1
|
Zhao J, Zhang H, Pan C, He Q, Zheng K, Tang Y. Advances in research on the relationship between the LMNA gene and human diseases (Review). Mol Med Rep 2024; 30:236. [PMID: 39422026 PMCID: PMC11529173 DOI: 10.3892/mmr.2024.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
The LMNA gene, which is responsible for encoding lamin A/C proteins, is recognized as a primary constituent of the nuclear lamina. This protein serves crucial roles in various cellular physiological activities, including the maintenance of cellular structural stability, regulation of gene expression, mechanosensing and cellular motility. A significant association has been established between the LMNA gene and several major human diseases. Mutations, dysregulated expression of the LMNA gene, and improper processing of its encoded protein can result in a spectrum of pathological conditions. These diseases, collectively termed laminopathies, are directly attributed to LMNA gene dysfunction. The present review examines the recent advancements in research concerning the LMNA gene and its association with human diseases, while exploring its pathological roles. Particular emphasis is placed on the current status of LMNA gene research in the context of tumors. This includes an analysis of the abundance of LMNA alterations in cancer and its interplay with various signaling pathways. The aim of the present review was to provide novel perspectives for studying the development of LMNA‑related diseases and additional theoretical insights for basic and clinical translational research in this field.
Collapse
Affiliation(s)
- Jiumei Zhao
- Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China
| | - Huijuan Zhang
- Forensic Science Centre, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chenglong Pan
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qian He
- School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kepu Zheng
- Forensic Science Centre, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yu Tang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
2
|
Bauer R, Parker C, Gorsic LK, Hayes MG, Kunselman AR, Legro RS, Welt CK, Urbanek M. Rare variation in LMNA underlies polycystic ovary syndrome (PCOS) pathogenesis in two independent cohorts. J Clin Endocrinol Metab 2024:dgae761. [PMID: 39484826 DOI: 10.1210/clinem/dgae761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a common, heritable endocrinopathy that is a common cause of anovulatory infertility in reproductive age women. Variants in LMNA cause partial lipodystrophy, a syndrome with overlapping features to PCOS. OBJECTIVE We tested the hypothesis that rare variation in LMNA contributes to PCOS pathogenesis and selects a lipodystrophy-like subtype of PCOS. DESIGN, SETTING, AND PARTICIPANTS We sequenced LMNA by targeted sequencing a discovery cohort of 811 PCOS patients and 164 healthy controls. We then analyzed LMNA from whole-exome sequencing (WES) of a replication cohort of 718 PCOS patients and 281 healthy controls. MAIN OUTCOME MEASURES Variation in the LMNA gene, hormone and lipid profiles of participants. RESULTS In the discovery cohort, we identified 8 missense variants in 15/811 cases, and 1 variant in 1/172 reproductively healthy controls. There is strong evidence for association between the variants and PCOS compared to gnomAD non-Finnish European population controls (χ2=17, p=3.7x10-5, OR=2.9). In the replication cohort, we identified 11 unique variants in 15/718 cases, and 1 variant in 281 reproductively healthy controls. Again, there is strong evidence for association with population controls (χ2=30.5, p=3.4x10-8, OR= 4.0). In both the discovery and replication cohorts, variants in LMNA identify women with PCOS with high triglycerides and extreme insulin resistance. CONCLUSIONS Rare missense variation in LMNA is reproducibly associated with PCOS and identifies some individuals with lipodystrophy-like features. The overlap between this PCOS phenotype and genetic partial lipodystrophy syndromes warrants further investigation into additional lipodystrophy genes and their potential in PCOS etiology.
Collapse
Affiliation(s)
- Rosemary Bauer
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Center for Reproductive Science, Northwestern University, Chicago IL 60611
| | - Chloe Parker
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lidija K Gorsic
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Anthropology, Northwestern University, Evanston, IL 60208
| | - Allen R Kunselman
- Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Penn State College of Medicine, Hershey, PA 17033
| | - Corrine K Welt
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah, Salt Lake City, Utah 84132
| | - Margrit Urbanek
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Center for Reproductive Science, Northwestern University, Chicago IL 60611
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
3
|
Dhankhar M, Guo Z, Kant A, Basir R, Joshi R, Heo SC, Mauck RL, Lakadamyali M, Shenoy VB. Revealing the Biophysics of Lamina-Associated Domain Formation by Integrating Theoretical Modeling and High-Resolution Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600310. [PMID: 38979207 PMCID: PMC11230226 DOI: 10.1101/2024.06.24.600310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The interactions between chromatin and the nuclear lamina orchestrate cell type-specific gene activity by forming lamina-associated domains (LADs) which preserve cellular characteristics through gene repression. However, unlike the interactions between chromatin segments, the strength of chromatin-lamina interactions and their dependence on cellular environment are not well understood. Here, we develop a theory to predict the size and shape of peripheral heterochromatin domains by considering the energetics of chromatin-chromatin interactions, the affinity between chromatin and the nuclear lamina and the kinetics of methylation and acetylation9in human mesenchymal stem cells (hMSCs). Through the analysis of super-resolution images of peripheral heterochromatin domains using this theoretical framework, we determine the nuclear lamina-wide distribution of chromatin-lamina affinities. We find that the extracted affinity is highly spatially heterogeneous and shows a bimodal distribution, indicating regions along the lamina with strong chromatin binding and those exhibiting vanishing chromatin affinity interspersed with some regions exhibiting a relatively diminished chromatin interactions, in line with the presence of structures such as nuclear pores. Exploring the role of environmental cues on peripheral chromatin, we find that LAD thickness increases when hMSCs are cultured on a softer substrate, in correlation with contractility-dependent translocation of histone deacetylase 3 (HDAC3) from the cytosol to the nucleus. In soft microenvironments, chromatin becomes sequestered at the nuclear lamina, likely due to the interactions of HDAC3 with the chromatin anchoring protein LAP2 β ,increasing chromatin-lamina affinity, as well as elevated levels of the intranuclear histone methylation. Our findings are further corroborated by pharmacological interventions that inhibit contractility, as well as by manipulating methylation levels using epigenetic drugs. Notably, in the context of tendinosis, a chronic condition characterized by collagen degeneration, we observed a similar increase in the thickness of peripheral chromatin akin to that of cells cultured on soft substrates consistent with theoretical predictions. Our findings underscore the pivotal role of the microenvironment in shaping genome organization and highlight its relevance in pathological conditions.
