1
|
Nguyen HG, Yu G, Makitalo M, Yang D, Xie HX, Jones MR, Ravid K. Conditional overexpression of transgenes in megakaryocytes and platelets in vivo. Blood 2005; 106:1559-64. [PMID: 15890684 PMCID: PMC1895218 DOI: 10.1182/blood-2005-02-0638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Megakaryocyte (MK)-specific transgene expression has proved valuable in studying thrombotic and hemostatic processes. Constitutive expression of genes, however, could result in altered phenotypes due to compensatory mechanisms or lethality. To circumvent these limitations, we used the tetracycline/doxycycline (Tet)-off system to conditionally over-express genes in megakaryocytes and platelets in vivo. We generated 3 transactivator transgenic lines expressing the Tet transactivator element (tTA), under the control of the MK-specific platelet factor 4 promoter (PF4-tTA-VP16). Responder lines were simultaneously generated, each with a bidirectional minimal cytomegalovirus (CMV)-tTA responsive promoter driving prokaryotic beta-galactosidase gene, as a cellular reporter, and a gene of interest (in this case, the mitotic regulator Aurora-B). A transactivator founder line that strongly expressed PF4-driven tTA-viral protein 16 (VP16) was crossbred to a responder line. The homozygous double-transgenic mouse line exhibited doxycycline-dependent transgene overexpression in MKs and platelets. Using this line, platelets were conveniently indicated at sites of induced stress by beta-galactosidase staining. In addition, we confirmed our earlier report on effects of constitutive expression of Aurora-B, indicating a tight regulation at protein level and a modest effect on MK ploidy. Hence, we generated a new line, PF4-tTA-VP16, that is available for conditionally overexpressing genes of interest in the MK/platelet lineage in vivo.
Collapse
Affiliation(s)
- Hao G Nguyen
- Boston University School of Medicine, Department of Biochemistry, 715 Albany St, K225, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Jones MR, Zhao Z, Sullivan CP, Schreiber BM, Stone PJ, Toselli PA, Kagan HM, Cohen RA, Ravid K. A(3) adenosine receptor deficiency does not influence atherogenesis. J Cell Biochem 2005; 92:1034-43. [PMID: 15258925 DOI: 10.1002/jcb.20122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Atherosclerosis is a multifactorial disease, the progression of which is modulated by several factors, including inflammation and hypercholesterolemia. The A(3) adenosine receptor (A(3)AR) has been reported to affect mast cell degranulation leading to inflammation, as well as to influence cardiovascular homeostasis. Here, we show that its deletion can also impact vascular smooth muscle cell (VSMC) proliferation in vitro. Based on these observations, we hypothesized that A(3)AR deficiency would affect atheromatous lesion development in vivo. Our results indicate that the expression of the matrix enzyme lysyl oxidase (LO) is increased while the proliferation potential of VSMC is decreased in A(3)AR-null aortas. This is in accordance with the previously reported inverse correlation between LO level and proliferation. Nevertheless, we found that A(3)-deficiency does not protect vessels against atherogenesis. This was demonstrated in mouse models of high fat diet-induced atherosclerosis and guidewire-induced femoral artery injury. We conclude that the contributions of the A(3)AR to inflammation and to modulating LO levels are not significant enough to control vascular response to injury.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/enzymology
- Aorta/metabolism
- Arteriosclerosis/genetics
- Base Sequence
- Blotting, Western
- Cells, Cultured
- DNA Primers
- DNA Replication
- Elastin/metabolism
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Protein-Lysine 6-Oxidase/metabolism
- Receptor, Adenosine A3/genetics
- Receptor, Adenosine A3/physiology
- Up-Regulation
Collapse
Affiliation(s)
- Matthew R Jones
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Okada Y, Matsuura E, Nagai R, Sato T, Watanabe A, Morita I, Doi T. PREP1, MEIS1 homolog protein, regulates PF4 gene expression. Biochem Biophys Res Commun 2003; 305:155-9. [PMID: 12732210 DOI: 10.1016/s0006-291x(03)00718-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously demonstrated that homeodomain proteins, MEIS1 and PBXs, transactivate the PF4 gene through the novel regulatory element termed TME. This study focuses on Pbx regulating protein 1 (PREP1), a MEIS1 homolog protein, for its transcriptional activity in the PF4 promoter. PREP1 binds to the TME in HEL cells. PREP1 was expressed in human megakaryocytes that differentiated from CD34(+) cells. EMSA shows that either PREP1 by itself or PREP1/PBX complexes bind to the two TGACAG motifs in the TME and activate the PF4 promoter. Furthermore, PREP1 and PREP1/PBX complexes synergistically activate the PF4 promoter with GATA-1 and ETS-1. These data demonstrate that PREP1 is also an important transcription factor that regulates PF4 gene expression such as MEIS1. Additionally, these data imply functional similarities and differences between PREP1 and MEIS1 in the regulation of PF4 gene expression.
