receptor-related protein (LRP) 1 modulates cell adhesion and motility under normal and pathological conditions. Previous studies documented that LRP1 binds several integrin receptors and mediates their trafficking to the cell surface and endocytosis. However, the mechanism by which LRP1 may regulate integrin activation remains unknown. Here we report that LRP1 promotes the activation and subsequent degradation of β1 integrin and thus supports cell adhesion, spreading, migration and integrin signaling on fibronectin. LRP1 interacts with surface β1 integrin, binds the integrin activator kindlin2 and stimulates β1 integrin-kindlin2 complex formation. Specifically, serine 76 in the LRP1 cytoplasmic tail is crucial for the interaction with kindlin2, β1 integrin activation and cell adhesion. Interestingly, a loss of LRP1 induces the accumulation of several integrin receptors on the cell surface. Following internalization, intracellular trafficking of integrins is driven by LRP1 in a protein kinase C- and class II myosin-dependent manner. Ultimately, LRP1 dictates the fate of endocytosed β1 integrin by directing it down the pathway of lysosomal and proteasomal degradation. We propose that LRP1 mediates cell adhesion by orchestrating a multi-protein pathway to activate, traffic and degrade integrins. Thus, LRP1 may serve as a focal point in the integrin quality control system to ensure a firm connection to the extracellular matrix.
Collapse
Affiliation(s)
- Lukasz Wujak
- Department of Biochemistry, Justus Liebig University, 35392, Giessen, Germany
| | - Ralph T Böttcher
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary System, Justus Liebig University, 35392, Giessen, Germany
| | - Helena Frey
- Institute of Pharmacology and Toxicology, Goethe University School of Medicine, University Hospital, 60590, Frankfurt am Main, Germany
| | - Elie El Agha
- Excellence Cluster Cardio-Pulmonary System, Justus Liebig University, 35392, Giessen, Germany
| | - Ying Chen
- Department of Biochemistry, Justus Liebig University, 35392, Giessen, Germany
| | - Sigrid Schmitt
- Department of Biochemistry, Justus Liebig University, 35392, Giessen, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System, Justus Liebig University, 35392, Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University School of Medicine, University Hospital, 60590, Frankfurt am Main, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Justus Liebig University, 35392, Giessen, Germany
| | - Reinhard Fässler
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
10
|
Research advances on structure and biological functions of integrins. SPRINGERPLUS 2016; 5:1094. [PMID: 27468395 PMCID: PMC4947080 DOI: 10.1186/s40064-016-2502-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 12/18/2022]
Abstract
Integrins are an important family of adhesion molecules that were first discovered two decades ago. Integrins are transmembrane heterodimeric glycoprotein receptors consisting of α and β subunits, and are comprised of an extracellular domain, a transmembrane domain, and a cytoplasmic tail. Therein, integrin cytoplasmic domains may associate directly with numerous cytoskeletal proteins and intracellular signaling molecules, which are crucial for modulating fundamental cell processes and functions including cell adhesion, proliferation, migration, and survival. The purpose of this review is to describe the unique structure of each integrin subunit, primary cytoplasmic association proteins, and transduction signaling pathway of integrins, with an emphasis on their biological functions.
Collapse
|
11
|
Elloumi-Hannachi I, García JR, Shekeran A, García AJ. Contributions of the integrin β1 tail to cell adhesive forces. Exp Cell Res 2014; 332:212-22. [PMID: 25460334 DOI: 10.1016/j.yexcr.2014.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 12/30/2022]
Abstract
Integrin receptors connect the extracellular matrix to the cell cytoskeleton to provide essential forces and signals. To examine the contributions of the β1 integrin cytoplasmic tail to adhesive forces, we generated cell lines expressing wild-type and tail mutant β1 integrins in β1-null fibroblasts. Deletion of β1 significantly reduced cell spreading, focal adhesion assembly, and adhesive forces, and expression of human β1 (hβ1) integrin in these cells restored adhesive functions. Cells expressing a truncated tail mutant had impaired spreading, fewer and smaller focal adhesions, reduced integrin binding to fibronectin, and lower adhesion strength and traction forces compared to hβ1-expressing cells. All these metrics were equivalent to those for β1-null cells, demonstrating that the β1 tail is essential to these adhesive functions. Expression of the constitutively-active D759A hβ1 mutant restored many of these adhesive functions in β1-null cells, although with important differences when compared to wild-type β1. Even though there were no differences in integrin-fibronectin binding and adhesion strength between hβ1- and hβ1-D759A-expressing cells, hβ1-D759A-expressing cells assembled more but smaller adhesions than hβ1-expressing cells. Importantly, hβ1-D759A-expressing cells generated lower traction forces compared to hβ1-expressing cells. These differences between hβ1- and hβ1-D759A-expressing cells suggest that regulation of integrin activation is important for fine-tuning cell spreading, focal adhesion assembly, and traction force generation.
Collapse
Affiliation(s)
- Imen Elloumi-Hannachi
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - José R García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Asha Shekeran
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
12
|
Rey-Barroso J, Colo GP, Alvarez-Barrientos A, Redondo-Muñoz J, Carvajal-González JM, Mulero-Navarro S, García-Pardo A, Teixidó J, Fernandez-Salguero PM. The dioxin receptor controls β1 integrin activation in fibroblasts through a Cbp–Csk–Src pathway. Cell Signal 2013; 25:848-59. [DOI: 10.1016/j.cellsig.2013.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 11/30/2022]
|
13
|
Danthi P, Holm GH, Stehle T, Dermody TS. Reovirus receptors, cell entry, and proapoptotic signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:42-71. [PMID: 23884585 DOI: 10.1007/978-1-4614-7651-1_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian orthoreoviruses (reoviruses) are members of the Reoviridae. Reoviruses contain 10 double-stranded (ds) RNA gene segments enclosed in two concentric protein shells, called outer capsid and core. These viruses serve as a versatile experimental system for studies of viral replication events at the virus-cell interface, including engagement of cell-surface receptors, internalization and disassembly, and activation of the innate immune response, including NF-κB-dependent cellular signaling pathways. Reoviruses also provide a model system for studies of virus-induced apoptosis and organ-specific disease in vivo.Reoviruses attach to host cells via the filamentous attachment protein, σ1. The σ1 protein of all reovirus serotypes engages junctional adhesion molecule-A (JAM-A), an integral component of intercellular tight junctions. The σ1 protein also binds to cell-surface carbohydrate, with the type of carbohydrate bound varying by serotype. Following attachment to JAM-A and carbohydrate, reovirus internalization is mediated by β1 integrins, most likely via clathrin-dependent endocytosis. In the endocytic compartment, reovirus outer-capsid protein σ3 is removed by acid-dependent cysteine proteases in most cell types. Removal of σ3 results in the exposure of a hydrophobic conformer of the viral membrane-penetration protein, μ1, which pierces the endosomal membrane and delivers transcriptionally active reovirus core particles into the cytoplasm.Reoviruses induce apoptosis in both cultured cells and infected mice. Perturbation of reovirus disassembly using inhibitors of endosomal acidification or protease activity abrogates apoptosis. The μ1-encoding M2 gene is genetically linked to strain-specific differences in apoptosis-inducing capacity, suggesting a function for μ1 in induction of death signaling. Reovirus disassembly leads to activation of transcription factor NF-κB, which modulates apoptotic signaling in numerous types of cells. Inhibition of NF-κB nuclear translocation using either pharmacologic agents or expression of transdominant forms of IκB blocks reovirus-induced apoptosis, suggesting an essential role for NF-κB activation in the death response. Multiple effector pathway s downstream of NF-κB-directed gene expression execute reovirus-induced cell death. This chapter will focus on the mechanisms by which reovirus attachment and disassembly activate NF-κB and stimulate the cellular proapoptotic machinery.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | | | |
Collapse
|
14
|
Bristow JM, Reno TA, Jo M, Gonias SL, Klemke RL. Dynamic phosphorylation of tyrosine 665 in pseudopodium-enriched atypical kinase 1 (PEAK1) is essential for the regulation of cell migration and focal adhesion turnover. J Biol Chem 2012; 288:123-31. [PMID: 23105102 DOI: 10.1074/jbc.m112.410910] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudopodium-enriched atypical kinase 1 (PEAK1) is a recently described tyrosine kinase that associates with the actin cytoskeleton and focal adhesion (FA) in migrating cells. PEAK1 is known to promote cell migration, but the responsible mechanisms remain unclear. Here, we show that PEAK1 controls FA assembly and disassembly in a dynamic pathway controlled by PEAK1 phosphorylation at Tyr-665. Knockdown of endogenous PEAK1 inhibits random cell migration. In PEAK1-deficient cells, FA lifetimes are decreased, FA assembly times are shortened, and FA disassembly times are extended. Phosphorylation of Tyr-665 in PEAK1 is essential for normal PEAK1 localization and its function in the regulation of FAs; however, constitutive phosphorylation of PEAK1 Tyr-665 is also disruptive of its function, indicating a requirement for precise spatiotemporal regulation of PEAK1. Src family kinases are required for normal PEAK1 localization and function. Finally, we provide evidence that PEAK1 promotes cancer cell invasion through Matrigel by a mechanism that requires dynamic regulation of Tyr-665 phosphorylation.