Collapse
|
4
|
Wesley CC, North DV, Levy DL. Protein kinase C activity modulates nuclear Lamin A/C dynamics in HeLa cells. Sci Rep 2024; 14:6388. [PMID: 38493209 PMCID: PMC10944469 DOI: 10.1038/s41598-024-57043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
The nuclear lamina serves important functions in the nucleus, providing structural support to the nuclear envelope and contributing to chromatin organization. The primary proteins that constitute the lamina are nuclear lamins whose functions are impacted by post-translational modifications, including phosphorylation by protein kinase C (PKC). While PKC-mediated lamin phosphorylation is important for nuclear envelope breakdown during mitosis, less is known about interphase roles for PKC in regulating nuclear structure. Here we show that overexpression of PKC ß, but not PKC α, increases the Lamin A/C mobile fraction in the nuclear envelope in HeLa cells without changing the overall structure of Lamin A/C and Lamin B1 within the nuclear lamina. Conversely, knockdown of PKC ß, but not PKC α, reduces the Lamin A/C mobile fraction. Thus, we demonstrate an isoform-specific role for PKC in regulating interphase Lamin A/C dynamics outside of mitosis.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Dallin V North
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
5
|
Frost B. Alzheimer's disease and related tauopathies: disorders of disrupted neuronal identity. Trends Neurosci 2023; 46:797-813. [PMID: 37591720 PMCID: PMC10528597 DOI: 10.1016/j.tins.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Postmitotic neurons require persistently active controls to maintain terminal differentiation. Unlike dividing cells, aberrant cell cycle activation in mature neurons causes apoptosis rather than transformation. In Alzheimer's disease (AD) and related tauopathies, evidence suggests that pathogenic forms of tau drive neurodegeneration via neuronal cell cycle re-entry. Multiple interconnected mechanisms linking tau to cell cycle activation have been identified, including, but not limited to, tau-induced overstabilization of the actin cytoskeleton, consequent changes to nuclear architecture, and disruption of heterochromatin-mediated gene silencing. Cancer- and development-associated pathways are upregulated in human and cellular models of tauopathy, and many tau-induced cellular phenotypes are also present in various cancers and progenitor/stem cells. In this review, I delve into mechanistic parallels between tauopathies, cancer, and development, and highlight the role of tau in cancer and in the developing brain. Based on these studies, I put forth a model by which pathogenic forms of tau disrupt the program that maintains terminal neuronal differentiation, driving cell cycle re-entry and consequent neuronal death. This framework presents tauopathies as conditions involving the profound toxic disruption of neuronal identity.
Collapse
Affiliation(s)
- Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Wesley CC, Levy DL. Differentiation-dependent changes in lamin B1 dynamics and lamin B receptor localization. Mol Biol Cell 2023; 34:ar10. [PMID: 36598800 PMCID: PMC9930530 DOI: 10.1091/mbc.e22-04-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nuclear lamina serves important roles in chromatin organization and structural support, and lamina mutations can result in laminopathies. Less is known about how nuclear lamina structure changes during cellular differentiation-changes that may influence gene regulation. We examined the structure and dynamics of the nuclear lamina in human-induced pluripotent stem cells (iPSCs) and differentiated germ layer cells, focusing on lamin B1. We report that lamin B1 dynamics generally increase as iPSCs differentiate, especially in mesoderm and ectoderm, and that lamin B receptor (LBR) partially redistributes from the nucleus to cytoplasm in mesoderm. Knocking down LBR in iPSCs led to an increase in lamin B1 dynamics, a change that was not observed for ELYS, emerin, or lamin B2 knockdown. LBR knockdown also affected expression of differentiation markers. These data suggest that differentiation-dependent tethering of lamin B1 either directly by LBR or indirectly via LBR-chromatin associations impacts gene expression.
Collapse
Affiliation(s)
- Chase C. Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071,*Address correspondence to: Daniel L. Levy ()
| |
Collapse
|
7
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Lee H, Choi S, Ha S, Yoon S, Kim WY. ARL2 is required for homologous recombination repair and colon cancer stem cell survival. FEBS Open Bio 2022; 12:1523-1533. [PMID: 35567502 PMCID: PMC9340879 DOI: 10.1002/2211-5463.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
ARL2 regulates the dynamics of cytological components and is highly expressed in colon cancer tissues. Here, we report novel roles of ARL2 in the cell nucleus and colon cancer stem cells (CSCs). ARL2 is expressed at relatively low levels in K‐RAS active colon cancer cells, but its expression is induced in CSCs. Depletion of ARL2 results in M phase arrest exclusively in non‐CSC cultured cells; in addition, DNA break stress accumulates in CSCs leading to apoptosis. ARL2 expression is positively associated with the expression of all six RAD51 family genes, which are essential for homologous recombination repair (HRR). Furthermore, ARL2 is required for HRR and detected within chromatin compartments. These results demonstrate the requirement of ARL2 in colon CSC maintenance, which possibly occurs through mediating double‐strand break DNA repair in the nucleus.
Collapse
Affiliation(s)
- Hani Lee
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - SeokGyeong Choi
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - Sojung Ha
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - Sukjoon Yoon
- Department of Biological Sciences, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea.,Research Institute of Pharmacal Research, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| |
Collapse
|
9
|
Di Tomaso MV, Vázquez Alberdi L, Olsson D, Cancela S, Fernández A, Rosillo JC, Reyes Ábalos AL, Álvarez Zabaleta M, Calero M, Kun A. Colocalization Analysis of Peripheral Myelin Protein-22 and Lamin-B1 in the Schwann Cell Nuclei of Wt and TrJ Mice. Biomolecules 2022; 12:456. [PMID: 35327648 PMCID: PMC8946543 DOI: 10.3390/biom12030456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022] Open
Abstract
Myelination of the peripheral nervous system requires Schwann cells (SC) differentiation into the myelinating phenotype. The peripheral myelin protein-22 (PMP22) is an integral membrane glycoprotein, expressed in SC. It was initially described as a growth arrest-specific (gas3) gene product, up-regulated by serum starvation. PMP22 mutations were pathognomonic for human hereditary peripheral neuropathies, including the Charcot-Marie-Tooth disease (CMT). Trembler-J (TrJ) is a heterozygous mouse model carrying the same pmp22 point mutation as a CMT1E variant. Mutations in lamina genes have been related to a type of peripheral (CMT2B1) or central (autosomal dominant leukodystrophy) neuropathy. We explore the presence of PMP22 and Lamin B1 in Wt and TrJ SC nuclei of sciatic nerves and the colocalization of PMP22 concerning the silent heterochromatin (HC: DAPI-dark counterstaining), the transcriptionally active euchromatin (EC), and the nuclear lamina (H3K4m3 and Lamin B1 immunostaining, respectively). The results revealed that the number of TrJ SC nuclei in sciatic nerves was greater, and the SC volumes were smaller than those of Wt. The myelin protein PMP22 and Lamin B1 were detected in Wt and TrJ SC nuclei and predominantly in peripheral nuclear regions. The level of PMP22 was higher, and those of Lamin B1 lower in TrJ than in Wt mice. The level of PMP22 was higher, and those of Lamin B1 lower in TrJ than in Wt mice. PMP22 colocalized more with Lamin B1 and with the transcriptionally competent EC, than the silent HC with differences between Wt and TrJ genotypes. The results are discussed regarding the probable nuclear role of PMP22 and the relationship with TrJ neuropathy.
