1
|
Huang Q, Chen X, Yu H, Ji L, Shi Y, Cheng X, Chen H, Yu J. Structure and molecular basis of spermatid elongation in the Drosophila testis. Open Biol 2023; 13:230136. [PMID: 37935354 PMCID: PMC10645079 DOI: 10.1098/rsob.230136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
Spermatid elongation is a crucial event in the late stage of spermatogenesis in the Drosophila testis, eventually leading to the formation of mature sperm after meiosis. During spermatogenesis, significant structural and morphological changes take place in a cluster of post-meiotic germ cells, which are enclosed in a microenvironment surrounded by somatic cyst cells. Microtubule-based axoneme assembly, formation of individualization complexes and mitochondria maintenance are key processes involved in the differentiation of elongated spermatids. They provide important structural foundations for accessing male fertility. How these structures are constructed and maintained are basic questions in the Drosophila testis. Although the roles of several genes in different structures during the development of elongated spermatids have been elucidated, the relationships between them have not been widely studied. In addition, the genetic basis of spermatid elongation and the regulatory mechanisms involved have not been thoroughly investigated. In the present review, we focus on current knowledge with regard to spermatid axoneme assembly, individualization complex and mitochondria maintenance. We also touch upon promising directions for future research to unravel the underlying mechanisms of spermatid elongation in the Drosophila testis.
Collapse
Affiliation(s)
- Qiuru Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hao Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Li Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yi Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
2
|
Ishikawa H, Tian JL, Yu JE, Marshall WF, Qin H. Biosynthesis of Linear Protein Nanoarrays Using the Flagellar Axoneme. ACS Synth Biol 2022; 11:1454-1465. [PMID: 35271249 DOI: 10.1021/acssynbio.1c00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Applications in biotechnology and synthetic biology often make use of soluble proteins, but there are many potential advantages of anchoring enzymes to a stable substrate, including stability and the possibility for substrate channeling. To avoid the necessity of protein purification and chemical immobilization, there has been growing interest in bio-assembly of protein-containing nanoparticles, exploiting the self-assembly of viral capsid proteins or other proteins that form polyhedral structures. However, these nanoparticles are limited in size, which constrains the packaging and the accessibility of the proteins. An axoneme, the insoluble protein core of the eukaryotic flagellum or cilium, is a highly ordered protein structure that can be several microns in length, orders of magnitude larger than other types of nanoparticles. We show that when proteins of interest are fused to specific axonemal proteins and expressed in living Chlamydomonas reinhardtii cells, they become incorporated into linear arrays, which have the advantages of high protein loading capacity and single-step purification with retention of biomass. The arrays can be isolated as membrane-enclosed vesicles or as exposed protein arrays. The approach is demonstrated for both a fluorescent protein and an enzyme (beta-lactamase), showing that incorporation into axonemes retains protein function in a stable, easily isolated array form.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94143, United States
- NSF Center for Cellular Construction, San Francisco, California 94143, United States
| | - Jie L. Tian
- Molecular & Environmental Plant Sciences, Texas A&M University, College Station, Texas 77845, United States
| | - Jefer E. Yu
- Department of Biology, Texas A&M University, College Station, Texas 77845, United States
| | - Wallace F. Marshall
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94143, United States
- NSF Center for Cellular Construction, San Francisco, California 94143, United States
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
3
|
Lechtreck KF, Liu Y, Dai J, Alkhofash RA, Butler J, Alford L, Yang P. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. eLife 2022; 11:74993. [PMID: 34982025 PMCID: PMC8789290 DOI: 10.7554/elife.74993] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Intraflagellar transport (IFT) carries proteins into flagella but how IFT trains interact with the large number of diverse proteins required to assemble flagella remains largely unknown. Here, we show that IFT of radial spokes in Chlamydomonas requires ARMC2/PF27, a conserved armadillo repeat protein associated with male infertility and reduced lung function. Chlamydomonas ARMC2 was highly enriched in growing flagella and tagged ARMC2 and the spoke protein RSP3 co-migrated on anterograde trains. In contrast, a cargo and an adapter of inner and outer dynein arms moved independently of ARMC2, indicating that unrelated cargoes distribute stochastically onto the IFT trains. After concomitant unloading at the flagellar tip, RSP3 attached to the axoneme whereas ARMC2 diffused back to the cell body. In armc2/pf27 mutants, IFT of radial spokes was abolished and the presence of radial spokes was limited to the proximal region of flagella. We conclude that ARMC2 is a cargo adapter required for IFT of radial spokes to ensure their assembly along flagella. ARMC2 belongs to a growing class of cargo-specific adapters that enable flagellar transport of preassembled axonemal substructures by IFT.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| | - Jin Dai
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Rama A Alkhofash
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Jack Butler
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Lea Alford
- Division of Natural Sciences,, Oglethorpe University, Atlanta, United States
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| |
Collapse
|
4
|
Martinez G, Beurois J, Dacheux D, Cazin C, Bidart M, Kherraf ZE, Robinson DR, Satre V, Le Gac G, Ka C, Gourlaouen I, Fichou Y, Petre G, Dulioust E, Zouari R, Thierry-Mieg N, Touré A, Arnoult C, Bonhivers M, Ray P, Coutton C. Biallelic variants in MAATS1 encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility. J Med Genet 2020; 57:708-716. [PMID: 32161152 DOI: 10.1136/jmedgenet-2019-106775] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Multiple morphological abnormalities of the flagella (MMAF) consistently lead to male infertility due to a reduced or absent sperm motility defined as asthenozoospermia. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analysed remain unresolved, suggesting that many yet uncharacterised gene defects account for this phenotype METHODS: Exome sequencing was performed on 167 infertile men with an MMAF phenotype. Immunostaining and transmission electron microscopy (TEM) in sperm cells from affected individuals were performed to characterise the ultrastructural sperm defects. Gene inactivation using RNA interference (RNAi) was subsequently performed in Trypanosoma. RESULTS We identified six unrelated affected patients carrying a homozygous deleterious variants in MAATS1, a gene encoding CFAP91, a calmodulin-associated and spoke-associated complex (CSC) protein. TEM and immunostaining experiments in sperm cells showed severe central pair complex (CPC) and radial spokes defects. Moreover, we confirmed that the WDR66 protein is a physical and functional partner of CFAP91 into the CSC. Study of Trypanosoma MAATS1's orthologue (TbCFAP91) highlighted high sequence and structural analogies with the human protein and confirmed the axonemal localisation of the protein. Knockdown of TbCFAP91 using RNAi impaired flagellar movement led to CPC defects in Trypanosoma as observed in humans. CONCLUSIONS We showed that CFAP91 is essential for normal sperm flagellum structure and function in human and Trypanosoma and that biallelic variants in this gene lead to severe flagellum malformations resulting in astheno-teratozoospermia and primary male infertility.