Collapse
Affiliation(s)
- Jeanne M Bristow
- Department of Pathology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
15
|
Cutroneo G, Piancino MG, Ramieri G, Bracco P, Vita G, Isola G, Vermiglio G, Favaloro A, Anastasi G, Trimarchi F. Expression of muscle-specific integrins in masseter muscle fibers during malocclusion disease. Int J Mol Med 2012; 30:235-242. [PMID: 22552408 DOI: 10.3892/ijmm.2012.986] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023] Open
Abstract
Integrins are heterodimeric cell surface membrane proteins linking the extracellular matrix to actin. α7B integrin is detected in proliferating and adult myofibers, whereas α7A plays a role in regenerating muscle fibers with a minor function in mature muscle fibers. The expression levels of β1A appear to be very low, whereas β1D appears to be the predominant integrin form in mature muscle. Considering the important features of masseter muscle we have studied integrin expression in masseter muscle specimens of surgical patients with posterior right crossbite and comparing them to left side masseter muscle specimens. Our results showed that the expression of integrins was significantly lower in the crossbite side muscle. Furthermore, the most important finding is that β1A is clearly detectable in adult masseter muscle. This behavior could be due to the particular composition of masseter, since it contains hybrid fibers showing the capacity to modify the contractile properties to optimize the energy efficiency or the action of the muscle during contraction. Moreover, masseter is characterized by a high turnover of muscle fibers producing a regeneration process. This may indicate a longer time to heal, justifying the loss of β1D and the consequential increase of β1A. Thus, our data provide the first suggestion that integrins in masseter muscle play a key role regulating the functional activity of muscle and allowing the optimization of contractile forces.
Collapse
Affiliation(s)
- Giuseppina Cutroneo
- Department of Biomorphology and Biotechnologies, Messina University, I-98125 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Beta1 integrin cytoplasmic tyrosines promote skin tumorigenesis independent of their phosphorylation. Proc Natl Acad Sci U S A 2011; 108:15213-8. [PMID: 21876123 DOI: 10.1073/pnas.1105689108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
β1 integrin tyrosine phosphorylation by oncogenic kinases, such as Src, has been predicted to induce tumorigenesis by disrupting adhesion and modifying integrin signaling. We directly tested this hypothesis by subjecting mice with "nonphosphorylatable" tyrosine-to-phenylalanine substitutions in the conserved β1 cytoplasmic tail NPxY motifs to a model of cutaneous carcinogenesis in the presence or absence of elevated Src activity. We found that hydrophobic phenylalanine substitutions of both tyrosines diminished the binding of tail-interacting proteins, including talins and kindlins, resulting in reduced β1-mediated adhesion, focal adhesion kinase (FAK) signaling, and epidermal progenitor cell-derived skin tumors. However, increased Src activity drove tumor formation independent of the phenylalanine substitutions by enhancing FAK activity, which in turn maintained the epidermal progenitor state and blocked keratinocyte differentiation. We conclude that a Src/FAK signaling unit inhibits differentiation to promote tumorigenesis downstream of β1 integrin and independent of β1 integrin tyrosine phosphorylation.
Collapse
|
17
|
Holmes RS, Rout UK. Comparative studies of vertebrate Beta integrin genes and proteins: ancient genes in vertebrate evolution. Biomolecules 2011; 1:3-31. [PMID: 24970121 PMCID: PMC4030831 DOI: 10.3390/biom1010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/14/2011] [Accepted: 08/15/2011] [Indexed: 12/31/2022] Open
Abstract
Intregins are heterodimeric α- and β-subunit containing membrane receptor proteins which serve various cell adhesion roles in tissue repair, hemostasis, immune response, embryogenesis and metastasis. At least 18 α- (ITA or ITGA) and 8 β-integrin subunits (ITB or ITGB) are encoded on mammalian genomes. Comparative ITB amino acid sequences and protein structures and ITB gene locations were examined using data from several vertebrate genome projects. Vertebrate ITB genes usually contained 13-16 coding exons and encoded protein subunits with ~800 amino acids, whereas vertebrate ITB4 genes contained 36-39 coding exons and encoded larger proteins with ~1800 amino acids. The ITB sequences exhibited several conserved domains including signal peptide, extracellular β-integrin, β-tail domain and integrin β-cytoplasmic domains. Sequence alignments of the integrin β-cytoplasmic domains revealed highly conserved regions possibly for performing essential functions and its maintenance during vertebrate evolution. With the exception of the human ITB8 sequence, the other ITB sequences shared a predicted 19 residue α-helix for this region. Potential sites for regulating human ITB gene expression were identified which included CpG islands, transcription factor binding sites and microRNA binding sites within the 3'-UTR of human ITB genes. Phylogenetic analyses examined the relationships of vertebrate beta-integrin genes which were consistent with four major groups: 1: ITB1, ITB2, ITB7; 2: ITB3, ITB5, ITB6; 3: ITB4; and 4: ITB8 and a common evolutionary origin from an ancestral gene, prior to the appearance of fish during vertebrate evolution. The phylogenetic analyses revealed that ITB4 is the most likely primordial form of the vertebrate β integrin subunit encoding genes, that is the only β subunit expressed as a constituent of the sole integrin receptor 'α6β4' in the hemidesmosomes of unicellular organisms.
Collapse
Affiliation(s)
- Roger S Holmes
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, 4111QLD, Australia.
| | - Ujjwal K Rout
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS 38677, USA.
| |
Collapse
|
18
|
Psoriasin (S100A7) associates with integrin β6 subunit and is required for αvβ6-dependent carcinoma cell invasion. Oncogene 2010; 30:1422-35. [DOI: 10.1038/onc.2010.535] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Li Z, Zhang H, Lundin L, Thullberg M, Liu Y, Wang Y, Claesson-Welsh L, Strömblad S. p21-activated kinase 4 phosphorylation of integrin beta5 Ser-759 and Ser-762 regulates cell migration. J Biol Chem 2010; 285:23699-710. [PMID: 20507994 DOI: 10.1074/jbc.m110.123497] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Modulation of integrin alphavbeta5 regulates vascular permeability, angiogenesis, and tumor dissemination. In addition, we previously found a role for p21-activated kinase 4 (PAK4) in selective regulation of integrin alphavbeta5-mediated cell motility (Zhang, H., Li, Z., Viklund, E. K., and Strömblad, S. (2002) J. Cell Biol. 158, 1287-1297). This report focuses on the molecular mechanisms of this regulation. We here identified a unique PAK4-binding membrane-proximal integrin beta5-SERS-motif involved in controlling cell attachment and migration. We also mapped the integrin beta5-binding site within PAK4. We found that PAK4 binding to integrin beta5 was not sufficient to promote cell migration, but that PAK4 kinase activity was required for PAK4 promotion of cell motility. Importantly, PAK4 specifically phosphorylated the integrin beta5 subunit at Ser-759 and Ser-762 within the beta5-SERS-motif. Point mutation of these two serine residues abolished the PAK4-induced cell migration, indicating a functional role for these phosphorylations in migration. Our results may give important leads to the functional regulation of integrin alphavbeta5, with implications for vascular permeability, angiogenesis, and cancer dissemination.