Collapse
Affiliation(s)
- María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (D.O.); (S.C.); (A.L.R.Á.); (M.Á.Z.)
| | - Lucía Vázquez Alberdi
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay;
| | - Daniela Olsson
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (D.O.); (S.C.); (A.L.R.Á.); (M.Á.Z.)
| | - Saira Cancela
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (D.O.); (S.C.); (A.L.R.Á.); (M.Á.Z.)
| | - Anabel Fernández
- Laboratorio de Neurobiología Comparada, Departamento de Neurociencias Integrativas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (A.F.); (J.C.R.)
| | - Juan Carlos Rosillo
- Laboratorio de Neurobiología Comparada, Departamento de Neurociencias Integrativas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (A.F.); (J.C.R.)
| | - Ana Laura Reyes Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (D.O.); (S.C.); (A.L.R.Á.); (M.Á.Z.)
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Magdalena Álvarez Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (D.O.); (S.C.); (A.L.R.Á.); (M.Á.Z.)
| | - Miguel Calero
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Unidad de Microscopía Electrónica de Barrido, Universidad de la República, Montevideo 11400, Uruguay
| | - Alejandra Kun
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay;
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Unidad de Encefalopatías Espongiformes (UFIEC), 28029 Madrid, Spain;
| |
Collapse
|
10
|
Wong X, Hoskins VE, Melendez-Perez AJ, Harr JC, Gordon M, Reddy KL. Lamin C is required to establish genome organization after mitosis. Genome Biol 2021; 22:305. [PMID: 34775987 PMCID: PMC8591896 DOI: 10.1186/s13059-021-02516-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The dynamic 3D organization of the genome is central to gene regulation and development. The nuclear lamina influences genome organization through the tethering of lamina-associated domains (LADs) to the nuclear periphery. Evidence suggests that lamins A and C are the predominant lamins involved in the peripheral association of LADs, potentially serving different roles. RESULTS Here, we examine chromosome architecture in mouse cells in which lamin A or lamin C are downregulated. We find that lamin C, and not lamin A, is required for the 3D organization of LADs and overall chromosome organization. Striking differences in localization are present as cells exit mitosis and persist through early G1 and are linked to differential phosphorylation. Whereas lamin A associates with the nascent nuclear envelope (NE) during telophase, lamin C remains in the interior, surrounding globular LAD aggregates enriched on euchromatic regions. Lamin C association with the NE is delayed until several hours into G1 and correlates temporally and spatially with the post-mitotic NE association of LADs. Post-mitotic LAD association with the NE, and global 3D genome organization, is perturbed only in cells depleted of lamin C, and not lamin A. CONCLUSIONS Lamin C regulates LAD dynamics during exit from mitosis and is a key regulator of genome organization in mammalian cells. This reveals an unexpectedly central role for lamin C in genome organization, including inter-chromosomal LAD-LAD segregation and LAD scaffolding at the NE, raising intriguing questions about the individual and overlapping roles of lamin A/C in cellular function and disease.
Collapse
Affiliation(s)
- Xianrong Wong
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Current Address: Laboratory of Developmental and Regenerative Biology, A*STAR Skin Research Labs, Agency for Science, Technology and Research (A*STAR), Immunos, Singapore, 138648, Singapore
| | - Victoria E Hoskins
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ashley J Melendez-Perez
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jennifer C Harr
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Biological Sciences, St. Mary's University, San Antonio, TX, 78228, USA
| | - Molly Gordon
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Alcalá‐Vida R, Garcia‐Forn M, Castany‐Pladevall C, Creus‐Muncunill J, Ito Y, Blanco E, Golbano A, Crespí‐Vázquez K, Parry A, Slater G, Samarajiwa S, Peiró S, Di Croce L, Narita M, Pérez‐Navarro E. Neuron type-specific increase in lamin B1 contributes to nuclear dysfunction in Huntington's disease. EMBO Mol Med 2021; 13:e12105. [PMID: 33369245 PMCID: PMC7863407 DOI: 10.15252/emmm.202012105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Lamins are crucial proteins for nuclear functionality. Here, we provide new evidence showing that increased lamin B1 levels contribute to the pathophysiology of Huntington's disease (HD), a CAG repeat-associated neurodegenerative disorder. Through fluorescence-activated nuclear suspension imaging, we show that nucleus from striatal medium-sized spiny and CA1 hippocampal neurons display increased lamin B1 levels, in correlation with altered nuclear morphology and nucleocytoplasmic transport disruption. Moreover, ChIP-sequencing analysis shows an alteration of lamin-associated chromatin domains in hippocampal nuclei, accompanied by changes in chromatin accessibility and transcriptional dysregulation. Supporting lamin B1 alterations as a causal role in mutant huntingtin-mediated neurodegeneration, pharmacological normalization of lamin B1 levels in the hippocampus of the R6/1 mouse model of HD by betulinic acid administration restored nuclear homeostasis and prevented motor and cognitive dysfunction. Collectively, our work points increased lamin B1 levels as a new pathogenic mechanism in HD and provides a novel target for its intervention.