Collapse
Affiliation(s)
- Guillaume Martinez
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Julie Beurois
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France
| | - Denis Dacheux
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France.,Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Caroline Cazin
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France
| | - Marie Bidart
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, Unité Médicale de Génétique Moléculaire : Maladies Héréditaires et Oncologie, Pôle Biologie, Institut de Biologie et de Pathologie, Grenoble, France
| | - Zine-Eddine Kherraf
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Derrick R Robinson
- Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Véronique Satre
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Gerald Le Gac
- INSERM UMR1078, Université Bretagne Loire - Université de Brest, Etablissement Français du Sang - Bretagne, Institut Brestois Santé-Agro-Matière, Brest, France.,Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, CHRU de Brest, Hôpital Morvan, Brest, France
| | - Chandran Ka
- INSERM UMR1078, Université Bretagne Loire - Université de Brest, Etablissement Français du Sang - Bretagne, Institut Brestois Santé-Agro-Matière, Brest, France
| | - Isabelle Gourlaouen
- INSERM UMR1078, Université Bretagne Loire - Université de Brest, Etablissement Français du Sang - Bretagne, Institut Brestois Santé-Agro-Matière, Brest, France
| | - Yann Fichou
- INSERM UMR1078, Université Bretagne Loire - Université de Brest, Etablissement Français du Sang - Bretagne, Institut Brestois Santé-Agro-Matière, Brest, France
| | - Graciane Petre
- INSERM U1205, UFR Chimie Biologie, Univ. Grenoble Alpes, Grenoble, France
| | - Emmanuel Dulioust
- Laboratoire d'Histologie Embryologie - Biologie de la Reproduction, GH Cochin Broca Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | | | - Aminata Touré
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,INSERM U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France
| | - Christophe Arnoult
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France
| | - Mélanie Bonhivers
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Pierre Ray
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Charles Coutton
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France .,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| |
Collapse
|
5
|
Beneke T, Banecki K, Fochler S, Gluenz E. LAX28 is required for the stable assembly of the inner dynein arm f complex, and the tether and tether head complex in Leishmania flagella. J Cell Sci 2020; 133:jcs239855. [PMID: 31932510 PMCID: PMC7747692 DOI: 10.1242/jcs.239855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Motile eukaryotic flagella beat through coordinated activity of dynein motor proteins; however, the mechanisms of dynein coordination and regulation are incompletely understood. The inner dynein arm (IDA) f complex (also known as the I1 complex), and the tether and tether head (T/TH) complex are thought to be key regulators of dynein action but, unlike the IDA f complex, T/TH proteins remain poorly characterised. Here, we characterised T/TH-associated proteins in the protist Leishmania mexicana Proteome analysis of axonemes from null mutants for the CFAP44 T/TH protein showed that they lacked the IDA f protein IC140 and a novel 28-kDa axonemal protein, LAX28. Sequence analysis identified similarities between LAX28 and the uncharacterised human sperm tail protein TEX47, both sharing features with sensory BLUF-domain-containing proteins. Leishmania lacking LAX28, CFAP44 or IC140 retained some motility, albeit with reduced swimming speed and directionality and a propensity for flagellar curling. Expression of tagged proteins in different null mutant backgrounds showed that the axonemal localisation of LAX28 requires CFAP44 and IC140, and the axonemal localisations of CFAP44 and IC140 both depend on LAX28. These data demonstrate a role for LAX28 in motility and show mutual dependencies of IDA f and T/TH-associated proteins for axonemal assembly in Leishmania.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Katherine Banecki
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sophia Fochler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
6
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
7
|
Wang Y, Xu R, Cheng Y, Cao H, Wang Z, Zhu T, Jiang J, Zhang H, Wang C, Qi L, Liu M, Guo X, Huang J, Sha J. RSBP15 interacts with and stabilizes dRSPH3 during sperm axoneme assembly in Drosophila. J Genet Genomics 2019; 46:281-290. [DOI: 10.1016/j.jgg.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
|
8
|
Lechtreck KF, Mengoni I, Okivie B, Hilderhoff KB. In vivo analyses of radial spoke transport, assembly, repair and maintenance. Cytoskeleton (Hoboken) 2018; 75:352-362. [PMID: 30070024 DOI: 10.1002/cm.21457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023]
Abstract
Radial spokes (RSs) are multiprotein complexes that regulate dynein activity. In the cell body, RS proteins (RSPs) are present in a 12S precursor, which enters the flagella and converts into the axoneme-bound 20S spokes consisting of a head and stalk. To study RS dynamics in vivo, we expressed fluorescent protein (FP)-tagged versions of the head protein RSP4 and the stalk protein RSP3 to rescue the corresponding Chlamydomonas mutants pf1, lacking spoke heads, and pf14, lacking RSs entirely. RSP3 and RSP4 mostly co-migrated by intraflagellar transport (IFT). The transport was elevated during flagellar assembly and IFT of RSP4-FP depended on RSP3. To study RS assembly independently of ciliogenesis, strains expressing FP-tagged RSPs were mated to untagged cells with, without, or with partial RSs. Tagged RSPs were incorporated in a spotted fashion along wild-type-derived flagella indicating an exchange of RSs. During the repair of pf1-derived axonemes, RSP4-FP is added onto the preexisting spoke stalks with little exchange of RSP3. Thus, RSP3 and RSP4 are transported together but appear to separate inside flagella during the repair of RSs. The 12S RS precursor encompassing both proteins could represent a transport form to ensure stoichiometric delivery of RSPs into flagella by IFT.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Ilaria Mengoni
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Batare Okivie
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | |
Collapse
|
9
|
Zhang Y, Huang Y, Srivathsan A, Lim TK, Lin Q, He CY. The unusual flagellar-targeting mechanism and functions of the trypanosome ortholog of the ciliary GTPase Arl13b. J Cell Sci 2018; 131:jcs.219071. [PMID: 30097558 PMCID: PMC6140319 DOI: 10.1242/jcs.219071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022] Open
Abstract
The small GTPase Arl13b is one of the most conserved and ancient ciliary proteins. In human and animals, Arl13b is primarily associated with the ciliary membrane, where it acts as a guanine-nucleotide-exchange factor (GEF) for Arl3 and is implicated in a variety of ciliary and cellular functions. We have identified and characterized Trypanosoma brucei (Tb)Arl13, the sole Arl13b homolog in this evolutionarily divergent, protozoan parasite. TbArl13 has conserved flagellar functions and exhibits catalytic activity towards two different TbArl3 homologs. However, TbArl13 is distinctly associated with the axoneme through a dimerization/docking (D/D) domain. Replacing the D/D domain with a sequence encoding a flagellar membrane protein created a viable alternative to the wild-type TbArl13 in our RNA interference (RNAi)-based rescue assay. Therefore, flagellar enrichment is crucial for TbArl13, but mechanisms to achieve this could be flexible. Our findings thus extend the understanding of the roles of Arl13b and Arl13b–Arl3 pathway in a divergent flagellate of medical importance. This article has an associated First Person interview with the first author of the paper. Highlighted Article: All roads lead to cilia – how the essential flagellar enrichment of Arl13 is achieved in trypanosome cells using a fundamentally different strategy compared with that of animal cells.
Collapse
Affiliation(s)
- Yiliu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yameng Huang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Amrita Srivathsan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Cynthia Y He
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
10
|
Zhu X, Poghosyan E, Gopal R, Liu Y, Ciruelas KS, Maizy Y, Diener DR, King SM, Ishikawa T, Yang P. General and specific promotion of flagellar assembly by a flagellar nucleoside diphosphate kinase. Mol Biol Cell 2017; 28:3029-3042. [PMID: 28877983 PMCID: PMC5662260 DOI: 10.1091/mbc.e17-03-0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
NDK5 promotes assembly of motile cilia and flagella with its structure and protein phosphorylation–related reactions instead of the canonical NDK activity. The novel mechanisms and dominant-negative effect of mutated functional NDK5 reveal the remarkable versatility of a molecular platform that is used in diverse cellular processes. Nucleoside diphosphate kinases (NDKs) play a central role in diverse cellular processes using the canonical NDK activity or alternative mechanisms that remain poorly defined. Our study of dimeric NDK5 in a flagellar motility control complex, the radial spoke (RS), has revealed new modalities. The flagella in Chlamydomonas ndk5 mutant were paralyzed, albeit only deficient in three RS subunits. RS morphology appeared severely changed in averaged cryo-electron tomograms, suggesting that NDK5 is crucial for the intact spokehead formation as well as RS structural stability. Intriguingly, ndk5’s flagella were also short, resembling those of an allelic spoke-less mutant. All ndk5’s phenotypes were rescued by expressions of NDK5 or a mutated NDK5 lacking the canonical kinase activity. Importantly, the mutated NDK5 that appeared fully functional in ndk5 cells elicited a dominant-negative effect in wild-type cells, causing paralyzed short flagella with hypophosphorylated, less abundant, but intact RSs, and accumulated hypophosphorylated NDK5 in the cell body. We propose that NDK5 dimer is an RS structural subunit with an additional mechanism that uses cross-talk between the two NDK monomers to accelerate phosphorylation-related assembly of RSs and entire flagella.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Radhika Gopal