Collapse
Affiliation(s)
- Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Hechler B, Zhang Y, Eckly A, Cazenave JP, Gachet C, Ravid K. Lineage-specific overexpression of the P2Y1 receptor induces platelet hyper-reactivity in transgenic mice. J Thromb Haemost 2003; 1:155-63. [PMID: 12871553 DOI: 10.1046/j.1538-7836.2003.00003.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to investigate the role of the platelet P2Y1 receptor in several aspects of platelet activation and thrombosis, transgenic (TG) mice overexpressing this receptor specifically in the megakaryocytic/platelet lineage were generated using the promoter of the tissue-specific platelet factor 4 gene. Studies of the saturation binding of [33P]2MeSADP in the presence or absence of the selective P2Y1 antagonist MRS2179 indicated that wild-type (WT) mouse platelets bore 150 +/- 31 P2Y1 receptors and TG platelets 276 +/- 34, representing an 84% increase in P2Y1 receptor density. This led to a well defined phenotype of platelet hyper-reactivity in vitro, as shown by increased aggregations in response to adenosine 5'-diphosphate (ADP) and low concentration of collagen in TG as compared with WT platelets. Moreover, overexpression of the P2Y1 receptor enabled ADP to induce granule secretion, unlike in WT platelets, which suggests that the level of P2Y1 expression is critical for this event. Our results further suggest that the weak responses of normal platelets to ADP are due to a limited number of P2Y1 receptors rather than to activation of a specific transduction pathway. TG mice displayed a shortened bleeding time and an increased sensitivity to in vivo platelet aggregation induced by infusion of a mixture of collagen and epinephrine. Overall, these findings emphasize the importance of the P2Y1 receptor in hemostasis and thrombosis and suggest that variable expression levels of this receptor on platelets might play a role in thrombotic states in human, which remains to be assessed.
Collapse
Affiliation(s)
- B Hechler
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
5
|
Kaluzhny Y, Yu G, Sun S, Toselli PA, Nieswandt B, Jackson CW, Ravid K. BclxL overexpression in megakaryocytes leads to impaired platelet fragmentation. Blood 2002; 100:1670-8. [PMID: 12176887 DOI: 10.1182/blood-2001-12-0263] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fragmentation of polyploid megakaryocytes into platelets has great relevance for blood homeostasis. Apoptotic cell death is a highly regulated genetic program, which has been observed in mature megakaryocytes fragmenting into platelets. The antiapoptotic protein BclxL has been reported as up-regulated during megakaryocytic differentiation in vitro, but absent during late megakaryopoiesis. Our study focused on examining BclxL levels in megakaryocytes in vivo and in assessing the effect of its overexpression in transgenic mice (via the platelet factor 4 [PF4] promoter) on megakaryocyte development and platelet fragmentation. Interestingly, in the wild-type and less in PF4-driven transgenic mice, BclxL was not detected in a fraction of the large mature megakaryocytes, suggesting a regulation on the protein level. BclxL overexpression was associated with a moderate increase in megakaryocyte number, with no significant change in ploidy level or platelet counts. When the mice were challenged by induction of immune thrombocytopenia, the rate of platelet recovery was significantly slower in the transgenic mice as compared with controls. Moreover, proplatelet formation in vitro by transgenic megakaryocytes was limited. Transgenic megakaryocytes displayed poorly developed platelet demarcation membranes and cell margin extensions. Our study indicates that regulated expression of BclxL in megakaryocytes is important for the development of cells with a high potential to fragment into platelets.