Collapse
Affiliation(s)
- Rafael Alcalá‐Vida
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Present address:
Laboratory of Cognitive and Adaptive NeuroscienceUMR 7364 (CNRS/Strasbourg University)StrasbourgFrance
| | - Marta Garcia‐Forn
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Present address:
Seaver Autism Center for Research and TreatmentIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Carla Castany‐Pladevall
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Jordi Creus‐Muncunill
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Yoko Ito
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Arantxa Golbano
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Kilian Crespí‐Vázquez
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Aled Parry
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUK
| | - Guy Slater
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Shamith Samarajiwa
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Sandra Peiró
- Vall d'Hebron Institute of OncologyBarcelonaSpain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| | - Masashi Narita
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Esther Pérez‐Navarro
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
12
|
Rangel-Pozzo A, Sisdelli L, Cordioli MIV, Vaisman F, Caria P, Mai S, Cerutti JM. Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations. Cancers (Basel) 2020; 12:E3146. [PMID: 33120984 PMCID: PMC7693829 DOI: 10.3390/cancers12113146] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer is a rare malignancy in the pediatric population that is highly associated with disease aggressiveness and advanced disease stages when compared to adult population. The biological and molecular features underlying pediatric and adult thyroid cancer pathogenesis could be responsible for differences in the clinical presentation and prognosis. Despite this, the clinical assessment and treatments used in pediatric thyroid cancer are the same as those implemented for adults and specific personalized target treatments are not used in clinical practice. In this review, we focus on papillary thyroid carcinoma (PTC), which represents 80-90% of all differentiated thyroid carcinomas. PTC has a high rate of gene fusions and mutations, which can influence the histologic subtypes in both children and adults. This review also highlights telomere-related genomic instability and changes in nuclear organization as novel biomarkers for thyroid cancers.
Collapse
Affiliation(s)
- Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Luiza Sisdelli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| | - Maria Isabel V. Cordioli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| | - Fernanda Vaisman
- Instituto Nacional do Câncer, Rio de Janeiro, RJ 22451-000, Brazil;
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Janete M. Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| |
Collapse
|
13
|
Maji A, Ahmed JA, Roy S, Chakrabarti B, Mitra MK. A Lamin-Associated Chromatin Model for Chromosome Organization. Biophys J 2020; 118:3041-3050. [PMID: 32492372 DOI: 10.1016/j.bpj.2020.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
We propose a simple model for chromatin organization based on the interaction of the chromatin fibers with lamin proteins along the nuclear membrane. Lamin proteins are known to be a major factor that influences chromatin organization and hence gene expression in the cells. We provide a quantitative understanding of lamin-associated chromatin organization in a crowded macromolecular environment by systematically varying the heteropolymer segment distribution and the strength of the lamin-chromatin attractive interaction. Our minimal polymer model reproduces the formation of lamin-associated-domains and provides an in silico tool for quantifying domain length distributions for different distributions of heteropolymer segments. We show that a Gaussian distribution of heteropolymer segments, coupled with strong lamin-chromatin interactions, can qualitatively reproduce observed length distributions of lamin-associated-domains. Further, lamin-mediated interaction can enhance the formation of chromosome territories as well as the organization of chromatin into tightly packed heterochromatin and the loosely packed gene-rich euchromatin regions.
Collapse
Affiliation(s)
- Ajoy Maji
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Jahir A Ahmed
- AKI's Poona College of Arts, Science and Commerce, Camp, Pune, India
| | - Subhankar Roy
- Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | | | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
14
|
Alvarado-Kristensson M, Rosselló CA. The Biology of the Nuclear Envelope and Its Implications in Cancer Biology. Int J Mol Sci 2019; 20:E2586. [PMID: 31137762 PMCID: PMC6566445 DOI: 10.3390/ijms20102586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
The formation of the nuclear envelope and the subsequent compartmentalization of the genome is a defining feature of eukaryotes. Traditionally, the nuclear envelope was purely viewed as a physical barrier to preserve genetic material in eukaryotic cells. However, in the last few decades, it has been revealed to be a critical cellular component in controlling gene expression and has been implicated in several human diseases. In cancer, the relevance of the cell nucleus was first reported in the mid-1800s when an altered nuclear morphology was observed in tumor cells. This review aims to give a current and comprehensive view of the role of the nuclear envelope on cancer first by recapitulating the changes of the nuclear envelope during cell division, second, by reviewing the role of the nuclear envelope in cell cycle regulation, signaling, and the regulation of the genome, and finally, by addressing the nuclear envelope link to cell migration and metastasis and its use in cancer prognosis.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07121 Palma de Mallorca, Spain.
- Lipopharma Therapeutics, Isaac Newton, 07121 Palma de Mallorca, Spain.
| |
Collapse
|
15
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
16
|
Misale MS, Witek Janusek L, Tell D, Mathews HL. Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction. Brain Behav Immun 2018; 67:279-289. [PMID: 28911980 PMCID: PMC5696065 DOI: 10.1016/j.bbi.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022] Open
Abstract
It is well-established that psychological distress reduces natural killer cell immune function and that this reduction can be due to the stress-induced release of glucocorticoids. Glucocorticoids are known to alter epigenetic marks associated with immune effector loci, and are also known to influence chromatin organization. The purpose of this investigation was to assess the effect of glucocorticoids on natural killer cell chromatin organization and to determine the relationship of chromatin organization to natural killer cell effector function, e.g. interferon gamma production. Interferon gamma production is the prototypic cytokine produced by natural killer cells and is known to modulate both innate and adaptive immunity. Glucocorticoid treatment of human peripheral blood mononuclear cells resulted in a significant reduction in interferon gamma production. Glucocorticoid treatment also resulted in a demonstrable natural killer cell nuclear phenotype. This phenotype was localization of the histone, post-translational epigenetic mark, H3K27me3, to the nuclear periphery. Peripheral nuclear localization of H3K27me3 was directly related to cellular levels of interferon gamma. This nuclear phenotype was determined by direct visual inspection and by use of an automated, high through-put technology, the Amnis ImageStream. This technology combines the per-cell information content provided by standard microscopy with the statistical significance afforded by large sample sizes common to standard flow cytometry. Most importantly, this technology provides for a direct assessment of the localization of signal intensity within individual cells. The results demonstrate glucocorticoids to dysregulate natural killer cell function at least in part through altered H3K27me3 nuclear organization and demonstrate H3K27me3 chromatin organization to be a predictive indicator of glucocorticoid induced immune dysregulation of natural killer cells.