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Kristine S Ciruelas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yousif Maizy
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Takashi Ishikawa
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
11
|
Zhu X, Liu Y, Yang P. Radial Spokes-A Snapshot of the Motility Regulation, Assembly, and Evolution of Cilia and Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028126. [PMID: 27940518 DOI: 10.1101/cshperspect.a028126] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Propulsive forces generated by cilia and flagella are used in events that are critical for the thriving of diverse eukaryotic organisms in their environments. Despite distinctive strokes and regulations, the majority of them adopt the 9+2 axoneme that is believed to exist in the last eukaryotic common ancestor. Only a few outliers have opted for a simpler format that forsakes the signature radial spokes and the central pair apparatus, although both are unnecessary for force generation or rhythmicity. Extensive evidence has shown that they operate as an integral system for motility control. Recent studies have made remarkable progress on the radial spoke. This review will trace how the new structural, compositional, and evolutional insights pose significant implications on flagella biology and, conversely, ciliopathy.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Yi Liu
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Pinfen Yang
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
12
|
Jiang X, Hernandez D, Hernandez C, Ding Z, Nan B, Aufderheide K, Qin H. IFT57 stabilizes assembled intraflagellar transport complex and mediates transport of motility-related flagellar cargo. J Cell Sci 2017; 130:879-891. [DOI: 10.1242/jcs.199117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022] Open
Abstract
Intraflagellar Transport (IFT) is essential for flagella/cilia assembly and maintenance. Recent biochemical studies have shown that IFT-B is comprised of two subcomplexes, IFT-B1 and IFT-B2. The IFT-B2 subunit IFT57 lies at the interface between IFT-B1 and IFT-B2. Here, using a Chlamydomonas mutant for IFT57, we tested whether IFT57 is critical for IFT-B complex assembly by bridging IFT-B1 and IFT-B2 together. In the ift57-1 mutant, IFT57 and other IFT-B proteins were greatly reduced at the whole-cell level. Strikingly, in the protease free flagellar compartment, while the level of IFT57 was reduced, other IFT particle proteins were not concomitantly reduced but present at the wild-type level. The IFT movement of the IFT57-deficient-IFT particles was also unchanged. Moreover, IFT57 depletion disrupted the flagellar waveform, leading to cell swimming defects. Analysis of the mutant flagellar protein composition showed that certain axonemal proteins were altered. Taken together, these findings suggest that IFT57 does not play an essential structural role in the IFT particle complex but rather functions to prevent it from degradation. Additionally, IFT57 is involved in transporting specific motility-related proteins.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Daniel Hernandez
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Catherine Hernandez
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Zhaolan Ding
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Karl Aufderheide
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| |
Collapse
|
13
|
Calkins S, Youssef NH. Insights into the Utility of the Focal Adhesion Scaffolding Proteins in the Anaerobic Fungus Orpinomyces sp. C1A. PLoS One 2016; 11:e0163553. [PMID: 27685796 PMCID: PMC5042518 DOI: 10.1371/journal.pone.0163553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/11/2016] [Indexed: 12/30/2022] Open
Abstract
Focal adhesions (FAs) are large eukaryotic multiprotein complexes that are present in all metazoan cells and function as stable sites of tight adhesion between the extracellular matrix (ECM) and the cell's cytoskeleton. FAs consist of anchor membrane protein (integrins), scaffolding proteins (e.g. α-actinin, talin, paxillin, and vinculin), signaling proteins of the IPP complex (e.g. integrin-linked kinase, α-parvin, and PINCH), and signaling kinases (e.g. focal adhesion kinase (FAK) and Src kinase). While genes encoding complete focal adhesion machineries are present in genomes of all multicellular Metazoa; incomplete machineries were identified in the genomes of multiple non-metazoan unicellular Holozoa, basal fungal lineages, and amoebozoan representatives. Since a complete FA machinery is required for functioning, the putative role, if any, of these incomplete FA machineries is currently unclear. We sought to examine the expression patterns of FA-associated genes in the anaerobic basal fungal isolate Orpinomyces sp. strain C1A under different growth conditions and at different developmental stages. Strain C1A lacks clear homologues of integrin, and the two signaling kinases FAK and Src, but encodes for all scaffolding proteins, and the IPP complex proteins. We developed a protocol for synchronizing growth of C1A cultures, allowing for the collection and mRNA extraction from flagellated spores, encysted germinating spores, active zoosporangia, and late inactive sporangia of strain C1A. We demonstrate that the genes encoding the FA scaffolding proteins α-actinin, talin, paxillin, and vinculin are indeed transcribed under all growth conditions, and at all developmental stages of growth. Further, analysis of the observed transcriptional patterns suggests the putative involvement of these components in alternative non-adhesion-specific functions, such as hyphal tip growth during germination and flagellar assembly during zoosporogenesis. Based on these results, we propose putative alternative functions for such proteins in the anaerobic gut fungi. Our results highlight the presumed diverse functionalities of FA scaffolding proteins in basal fungi.
Collapse
Affiliation(s)
- Shelby Calkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, United States of America
| |
Collapse
|
14
|
Nonaka Y, Kikuchi K, Numayama-Tsuruta K, Kage A, Ueno H, Ishikawa T. Inhomogeneous distribution of Chlamydomonas in a cylindrical container with a bubble plume. Biol Open 2016; 5:154-60. [PMID: 26787679 PMCID: PMC4823988 DOI: 10.1242/bio.015669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Swimming microalgae show various taxes, such as phototaxis and gravitaxis, which sometimes result in the formation of a cell-rich layer or a patch in a suspension. Despite intensive studies on the effects of shear flow and turbulence on the inhomogeneous distribution of microalgae, the effect of a bubble plume has remained unclear. In this study, we used Chlamydomonas as model microalgae, and investigated the spatial distribution of cells in a cylindrical container with a bubble plume. The results illustrate that cells become inhomogeneously distributed in the suspension due to their motility and photo-responses. A vortical ring distribution was observed below the free surface when the bubble flow rate was sufficiently small. We performed a scaling analysis on the length scale of the vortical ring, which captured the main features of the experimental results. These findings are important in understanding transport phenomena in a microalgae suspension with a bubble plume. Summary: A substantially inhomogeneous distribution of micro algae was developed in suspension with a bubble plume. A vortical ring and vertical layers of cells were observed when the cells displayed phototaxis and motility.
Collapse
Affiliation(s)
- Yuki Nonaka
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kenji Kikuchi
- Dept. Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Keiko Numayama-Tsuruta
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Azusa Kage
- Dept. Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Hironori Ueno
- Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya, Aichi 448-8542, Japan
| | - Takuji Ishikawa
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan Dept. Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
15
|
Jeanson L, Copin B, Papon JF, Dastot-Le Moal F, Duquesnoy P, Montantin G, Cadranel J, Corvol H, Coste A, Désir J, Souayah A, Kott E, Collot N, Tissier S, Louis B, Tamalet A, de Blic J, Clement A, Escudier E, Amselem S, Legendre M. RSPH3 Mutations Cause Primary Ciliary Dyskinesia with Central-Complex Defects and a Near Absence of Radial Spokes. Am J Hum Genet 2015; 97:153-62. [PMID: 26073779 PMCID: PMC4571005 DOI: 10.1016/j.ajhg.2015.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/05/2015] [Indexed: 01/16/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare autosomal-recessive condition resulting from structural and/or functional defects of the axoneme in motile cilia and sperm flagella. The great majority of mutations identified so far involve genes whose defects result in dynein-arm anomalies. By contrast, PCD due to CC/RS defects (those in the central complex [CC] and radial spokes [RSs]), which might be difficult to diagnose, remains mostly unexplained. We identified non-ambiguous RSPH3 mutations in 5 of 48 independent families affected by CC/RS defects. RSPH3, whose ortholog in the flagellated alga Chlamydomonas reinhardtii encodes a RS-stalk protein, is mainly expressed in respiratory and testicular cells. Its protein product, which localizes within the cilia of respiratory epithelial cells, was undetectable in airway cells from an individual with RSPH3 mutations and in whom RSPH23 (a RS-neck protein) and RSPH1 and RSPH4A (RS-head proteins) were found to be still present within cilia. In the case of RSPH3 mutations, high-speed-videomicroscopy analyses revealed the coexistence of immotile cilia and motile cilia with movements of reduced amplitude. A striking feature of the ultrastructural phenotype associated with RSPH3 mutations is the near absence of detectable RSs in all cilia in combination with a variable proportion of cilia with CC defects. Overall, this study shows that RSPH3 mutations contribute to disease in more than 10% of PCD-affected individuals with CC/RS defects, thereby allowing an accurate diagnosis to be made in such cases. It also unveils the key role of RSPH3 in the proper building of RSs and the CC in humans.