Collapse
Affiliation(s)
- Yulia Kaluzhny
- Department of Biochemistry and Whittaker Cardiovascular Institute, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Polyploidy, recognized by multiple copies of the haploid chromosome number, has been described in plants, insects, and in mammalian cells such as, the platelet precursors, the megakaryocytes. Several of these cell types reach high ploidy via a different cell cycle. Megakaryocytes undergo an endomitotic cell cycle, which consists of an S phase interrupted by a gap, during which the cells enter mitosis but skip anaphase B and cytokinesis. Here, we review the mechanisms that lead to this cell cycle and to polyploidy in megakaryocytes, while also comparing them to those described for other systems in which high ploidy is achieved. Overall, polyploidy is associated with an orchestrated change in expression of several genes, of which, some may be a result of high ploidy and hence a determinant of a new cell physiology, while others are inducers of polyploidization. Future studies will aim to further explore these two groups of genes.
Collapse
Affiliation(s)
- Katya Ravid
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
7
|
Carow CE, Fox NE, Kaushansky K. Kinetics of endomitosis in primary murine megakaryocytes. J Cell Physiol 2001; 188:291-303. [PMID: 11473355 DOI: 10.1002/jcp.1120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Megakaryocytes (MKs) develop from diploid progenitor cells via successive rounds of DNA synthesis in the absence of cell division, a process termed endomitosis (EnM). While the mechanism underlying EnM is not known, studies in yeast and leukemic cell lines have suggested that it may be due to reduced levels of cyclin B1 or cdc2, leading to a decrease in mitotic kinase activity. Using flow cytometry to study EnM highly purified marrow-derived MK precursors, we found that: (1) on average, 36% of 8N-32N MKs expressed abundant cyclin B during G2/M. The percentage of cells in G2/M decreased in >64N MKs, suggesting the limit of EnM, (2) the level of cyclin B per G2/M MK increased linearly with ploidy, (3) cyclin B expression oscillated normally in polyploid MKs, (4) MPM-2, a phosphoepitope created by the action of mitotic kinases and specific to M-phase cells, was expressed in a significant fraction of polyploid MKs, and (5) there was an apparent increase of cyclin B in G1-phase in polyploid MKs. This study provides the first qualitative kinetic data regarding the cell cycle status of MKs within individual ploidy classes. It also demonstrates the feasibility of using anti-cyclin B antibody and flow cytometry to resolve G1 from G2/M populations in polyploid MKs. Finally, these findings establish that neither a relative nor absolute deficiency of mitotic kinase components is responsible for EnM, suggesting that the departure from normal cell division kinetics seen in polyploid MKs is likely due to alterations in other cell cycle regulators.
Collapse
Affiliation(s)
- C E Carow
- Department of Medicine, University of Washington, Seattle 98195-7710, USA.
| | | | | |
Collapse
|
8
|
Thompson A, Zhao Z, Ladd D, Zimmet J, Ravid K. A new transgenic mouse model for the study of cell cycle control in megakaryocytes. Stem Cells 2001; 14 Suppl 1:181-7. [PMID: 11012219 DOI: 10.1002/stem.5530140723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During the development of the megakaryocytic lineage, the megakaryoblasts give rise to megakaryocytes which undergo repeated S phases in the absence of cytokinesis (endomitosis). The cellular oncogene myc plays a central role in the proliferation and differentiation of several cell types. In a previous study, we generated transgenic mice carrying c-myc fused to the estrogen receptor under the control of the platelet factor four (PF4) megakaryocyte-specific promoter. The bone marrow of female transgenic mice, but not of male mice, displayed increased megakaryopoiesis. Here we report that beta-estradiol-induced activation of c-myc in cultured bone marrow cells derived from male or female transgenic mice resulted in prolonged survival of the cells in vitro. Addition of a cocktail of hemopoietic growth factors to beta-estradiol-treated cells, including interleukin 6 (IL-6), IL-3 and stem cell factor further improved the survival time in culture and increased the percentage of large mature cells, but did not result in immortalization. The majority of these PF4-expressing cells, however, did not reach the differentiation stage at which acetylcholinesterase is expressed and did not appear as large megakaryocytes. We conclude that cultured megakaryocytes overexpressing myc are induced to proliferate, but have a limited potential to fully differentiate. Under these conditions, cyclin D3 was downregulated while the level of cyclin A was slightly upregulated.