Collapse
Affiliation(s)
- Michael S Misale
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Linda Witek Janusek
- Marcella Niehoff School of Nursing, Department of Health Promotion, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Dina Tell
- Marcella Niehoff School of Nursing, Department of Health Promotion, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Herbert L Mathews
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States.
| |
Collapse
|
17
|
Fišerová J, Efenberková M, Sieger T, Maninová M, Uhlířová J, Hozák P. Chromatin organization at the nuclear periphery as revealed by image analysis of structured illumination microscopy data. J Cell Sci 2017; 130:2066-2077. [PMID: 28476938 DOI: 10.1242/jcs.198424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/02/2017] [Indexed: 12/28/2022] Open
Abstract
The nuclear periphery (NP) plays a substantial role in chromatin organization. Heterochromatin at the NP is interspersed with active chromatin surrounding nuclear pore complexes (NPCs); however, details of the peripheral chromatin organization are missing. To discern the distribution of epigenetic marks at the NP of HeLa nuclei, we used structured illumination microscopy combined with a new MATLAB software tool for automatic NP and NPC detection, measurements of fluorescent intensity and statistical analysis of measured data. Our results show that marks for both active and non-active chromatin associate differentially with NPCs. The incidence of heterochromatin marks, such as H3K27me2 and H3K9me2, was significantly lower around NPCs. In contrast, the presence of marks of active chromatin such as H3K4me2 was only decreased very slightly around the NPCs or not at all (H3K9Ac). Interestingly, the histone demethylases LSD1 (also known as KDM1A) and KDM2A were enriched within the NPCs, suggesting that there was a chromatin-modifying mechanism at the NPCs. Inhibition of transcription resulted in a larger drop in the distribution of H1, H3K9me2 and H3K23me2, which implies that transcription has a role in the organization of heterochromatin at the NP.
Collapse
Affiliation(s)
- Jindřiška Fišerová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Michaela Efenberková
- Microscopy Centre - LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Tomáš Sieger
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, 121 35, Czech Republic
| | - Miloslava Maninová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Jana Uhlířová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic.,Division BIOCEV, Institute of Molecular Genetics CAS, v.v.i., Průmyslová 595, Vestec, Prague 252 50, Czech Republic
| |
Collapse
|
18
|
Wang X, Zabell A, Koh W, Tang WHW. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:21. [PMID: 28299614 DOI: 10.1007/s11936-017-0520-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT Dilated cardiomyopathy (DCM) is the third leading cause of heart failure in the USA. A major gene associated with DCM with cardiac conduction system disease is lamin A/C (LMNA) gene. Lamins are type V filaments that serve a variety of roles, including nuclear structure support, DNA repair, cell signaling pathway mediation, and chromatin organization. In 1999, LMNA was found responsible for Emery-Dreifuss muscular dystrophy (EDMD) and, since then, has been found in association with a wide spectrum of diseases termed laminopathies, including LMNA cardiomyopathy. Patients with LMNA mutations have a poor prognosis and a higher risk for sudden cardiac death, along with other cardiac effects like dysrhythmias, development of congestive heart failure, and potential need of a pacemaker or ICD. As of now, there is no specific treatment for laminopathies, including LMNA cardiomyopathy, because the mechanism of LMNA mutations in humans is still unclear. This review discusses LMNA mutations and how they relate to DCM, the necessity for further investigation to better understand LMNA mutations, and potential treatment options ranging from clinical and therapeutic to cellular and molecular techniques.
Collapse
Affiliation(s)
- Xi Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Allyson Zabell
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Wonshill Koh
- Children's Hospital of Pittsburgh, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
19
|
Ranade D, Koul S, Thompson J, Prasad KB, Sengupta K. Chromosomal aneuploidies induced upon Lamin B2 depletion are mislocalized in the interphase nucleus. Chromosoma 2017; 126:223-244. [PMID: 26921073 PMCID: PMC5371638 DOI: 10.1007/s00412-016-0580-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 12/31/2022]
Abstract
Chromosome territories assume non-random positions in the interphase nucleus with gene-rich chromosomes localized toward the nuclear interior and gene-poor chromosome territories toward the nuclear periphery. Lamins are intermediate filament proteins of the inner nuclear membrane required for the maintenance of nuclear structure and function. Here, we show using whole-genome expression profiling that Lamin A/C or Lamin B2 depletion in an otherwise diploid colorectal cancer cell line (DLD1) deregulates transcript levels from specific chromosomes. Further, three-dimensional fluorescence in situ hybridization (3D-FISH) analyses of a subset of these transcriptionally deregulated chromosome territories revealed that the diploid chromosome territories in Lamin-depleted cells largely maintain conserved positions in the interphase nucleus in a gene-density-dependent manner. In addition, chromosomal aneuploidies were induced in ~25 % of Lamin A/C or Lamin B2-depleted cells. Sub-populations of these aneuploid cells consistently showed a mislocalization of the gene-rich aneuploid chromosome 19 territory toward the nuclear periphery, while gene-poor aneuploid chromosome 18 territory was mislocalized toward the nuclear interior predominantly upon Lamin B2 than Lamin A/C depletion. In addition, a candidate gene locus ZNF570 (Chr.19q13.12) significantly overexpressed upon Lamin B2 depletion was remarkably repositioned away from the nuclear lamina. Taken together, our studies strongly implicate an overarching role for Lamin B2 in the maintenance of nuclear architecture since loss of Lamin B2 relieves the spatial positional constraints required for maintaining conserved localization of aneuploid chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Devika Ranade
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Shivsmriti Koul
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Joyce Thompson
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Kumar Brajesh Prasad
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
20
|
Bigley RB, Payumo AY, Alexander JM, Huang GN. Insights into nuclear dynamics using live-cell imaging approaches. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:10.1002/wsbm.1372. [PMID: 28078793 PMCID: PMC5315593 DOI: 10.1002/wsbm.1372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/11/2022]
Abstract
The nucleus contains the genetic blueprint of the cell and myriad interactions within this subcellular structure are required for gene regulation. In the current scientific era, characterization of these gene regulatory networks through biochemical techniques coupled with systems-wide 'omic' approaches has become commonplace. However, these strategies are limited because they represent a mere snapshot of the cellular state. To obtain a holistic understanding of nuclear dynamics, relevant molecules must be studied in their native contexts in living systems. Live-cell imaging approaches are capable of providing quantitative assessment of the dynamics of gene regulatory interactions within the nucleus. We survey recent insights into what live-cell imaging approaches have provided the field of nuclear dynamics. In this review, we focus on interactions of DNA with other DNA loci, proteins, RNA, and the nuclear envelope. WIREs Syst Biol Med 2017, 9:e1372. doi: 10.1002/wsbm.1372 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rachel B. Bigley
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| | - Alexander Y. Payumo
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| | - Jeffrey M. Alexander
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| | - Guo N. Huang
- Cardiovascular Research Institute and Department of Physiology, School of Medicine, University of California, San Francisco CA 94158, USA
| |
Collapse
|
21
|
Thorpe SD, Lee DA. Dynamic regulation of nuclear architecture and mechanics-a rheostatic role for the nucleus in tailoring cellular mechanosensitivity. Nucleus 2017; 8:287-300. [PMID: 28152338 PMCID: PMC5499908 DOI: 10.1080/19491034.2017.1285988] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response.