Collapse
Affiliation(s)
- Zhilun Li
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chao WT, Kunz J. Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins. FEBS Lett 2009; 583:1337-43. [PMID: 19306879 DOI: 10.1016/j.febslet.2009.03.037] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/15/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Cell migration requires the controlled disassembly of focal adhesions, but the underlying mechanisms remain poorly understood. Here, we show that adhesion turnover is mediated through dynamin- and clathrin-dependent endocytosis of activated beta1 integrins. Consistent with this, clathrin and the clathrin adaptors AP-2 and disabled-2 (DAB2) distribute along with dynamin 2 to adhesion sites prior to adhesion disassembly. Moreover, knockdown of either dynamin 2 or both clathrin adaptors blocks beta1 integrin internalization, leading to impaired focal adhesion disassembly and cell migration. Together, these results provide important insight into the mechanisms underlying adhesion disassembly and identify novel components of the disassembly pathway.
Collapse
Affiliation(s)
- Wei-Ting Chao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, BCM335, RM T419, Houston, TX 77030, USA
| | | |
Collapse
|
21
|
Green JA, Berrier AL, Pankov R, Yamada KM. beta1 integrin cytoplasmic domain residues selectively modulate fibronectin matrix assembly and cell spreading through talin and Akt-1. J Biol Chem 2009; 284:8148-59. [PMID: 19144637 DOI: 10.1074/jbc.m805934200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrin beta(1) cytoplasmic domain (tail) serves as a scaffold for numerous intracellular proteins. The mechanisms by which the tail coordinates these proteins to facilitate extracellular matrix assembly and cell spreading are not clear. This study demonstrates that the beta(1) cytoplasmic domain can regulate cell spreading on fibronectin and fibronectin matrix assembly through Akt- and talin-dependent mechanisms, respectively. To identify these mechanisms, we characterized GD25 cells expressing the beta(1) integrin cytoplasmic domain mutants W775A and R760A. Although cell spreading appears normal in R760A mutant-integrin cells compared with wild type, it is inhibited in W775A mutant cells. In contrast, both mutant cell lines show defective fibronectin matrix assembly. Inhibition of cell spreading, but not matrix assembly, in the W775A mutant cells is due to a specific defect in Akt-1 activation. In addition, we find that both W775A and R760A mutant integrins have reduced surface expression of the 9EG7 epitope that correlates with reduced recruitment of talin to beta(1) integrin cytoplasmic complexes. Down-regulation of talin with small interfering RNA or expression of green fluorescent protein-talin head domain inhibits matrix assembly in beta(1) wild-type cells, mimicking the defect seen with the W775A and R760A mutant cells. These results demonstrate distinct mechanisms by which integrins regulate cell spreading and matrix assembly through the beta(1) integrin cytoplasmic tail.
Collapse
Affiliation(s)
- J Angelo Green
- Laboratory of Cell and Developmental Biology, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
22
|
NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry. J Virol 2008; 82:3181-91. [PMID: 18216114 DOI: 10.1128/jvi.01612-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reovirus cell entry is mediated by attachment to cell surface carbohydrate and junctional adhesion molecule A (JAM-A) and internalization by beta1 integrin. The beta1 integrin cytoplasmic tail contains two NPXY motifs, which function in recruitment of adaptor proteins and clathrin for endocytosis and serve as sorting signals for internalized cargo. As reovirus infection requires disassembly in the endocytic compartment, we investigated the role of the beta1 integrin NPXY motifs in reovirus internalization. In comparison to wild-type cells (beta1+/+ cells), reovirus infectivity was significantly reduced in cells expressing mutant beta1 integrin in which the NPXY motifs were altered to NPXF (beta1+/+Y783F/Y795F cells). However, reovirus displayed equivalent binding and internalization levels following adsorption to beta1+/+ cells and beta1+/+Y783F/Y795F cells, suggesting that the NPXY motifs are essential for transport of reovirus within the endocytic pathway. Reovirus entry into beta1+/+ cells was blocked by chlorpromazine, an inhibitor of clathrin-mediated endocytosis, while entry into beta1+/+Y783F/Y795F cells was unaffected. Furthermore, virus was distributed to morphologically distinct endocytic organelles in beta1+/+ and beta1+/+Y783F/Y795F cells, providing further evidence that the beta1 integrin NPXY motifs mediate sorting of reovirus in the endocytic pathway. Thus, NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry, which indicates a key role for these sequences in endocytosis of a pathogenic virus.
Collapse
|
23
|
A NPxY-independent beta5 integrin activation signal regulates phagocytosis of apoptotic cells. Biochem Biophys Res Commun 2007; 364:540-8. [PMID: 17963729 DOI: 10.1016/j.bbrc.2007.10.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/07/2007] [Indexed: 10/22/2022]
Abstract
Integrin receptors are heterodimeric transmembrane receptors with critical functions in cell adhesion and migration, cell cycle progression, differentiation, apoptosis, and phagocytosis of apoptotic cells. Integrins are activated by intracellular signaling that alter the binding affinity for extracellular ligands, so-called inside to outside signaling. A common element for integrin activation involves binding of the cytoskeletal protein talin, via its FERM domain, to a highly conserved NPxY motif in the beta chain cytoplasmic tails, which is involved in long-range conformation changes to the extracellular domain that impinges on ligand affinity. When the human beta-5 (beta5) integrin cDNA was expressed in alphav positive, beta5 and beta3 negative hamster CS-1 cells, it promoted NPxY-dependent adhesion to VTN-coated surfaces, phosphorylation of FAK, and concomitantly, beta5 integrin-EGFP protein was recruited into talin and paxillin-containing focal adhesions. Expression of a NPxY destabilizing beta5 mutant (Y750A) abrogated adhesion and beta5-Y750A-EGFP was excluded from focal adhesions at the tips of stress fibers. Surprisingly, expression of beta5 Y750A integrin had a potent gain-of-function effect on apoptotic cell phagocytosis, and further, a beta5-Y750A-EGFP fusion integrin readily bound MFG-E8-coated 10 microm diameter microspheres developed as apoptotic cell mimetics. The critical sequences in beta5 integrin were mapped to a YEMAS motif just proximal to the NPxY motif. Our studies suggest that the phagocytic function of beta5 integrin is regulated by an unconventional NPxY-talin-independent activation signal and argue for the existence of molecular switches in the beta5 cytoplasmic tail for adhesion and phagocytosis.
Collapse
|
24
|
Abstract
Enhanced levels of expression of certain integrins, and a consequent increase in specific integrin signals, have been linked to cancer cell progression. Dysfunctional integrin signaling is thought to be involved, at least in part, in mediating the detachment of tumor cells from neighboring cells while providing enhanced survival and proliferative capabilities which allow such disseminating tumor cells to grow in new, foreign, microenvironments. Cell biologists have known for some time that integrin heterodimers are endocytosed from the plasma membrane in to the cytoplasm with some of this receptor later being exocytosed back to the cell surface; a cellular mechanism referred to as 'trafficking'. Although extensive research within the integrin field has elucidated key signal transduction pathways as being involved in integrin-mediated cellular behavior, both in normal and transformed cells, it is only relatively recently that the importance of integrin trafficking in modulating cellular function has been demonstrated. This review aims to identify the major trafficking molecules found to play a functional role in cancer cell behavior with special emphasis on the importance of integrin trafficking during neoplastic cell migration and invasion; vital components of the metastatic process.