Collapse
Affiliation(s)
- A Thompson
- Department of Biochemistry and Cancer Research Center, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
9
|
Starck J, Mouchiroud G, Gonnet C, Mehlen A, Aubert D, Dorier A, Godet J, Morlé F. Unexpected and coordinated expression of Spi-1, Fli-1, and megakaryocytic genes in four Epo-dependent cell lines established from transgenic mice displaying erythroid-specific expression of a thermosensitive SV40 T antigen. Exp Hematol 1999; 27:630-41. [PMID: 10210321 DOI: 10.1016/s0301-472x(99)00006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Most erythroleukemic cell lines established in vitro coexpress erythrocytic and megakaryocytic markers that often are associated with expression of Spi-1 and/or Fli-1 transcription factors known as transactivators of megakaryocyte-specific promoters. In the present study, we examined the possibility of establishing new cell lines keeping strictly erythroid-specific properties in vitro through the targeted and conditional immortalization of erythrocytic progenitors. For that purpose, we established several lines of transgenic mice displaying erythroid-specific expression of a thermosensitive SV40 T antigen. As expected, these transgenic mice developed splenomegaly due to the massive amplification of Ter 119 positive erythroid nucleated cells expressing T antigen. Despite this drastic effect in vivo, the in vitro immortalization of erythropoietin-dependent erythroid progenitors unexpectedly occurred at low frequency, and all four cell lines established expressed both erythrocytic (globins) and megakaryocytic markers (glycoprotein IIb, platelet factor 4) as well as Spi-1 and Fli-1 transcripts at permissive temperature. Switching the cells to the nonpermissive temperature led to a marked increase in globin gene expression and concomitant decrease in expression of Spi-1, Fli-1, and megakaryocytic genes in an erythropoietin-dependent manner. Interestingly, enhanced expression of Spi-1 and Fli-1 genes already was detected in the Ter 119 positive cell population of transgenic mice spleen in vivo. However, like normal Ter 119 erythroid cells, these Ter 119 positive cells from transgenic mice still expressed high levels of beta-globin and very low or undetectable glycoprotein IIb and platelet factor 4 megakaryocytic transcripts. Taken together, these data indicate that the unexpected expression of megakaryocytic genes is a specific property of immortalized cells that cannot be explained only by enhanced expression of Spi-1 and/or Fli-1 genes.
Collapse
Affiliation(s)
- J Starck
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Lyon I, ViIleurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Murphy GJ, Leavitt AD. A model for studying megakaryocyte development and biology. Proc Natl Acad Sci U S A 1999; 96:3065-70. [PMID: 10077637 PMCID: PMC15895 DOI: 10.1073/pnas.96.6.3065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The limited current understanding of megakaryocyte-lineage development and megakaryocyte biology is in large part because of a paucity of useful systems in which to conduct experiments. To overcome this problem, we have developed a transgenic mouse that uses the GP-Ibalpha regulatory sequences to achieve megakaryocyte-lineage restricted expression of an avian retroviral receptor. Through the transgenic avian receptor, avian retroviruses can efficiently and selectively infect megakaryocyte-lineage cells in vitro and in vivo. Serial infections can be performed to introduce and express multiple genes in the same cell. We have used this system to generate and characterize a pure population of primary CD41-positive megakaryocyte progenitors.
Collapse
Affiliation(s)
- G J Murphy
- Departments of Laboratory Medicine and Internal Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
11
|
Abstract
The Mpl ligand is a hematopoietic cytokine which exerts its effects through association with the c-Mpl receptor. It regulates the proliferation, polyploidization and maturation of platelet precursors, the megakaryocytes. Using a differential display polymerase chain reaction (PCR) approach, we have identified an mRNA, belonging to a family of nucleosome assembly proteins, whose expression is upregulated in response to Mpl ligand. Multiple size classes of this mRNA (1.7, 2.5 and 4.3kb) are readily detected in rat primary bone marrow cells and hematopoietic tissues. The size classes are also expressed to different extents in cell lines of all hematopoietic lineages. We isolated the full-length cDNA encoding the rat megakaryocyte 1.7kb mRNA, referred to as rNAP1. Bacterially expressed recombinant protein encoded by the 1.7kb cDNA facilitates the formation of nucleosomes on relaxed circular DNA in vitro. Our data indicate that rNAPs, which may facilitate chromatin reorganization, are upregulated by Mpl ligand. It is possible that NAPs contribute to Mpl ligand's induced effects on hematopoietic cells.