Collapse
Affiliation(s)
- Stephen D Thorpe
- a Institute of Bioengineering, School of Engineering and Materials Science , Queen Mary University of London , London , UK
| | - David A Lee
- a Institute of Bioengineering, School of Engineering and Materials Science , Queen Mary University of London , London , UK
| |
Collapse
|
22
|
Mochizuki R, Tsugama D, Yamazaki M, Fujino K, Masuda K. Identification of candidates for interacting partners of the tail domain of DcNMCP1, a major component of the Daucus carota nuclear lamina-like structure. Nucleus 2017; 8:312-322. [PMID: 28146370 PMCID: PMC5499906 DOI: 10.1080/19491034.2017.1280210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
NMCP/CRWN (NUCLEAR MATRIX CONSTITUENT PROTEIN/CROWDED NUCLEI) is a major component of a protein fibrous meshwork (lamina-like structure) on the plant inner nuclear membrane. NMCP/CRWN contributes to regulating nuclear shape and nuclear functions. An NMCP/CRWN protein in Daucus carota (DcNMCP1) is localized to the nuclear periphery in interphase cells, and surrounds chromosomes in cells in metaphase and anaphase. The N-terminal region and the C-terminal region of DcNMCP1 are both necessary for localizing DcNMCP1 to the nuclear periphery. Here candidate interacting partners of the amino acid position 975-1053 of DcNMCP1 (T975-1053), which is present in the C-terminal region and contains a conserved sequence that plays a role in localizing DcNMCP1 to the nuclear periphery, are screened for. Arabidopsis thaliana nuclear proteins were subjected to far-Western blotting with GST-fused T975-1053 as a probe, and signals were detected at the positions corresponding to ∼70, ∼40, and ∼18 kDa. These ∼70, ∼40, and ∼18 kDa nuclear proteins were identified by mass spectrometry, and subjected to a yeast 2-hybrid (Y2H) analysis with T975-1053 as bait. In this analysis, the ∼40 kDa protein ARP7, which is a nuclear actin-related protein possibly involved in regulating chromatin structures, was confirmed to interact with T975-1053. Independently of the far-Western blotting, a Y2H screen was performed using T975-1053 as bait. Targeted Y2H assays confirmed that 3 proteins identified in the screen, MYB3, SINAT1, and BIM1, interact with T975-1053. These proteins might have roles in NMCP/CRWN protein-mediated biologic processes.
Collapse
Affiliation(s)
- Ryota Mochizuki
- a Laboratory of Crop Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo-shi , Hokkaido , Japan
| | - Daisuke Tsugama
- a Laboratory of Crop Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo-shi , Hokkaido , Japan
| | - Michihiro Yamazaki
- a Laboratory of Crop Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo-shi , Hokkaido , Japan
| | - Kaien Fujino
- a Laboratory of Crop Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo-shi , Hokkaido , Japan
| | - Kiyoshi Masuda
- a Laboratory of Crop Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo-shi , Hokkaido , Japan
| |
Collapse
|
23
|
Implications and Assessment of the Elastic Behavior of Lamins in Laminopathies. Cells 2016; 5:cells5040037. [PMID: 27754432 PMCID: PMC5187521 DOI: 10.3390/cells5040037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 01/17/2023] Open
Abstract
Lamins are mechanosensitive and elastic components of the nuclear lamina that respond to external mechanical cues by altering gene regulation in a feedback mechanism. Numerous mutations in A-type lamins cause a plethora of diverse diseases collectively termed as laminopathies, the majority of which are characterized by irregularly shaped, fragile, and plastic nuclei. These nuclei are challenged to normal mechanotransduction and lead to disease phenotypes. Here, we review our current understanding of the nucleocytoskeleton coupling in mechanotransduction mediated by lamins. We also present an up-to-date understanding of the methods used to determine laminar elasticity both at the bulk and single molecule level.
Collapse
|
24
|
Soheilypour M, Peyro M, Jahed Z, Mofrad MRK. On the Nuclear Pore Complex and Its Roles in Nucleo-Cytoskeletal Coupling and Mechanobiology. Cell Mol Bioeng 2016. [DOI: 10.1007/s12195-016-0443-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
25
|
Abstract
The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a “nucleoplasmic reticulum,” into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination.
Collapse
Affiliation(s)
- Bess Frost
- a Barshop Institute for Longevity and Aging Studies , Department of Cellular and Structural Biology , University of Texas Health Science Center San Antonio , San Antonio , Texas , USA
| |
Collapse
|
26
|
Abstract
The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.
Collapse
|
27
|
Fritz A, Barutcu AR, Martin-Buley L, vanWijnen AJ, Zaidi SK, Imbalzano AN, Lian JB, Stein JL, Stein GS. Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus. J Cell Biochem 2016; 117:9-19. [PMID: 26192137 PMCID: PMC4715719 DOI: 10.1002/jcb.25280] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The organization of interphase chromosomes in chromosome territories (CTs) was first proposed more than one hundred years ago. The introduction of increasingly sophisticated microscopic and molecular techniques, now provide complementary strategies for studying CTs in greater depth than ever before. Here we provide an overview of these strategies and how they are being used to elucidate CT interactions and the role of these dynamically regulated, nuclear-structure building blocks in directly supporting nuclear function in a physiologically responsive manner.