Collapse
Affiliation(s)
- Alan G Ramsay
- Centre for Tumor Biology, Institute of Cancer and CR-UK Clinical Centre, Barts and The London, Queen Mary's School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | |
Collapse
|
25
|
Ramsay AG, Keppler MD, Jazayeri M, Thomas GJ, Parsons M, Violette S, Weinreb P, Hart IR, Marshall JF. HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin alphavbeta6. Cancer Res 2007; 67:5275-84. [PMID: 17545607 DOI: 10.1158/0008-5472.can-07-0318] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enhanced expression levels of integrin alphavbeta6 have been linked to more aggressive invasive carcinoma cell behavior and poorer clinical prognosis. However, how alphavbeta6 determines invasion and the dynamics of integrin alphavbeta6 regulation in tumor cells are poorly understood. We have identified the 35-kDa HS1-associated protein X-1 (HAX-1) protein as a novel binding partner of the beta6 cytoplasmic tail using a yeast two-hybrid screen. We show that alphavbeta6-dependent migration is blocked following small interfering RNA (siRNA)-mediated depletion of HAX-1 in oral squamous cell carcinoma cell lines. Using both siRNA and membrane-permeable peptides, we show that alphavbeta6-dependent migration and invasion require HAX-1 to bind directly to beta6 and thereby regulate clathrin-mediated endocytosis of alphavbeta6 integrins. Progression of oral cancer is associated with enhanced expression of alphavbeta6 and HAX-1 proteins in patient tissue. This report establishes that integrin endocytosis is required for alphavbeta6-dependent carcinoma cell motility and invasion and suggests that this process is an important mechanism in cancer progression.
Collapse
Affiliation(s)
- Alan G Ramsay
- Centre for Tumour Biology, Institute of Cancer and Cancer Research UK Clinical Centre, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cell adhesion, migration and the maintenance of cell polarity are all processes that depend on the correct targeting of integrins and the dynamic remodelling of integrin-containing adhesion sites. The importance of the endo/exocytic cycle of integrins as a key regulator of these functions is increasingly recognized. Several recent publications have provided mechanistic insight into how integrin traffic is regulated in cells. Increasing evidence suggests that small GTPases such as Arf6 and members of the Rab family control integrin internalization and recycling back to the plasma membrane along microtubules. The fine tuning of these trafficking events seems to be mediated by specific guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). In addition, several kinases regulate integrin traffic. The identification of their substrates has demonstrated how these kinases regulate integrin traffic by controlling small GTPases or stabilizing cytoskeletal tracks that are crucial for efficient traffic of integrins to the plasma membrane.
Collapse
|
27
|
Xu H, Zeng L, Peng H, Chen S, Jones J, Chew TL, Sadeghi MM, Kanwar YS, Danesh FR. HMG-CoA reductase inhibitor simvastatin mitigates VEGF-induced “inside-out” signaling to extracellular matrix by preventing RhoA activation. Am J Physiol Renal Physiol 2006; 291:F995-1004. [PMID: 16774905 DOI: 10.1152/ajprenal.00092.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors exert modulatory effects on a number of cell signaling cascades by preventing the synthesis of various isoprenoids derived from the mevalonate pathway. In the present study, we describe a novel pleiotropic effect of HMG-CoA reductase inhibitors, also commonly known as statins, on vascular endothelial growth factor (VEGF)-induced type IV collagen accumulation. VEGF is an angiogenic polypeptide that is also known to play a central role in endothelial cell permeability and differentiation. Recently, VEGF has also been implicated in promoting extracellular matrix (ECM) accumulation, although the precise signaling mechanism that mediates VEGF-induced ECM expansion remains poorly characterized. Elucidation of the mechanisms through which VEGF exerts its effect on ECM is clearly a prerequisite for both understanding the complex biology of this molecule as well as targeting VEGF in several pathological processes. To this end, this study explored the underlying molecular mechanisms mediating VEGF-induced ECM expansion in mesangial cells. Our findings show that VEGF stimulation elicits a robust increase in ECM accumulation that involves RhoA activation, an intact actin cytoskeleton, and β1- integrin activation. Our data also indicate that simvastatin, via mevalonate depletion, reverses VEGF-induced ECM accumulation by preventing RhoA activation.
Collapse
Affiliation(s)
- Hanshi Xu
- Feinberg School of Medicine, Northwestern Univ., 303 E. Chicago Ave., Searle Bldg. 10-440, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pylayeva Y, Giancotti FG. Development requires activation but not phosphorylation of beta1 integrins. Genes Dev 2006; 20:1057-60. [PMID: 16651652 DOI: 10.1101/gad.1432006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yuliya Pylayeva
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | |
Collapse
|
29
|
Marrs GS, Honda T, Fuller L, Thangavel R, Balsamo J, Lilien J, Dailey ME, Arregui C. Dendritic arbors of developing retinal ganglion cells are stabilized by beta 1-integrins. Mol Cell Neurosci 2006; 32:230-41. [PMID: 16757177 DOI: 10.1016/j.mcn.2006.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/13/2006] [Accepted: 04/24/2006] [Indexed: 12/01/2022] Open
Abstract
The architecture of dendritic arbors is a defining characteristic of neurons and is established through a sequential but overlapping series of events involving process outgrowth and branching, stabilization of the global pattern, and synapse formation. To investigate the roles of cadherins and beta1-integrins in maintaining the global architecture of the arbor, we used membrane permeable peptides and transfection with dominant-negative constructs to disrupt adhesion molecule function in intact chick neural retina at a stage when the architecture of the ganglion cell (RGC) arbor is established but synapse formation is just beginning. Inactivation of beta1-integrins induces rapid dendrite retraction, with loss of dynamic terminal filopodia followed by resorption of major branches. Disruption of N-cadherin-beta-catenin interactions has no effect; however, dendrites do retract following perturbation of the juxtamembrane region of N-cadherin, which disrupts N-cadherin-mediated adhesion and initiates a beta1-integrin inactivating signal. Thus, developing RGC dendritic arbors are stabilized by beta1-integrin-dependent processes.
Collapse
Affiliation(s)
- Glen S Marrs
- Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Maginnis MS, Forrest JC, Kopecky-Bromberg SA, Dickeson SK, Santoro SA, Zutter MM, Nemerow GR, Bergelson JM, Dermody TS. Beta1 integrin mediates internalization of mammalian reovirus. J Virol 2006; 80:2760-70. [PMID: 16501085 PMCID: PMC1395463 DOI: 10.1128/jvi.80.6.2760-2770.2006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reovirus infection is initiated by interactions between the attachment protein sigma1 and cell surface carbohydrate and junctional adhesion molecule A (JAM-A). Expression of a JAM-A mutant lacking a cytoplasmic tail in nonpermissive cells conferred full susceptibility to reovirus infection, suggesting that cell surface molecules other than JAM-A mediate viral internalization following attachment. The presence of integrin-binding sequences in reovirus outer capsid protein lambda2, which serves as the structural base for sigma1, suggests that integrins mediate reovirus endocytosis. A beta1 integrin-specific antibody, but not antibodies specific for other integrin subunits, inhibited reovirus infection of HeLa cells. Expression of a beta1 integrin cDNA, along with a cDNA encoding JAM-A, in nonpermissive chicken embryo fibroblasts conferred susceptibility to reovirus infection. Infectivity of reovirus was significantly reduced in beta1-deficient mouse embryonic stem cells in comparison to isogenic cells expressing beta1. However, reovirus bound equivalently to cells that differed in levels of beta1 expression, suggesting that beta1 integrins are involved in a postattachment entry step. Concordantly, uptake of reovirus virions into beta1-deficient cells was substantially diminished in comparison to viral uptake into beta1-expressing cells. These data provide evidence that beta1 integrin facilitates reovirus internalization and suggest that viral entry occurs by interactions of reovirus virions with independent attachment and entry receptors on the cell surface.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Microbiology and Immunology, Lamb Center for Pediatric Research, D7235 MCN, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tanentzapf G, Martin-Bermudo MD, Hicks MS, Brown NH. Multiple factors contribute to integrin-talin interactions in vivo. J Cell Sci 2006; 119:1632-44. [PMID: 16569666 DOI: 10.1242/jcs.02859] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic protein talin is an essential part of the integrin-cytoskeleton link. We characterized the interaction between integrin and two conserved regions of talin, the N-terminal ;head' domain and the C-terminus, which includes the I/LWEQ domain, within the living organism. Green-fluorescent-protein-tagged head and C-terminal domains were recruited to integrin adhesion sites. Both required integrins for recruitment, but the C-terminal domain also required endogenous talin, showing it was not recruited directly by integrins. We used chimeric transmembrane proteins containing the cytoplasmic domain of the integrin beta subunit to examine the integrin-talin head interaction. Monomeric chimeric proteins did not recruit talin head, whereas dimeric chimeras efficiently recruited it and caused a strong inhibition of integrin-mediated adhesion. These chimeras recruited surprisingly few integrin-associated proteins, indicating that recruitment of talin did not initiate a cascade of recruitment. Mutagenesis of the integrin cytoplasmic domain, within the chimera, showed the dominant-negative inhibition was not due to talin sequestration alone and that additional interactions are required.