Collapse
Affiliation(s)
- L M Cataldo
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston MA 02118, USA
| | | | | | | |
Collapse
|
12
|
−245 bp of 5′-Flanking Region From the Human Platelet Factor 4 Gene Is Sufficient to Drive Megakaryocyte-Specific Expression In Vivo. Blood 1998. [DOI: 10.1182/blood.v91.7.2326.2326_2326_2333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet factor 4 (PF4) serves as a lineage-specific marker of megakaryocyte development. We previously identified two positively acting sequences in the human platelet factor 4 (hPF4) gene promoter that synergized to drive high-level luciferase reporter gene expression in vitro. Using portions of the hPF4 5′-flanking region linked to the lacZ reporter gene, we observed in this investigation that constructs with −245 bp of 5′-flanking region were more active than constructs with −2 kb of 5′-flanking region in vitro. We created two independent transgenic mouse lines with a −245-bp hPF4/lacZ construct. Cells from these mice were tested for β-galactosidase (β-gal) expression at the mRNA level by Northern blot and semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and at the protein level by immunohistochemistry assay. Mice from one line showed β-gal expression specifically in all megakaryocytes of all ploidy classes from bone marrow and in platelets. Expression level was comparable to that driven by the 1.1-kb rat PF4 promoter in other transgenic mouse lines. Those in the second line showed no β-gal expression in megakaryocytes, platelets, or any of the eight organs tested. The −245-bp hPF4 promoter is capable of driving reporter gene expression in a megakaryocyte-specific manner in transgenic mice. The small size of this megakaryocyte-specific promoter is compatible with that required in some viral vectors and may provide a model for targeting gene expression to megakaryocytes.
Collapse
|
13
|
−245 bp of 5′-Flanking Region From the Human Platelet Factor 4 Gene Is Sufficient to Drive Megakaryocyte-Specific Expression In Vivo. Blood 1998. [DOI: 10.1182/blood.v91.7.2326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPlatelet factor 4 (PF4) serves as a lineage-specific marker of megakaryocyte development. We previously identified two positively acting sequences in the human platelet factor 4 (hPF4) gene promoter that synergized to drive high-level luciferase reporter gene expression in vitro. Using portions of the hPF4 5′-flanking region linked to the lacZ reporter gene, we observed in this investigation that constructs with −245 bp of 5′-flanking region were more active than constructs with −2 kb of 5′-flanking region in vitro. We created two independent transgenic mouse lines with a −245-bp hPF4/lacZ construct. Cells from these mice were tested for β-galactosidase (β-gal) expression at the mRNA level by Northern blot and semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and at the protein level by immunohistochemistry assay. Mice from one line showed β-gal expression specifically in all megakaryocytes of all ploidy classes from bone marrow and in platelets. Expression level was comparable to that driven by the 1.1-kb rat PF4 promoter in other transgenic mouse lines. Those in the second line showed no β-gal expression in megakaryocytes, platelets, or any of the eight organs tested. The −245-bp hPF4 promoter is capable of driving reporter gene expression in a megakaryocyte-specific manner in transgenic mice. The small size of this megakaryocyte-specific promoter is compatible with that required in some viral vectors and may provide a model for targeting gene expression to megakaryocytes.