Collapse
Affiliation(s)
- Ludovic Jeanson
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France
| | - Bruno Copin
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Jean-François Papon
- INSERM UMR S955, Equipe 13, Université Paris-Est Créteil, Créteil 94000, France; Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Maxillo-Faciale, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre 94275, France
| | - Florence Dastot-Le Moal
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Philippe Duquesnoy
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France
| | - Guy Montantin
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Jacques Cadranel
- Service de Pneumologie-Centre Expert Maladies Pulmonaires Rares, Hôpital Tenon, Assistance Publique - Hôpitaux de Paris, Paris 75020, France; Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75020, France
| | - Harriet Corvol
- Service de Pneumologie Pédiatrique, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris and Centre National de Référence des Maladies Respiratoires Rares, Paris 75012, France; INSERM UMR S938, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France
| | - André Coste
- INSERM UMR S955, Equipe 13, Université Paris-Est Créteil, Créteil 94000, France; Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Hôpital Intercommunal et Groupe Hospitalier Henri Mondor-Albert Chenevier, Assistance Publique - Hôpitaux de Paris, Créteil 94000, France
| | - Julie Désir
- Département de Génétique Médicale, Université Libre de Bruxelles and Hôpital Erasme, Brussels 1020, Belgium
| | - Anissa Souayah
- Service d'Oto-Rhino-Laryngologie, Hôpital Universitaire des Enfants Reine Fabiola, Brussels 1020, Belgium
| | - Esther Kott
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France
| | - Nathalie Collot
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Sylvie Tissier
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Bruno Louis
- INSERM UMR S955, Equipe 13, Université Paris-Est Créteil, Créteil 94000, France
| | - Aline Tamalet
- Service de Pneumologie Pédiatrique, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris and Centre National de Référence des Maladies Respiratoires Rares, Paris 75012, France
| | - Jacques de Blic
- Service de Pneumologie et Allergologie Pédiatriques, Groupe Hospitalier Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris and Université Paris Descartes, Paris 75015, France
| | - Annick Clement
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France; Service de Pneumologie Pédiatrique, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris and Centre National de Référence des Maladies Respiratoires Rares, Paris 75012, France
| | - Estelle Escudier
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France; Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Serge Amselem
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France; Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France.
| | - Marie Legendre
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France; Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| |
Collapse
|
16
|
Yan R, Hu X, Zhang W, Song L, Wang J, Yin Y, Chen S, Zhao S. The mouse radial spoke protein 3 is a nucleocytoplasmic shuttling protein that promotes neurogenesis. Histochem Cell Biol 2015; 144:309-19. [PMID: 26082196 DOI: 10.1007/s00418-015-1338-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/27/2022]
Abstract
Radial spoke protein 3 (RSP3) was first identified in Chlamydomonas as a component of radial spoke, which is important for flagellar motility. The mammalian homolog of the Chlamydomonas RSP3 protein is found to be a mammalian protein kinase A-anchoring protein that binds ERK1/2. Here we show that mouse RSP3 is a nucleocytoplasmic shuttling protein. The full-length RSP3-EGFP fusion protein is mainly located in the cytoplasm of Chinese hamster ovary cells. However, by using deletion mutants of RSP3, we identified two nuclear localization signals and a nuclear export signal in RSP3. Moreover, using in utero electroporation, we found that overexpression of RSP3 in the developing cerebral cortex promotes neurogenesis. The layer II/III of the neocortex was much thicker in the RSP3-transfected region than that of the untransfected region in the neocortex. We also show that RSP3 is specifically located in the primary cilia of the radial glial cells, where it acts as a signaling mediator that regulates neurogenesis. Thus, our results suggest that RSP3 is a nucleocytoplasmic shuttling protein and plays an essential role in neurogenesis.
Collapse
Affiliation(s)
- Runchuan Yan
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xinde Hu
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wei Zhang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lingzhen Song
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiutao Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yupeng Yin
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
Vasudevan KK, Song K, Alford LM, Sale WS, Dymek EE, Smith EF, Hennessey T, Joachimiak E, Urbanska P, Wloga D, Dentler W, Nicastro D, Gaertig J. FAP206 is a microtubule-docking adapter for ciliary radial spoke 2 and dynein c. Mol Biol Cell 2014; 26:696-710. [PMID: 25540426 PMCID: PMC4325840 DOI: 10.1091/mbc.e14-11-1506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. Little is known about the assembly and functions of the three individual radial spokes, RS1, RS2, and RS3. In Tetrahymena, a conserved ciliary protein, FAP206, docks RS2 and dynein c to the doublet microtubule. Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Little is known about the assembly and functions of individual radial spokes. A knockout of the conserved ciliary protein FAP206 in the ciliate Tetrahymena resulted in slow cell motility. Cryo–electron tomography showed that in the absence of FAP206, the 96-nm repeats lacked RS2 and dynein c. Occasionally, RS2 assembled but lacked both the front prong of its microtubule base and dynein c, whose tail is attached to the front prong. Overexpressed GFP-FAP206 decorated nonciliary microtubules in vivo. Thus FAP206 is likely part of the front prong and docks RS2 and dynein c to the microtubule.
Collapse
Affiliation(s)
| | - Kangkang Song
- Department of Biology, Rosenstiel Center, Brandeis University, Waltham, MA 02454
| | - Lea M Alford
- Department of Cell Biology, Emory University, Atlanta, GA 30303
| | - Winfield S Sale
- Department of Cell Biology, Emory University, Atlanta, GA 30303
| | - Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Todd Hennessey
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260
| | - Ewa Joachimiak
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Paulina Urbanska
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Dorota Wloga
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - William Dentler
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Daniela Nicastro
- Department of Biology, Rosenstiel Center, Brandeis University, Waltham, MA 02454
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
18
|
Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nat Commun 2014; 5:5727. [PMID: 25473808 PMCID: PMC4267722 DOI: 10.1038/ncomms6727] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
Cilia play essential roles in normal human development and health; cilia dysfunction results in diseases such as primary ciliary dyskinesia (PCD). Despite their importance, the native structure of human cilia is unknown, and structural defects in the cilia of patients are often undetectable or remain elusive because of heterogeneity. Here we develop an approach that enables visualization of human (patient) cilia at high-resolution using cryo-electron tomography of samples obtained noninvasively by nasal scrape biopsy. We present the native 3D structures of normal and PCD-causing RSPH1-mutant human respiratory cilia in unprecedented detail; this allows comparisons of cilia structure across evolutionarily distant species and reveals the previously unknown primary defect and the heterogeneous secondary defects in RSPH1-mutant cilia. Our data provide evidence for structural and functional heterogeneity in radial spokes, suggest a mechanism for the milder RSPH1 PCD phenotype and demonstrate that cryo-electron tomography can be applied to human disease by directly imaging patient samples.
Collapse
|
19
|
Alford LM, Mattheyses AL, Hunter EL, Lin H, Dutcher SK, Sale WS. The Chlamydomonas mutant pf27 reveals novel features of ciliary radial spoke assembly. Cytoskeleton (Hoboken) 2014; 70:804-18. [PMID: 24124175 DOI: 10.1002/cm.21144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 01/05/2023]
Abstract
To address the mechanisms of ciliary radial spoke assembly, we took advantage of the Chlamydomonas pf27 mutant. The radial spokes that assemble in pf27 are localized to the proximal quarter of the axoneme, but otherwise are fully assembled into 20S radial spoke complexes competent to bind spokeless axonemes in vitro. Thus, pf27 is not defective in radial spoke assembly or docking to the axoneme. Rather, our results suggest that pf27 is defective in the transport of spoke complexes. During ciliary regeneration in pf27, radial spoke assembly occurs asynchronously from other axonemal components. In contrast, during ciliary regeneration in wild-type Chlamydomonas, radial spokes and other axonemal components assemble concurrently as the axoneme grows. Complementation in temporary dikaryons between wild-type and pf27 reveals rescue of radial spoke assembly that begins at the distal tip, allowing further assembly to proceed from tip to base of the axoneme. Notably, rescued assembly of radial spokes occurred independently of the established proximal radial spokes in pf27 axonemes in dikaryons. These results reveal that 20S radial spokes can assemble proximally in the pf27 cilium but as the cilium lengthens, spoke assembly requires transport. We postulate that PF27 encodes an adaptor or modifier protein required for radial spoke–IFT interaction.
Collapse
|
20
|
Hu X, Yan R, Song L, Lu X, Chen S, Zhao S. Subcellular localization and function of mouse radial spoke protein 3 in mammalian cells and central nervous system. J Mol Histol 2014; 45:723-32. [PMID: 25079589 DOI: 10.1007/s10735-014-9590-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/23/2014] [Indexed: 11/29/2022]
Abstract
Radial spoke protein 3 (RSP3) was first identified in Chlamydomonas as a component of the radial spoke. The mammalian homologue of the Chlamydomonas RSP3 gene is mainly expressed in testis and developing central nervous system (CNS). However, the subcellular localization and function of mammalian RSP3 in the developing brain and mammalian cells remain poorly understood. Here we show that the mouse RSP3 accumulates at the perinuclear region of Chinese hamster ovary (CHO) and 293T cells. Detailed analysis shows that the mouse RSP3 is not co-localized with the endoplasmic reticulum or Golgi apparatus markers in CHO cells. Using in utero electroporation, we found that over-expression of mammalian RSP3 increases the percentage of neurons reaching the upper cortical plate. In vivo analysis shows that the mouse RSP3 mainly accumulates in the proximal cytoplasmic dilation of the leading process of the migrating cortical neurons. Furthermore, we find that the mammalian RSP3 concentrates in the ependymal cilia as a component of the cilia. Thus, our data provide the first evidence for the subcellular localization and function of mammalian RSP3 in mammalian cells and developing CNS.