Collapse
Affiliation(s)
- Guy Tanentzapf
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Anatomy, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | | | | | | |
Collapse
|
32
|
Nilsson S, Kaniowska D, Brakebusch C, Fässler R, Johansson S. Threonine 788 in integrin subunit beta1 regulates integrin activation. Exp Cell Res 2006; 312:844-53. [PMID: 16405888 DOI: 10.1016/j.yexcr.2005.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/16/2005] [Accepted: 12/01/2005] [Indexed: 11/24/2022]
Abstract
In the present study, the functional role of suggested phosphorylation of the conserved threonines in the cytoplasmic domain of integrin subunit beta1 was investigated. Mutants mimicking phosphorylated and unphosphorylated forms of beta1 were expressed in beta1 deficient GD25 cells. T788 in beta1 was identified as a site with major influence on integrin function. The mutation to A788 strongly reduced beta1-dependent cell attachment and exposure of the extracellular 9EG7 epitope, whereas replacement of T789 with alanine did not interfere with the ligand-binding ability. Talin has been shown to mediate integrin activation, but the talin head domain bound equally well to the wild-type beta1 and the mutants indicating that the T788A mutation caused defect integrin activation by another mechanism. The phosphorylation-mimicking mutation T788D was fully active in promoting cell adhesion. GD25 cells expressing beta1T788D accumulated increased number of focal contacts and migrated slowly compared to GD25 beta1 wild-type. An analogous phenotype is seen when focal adhesion kinase activation is abrogated. However, neither the beta1T788D nor the beta1T788A mutation failed to induce tyrosine phosphorylation of focal adhesion kinase. The results suggest that phosphorylation of T788 in integrin beta1 promotes inside-out receptor activation, as well as focal contact accumulation.
Collapse
Affiliation(s)
- Stina Nilsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
33
|
Rosenthal-Allieri MA, Ticchioni M, Breittmayer JP, Shimizu Y, Bernard A. Influence of β1Integrin Intracytoplasmic Domains in the Regulation of VLA-4-Mediated Adhesion of Human T Cells to VCAM-1 under Flow Conditions. THE JOURNAL OF IMMUNOLOGY 2005; 175:1214-23. [PMID: 16002725 DOI: 10.4049/jimmunol.175.2.1214] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The VLA-4 integrin supports static cell-cell, cell-matrix adhesion, and dynamic interactions with VCAM-1. Although functions for well-conserved beta(1) integrin cytoplasmic domains in regulating static cell adhesion has been established, the molecular basis for beta(1) integrin-dependent arrest on VCAM-1 under flow conditions remains poorly understood. We have transfected the beta(1) integrin-deficient A1 Jurkat T cell line with beta(1) cDNA constructs with deletions of the NPXY motifs and specific mutations of tyrosine residues. Deletion of either NPXY motif impaired static adhesion induced by CD2 or CD47 triggering or direct beta(1) integrin stimulation. In contrast, PMA-induced adhesion to VCAM-1 was unaffected by deletion of the NPIY motif and only slightly impaired by deletion of NPKY. Moreover, deletion of the NPIY motif resulted in enhanced rolling and reduced arrest on VCAM-1 under shear flow conditions. In contrast, deletion of the NPKY motif did not alter arrest under flow. Although tyrosine to phenylalanine substitutions within two NPXY motifs did not alter static adhesion to VCAM-1, these mutations enhanced arrest on VCAM-1 under flow conditions. Furthermore, although deletion of the C'-terminal 5 AA of the beta(1) cytoplasmic domain dramatically impaired activation-dependent static adhesion, it did not impair arrest on VCAM-1 under flow conditions. Thus, our results demonstrate distinct structural requirements for VLA-4 function under static and shear flow conditions. This may be relevant for VLA-4 activity regulation in different anatomic compartments, such as when circulating cells arrest on inflamed endothelium under shear flow and when resident cells in bone marrow interact with VCAM-1- positive stromal cells.
Collapse
Affiliation(s)
- Maria Alessandra Rosenthal-Allieri
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 576, Hôpital de l'Archet 1, Route de St Antoine de Ginestière-BP 3079, 06202 Nice, France
| | | | | | | | | |
Collapse
|
34
|
Hirata H, Ohki K, Miyata H. Dynamic change in the distribution of alpha5beta1 integrin on isolated ventral membrane: effect of divalent cation species. ACTA ACUST UNITED AC 2005; 59:131-40. [PMID: 15362117 DOI: 10.1002/cm.20029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated the spatial distribution of alpha5beta1 integrin in isolated ventral plasma membranes (VPMs) of human foreskin fibroblasts in order to elucidate how the interaction of integrin with cytoskeletal and extracellular matrix proteins might affect the integrin distribution. Cells were exposed to the jet of buffer to remove the apical surface and most of cellular organelles. After this treatment VPMs, which adhered to the glass surface, possessed the cellular structures such as fibronectin (FN) fibrils and actin stress fibers. The isolated VPMs thus prepared were employed without fixation to investigate the change in the integrin distribution. In isolated VPMs, alpha5beta1 integrin, labeled with Cy3-tagged anti-integrin antibody, was found to accumulate not only at the tips of stress fibers but also along FN fibrils extending from there. When divalent cations were removed with EDTA, the accumulated integrin was dispersed, and the original pattern of distribution was recovered upon restoration of divalent cations. Talin, an integrin-actin cytoskeleton linker protein, was found to accumulate only at the tips of stress fibers in isolated VPMs, but alpha5beta1 integrin did not exhibit strong accumulation there, indicating that talin played little role in integrin distribution in isolated VPMs. The amount of alpha-actinin associated with stress fibers was found to drastically decrease in isolated VPMs, which was presumably related to the failure of localization of integrin at the tips of stress fibers. It was also shown that the association of stress fibers to isolated VPMs seemed to be independent of accumulation of integrin.