Collapse
|
14
|
Zhang Y, Wang Z, Liu DX, Pagano M, Ravid K. Ubiquitin-dependent degradation of cyclin B is accelerated in polyploid megakaryocytes. J Biol Chem 1998; 273:1387-92. [PMID: 9430673 DOI: 10.1074/jbc.273.3.1387] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During the endomitotic cell cycle of megakaryocytic cell lines, the levels of cyclin B1 and the activity of cyclin B1-dependent Cdc2 kinase, although detectable, are reduced as compared with megakaryocytes undergoing a mitotic cell cycle. The levels of cyclin A, however, are comparable during both cell cycles. The expression of cyclin B1 mRNA is also equivalent in proliferating and polyploidizing cells. In the current study, we found that the rate of cyclin B1 protein degradation is enhanced in polyploidizing megakaryocytes. This finding has led us to further investigate whether the ubiquitin-proteosome pathway responsible for cyclin B degradation is accelerated in these cells. Our data indicate that polyploidizing megakaryocytic cell lines nad primary bone marrow cells treated with the megakaryocyte proliferation- and ploidy-promoting factor, the c-Mpl ligand, display increased activities of the ubiquitin-proteosome pathway, which degrades cyclin B, as compared with proliferating megakaryocytic cell lines or diploid bone marrow cells, respectively. This degradation has all the hallmarks of a ubiquitin pathway, including the dependence on ATP, the appearance of high molecular weight conjugated forms of cyclin B, and inhibition of the proteolytic process by a mutated form of the ubiquitin-conjugating enzyme Ubc4. Our studies also indicate that the ability to degrade cyclin A is equivalent in both the mitotic and endomitotic cell cycles. The increased potential of polyploid megakaryocytes to degrade cyclin B may be part of the cellular programming that leads to aborted mitosis.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
15
|
Zimmet JM, Ladd D, Jackson CW, Stenberg PE, Ravid K. A role for cyclin D3 in the endomitotic cell cycle. Mol Cell Biol 1997; 17:7248-59. [PMID: 9372957 PMCID: PMC232582 DOI: 10.1128/mcb.17.12.7248] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Platelets, essential for thrombosis and hemostasis, develop from polyploid megakaryocytes which undergo endomitosis. During this cell cycle, cells experience abrogated mitosis and reenter a phase of DNA synthesis, thus leading to endomitosis. In the search for regulators of the endomitotic cell cycle, we have identified cyclin D3 as an important regulatory factor. Of the D-type cyclins, cyclin D3 is present at high levels in megakaryocytes undergoing endomitosis and is markedly upregulated following exposure to the proliferation-, maturation-, and ploidy-promoting factor, Mpl ligand. Transgenic mice in which cyclin D3 is overexpressed in the platelet lineage display a striking increase in endomitosis, similar to changes seen following Mpl ligand administration to normal mice. Electron microscopy analysis revealed that unlike such treated mice, however, D3 transgenic mice show a poor development of demarcation membranes, from which platelets are believed to fragment, and no increase in platelets. Thus, while our model supports a key role for cyclin D3 in the endomitotic cell cycle, it also points to the unique role of Mpl ligand in priming megakaryocytes towards platelet fragmentation. The role of cyclin D3 in promoting endomitosis in other lineages programmed to abrogate mitosis will need further exploration.
Collapse
Affiliation(s)
- J M Zimmet
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
16
|
Zhao Z, Francis CE, Welch G, Loscalzo J, Ravid K. Reduced glutathione prevents nitric oxide-induced apoptosis in vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1359:143-52. [PMID: 9409811 DOI: 10.1016/s0167-4889(97)00093-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The control of medial and neointimal growth, in which vascular smooth muscle (VSM) plays a central role, is most important to the development of hypertension and atherosclerosis, respectively. Growth of vascular smooth muscle cells is regulated by a number of factors, including the vasodilator nitric oxide (NO). In addition, NO modulates intracellular thiol redox states and the thiol redox state of the cell influences NO production. We, therefore, examined the nature of the effect of NO on growth of VSM cells and its modulation by cellular glutathione content. Here, we report that NO, either generated by NO donors or synthesized by iNOS in VSM cells, inhibited DNA synthesis and induced apoptosis in this cell type. NO-induced apoptosis was associated with a significant decrease in the intracellular concentration of reduced glutathione and with an increase in the level of the tumor suppressor gene p53 mRNA. Moreover, addition of glutathione monoethylester to the culture restored the level of reduced glutathione in VSM cells, and prevented the NO-induced increase in p53 expression and programmed cell death. Our findings suggest a role for reduced glutathione in protecting VSM cells exposed to NO from apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Division/drug effects
- Cells, Cultured
- Flow Cytometry
- Genes, myc
- Genes, p53/genetics
- Glutathione/analogs & derivatives
- Glutathione/metabolism
- Glutathione/pharmacology
- Lipopolysaccharides/pharmacology
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Nitric Oxide/pharmacology
- Nitric Oxide/physiology
- Nitroprusside/pharmacology
- Nitroso Compounds/pharmacology
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Z Zhao