Collapse
Affiliation(s)
- Andrew Fritz
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - A. Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Lori Martin-Buley
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - André J. vanWijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sayyed K. Zaidi
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jane B. Lian
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L. Stein
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Gary S. Stein
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
28
|
Chromatin at the nuclear periphery and the regulation of genome functions. Histochem Cell Biol 2015; 144:111-22. [PMID: 26170147 DOI: 10.1007/s00418-015-1346-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 01/01/2023]
Abstract
Chromatin is not randomly organized in the nucleus, and its spatial organization participates in the regulation of genome functions. However, this spatial organization is also not entirely fixed and modifications of chromatin architecture are implicated in physiological processes such as differentiation or senescence. One of the most striking features of chromatin architecture is the concentration of heterochromatin at the nuclear periphery. A closer examination of the association of chromatin at the nuclear periphery reveals that heterochromatin accumulates at the nuclear lamina, whereas nuclear pores are usually devoid of heterochromatin. After summarizing the current techniques used to study the attachment of chromatin at the nuclear lamina or the nuclear pores, we review the mechanisms underlying these attachments, their plasticity and their consequences on the regulation of gene expression, DNA repair and replication.
Collapse
|
29
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
30
|
Abstract
Nuclear pore complexes (NPCs) are composed of several copies of ∼30 different proteins called nucleoporins (Nups). NPCs penetrate the nuclear envelope (NE) and regulate the nucleocytoplasmic trafficking of macromolecules. Beyond this vital role, NPC components influence genome functions in a transport-independent manner. Nups play an evolutionarily conserved role in gene expression regulation that, in metazoans, extends into the nuclear interior. Additionally, in proliferative cells, Nups play a crucial role in genome integrity maintenance and mitotic progression. Here we discuss genome-related functions of Nups and their impact on essential DNA metabolism processes such as transcription, chromosome duplication, and segregation.
Collapse
|
31
|
Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 2015; 84:131-64. [PMID: 25747401 DOI: 10.1146/annurev-biochem-060614-034115] [Citation(s) in RCA: 391] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lamins are intermediate filament proteins that form a scaffold, termed nuclear lamina, at the nuclear periphery. A small fraction of lamins also localize throughout the nucleoplasm. Lamins bind to a growing number of nuclear protein complexes and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, gene regulation, genome stability, differentiation, and tissue-specific functions. The lamin-based complexes and their specific functions also provide insights into possible disease mechanisms for human laminopathies, ranging from muscular dystrophy to accelerated aging, as observed in Hutchinson-Gilford progeria and atypical Werner syndromes.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | | |
Collapse
|
32
|
An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin. Mol Cell Biol 2014; 34:4534-44. [PMID: 25312645 DOI: 10.1128/mcb.00997-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
B-type lamins (lamins B1 and B2) have been considered to be essential for many crucial functions in the cell nucleus (e.g., DNA replication and mitotic spindle formation). However, this view has been challenged by the observation that an absence of both B-type lamins in keratinocytes had no effect on cell proliferation or the development of skin and hair. The latter findings raised the possibility that the functions of B-type lamins are subserved by lamins A and C. To explore that idea, we created mice lacking all nuclear lamins in keratinocytes. Those mice developed ichthyosis and a skin barrier defect, which led to death from dehydration within a few days after birth. Microscopy of nuclear-lamin-deficient skin revealed hyperkeratosis and a disordered stratum corneum with an accumulation of neutral lipid droplets; however, BrdU incorporation into keratinocytes was normal. Skin grafting experiments confirmed the stratum corneum abnormalities and normal BrdU uptake. Interestingly, the absence of nuclear lamins in keratinocytes resulted in an interspersion of nuclear/endoplasmic reticulum membranes with the chromatin. Thus, a key function of the nuclear lamina is to serve as a "fence" and prevent the incursion of cytoplasmic organelles into the nuclear chromatin.
Collapse
|
33
|
Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Berezney R. Cell type specific alterations in interchromosomal networks across the cell cycle. PLoS Comput Biol 2014; 10:e1003857. [PMID: 25275626 PMCID: PMC4183423 DOI: 10.1371/journal.pcbi.1003857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
The interchromosomal organization of a subset of human chromosomes (#1, 4, 11, 12, 16, 17, and 18) was examined in G1 and S phase of human WI38 lung fibroblast and MCF10A breast epithelial cells. Radial positioning of the chromosome territories (CTs) was independent of gene density, but size dependent. While no changes in radial positioning during the cell cycle were detected, there were stage-specific differences between cell types. Each CT was in close proximity (interaction) with a similar number of other CT except the gene rich CT17 which had significantly more interactions. Furthermore, CT17 was a member of the highest pairwise CT combinations with multiple interactions. Major differences were detected in the pairwise interaction profiles of MCF10A versus WI38 including cell cycle alterations from G1 to S. These alterations in interaction profiles were subdivided into five types: overall increase, overall decrease, switching from 1 to ≥2 interactions, vice versa, or no change. A global data mining program termed the chromatic median determined the most probable overall association network for the entire subset of CT. This probabilistic interchromosomal network was nearly completely different between the two cell lines. It was also strikingly altered across the cell cycle in MCF10A, but only slightly in WI38. We conclude that CT undergo multiple and preferred interactions with other CT in the nucleus and form preferred -albeit probabilistic- interchromosomal networks. This network of interactions is altered across the cell cycle and between cell types. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression program across the cell cycle and in different cell types.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Branislav Stojkovic
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Hu Ding
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, North Carolina, United States of America
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
34
|
Abstract
Much of the work on nuclear lamins during the past 15 years has focused on mutations in LMNA (the gene for prelamin A and lamin C) that cause particular muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. These disorders, often called "laminopathies," mainly affect mesenchymal tissues (e.g., striated muscle, bone, and fibrous tissue). Recently, however, a series of papers have identified important roles for nuclear lamins in the central nervous system. Studies of knockout mice uncovered a key role for B-type lamins (lamins B1 and B2) in neuronal migration in the developing brain. Also, duplications of LMNB1 (the gene for lamin B1) have been shown to cause autosome-dominant leukodystrophy. Finally, recent studies have uncovered a peculiar pattern of nuclear lamin expression in the brain. Lamin C transcripts are present at high levels in the brain, but prelamin A expression levels are very low-due to regulation of prelamin A transcripts by microRNA 9. This form of prelamin A regulation likely explains why "prelamin A diseases" such as Hutchinson-Gilford progeria syndrome spare the central nervous system. In this review, we summarize recent progress in elucidating links between nuclear lamins and neurobiology.