Collapse
Affiliation(s)
- Xinde Hu
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
21
|
Wang H, Gau B, Slade WO, Juergens M, Li P, Hicks LM. The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol Cell Proteomics 2014; 13:2337-53. [PMID: 24917610 DOI: 10.1074/mcp.m114.038281] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chlamydomonas reinhardtii is the most intensively-studied and well-developed model for investigation of a wide-range of microalgal processes ranging from basic development through understanding triacylglycerol production. Although proteomic technologies permit interrogation of these processes at the protein level and efforts to date indicate phosphorylation-based regulation of proteins in C. reinhardtii is essential for its underlying biology, characterization of the C. reinhardtii phosphoproteome has been limited. Herein, we report the richest exploration of the C. reinhardtii proteome to date. Complementary enrichment strategies were used to detect 4588 phosphoproteins distributed among every cellular component in C. reinhardtii. Additionally, we report 18,160 unique phosphopeptides at <1% false discovery rate, which comprise 15,862 unique phosphosites - 98% of which are novel. Given that an estimated 30% of proteins in a eukaryotic cell are subject to phosphorylation, we report the majority of the phosphoproteome (23%) of C. reinhardtii. Proteins in key biological pathways were phosphorylated, including photosynthesis, pigment production, carbon assimilation, glycolysis, and protein and carbohydrate metabolism, and it is noteworthy that hyperphosphorylation was observed in flagellar proteins. This rich data set is available via ProteomeXchange (ID: PXD000783) and will significantly enhance understanding of a range of regulatory mechanisms controlling a variety of cellular process and will serve as a critical resource for the microalgal community.
Collapse
Affiliation(s)
- Hongxia Wang
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; §National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Brian Gau
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; ¶Sigma-Aldrich, 2909 Laclede Ave., St. Louis, Missouri 63103
| | - William O Slade
- ‖Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599
| | - Matthew Juergens
- **Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, Missouri 48824
| | - Ping Li
- §National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Leslie M Hicks
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; ‖Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599;
| |
Collapse
|
22
|
Oda T, Yanagisawa H, Yagi T, Kikkawa M. Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. ACTA ACUST UNITED AC 2014; 204:807-19. [PMID: 24590175 PMCID: PMC3941055 DOI: 10.1083/jcb.201312014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nonspecific intermolecular collision between the central pair apparatus and radial spokes underlies a mechanosensing mechanism that regulates dynein activity in Chlamydomonas flagella. Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonasreinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
23
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
24
|
Sivadas P, Dienes JM, St Maurice M, Meek WD, Yang P. A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex. ACTA ACUST UNITED AC 2013; 199:639-51. [PMID: 23148234 PMCID: PMC3494852 DOI: 10.1083/jcb.201111042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amphipathic helices in the A-kinase anchoring protein RSP3 bind to spoke proteins involved in the assembly and modulation of the flagellar radial spoke complex, expanding the repertoire of these versatile helical protein motifs. A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH–RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.
Collapse
Affiliation(s)
- Priyanka Sivadas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
25
|
Tam LW, Ranum PT, Lefebvre PA. CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas. Mol Biol Cell 2013; 24:588-600. [PMID: 23283985 PMCID: PMC3583663 DOI: 10.1091/mbc.e12-10-0718] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two mutations in LF5, which encodes a protein kinase orthologous to human CDKL5, cause abnormally long flagella in Chlamydomonas. The localization of LF5p to the very proximal region of flagella in WT cells is regulated by three other LF gene products, which make up the cytoplasmic length regulatory complex. The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes—LF1, LF2, LF3, and LF4—cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location: the proximal 1 μm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC)—LF1, LF2, and LF3—are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC.
Collapse
Affiliation(s)
- Lai-Wa Tam
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
26
|
Abstract
Eukaryotic cilia/flagella are ancient organelles with motility and sensory functions. Cilia display significant ultrastructural conservation where present across the eukaryotic phylogeny; however, diversity in ciliary biology exists and the ability to produce cilia has been lost independently on a number of occasions. Land plants provide an excellent system for the investigation of cilia evolution and loss across a broad phylogeny, because early divergent land plant lineages produce cilia, whereas most seed plants do not. This review highlights the differences in cilia form and function across land plants and discusses how recent advances in genomics are providing novel insights into the evolutionary trajectory of ciliary proteins. We propose a renewed effort to adopt ciliated land plants as models to investigate the mechanisms underpinning complex ciliary processes, such as number control, the coordination of basal body placement and the regulation of beat patterns.
Collapse
Affiliation(s)
- Matthew E Hodges
- Department of Plant Sciences, South Parks Road, University of Oxford, Oxford OX1 3RB, UK
| | - Bill Wickstead
- Centre for Genetics and Genomics, University of Nottingham, Nottingham NG7 2UH, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Jane A Langdale
- Department of Plant Sciences, South Parks Road, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
27
|
The DPY-30 domain and its flanking sequence mediate the assembly and modulation of flagellar radial spoke complexes. Mol Cell Biol 2012; 32:4012-24. [PMID: 22851692 DOI: 10.1128/mcb.06602-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RIIa is known as the dimerization and docking (D/D) domain of the cyclic AMP (cAMP)-dependent protein kinase. However, numerous molecules, including radial spoke protein 2 (RSP2) in Chlamydomonas flagella, also contain an RIIa or a similar DPY-30 domain. To elucidate new roles of D/D domain-containing proteins, we investigated a panel of RSP2 mutants. An RSP2 mutant had paralyzed flagella defective in RSP2 and multiple subunits near the spokehead. New transgenic strains lacking only the DPY-30 domain in RSP2 were also paralyzed. In contrast, motility was restored in strains that lacked only RSP2's calmodulin-binding C-terminal region. These cells swam normally in dim light but could not maintain typical swimming trajectories under bright illumination. In both deletion transgenic strains, the subunits near the spokehead were restored, but their firm attachment to the spokestalk required the DPY-30 domain. We postulate that the DPY-30-helix dimer is a conserved two-prong linker, required for normal motility, organizing duplicated subunits in the radial spoke stalk and formation of a symmetrical spokehead. Further, the dispensable calmodulin-binding region appears to fine-tune the spokehead for regulation of "steering" motility in the green algae. Thus, in general, D/D domains may function to localize molecular modules for both the assembly and modulation of macromolecular complexes.
Collapse
|
28
|
Gupta A, Diener DR, Sivadas P, Rosenbaum JL, Yang P. The versatile molecular complex component LC8 promotes several distinct steps of flagellar assembly. ACTA ACUST UNITED AC 2012; 198:115-26. [PMID: 22753897 PMCID: PMC3392930 DOI: 10.1083/jcb.201111041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
LC8 is present in various molecular complexes. However, its role in these complexes remains unclear. We discovered that although LC8 is a subunit of the radial spoke (RS) complex in Chlamydomonas flagella, it was undetectable in the RS precursor that is converted into the mature RS at the tip of elongating axonemes. Interestingly, LC8 dimers bound in tandem to the N-terminal region of a spoke phosphoprotein, RS protein 3 (RSP3), that docks RSs to axonemes. LC8 enhanced the binding of RSP3 N-terminal fragments to purified axonemes. Likewise, the N-terminal fragments extracted from axonemes contained LC8 and putative spoke-docking proteins. Lastly, perturbations of RSP3's LC8-binding sites resulted in asynchronous flagella with hypophosphorylated RSP3 and defective associations between LC8, RSs, and axonemes. We propose that at the tip of flagella, an array of LC8 dimers binds to RSP3 in RS precursors, triggering phosphorylation, stalk base formation, and axoneme targeting. These multiple effects shed new light on fundamental questions about LC8-containing complexes and axoneme assembly.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
29
|
Heuser T, Dymek EE, Lin J, Smith EF, Nicastro D. The CSC connects three major axonemal complexes involved in dynein regulation. Mol Biol Cell 2012; 23:3143-55. [PMID: 22740634 PMCID: PMC3418309 DOI: 10.1091/mbc.e12-05-0357] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study reveals the 3D structure of the CSC and its connections to three major axonemal complexes involved in dynein regulation, including the distal radial spoke and the nexin-DRC. The findings corroborate radial spoke heterogeneity and suggest a unique role for the distal spoke in calcium-mediated signal transduction and flagellar motility. Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo–electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin–dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.