Collapse
Affiliation(s)
- Hiroaki Hirata
- Physics Department, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | | | | |
Collapse
|
35
|
Morgan MR, Thomas GJ, Russell A, Hart IR, Marshall JF. The Integrin Cytoplasmic-tail Motif EKQKVDLSTDC Is Sufficient to Promote Tumor Cell Invasion Mediated by Matrix Metalloproteinase (MMP)-2 or MMP-9. J Biol Chem 2004; 279:26533-9. [PMID: 15067014 DOI: 10.1074/jbc.m401736200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrins promote cellular invasion through a combination of activities, including adhesion to an extracellular matrix ligand, which result in the generation of intracellular signals that lead to changes in cell behavior. Until now, there have been no data that identify a particular region of the cytoplasmic tail of integrin subunits as being responsible specifically for promoting the invasive activity of tumor cells. In this report, we show that amino acids with the sequence EKQKVDLSTDC, which are the C-terminal residues of the integrin beta6 subunit, promote alphavbeta6-dependent invasion in a matrix metalloproteinase (MMP)-9-dependent fashion. This same peptide sequence, when expressed at the cytoplasmic end of the beta3 integrin subunit, was able to enhance alphavbeta3-mediated invasive and enzymatic activity of tumor cells in an MMP-2-dependent fashion. Our results show that these 11 amino acids, when expressed at the C terminus of the beta subunit, are responsible for regulating the activity of invasion-promoting degradative enzymes, whereas the specific MMP involved in this cellular behavior is dependent on the context of the remainder of the beta integrin subunit.
Collapse
Affiliation(s)
- Mark R Morgan
- Tumour Biology Laboratory, Cancer Research UK Clinical Centre, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Sq., London EC1M 6BQ, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Burke RD, Murray G, Rise M, Wang D. Integrins on eggs: the betaC subunit is essential for formation of the cortical actin cytoskeleton in sea urchin eggs. Dev Biol 2004; 265:53-60. [PMID: 14697352 DOI: 10.1016/j.ydbio.2003.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eggs of several metazoans have been demonstrated to express integrins; however, their function is unclear. Previous studies have shown that the betaC integrin subunit is expressed on unfertilized sea urchin eggs and proteolytically removed at fertilization. Here we report that the betaC subunit is reexpressed on the egg surface immediately after fertilization. Using morpholino antisense oligonucleotides to block translation, we show that without betaC expression, eggs undergo cleavage resulting in loosely adherent cells that fail to develop beyond a blastula. Without betaC containing integrins, the cortical actin network of the egg does not form, yet contractile rings appear. Coinjection of RNA encoding the betaC or chicken beta1 subunit, but lacking the morpholino target sequence, rescues the cortical actin network and normal embryos result. Coinjection of RNA encoding the betaC subunit lacking the cytoplasmic domain fails to rescue. These studies demonstrate that the cortical actin cytoskeleton is anchored by betaC integrins and contractile ring actin is not. We suggest that one important function of egg integrins is to organize the actin cortex.
Collapse
Affiliation(s)
- Robert D Burke
- Departments of Biology and Biochemistry/Microbiology, University of Victoria, Victoria, BC, Canada.
| | | | | | | |
Collapse
|
37
|
Kim SM, Kwon MS, Park CS, Choi KR, Chun JS, Ahn J, Song WK. Modulation of Thr Phosphorylation of Integrin β1 during Muscle Differentiation. J Biol Chem 2004; 279:7082-90. [PMID: 14660602 DOI: 10.1074/jbc.m311581200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
By using transient elevations of cytosolic free calcium levels triggered by integrin antibody or laminin (Kwon, M. S., Park, C. S., Choi, K., Park, C.-S., Ahnn, J., Kim, J. I., Eom, S. H., Kaufman, S. J., and Song, W. K. (2000) Mol. Biol. Cell 11, 1433-1443), we have demonstrated that protein phosphatase 2A (PP2A) is implicated in the regulation of reversible phosphorylation of integrin. In E63 skeletal myoblasts, the treatment of PP2A inhibitors such as okadaic acid and endothall induces an increase of phosphorylation of integrin beta1A and thereby inhibits integrin-induced elevation of cytosolic calcium level and formation of focal adhesions. None of these effects were in differentiated myotubes expressing the alternate beta1D isoform. In the presence of okadaic acid, PP2A in association with integrin beta1A was reduced on myoblasts, whereas beta1D on myotubes remained bound with PP2A. Both co-immunoprecipitation and in vitro phosphatase assays revealed that dephosphorylation of residues Thr788-Thr789 in the integrin beta1A cytoplasmic domain is dependent upon PP2A activity. Mutational analysis of the cytoplasmic domain and confocal microscopy experiments indicated that substitution of Thr788-Thr789 with Asn788-Asn789 is of critical importance for regulating the function of integrin beta1. These results suggest that PP2A may be a primary regulator of threonine phosphorylation of integrin beta1A and subsequent activation of downstream signaling molecules. Taken together, we propose that dephosphorylation of residues Thr788-Thr789 in the cytoplasmic domain of integrin beta1A may contribute to the linkage of integrins to focal adhesion sites and induce the association with cytoskeleton proteins. The switch of integrin beta1A to beta1D isoform in myotubes therefore may be a mechanism to escape from phospho-regulation by PP2A and promotes a more stable association of the cytoskeleton with the extracellular matrix.
Collapse
Affiliation(s)
- Seon-Myung Kim
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Fowler T, Johansson S, Wary KK, Höök M. Src kinase has a central role in in vitro cellular internalization of Staphylococcus aureus. Cell Microbiol 2003; 5:417-26. [PMID: 12780779 DOI: 10.1046/j.1462-5822.2003.00290.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traditionally recognized as an extracellular pathogen, the Gram-positive bacterium Staphylococcus aureus can also be internalized by a variety of cell types in vitro. Internalization is known to involve binding of the host extracellular protein fibronectin to the bacterium, recognition of the fibronectin-coated bacterium by the fibronectin-binding integrin alpha5beta1 on the host cell surface, and integrin-mediated internalization. Here we examine elements of mammalian cell signalling pathways involved in S. aureus internalization. The mouse fibroblast cell line GD25, in which the gene encoding the beta1 integrin subunit is inactivated, has been complemented with a beta1 integrin cDNA encoding a tyrosine (Y) to phenylalanine (F) mutation in each of the two beta1 integrin intracellular NPXY motifs. This cell line, GD25beta1 A Y783/795F, is defective in migration on fibronectin coated surfaces and intracellular signalling activities involving the tyrosine kinase Src. GD25beta1 A Y783/795F cells have a decreased ability to internalize S. aureus compared to GD25beta1 A cells expressing wild-type beta1 integrins. Furthermore, using mouse embryo fibroblasts in which different members of the Src family kinases are genetically inactivated, we demonstrate that optimal internalization is dependent on expression of Src kinase. Interferon, which has been implicated in repression of the effects of the viral homologue of Src inhibits internalization of S. aureus indicating that internalization may be blocked by inhibitors of Src kinase function. We then demonstrate that Src family kinase specific inhibitors effectively block S. aureus internalization into HeLa cells leading to the conclusion that a function unique to Src is required for optimal internalization of S. aureus in vitro.
Collapse
Affiliation(s)
- Trent Fowler
- Department of Biochemistry and Biophysics, Institute of Biosciences and Technology, Texas A and M University System Health Science Center, Houston, TX, USA
| | | | | | | |
Collapse
|
39
|
Pankov R, Cukierman E, Clark K, Matsumoto K, Hahn C, Poulin B, Yamada KM. Specific beta1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J Biol Chem 2003; 278:18671-81. [PMID: 12637511 DOI: 10.1074/jbc.m300879200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin transmembrane receptors generate multiple signals, but how they mediate specific signaling is not clear. Here we test the hypothesis that particular sequences along the beta(1) integrin cytoplasmic domain may exist that are intimately related to specific integrin-mediated signaling pathways. Using systematic alanine mutagenesis of amino acids conserved between different beta integrin cytoplasmic domains, we identified the tryptophan residue at position 775 of human beta(1) integrin as specific and necessary for integrin-mediated protein kinase B/Akt survival signaling. Stable expression of a beta(1) integrin mutated at this amino acid in GD25 beta(1)-null cells resulted in reduction of Akt phosphorylation at both Ser(473) and Thr(308) activation sites. As a consequence, the cells were substantially more sensitive to serum starvation-induced apoptosis when compared with cells expressing wild type beta(1) integrin. This inactivation of Akt resulted from increased dephosphorylation by a localized active population of protein phosphatase 2A. Both Akt and protein phosphatase 2A were present in beta(1) integrin-organized cytoplasmic complexes, but the activity of this phosphatase was 2.5 times higher in the complexes organized by the mutant integrin. The mutation of Trp(775) specifically affected Akt signaling, without effects on other integrin-activated pathways including phosphoinositide 3-kinase, MAPK, JNK, and p38 nor did it influence activation of the integrin-responsive kinases focal adhesion kinase and Src. The identification of Trp(775) as a specific site for integrin-mediated Akt signaling supports the concept of specificity of signaling along the integrin cytoplasmic domain.