- Department of Biochemistry, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | |
Collapse
|
17
|
Zhao Z, Francis CE, Ravid K. An A3-subtype adenosine receptor is highly expressed in rat vascular smooth muscle cells: its role in attenuating adenosine-induced increase in cAMP. Microvasc Res 1997; 54:243-52. [PMID: 9441895 DOI: 10.1006/mvre.1997.2044] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adenosine analogs are known to induce changes in the steady-state concentration of cAMP via binding to adenylyl cyclase-inhibitory or -stimulatory adenosine receptors. Although adenosine has been found to increase cAMP in vascular smooth muscle cells (VSMC), we found by the polymerase chain reaction of reverse-transcribed RNA and subsequently by Northern blot analysis that rat VSMC express high levels of an A3-subtype adenosine receptor cDNA which encodes an adenylyl cyclase-inhibitory adenosine receptor. The A3-specific agonist, N6-(3-iodobenzyl) adenosine-5'-N-mehylcarboxamide (IB-MECA) indeed decreases cAMP levels in VSMC cultured in the presence of forskolin. Antisense oligomers to the A3 adenosine receptor significantly reduce the level of this receptor in VSMC and potentiate endogenous adenosine- or 5'-N-ethylcarboxamido adenosine-induced increases in cAMP and of the proto-oncogene c-fos. Abrogating the expression of the A3 adenosine receptor also largely abolishes IB-MECA-induced inhibition of adenylyl cyclase. The level of A3 adenosine receptor mRNA and the extent of changes in cAMP in response to IB-MECA were lower in cultures of VSMC derived from adult rats, compared to VSMC from neonatal rats. The expression of a functional A3 adenosine receptor was also confirmed in preparations of isolated aortas. Our findings thus indicate that: (a) the A3-type receptor is a functional inhibitory adenosine receptor in VSMC; and (b) the regulation of expression of the A3 receptor is critical in determining effects of adenosine on the steady-state concentration of cAMP.
Collapse
MESH Headings
- Adenosine/pharmacology
- Adenosine/physiology
- Adenosine-5'-(N-ethylcarboxamide)/pharmacology
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Animals
- Aorta/metabolism
- Blotting, Northern
- Cyclic AMP/metabolism
- Gene Expression Regulation/drug effects
- Genes, fos/drug effects
- Intracellular Fluid/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Oligonucleotides, Antisense/pharmacology
- Organ Specificity
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Purinergic P1/biosynthesis
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/physiology
Collapse
Affiliation(s)
- Z Zhao
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts 02139, USA
| | | | | |
Collapse
|
18
|
Loo AT, Youngentob SL, Kent PF, Schwob JE. The aging olfactory epithelium: neurogenesis, response to damage, and odorant-induced activity. Int J Dev Neurosci 1996; 14:881-900. [PMID: 9010732 DOI: 10.1016/s0736-5748(96)00046-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Olfactory epithelium retains the capacity to recover anatomically after damage well into adult life and perhaps throughout its duration. None the less, olfactory dysfunctions have been reported widely for elderly humans. The present study investigates the effects of aging on the neurophysiological and anatomical status of the olfactory epithelium in barrier-raised Fischer 344X Brown Norway F1 hybrid rats at 7, 10, 25 and 32/35 months old. The posterior part of the olfactory epithelium in 32/35-month-old rats is well preserved. Globose basal cells are dividing, and new neurons are being born even at this advanced age. None the less, the numbers of proliferating basal cells and immature, GAP-43 (+) neurons are significantly decreased. Neurophysiological status was evaluated using voltage-sensitive dye techniques to assess inherent patterns of odorant-induced activity in the epithelium lining the septum and the medial surface of the turbinates. In middle and posterior zones of the epithelium, there were neither age-related changes in overall responsivity of this part of the olfactory epithelium to any of five odorants, nor shifts in the location of the odorant-induced hotspots. The inherent activity patterns elicited by the different odorants do become more distinct as a function of age, which probably reflects the decline in immature neurons and a slight, but not statistically significant, increase in mature neurons as a function of age. In contrast with the excellent preservation of posterior epithelium, the epithelium lining the anterodorsal septum and the corresponding face of the turbinates is damaged in the 32/35-month-old animals: in this part, horizontal basal cells are reactive, more basal cells and sustentacular cells are proliferating than in younger animals or in posterior epithelium of the same animals, and the neuronal population is less mature on average. Our findings indicate that degeneration of the olfactory epithelium is not an inevitable or pre-programmed consequence of the aging process, since the posterior zone of the epithelium is very well preserved in these barrier-protected animals. However, the deterioration in the anterior epithelium suggests that environmental insults can accumulate or become more severe with age and overwhelm the regenerative capacity of the epithelium. Alternatively, the regenerative capacity of the epithelium may wane somewhat with age. Either of these mechanisms or some combination of them can account for the functional and anatomical deterioration of the sense of smell associated with senescence in humans.