Collapse
Affiliation(s)
- Thomas Heuser
- Biology Department, Rosenstiel Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
30
|
Lin J, Heuser T, Carbajal-González BI, Song K, Nicastro D. The structural heterogeneity of radial spokes in cilia and flagella is conserved. Cytoskeleton (Hoboken) 2012; 69:88-100. [PMID: 22170736 DOI: 10.1002/cm.21000] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/05/2023]
Abstract
Radial spokes (RSs) are ubiquitous components of motile cilia and flagella and play an essential role in transmitting signals that regulate the activity of the dynein motors, and thus ciliary and flagellar motility. In some organisms, the 96 nm axonemal repeat unit contains only a pair of spokes, RS1 and RS2, while most organisms have spoke triplets with an additional spoke RS3. The spoke pairs in Chlamydomonas flagella have been well characterized, while spoke triplets have received less attention. Here, we used cryoelectron tomography and subtomogram averaging to visualize the three-dimensional structure of spoke triplets in Strongylocentrotus purpuratus (sea urchin) sperm flagella in unprecedented detail. Only small differences were observed between RS1 and RS2, but the structure of RS3 was surprisingly unique and structurally different from the other two spokes. We observed novel doublet specific features that connect RS2, RS3, and the nexin-dynein regulatory complex, three key ciliary and flagellar structures. The distribution of these doublet specific structures suggests that they could be important for establishing the asymmetry of dynein activity required for the oscillatory movement of cilia and flagella. Surprisingly, a comparison with other organisms demonstrated both that this considerable RS heterogeneity is conserved and that organisms with RS pairs contain the basal part of RS3. This conserved RS heterogeneity may also reflect functional differences between the spokes and their involvement in regulating ciliary and flagellar motility.
Collapse
Affiliation(s)
- Jianfeng Lin
- Department of Biology, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | |
Collapse
|
31
|
Diener DR, Yang P, Geimer S, Cole DG, Sale WS, Rosenbaum JL. Sequential assembly of flagellar radial spokes. Cytoskeleton (Hoboken) 2011; 68:389-400. [PMID: 21692193 DOI: 10.1002/cm.20520] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The unicellular alga Chlamydomonas can assemble two 10 μm flagella in 1 h from proteins synthesized in the cell body. Targeting and transporting these proteins to the flagella are simplified by preassembly of macromolecular complexes in the cell body. Radial spokes are flagellar complexes that are partially assembled in the cell body before entering the flagella. On the axoneme, radial spokes are "T" shaped structures with a head of five proteins and a stalk of 18 proteins that sediment together at 20S. In the cell body, radial spokes are partially assembled; about half of the radial spoke proteins (RSPs) form a 12S complex. In mutants lacking a single RSP, smaller spoke subassemblies were identified. When extracts from two such mutants were mixed in vitro the 12S complex was assembled from several smaller complexes demonstrating that portions of the stepwise assembly of radial spoke assembly can be carried out in vitro to elucidate the order of spoke assembly in the cell body.
Collapse
Affiliation(s)
- Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
32
|
Barber CF, Heuser T, Carbajal-González BI, Botchkarev VV, Nicastro D. Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella. Mol Biol Cell 2011; 23:111-20. [PMID: 22072792 PMCID: PMC3248890 DOI: 10.1091/mbc.e11-08-0692] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cryo–electron tomography of Chlamydomonas flagella reveals previously uncharacterized features of the radial spokes, including structural heterogeneity and direct interactions with dyneins and between the spoke heads. A “radial spoke 3 stand-in” occupies what would be the site of a third spoke in organisms with spoke triplets. Radial spokes (RSs) play an essential role in the regulation of axonemal dynein activity and thus of ciliary and flagellar motility. However, few details are known about the complexes involved. Using cryo–electron tomography and subtomogram averaging, we visualized the three-dimensional structure of the radial spokes in Chlamydomonas flagella in unprecedented detail. Unlike many other species, Chlamydomonas has only two spokes per axonemal repeat, RS1 and RS2. Our data revealed previously uncharacterized features, including two-pronged spoke bases that facilitate docking to the doublet microtubules, and that inner dyneins connect directly to the spokes. Structures of wild type and the headless spoke mutant pf17 were compared to define the morphology and boundaries of the head, including a direct RS1-to-RS2 interaction. Although the overall structures of the spokes are very similar, we also observed some differences, corroborating recent findings about heterogeneity in the docking of RS1 and RS2. In place of a third radial spoke we found an uncharacterized, shorter electron density named “radial spoke 3 stand-in,” which structurally bears no resemblance to RS1 and RS2 and is unaltered in the pf17 mutant. These findings demonstrate that radial spokes are heterogeneous in structure and may play functionally distinct roles in axoneme regulation.
Collapse
Affiliation(s)
- Cynthia F Barber
- Biology Department, Rosenstiel Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
33
|
Pigino G, Bui KH, Maheshwari A, Lupetti P, Diener D, Ishikawa T. Cryoelectron tomography of radial spokes in cilia and flagella. ACTA ACUST UNITED AC 2011; 195:673-87. [PMID: 22065640 PMCID: PMC3257535 DOI: 10.1083/jcb.201106125] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cryo-EM tomography of wild-type and mutant cilia and flagella from Tetrahymena and Chlamydomonas reveals new information on the substructure of radial spokes. Radial spokes (RSs) are ubiquitous components in the 9 + 2 axoneme thought to be mechanochemical transducers involved in local control of dynein-driven microtubule sliding. They are composed of >23 polypeptides, whose interactions and placement must be deciphered to understand RS function. In this paper, we show the detailed three-dimensional (3D) structure of RS in situ in Chlamydomonas reinhardtii flagella and Tetrahymena thermophila cilia that we obtained using cryoelectron tomography (cryo-ET). We clarify similarities and differences between the three spoke species, RS1, RS2, and RS3, in T. thermophila and in C. reinhardtii and show that part of RS3 is conserved in C. reinhardtii, which only has two species of complete RSs. By analyzing C. reinhardtii mutants, we identified the specific location of subsets of RS proteins (RSPs). Our 3D reconstructions show a twofold symmetry, suggesting that fully assembled RSs are produced by dimerization. Based on our cryo-ET data, we propose models of subdomain organization within the RS as well as interactions between RSPs and with other axonemal components.
Collapse
Affiliation(s)
- Gaia Pigino
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Dymek EE, Heuser T, Nicastro D, Smith EF. The CSC is required for complete radial spoke assembly and wild-type ciliary motility. Mol Biol Cell 2011; 22:2520-31. [PMID: 21613541 PMCID: PMC3135477 DOI: 10.1091/mbc.e11-03-0271] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Structural and functional analyses of artificial micro RNA (amiRNA) mutants reveal that the CSC plays a role not only in generating wild-type motility, but also in assembly of at least a subset of radial spokes. This study also produced the unexpected finding that, contrary to current belief, the radial spokes may not be homogeneous. The ubiquitous calcium binding protein, calmodulin (CaM), plays a major role in regulating the motility of all eukaryotic cilia and flagella. We previously identified a CaM and Spoke associated Complex (CSC) and provided evidence that this complex mediates regulatory signals between the radial spokes and dynein arms. We have now used an artificial microRNA (amiRNA) approach to reduce expression of two CSC subunits in Chlamydomonas. For all amiRNA mutants, the entire CSC is lacking or severely reduced in flagella. Structural studies of mutant axonemes revealed that assembly of radial spoke 2 is defective. Furthermore, analysis of both flagellar beating and microtubule sliding in vitro demonstrates that the CSC plays a critical role in modulating dynein activity. Our results not only indicate that the CSC is required for spoke assembly and wild-type motility, but also provide evidence for heterogeneity among the radial spokes.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
35
|
Wirschell M, Yamamoto R, Alford L, Gokhale A, Gaillard A, Sale WS. Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme. Arch Biochem Biophys 2011; 510:93-100. [PMID: 21513695 DOI: 10.1016/j.abb.2011.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9+2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation/dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates.