Collapse
Affiliation(s)
- Roumen Pankov
- Craniofacial Developmental Biology and Regeneration Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Alahari SK, Reddig PJ, Juliano RL. Biological aspects of signal transduction by cell adhesion receptors. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 220:145-84. [PMID: 12224548 DOI: 10.1016/s0074-7696(02)20005-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell adhesion receptors such as integrins, cadherins, selectins, and immunoglobulin family receptors profoundly modulate many signal transduction cascades. In this review we examine aspects of adhesion receptor signaling and how this impinges on key biological processes. We have chosen to focus on cell migration and on programmed cell death. We examine many of the cytoplasmic signaling molecules that interface with adhesion receptors, including focal adhesion kinase (FAK), phosphatidylinositol-3-kinase (PI3K), and elements of the Erk/MAP kinase pathway. In many cases these molecules impinge on both the regulation of cell movement and on control of apoptosis.
Collapse
Affiliation(s)
- Suresh K Alahari
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
41
|
Müller WEG, Müller IM. Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 37:1-33. [PMID: 15825638 DOI: 10.1007/978-3-642-55519-0_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sponges [phylum Porifera] form the basis of the metazoan kingdom and represent the evolutionary earliest phylum still extant. Hence, as living fossils, they are the taxon closest related to the hypothetical ancestor of all Metazoa, the Urmetazoa. Until recently, it was still unclear whether sponges are provided with a defined body plan. Only after the cloning, expression and functional studies of characteristic metazoan genes, could it be demonstrated that these animals comprise the structural elements which allow the sponge cells to organize themselves according to a body plan. Adhesion molecules involved in cell-cell and cell-matrix interactions have been identified. Among the cell-cell adhesion molecules the aggregation factor (AF) is the prominent particle. It is composed of a core protein that is associated with the adhesion molecules, a 36 kDa as well as a 86 kDa polypeptide. A galectin functions as a linker of the AF to the cell-membrane-associated receptor, the aggregation receptor (AR). The most important extracellular matrix molecules are collagen- and fibronectin-like molecules. These proteins interact with the cell-membrane receptors, the integrins. In addition, a neuronal receptor has been identified, which--together with the identified neuroactive molecules--indicate the existence of a primordial neuronal network already in Porifera. The primmorph system, aggregated cells that retain the capacity to proliferate and differentiate, has been used to demonstrate that a homeobox-containing gene, Iroquois, is expressed during canal formation in primmorphs. The formation of a body plan in sponges is supported by skeletal elements, the spicules, which are composed in Demospongiae as well as in Hexactinellida of amorphous, noncrystalline silica. In Demospongiae the spicule formation is under enzymic control of silicatein. Already at least one morphogen has been identified in sponges, myotrophin, which is likely to be involved in the axis formation. Taken together, these elements support the recent conclusions that sponges are not merely nonorganized cell aggregates, but already complex animals provided with a defined body plan.
Collapse
Affiliation(s)
- W E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | |
Collapse
|
42
|
García-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, Ginsberg MH, Liddington RC. Structural determinants of integrin recognition by talin. Mol Cell 2003; 11:49-58. [PMID: 12535520 DOI: 10.1016/s1097-2765(02)00823-7] [Citation(s) in RCA: 400] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The binding of cytoplasmic proteins, such as talin, to the cytoplasmic domains of integrin adhesion receptors mediates bidirectional signal transduction. Here we report the crystal structure of the principal integrin binding and activating fragment of talin, alone and in complex with fragments of the beta 3 integrin tail. The FERM (four point one, ezrin, radixin, and moesin) domain of talin engages integrins via a novel variant of the canonical phosphotyrosine binding (PTB) domain-NPxY ligand interaction that may be a prototype for FERM domain recognition of transmembrane receptors. In combination with NMR and mutational analysis, our studies reveal the critical interacting elements of both talin and the integrin beta 3 tail, providing structural paradigms for integrin linkage to the cell interior.
Collapse
Affiliation(s)
- Begoña García-Alvarez
- Program on Cell Adhesion, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li R, Babu CR, Valentine K, Lear JD, Wand AJ, Bennett JS, DeGrado WF. Characterization of the monomeric form of the transmembrane and cytoplasmic domains of the integrin beta 3 subunit by NMR spectroscopy. Biochemistry 2002; 41:15618-24. [PMID: 12501190 DOI: 10.1021/bi026822l] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have characterized a membrane protein containing residues P688-T762 of the integrin beta3 subunit, encompassing its transmembrane and cytoplasmic domains, by nuclear magnetic resonance spectroscopy. Under conditions in which it is monomeric in dodecylphosphocholine micelles, the protein consists mainly of alpha-helical structures. An amino-terminal helix corresponding to the beta3 transmembrane helix extends into the membrane-proximal region of the cytoplasmic domain. Moreover, following an apparent hinge at residues H722-D723, residues K725-A735 are mostly alpha-helical. In the presence of membrane-mimicking detergents, the cytoplasmic domain connected to the transmembrane helix is substantially ordered at pH 4.8 and 50 degrees C. Its carboxyl-terminal end takes on a turn-helix configuration characteristic of the immunoreceptor tyrosine-based activation motif. These structural features of the beta3 subunit should help to explain its interaction with numerous cytosolic interacting proteins and begin to illuminate the mechanism of integrin activation.
Collapse
Affiliation(s)
- Renhao Li
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Cheng K, Kurzrock R, Qiu X, Estrov Z, Ku S, Dulski KM, Wang JYJ, Talpaz M. Reduced focal adhesion kinase and paxillin phosphorylation in BCR-ABL-transfected cells. Cancer 2002; 95:440-50. [PMID: 12124845 DOI: 10.1002/cncr.10670] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND BCR-ABL formation is critical to oncogenic transformation in chronic myelogenous leukemia and has been implicated as a key event leading to alterations in cytoskeletal structures and adhesion in the leukemic cells. The authors therefore investigated the effect of p210(BCR-ABL) on actin polymerization as well as on the expression and phosphorylation state of the adhesion proteins paxillin and focal adhesion kinase (FAK). METHODS Transfection with BCR-ABL constructs abrogated the ability of NIH 3T3 fibroblasts to adhere and the cells underwent striking morphologic changes. RESULTS Scanning electron microscopy revealed that the cells lost their elongated appearance and became rounded. This alteration was associated with significantly reduced actin polymerization. In addition, steady-state levels of paxillin and FAK protein were increased. However, while the overall level of phosphotyrosines was also increased, the amount of tyrosine phosphorylated paxillin and FAK was reduced in the BCR-ABL-transfected cells as compared to the parental cells. Culture on extracellular fibronectin matrix partially reversed the morphologic changes and resulted in a return, albeit incomplete, of filamentous actin in BCR-ABL-transfected 3T3 fibroblasts. In addition, phosphorylation of paxillin and FAK in the BCR-ABL-transfected NIH 3T3 cells was restored. CONCLUSIONS The authors conclude that, in the current system, transfection of BCR-ABL attenuates FAK and paxillin phosphorylation and reduces actin polymerization, events accompanied by significant alterations in cellular morphology. The observation that exposure of the cells to fibronectin partially reverses all these changes suggests that the focal adhesion proteins and actin structures nevertheless remain responsive to signaling from the outside.