Collapse
Affiliation(s)
- A T Loo
- Department of Physiology, SUNY Health Science Center 13210, USA
| | | | | | | |
Collapse
|
19
|
Thompson A, Zhang Y, Kamen D, Jackson CW, Cardiff RD, Ravid K. Deregulated expression of c-myc in megakaryocytes of transgenic mice increases megakaryopoiesis and decreases polyploidization. J Biol Chem 1996; 271:22976-82. [PMID: 8798484 DOI: 10.1074/jbc.271.38.22976] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Platelets, essential for vascular integrity and hemostasis, fragment from polyploid megakaryocytes, characterized by their endomitotic cell cycle. We studied the influence of overexpression of c-myc oncogene on megakaryopoiesis and endomitosis in vivo, using transgenic mice carrying c-myc fused to the estrogen receptor under the control of the platelet factor 4 (PF4) megakaryocyte-specific promoter. The rationale behind this strategy was to obtain controlled overexpression of an active c-Myc, depending on the estrogen level in the mouse circulation. Analysis of these transgenic mice revealed that the bone marrow of female transgenic mice or of estrogen-injected male transgenic mice, but not of age-matched transgenic males nor nontransgenic females, contained frequent immature myeloid cells and an increased number of megakaryocytes. Deregulated expression of c-Myc shifted the normal ploidy profile of megakaryocytes due to a significant increase in proliferating megakaryocytes and a decrease in the fraction of ploidizing cells. These transgenic mice represent a novel in vivo model for a Myc-induced myeloproliferative disorder which can be controlled.
Collapse
Affiliation(s)
- A Thompson
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
20
|
Zhang Y, Wang Z, Ravid K. The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase. J Biol Chem 1996; 271:4266-72. [PMID: 8626773 DOI: 10.1074/jbc.271.8.4266] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The platelet precursor, the megakaryocyte, matures to a polyploid cell as a result of DNA replication in the absence of mitosis (endomitosis). The factors controlling endomitosis are accessible to analysis in our megakaryocytic cell line, MegT, generated by targeted expression of temperature-sensitive simian virus 40 large T antigen to megakaryocytes of transgenic mice. We aimed to define whether endomitosis consists of a continuous phase of DNA synthesis (S) or of S phases interrupted by gaps. Analysis of the cell cycle in MegT cells revealed that, upon inactivation of large T antigen, the cells shifted from a mitotic cell cycle to an endomitotic cell cycle consisting of S/Gap phases. The level of the G1/S cyclin, cyclin A, as well as of the G1 phase cyclin, cyclin D3, were elevated at the onset of DNA synthesis, either in MegT cells undergoing a mitotic cell cycle or during endomitosis. In contrast, the level of the mitotic cyclin, cyclin B1, cycled in cells displaying a mitotic cell cycle while not detectable during endomitosis. Comparable levels of the mitotic kinase protein, Cdc2, were detected during the mitotic cell cycle or during endomitosis; however, cyclin B1-dependent Cdc2 kinase activity was largely abolished in the polyploid cells. Fibroblasts immortalized with the same heat-labile oncogene do not display reduced levels of cyclin B1 upon shifting to high temperature nor do they become polyploid, indicating that reduced levels of cyclin B1 is a property of megakaryocytes and not of the T-antigen mutant. We conclude that cellular programming during endoreduplication in megakaryocytes is associated with reduced levels of cyclin B1.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
21
|
Vainchenker W, Debili N, Mouthon MA, Wendling F. Megakaryocytopoiesis: cellular aspects and regulation. Crit Rev Oncol Hematol 1995; 20:165-92. [PMID: 7576196 DOI: 10.1016/1040-8428(94)00159-q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- W Vainchenker
- INSERM U. 362, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|