Collapse
Affiliation(s)
- Maureen Wirschell
- Emory University School of Medicine, Department of Cell Biology, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Elias M, Archibald JM. The RJL family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus. Gene 2009; 442:63-72. [DOI: 10.1016/j.gene.2009.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/07/2009] [Accepted: 04/14/2009] [Indexed: 11/29/2022]
|
37
|
Abstract
Flagella are sensory organelles that interact with the environment through signal transduction and gene expression networks. We used microarray profiling to examine gene regulation associated with flagellar length change in the green alga Chlamydomonas reinhardtii. Microarrays were probed with fluorescently labeled cDNAs synthesized from RNA extracted from cells before and during flagellar assembly or disassembly. Evaluation of the gene expression profiles identified >100 clones showing at least a twofold change in expression during flagellar length changes. Products of these genes are associated not only with flagellar structure and motility but also with other cellular responses, including signal transduction and metabolism. Expression of specific genes from each category was further characterized at higher resolution by using quantitative real-time PCR (qRT-PCR). Analysis and comparison of the gene expression profiles coupled to flagellar assembly and disassembly revealed that each process involves a new and uncharacterized whole-cell response to flagellar length changes. This analysis lays the groundwork for a more comprehensive understanding of the cellular and molecular networks regulating flagellar length changes.
Collapse
|
38
|
Wirschell M, Zhao F, Yang C, Yang P, Diener D, Gaillard A, Rosenbaum JL, Sale WS. Building a radial spoke: Flagellar radial spoke protein 3 (RSP3) is a dimer. ACTA ACUST UNITED AC 2008; 65:238-48. [DOI: 10.1002/cm.20257] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Dymek EE, Smith EF. A conserved CaM- and radial spoke associated complex mediates regulation of flagellar dynein activity. ACTA ACUST UNITED AC 2007; 179:515-26. [PMID: 17967944 PMCID: PMC2064796 DOI: 10.1083/jcb.200703107] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)- binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which is located at the base of the spoke. In a microtubule sliding assay, the addition of antibodies generated against FAP91 to mutant axonemes with reduced dynein activity restores dynein activity to wild-type levels. These combined results indicate that the CaM- and spoke-associated complex mediates regulatory signals between the radial spokes and dynein arms.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
40
|
Zhang Z, Zariwala MA, Mahadevan MM, Caballero-Campo P, Shen X, Escudier E, Duriez B, Bridoux AM, Leigh M, Gerton GL, Kennedy M, Amselem S, Knowles MR, Strauss JF. A heterozygous mutation disrupting the SPAG16 gene results in biochemical instability of central apparatus components of the human sperm axoneme. Biol Reprod 2007; 77:864-71. [PMID: 17699735 DOI: 10.1095/biolreprod.107.063206] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The SPAG16 gene encodes two major transcripts, one for the 71-kDa SPAG16L, which is the orthologue of the Chlamydomonas rheinhardtii central apparatus protein PF20, and a smaller transcript, which codes for the 35-kDa SPAG16S nuclear protein that represents the C-terminus (exons 11-16) of SPAG16L. We have previously reported that a targeted mutation in exon 11 of the Spag16 gene impairs spermatogenesis and prevents transmission of the mutant allele in chimeric mice. In the present report, we describe a heterozygous mutation in exon 13 of the SPAG16 gene, which causes a frame shift and premature stop codon, affording the opportunity to compare mutations with similar impacts on SPAG16L and SPAG16S for male reproductive function in mice and men. We studied two male heterozygotes for the SPAG16 mutation, both of which were fertile. Freezing-boiling of isolated sperm from both affected males resulted in the loss of the SPAG16L protein, SPAG6, another central apparatus protein that interacts with SPAG16L, and the 28-kDa fragment of SPAG17, which associates with SPAG6. These proteins were also lost after freezing-boiling cycles of sperm extracts from mice that were heterozygous for an inactivating mutation (exons 2 and 3) in Spag16. Our findings suggest that a heterozygous mutation that affects both SPAG16L and SPAG16S does not cause male infertility in man, but is associated with reduced stability of the interacting proteins of the central apparatus in response to a thermal challenge, a phenotype shared by the sperm of mice heterozygous for a mutation that affects SPAG16L.
Collapse
Affiliation(s)
- Zhibing Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ralston KS, Lerner AG, Diener DR, Hill KL. Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. EUKARYOTIC CELL 2006; 5:696-711. [PMID: 16607017 PMCID: PMC1459671 DOI: 10.1128/ec.5.4.696-711.2006] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flagellum of Trypanosoma brucei is a multifunctional organelle with critical roles in motility and other aspects of the trypanosome life cycle. Trypanin is a flagellar protein required for directional cell motility, but its molecular function is unknown. Recently, a trypanin homologue in Chlamydomonas reinhardtii was reported to be part of a dynein regulatory complex (DRC) that transmits regulatory signals from central pair microtubules and radial spokes to axonemal dynein. DRC genes were identified as extragenic suppressors of central pair and/or radial spoke mutations. We used RNA interference to ablate expression of radial spoke (RSP3) and central pair (PF16) components individually or in combination with trypanin. Both rsp3 and pf16 single knockdown mutants are immotile, with severely defective flagellar beat. In the case of rsp3, this loss of motility is correlated with the loss of radial spokes, while in the case of pf16 the loss of motility correlates with an aberrant orientation of the central pair microtubules within the axoneme. Genetic interaction between trypanin and PF16 is demonstrated by the finding that loss of trypanin suppresses the pf16 beat defect, indicating that the DRC represents an evolutionarily conserved strategy for dynein regulation. Surprisingly, we discovered that four independent mutants with an impaired flagellar beat all fail in the final stage of cytokinesis, indicating that flagellar motility is necessary for normal cell division in T. brucei. These findings present the first evidence that flagellar beating is important for cell division and open the opportunity to exploit enzymatic activities that drive flagellar beat as drug targets for the treatment of African sleeping sickness.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
42
|
Gaillard AR, Fox LA, Rhea JM, Craige B, Sale WS. Disruption of the A-kinase anchoring domain in flagellar radial spoke protein 3 results in unregulated axonemal cAMP-dependent protein kinase activity and abnormal flagellar motility. Mol Biol Cell 2006; 17:2626-35. [PMID: 16571668 PMCID: PMC1474798 DOI: 10.1091/mbc.e06-02-0095] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility.
Collapse
Affiliation(s)
- Anne R. Gaillard
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341
| | - Laura A. Fox
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Jeanne M. Rhea
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Branch Craige
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Winfield S. Sale
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| |
Collapse
|
43
|
Yang P, Diener DR, Yang C, Kohno T, Pazour GJ, Dienes JM, Agrin NS, King SM, Sale WS, Kamiya R, Rosenbaum JL, Witman GB. Radial spoke proteins of Chlamydomonas flagella. J Cell Sci 2006; 119:1165-74. [PMID: 16507594 PMCID: PMC1973137 DOI: 10.1242/jcs.02811] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The radial spoke is a ubiquitous component of '9+2' cilia and flagella, and plays an essential role in the control of dynein arm activity by relaying signals from the central pair of microtubules to the arms. The Chlamydomonas reinhardtii radial spoke contains at least 23 proteins, only 8 of which have been characterized at the molecular level. Here, we use mass spectrometry to identify 10 additional radial spoke proteins. Many of the newly identified proteins in the spoke stalk are predicted to contain domains associated with signal transduction, including Ca2+-, AKAP- and nucleotide-binding domains. This suggests that the spoke stalk is both a scaffold for signaling molecules and itself a transducer of signals. Moreover, in addition to the recently described HSP40 family member, a second spoke stalk protein is predicted to be a molecular chaperone, implying that there is a sophisticated mechanism for the assembly of this large complex. Among the 18 spoke proteins identified to date, at least 12 have apparent homologs in humans, indicating that the radial spoke has been conserved throughout evolution. The human genes encoding these proteins are candidates for causing primary ciliary dyskinesia, a severe inherited disease involving missing or defective axonemal structures, including the radial spokes.