Collapse
Affiliation(s)
- Keding Cheng
- Department of Bioimmunotherapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gustavsson A, Armulik A, Brakebusch C, Fässler R, Johansson S, Fällman M. Role of the β1-integrin cytoplasmic tail in mediating invasin-promoted internalization of Yersinia. J Cell Sci 2002; 115:2669-78. [PMID: 12077358 DOI: 10.1242/jcs.115.13.2669] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Invasin of Yersinia pseudotuberculosis binds to β1-integrins on host cells and triggers internalization of the bacterium. To elucidate the mechanism behind the β1-integrin-mediated internalization of Yersinia, a β1-integrin-deficient cell line, GD25, transfected with wild-type β1A, β1B or different mutants of the β1A subunit was used. Both β1A and β1B bound to invasin-expressing bacteria, but only β1A was able to mediate internalization of the bacteria. The cytoplasmic region of β1A, differing from β1B, contains two NPXY motifs surrounding a double threonine site. Exchanging the tyrosines of the two NPXYs to phenylalanines did not inhibit the uptake, whereas a marked reduction was seen when the first tyrosine (Y783) was exchanged to alanine. A similar reduction was seen when the two nearby threonines (TT788-9) were exchanged with alanines. It was also noted that cells affected in bacterial internalization exhibited reduced spreading capability when seeded onto invasin, suggesting a correlation between the internalization of invasin-expressing bacteria and invasin-induced spreading. Likewise, integrins defective in forming peripheral focal complex structures was unable to mediate uptake of invasin-expressing bacteria.
Collapse
Affiliation(s)
- Anna Gustavsson
- Department of Microbiology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Sabo SL, Ikin AF. Cytosolic protein-protein interactions that regulate the amyloid precursor protein. Drug Dev Res 2002. [DOI: 10.1002/ddr.10078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Miao H, Li S, Hu YL, Yuan S, Zhao Y, Chen BPC, Puzon-McLaughlin W, Tarui T, Shyy JYJ, Takada Y, Usami S, Chien S. Differential regulation of Rho GTPases by β1 and β3 integrins: the role of an extracellular domain of integrin in intracellular signaling. J Cell Sci 2002; 115:2199-206. [PMID: 11973360 DOI: 10.1242/jcs.115.10.2199] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrins mediate cell adhesion and signal transduction at focal adhesions. Here we investigate the roles of integrin β subunits in the regulation of actin cytoskeletal structure and the activities of Rho and Rac. The overexpression of β3 integrin in Chinese hamster ovary cells enhances Rho activity and stress fiber formation, whereas the overexpression of β1 integrin increases Rac activity and lamellipodia formation. The overexpression of a mutant β1-3-1 integrin, in which the extracellular I-domain-like sequence of β1 integrin has been replaced with the corresponding sequence of β3 integrin, also enhances Rho activity and the formation of stress fibers. Our results demonstrate that β1 and β3 integrins differentially regulate the activities of Rho family GTPases and that the extracellular domains of integrin β subunits play a critical role in transducing the extracellular ligand-binding information into specific intracellular signaling events.
Collapse
Affiliation(s)
- Hui Miao
- Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla 92093-0427, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jannuzi AL, Bunch TA, Brabant MC, Miller SW, Mukai L, Zavortink M, Brower DL. Disruption of C-terminal cytoplasmic domain of betaPS integrin subunit has dominant negative properties in developing Drosophila. Mol Biol Cell 2002; 13:1352-65. [PMID: 11950944 PMCID: PMC102274 DOI: 10.1091/mbc.01-08-0429] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have analyzed a set of new and existing strong mutations in the myospheroid gene, which encodes the betaPS integrin subunit of Drosophila. In addition to missense and other null mutations, three mutants behave as antimorphic alleles, indicative of dominant negative properties. Unlike null alleles, the three antimorphic mutants are synthetically lethal in double heterozygotes with an inflated (alphaPS2) null allele, and they fail to complement very weak, otherwise viable alleles of myospheroid. Two of the antimorphs result from identical splice site lesions, which create a frameshift in the C-terminal half of the cytoplasmic domain of betaPS. The third antimorphic mutation is caused by a stop codon just before the cytoplasmic splice site. These mutant betaPS proteins can support cell spreading in culture, especially under conditions that appear to promote integrin activation. Analyses of developing animals indicate that the dominant negative properties are not a result of inefficient surface expression, or simple competition between functional and nonfunctional proteins. These data indicate that mutations disrupting the C-terminal cytoplasmic domain of integrin beta subunits can have dominant negative effects in situ, at normal levels of expression, and that this property does not necessarily depend on a specific new protein sequence or structure. The results are discussed with respect to similar vertebrate beta subunit cytoplasmic mutations.
Collapse
Affiliation(s)
- Alison L Jannuzi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Chang DD, Hoang BQ, Liu J, Springer TA. Molecular basis for interaction between Icap1 alpha PTB domain and beta 1 integrin. J Biol Chem 2002; 277:8140-5. [PMID: 11741908 DOI: 10.1074/jbc.m109031200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Icap1 alpha is a 200-amino acid protein that binds to the COOH-terminal 13 amino acids ((786)AVTTVVNPKYEGK(798)) of the integrin beta(1) subunit. Alanine scanning mutagenesis of this region revealed that Val(787), Val(790), and (792)NPKY(795) are critical for Icap1 alpha binding. The NPXY motif is a known binding substrate for phosphotyrosine binding (PTB) domain proteins. The sequences of Icap1 alpha, residues 58--200, and the beta(1) integrin, residues 786-797, were aligned to the available PTB-peptide structures to generate a high quality structural model. Site-directed mutagenesis showed that Leu(135), Ile(138), and Ile(139) of Icap1 alpha, residues predicted by the model to be in close proximity to (792)NPKY(795), and Leu(82) and Tyr(144), residues expected to form a hydrophobic pocket near Val(787), are required for the Icap1 alpha-beta(1) integrin interaction. These findings indicate that Icap1 alpha is a PTB domain protein, which recognizes the NPXY motif of beta(1) integrin. Furthermore, our date suggest that an interaction between Val(787) and the hydrophobic pocket created by Leu(82) and Tyr(144) of Icap1 alpha forms the basis for the specificity of Icap1 alpha for the beta(1) integrin subunit.
Collapse
Affiliation(s)
- David D Chang
- Department of Medicine, Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
50
|
Vossmeyer D, Hofmann W, Löster K, Reutter W, Danker K. Phospholipase Cgamma binds alpha1beta1 integrin and modulates alpha1beta1 integrin-specific adhesion. J Biol Chem 2002; 277:4636-43. [PMID: 11724770 DOI: 10.1074/jbc.m105415200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Integrin adhesion receptors have been implicated in bidirectional signal transduction. The dynamic regulation of integrin affinity and avidity as well as post-ligand effects involved in outside-in signaling depends on the interaction of integrins with cytoskeletal and signaling proteins. In this study, we attempted to identify cytoplasmic binding partners of alpha(1)beta(1) integrin. We were able to show that cell adhesion to alpha(1)beta(1)-specific substrates results in the association of phospholipase Cgamma (PLCgamma) with the alpha(1)beta(1) integrin independent of PLCgamma tyrosine phosphorylation. Using peptide-binding assays, the membrane proximal sequences within the alpha(1)beta(1) integrin subunits were identified as binding sites for PLCgamma. In particular, the conserved sequence of beta(1) subunit binds the enzyme very efficiently. Because purified PLCgamma also binds the integrin peptides, binding seems to be direct. Inhibition of PLC by leads to reduced cell adhesion on alpha(1)beta(1)-specific substrates. Cells lacking the conserved domain of the alpha(1) subunit fail to respond to the PLC inhibition, indicating that this domain is necessary for PLC-dependent adhesion modulation of alpha(1)beta(1) integrin.
Collapse
Affiliation(s)
- Dörte Vossmeyer
- Institut für Molekularbiologie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin-Dahlem, Germany
| | | | | | | | | |
Collapse
|