Collapse
Affiliation(s)
- Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang C, Yang P. The flagellar motility of Chlamydomonas pf25 mutant lacking an AKAP-binding protein is overtly sensitive to medium conditions. Mol Biol Cell 2005; 17:227-38. [PMID: 16267272 PMCID: PMC1345661 DOI: 10.1091/mbc.e05-07-0630] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Radial spokes are a conserved axonemal structural complex postulated to regulate the motility of 9 + 2 cilia and flagella via a network of phosphoenzymes and regulatory proteins. Consistently, a Chlamydomonas radial spoke protein, RSP3, has been identified by RII overlays as an A-kinase anchoring protein (AKAP) that localizes the cAMP-dependent protein kinase (PKA) holoenzyme by binding to the RIIa domain of PKA RII subunit. However, the highly conserved docking domain of PKA is also found in the N termini of several AKAP-binding proteins unrelated to PKA as well as a 24-kDa novel spoke protein, RSP11. Here, we report that RSP11 binds to RSP3 directly in vitro and colocalizes with RSP3 toward the spoke base near outer doublets and dynein motors in axonemes. Importantly, RSP11 mutant pf25 displays a spectrum of motility, from paralysis with flaccid or twitching flagella as other spoke mutants to wildtype-like swimming. The wide range of motility changes reversibly depending on the condition of liquid media without replacing defective proteins. We postulate that radial spokes use the RIIa/AKAP module to regulate ciliary and flagellar beating; absence of the spoke RIIa protein exposes a medium-sensitive regulatory mechanism that is not obvious in wild-type Chlamydomonas.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biological Sciences, Marquette University, Milwaukee WI 53233, USA
| | | |
Collapse
|
45
|
White D, Aghigh S, Magder I, Cosson J, Huitorel P, Gagnon C. Two Anti-radial Spoke Monoclonal Antibodies Inhibit Chlamydomonas Axonemal Motility by Different Mechanisms. J Biol Chem 2005; 280:14803-10. [PMID: 15664983 DOI: 10.1074/jbc.m414114200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the 9 + 2 axoneme, radial spokes are structural components attached to the A-tubules of the nine outer doublet microtubules. They protrude toward the central pair microtubule complex with which they have transient but regular interactions for the normal flagellar motility to occur. Flagella of Chlamydomonas mutants deficient in entire radial spokes or spoke heads are paralyzed. In this study the importance of two radial spoke proteins in the flagellar movement is exemplified by the potent inhibitory action of two monoclonal antibodies on the axonemal motility of demembranated-reactivated Chlamydomonas models. We show that one of these proteins is localized on the stalk of the radial spokes, whereas the other is a component of the head of the same structure and most likely correspond to radial spoke protein 2 and 1, respectively. Fine motility analysis by videomicrography further indicates that these two anti-radial spoke protein antibodies at low concentration affect motility of demembranated-reactivated Chlamydomonas by changing the flagellar waveform without modifying axonemal beat frequency. They also modify wave amplitude differently during motility inhibition. This brings more direct evidence for the involvement of both radial spoke stalk and head in the fine tuning of the waveform during flagellar motility.
Collapse
Affiliation(s)
- Daniel White
- Urology Research Laboratory, McGill University Health Center, Faculty of Medecine, Montréal, Québec H3A 1A1, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Eukaryotic cilia and flagella are cytoskeletal organelles that are remarkably conserved from protists to mammals. Their basic unit is the axoneme, a well-defined cylindrical structure composed of microtubules and up to 250 associated proteins. These complex organelles are assembled by a dynamic process called intraflagellar transport. Flagella and cilia perform diverse motility and sensitivity functions in many different organisms. Trypanosomes are flagellated protozoa, responsible for various tropical diseases such as sleeping sickness and Chagas disease. In this review, we first describe general knowledge on the flagellum: its occurrence in the living world, its molecular composition, and its mode of assembly, with special emphasis on the exciting developments that followed the discovery of intraflagellar transport. We then present recent progress regarding the characteristics of the trypanosome flagellum, highlighting the original contributions brought by this organism. The most striking phenomenon is the involvement of the flagellum in several aspects of the trypanosome cell cycle, including cell morphogenesis, basal body migration, and cytokinesis.
Collapse
Affiliation(s)
- Linda Kohl
- INSERM U565, CNRS UMR5153, and MNHN USM 0503, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | | |
Collapse
|
47
|
Yang C, Compton MM, Yang P. Dimeric novel HSP40 is incorporated into the radial spoke complex during the assembly process in flagella. Mol Biol Cell 2004; 16:637-48. [PMID: 15563613 PMCID: PMC545900 DOI: 10.1091/mbc.e04-09-0787] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The radial spoke is a stable structural complex in the 9 + 2 axoneme for the control of flagellar motility. However, the spokes in Chlamydomonas mutant pf24 are heterogeneous and unstable, whereas several spoke proteins are reduced differentially. To elucidate the defective mechanism, we clone RSP16, a prominent spoke protein diminished in pf24 axonemes. Unexpectedly, RSP16 is a novel HSP40 member of the DnaJ superfamily that assists chaperones in various protein-folding-related processes. Importantly, RSP16 is uniquely excluded from the 12S spoke precursor complex that is packaged in the cell body and transported toward the flagellar tip to be converted into mature 20S axonemal spokes. Rather, RSP16, transported separately, joins the precursor complex in flagella. Furthermore, RSP16 molecules in vitro and in flagella form homodimers, a characteristic required for the cochaperone activity of HSP40. We postulate that the spoke HSP40 operates as a cochaperone to assist chaperone machinery at the flagellar tip to actively convert the smaller spoke precursor and itself into the mature stable complex; failure of the interaction between the spoke HSP40 and its target polypeptide results in heterogeneous unstable radial spokes in pf24.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | | |
Collapse
|
48
|
Yang P, Yang C, Sale WS. Flagellar radial spoke protein 2 is a calmodulin binding protein required for motility in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2004; 3:72-81. [PMID: 14871938 PMCID: PMC329519 DOI: 10.1128/ec.3.1.72-81.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic and morphological studies have revealed that the radial spokes regulate ciliary and flagellar bending. Functional and biochemical analysis and the discovery of calmodulin in the radial spokes suggest that the regulatory mechanism involves control of axonemal protein phosphorylation and calcium binding to spoke proteins. To identify potential regulatory proteins in the radial spoke, in-gel kinase assays were performed on isolated axonemes and radial spoke fractions. The results indicated that radial spoke protein 2 (RSP2) can bind ATP and transfer phosphate in vitro. RSP2 was cloned and mapped to the PF24 locus, a gene required for motility. Sequencing revealed that pf24 contains a point mutation converting the first ATG to ATA, resulting in only trace amounts of RSP2 and confirming the RSP2 mapping. Surprisingly, the sequence does not include signature domains for conventional kinases, indicating that RSP2 may not perform as a protein kinase in vivo. However, the predicted RSP2 protein sequence contains Ca2+-dependent calmodulin binding motifs and a GAF domain, a domain found in diverse signaling proteins for binding small ligands including cyclic nucleotides. As predicted from the sequence, recombinant RSP2 binds calmodulin in a calcium-dependent manner. We postulate that RSP2 is a regulatory subunit of the radial spoke involved in localization of calmodulin for control of motility.
Collapse
Affiliation(s)
- Pinfen Yang
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | | | |
Collapse
|
49
|
Smith EF, Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. ACTA ACUST UNITED AC 2004; 57:8-17. [PMID: 14648553 PMCID: PMC1950942 DOI: 10.1002/cm.10155] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
50
|
Koukoulas I, Augustine C, Silkenbeumer N, Gunnersen JM, Scott HS, Tan SS. Genomic organisation and nervous system expression of radial spoke protein 3. Gene 2004; 336:15-23. [PMID: 15225872 DOI: 10.1016/j.gene.2004.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 03/08/2004] [Accepted: 04/05/2004] [Indexed: 11/23/2022]
Abstract
Following their generation in the germinal zones, young neurons of the neocortex, hippocampus and cerebellum undergo long-distance migration to reach their final destinations. This locomotive activity depends on active deployment of cytoskeletal elements including the microtubule apparatus. In this study, we report the identification and expression of radial spoke protein 3 (RSP3), a member of a protein cluster responsible for anchoring and modifying dynein motor activity known to be crucial to microtubule sliding. The mouse RSP3 gene consists of eight exons and seven introns and spans over 230 kb. The genomic organisations of the human and rat RSP3 genes are similar although they span approximately 23 and 53 kb, respectively. This is in contrast to the Chlamydomonas RSP3 gene, where RSP3 was first isolated, which consists of four exons and three introns and spans approximately 2.7 kb. Despite these differences, the nucleotide and amino acid sequences upstream of, and throughout the RPII-binding domain of RSP3 are highly conserved between all the above-mentioned species. Mouse RSP3 mRNA was restricted to the developing neocortex, hippocampus and cerebellum during the stages when these structures are known to contain large numbers of migratory neurons. Gene expression studies suggest that RSP3 function is consistent with a locomotory role for this protein in migrating young neurons. In addition, expression of RSP3 mRNA in adult neurons point to additional, though still unknown functions. Our data provides the first evidence for the expression of radial spoke proteins in higher eukaryotes, and provides a biological framework for how these proteins may participate in microtubule sliding and neuronal migration in the embryonic brain.
Collapse
Affiliation(s)
- Irene Koukoulas
- Brain Development Laboratory, Howard Florey Institute, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | |
Collapse
|