Collapse
|
35
|
Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Gaile D, Berezney R. Wide-scale alterations in interchromosomal organization in breast cancer cells: defining a network of interacting chromosomes. Hum Mol Genet 2014; 23:5133-46. [PMID: 24833717 DOI: 10.1093/hmg/ddu237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interchromosomal spatial positionings of a subset of human chromosomes was examined in the human breast cell line MCF10A (10A) and its malignant counterpart MCF10CA1a (CA1a). The nine chromosomes selected (#1, 4, 11, 12, 15, 16, 18, 21 and X) cover a wide range in size and gene density and compose ∼40% of the total human genome. Radial positioning of the chromosome territories (CT) was size dependent with certain of the CT more peripheral in CA1a. Each CT was in close proximity (interaction) with a similar number of other CT except the inactive CTXi. It had lower levels of interchromosomal partners in 10A which increased strikingly in CA1a. Major alterations from 10A to CA1a were detected in the pairwise interaction profiles which were subdivided into five types of altered interaction profiles: overall increase, overall decrease, switching from 1 to ≥2, vice versa or no change. A global data mining program termed the chromatic median calculated the most probable overall association network for the entire subset of CT. This interchromosomal network was drastically altered in CA1a with only 1 of 20 shared connections. We conclude that CT undergo multiple and preferred interactions with other CT in the cell nucleus and form preferred-albeit probabilistic-interchromosomal networks. This network of interactions is highly altered in malignant human breast cells. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression program of these malignant cancer cells.
Collapse
Affiliation(s)
| | - Branislav Stojkovic
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Hu Ding
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jinhui Xu
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Daniel Gaile
- Department of Biostatistics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
36
|
Lee JM, Tu Y, Tatar A, Wu D, Nobumori C, Jung HJ, Yoshinaga Y, Coffinier C, de Jong PJ, Fong LG, Young SG. Reciprocal knock-in mice to investigate the functional redundancy of lamin B1 and lamin B2. Mol Biol Cell 2014; 25:1666-75. [PMID: 24672053 PMCID: PMC4019497 DOI: 10.1091/mbc.e14-01-0683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/17/2022] Open
Abstract
Lamins B1 and B2 (B-type lamins) have very similar sequences and are expressed ubiquitously. In addition, both Lmnb1- and Lmnb2-deficient mice die soon after birth with neuronal layering abnormalities in the cerebral cortex, a consequence of defective neuronal migration. The similarities in amino acid sequences, expression patterns, and knockout phenotypes raise the question of whether the two proteins have redundant functions. To investigate this topic, we generated "reciprocal knock-in mice"-mice that make lamin B2 from the Lmnb1 locus (Lmnb1(B2/B2)) and mice that make lamin B1 from the Lmnb2 locus (Lmnb2(B1/B1)). Lmnb1(B2/B2) mice produced increased amounts of lamin B2 but no lamin B1; they died soon after birth with neuronal layering abnormalities in the cerebral cortex. However, the defects in Lmnb1(B2/B2) mice were less severe than those in Lmnb1-knockout mice, indicating that increased amounts of lamin B2 partially ameliorate the abnormalities associated with lamin B1 deficiency. Similarly, increased amounts of lamin B1 in Lmnb2(B1/B1) mice did not prevent the neurodevelopmental defects elicited by lamin B2 deficiency. We conclude that lamins B1 and B2 have unique roles in the developing brain and that increased production of one B-type lamin does not fully complement loss of the other.
Collapse
Affiliation(s)
- John M Lee
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Yiping Tu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Angelica Tatar
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Daniel Wu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Chika Nobumori
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hea-Jin Jung
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Yuko Yoshinaga
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Catherine Coffinier
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
37
|
Sood V, Brickner JH. Nuclear pore interactions with the genome. Curr Opin Genet Dev 2014; 25:43-9. [PMID: 24480294 DOI: 10.1016/j.gde.2013.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022]
Abstract
Within the nucleus, chromatin is functionally organized into distinct nuclear compartments. The nuclear periphery, containing Nuclear Pore Complexes (NPCs), plays an important role in the spatial organization of chromatin and in transcriptional regulation. The role of Nuclear Pore Proteins (Nups) in transcription and their involvement in leukemia and viral integration has renewed interest in understanding their mechanism of action. Nups bind to both repressed and active genes, often in a regulated fashion. Nups can associate with chromatin both at the NPC and inside the nucleoplasm. These interactions are guided by evolutionarily conserved mechanisms that involve promoter DNA elements and trans-acting factors. These interactions can also lead to interchromosomal clustering of co-regulated genes. Nups affect gene expression by promoting stronger transcription, by limiting the spread of repressed chromatin or by altering chromatin structure. Nups can promote epigenetic regulation by establishing boundary elements and poising recently repressed genes for faster reactivation.
Collapse
Affiliation(s)
- Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
38
|
Stancheva I, Schirmer EC. Nuclear Envelope: Connecting Structural Genome Organization to Regulation of Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:209-44. [DOI: 10.1007/978-1-4899-8032-8_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Wu F, Yao J. Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genomics 2013; 14:591. [PMID: 23987233 PMCID: PMC3849850 DOI: 10.1186/1471-2164-14-591] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/27/2013] [Indexed: 01/09/2023] Open
Abstract
Background How gene positioning to the nuclear periphery regulates transcription remains largely unclear. By cell imaging, we have previously observed the differential compartmentalization of transcription factors and histone modifications at the nuclear periphery in mouse C2C12 myoblasts. Here, we aim to identify DNA sequences associated with the nuclear lamina (NL) and examine this compartmentalization at the genome-wide level. Results We have integrated high throughput DNA sequencing into the DNA adenine methyltransferase identification (DamID) assay, and have identified ~15, 000 sequencing-based Lamina-Associated Domains (sLADs) in mouse 3T3 fibroblasts and C2C12 myoblasts. These genomic regions range from a few kb to over 1 Mb and cover ~30% of the genome, and are spatially proximal to the NL. Active histone modifications such as H3K4me2/3, H3K9Ac and H3K36me3 are distributed predominantly out of sLADs, consistent with observations from cell imaging that they are localized away from the nuclear periphery. Genomic regions around transcription start sites of expressed sLAD genes display reduced association with the NL; additionally, expressed sLAD genes possess lower levels of active histone modifications than expressed non-sLAD genes. Conclusions Our work has shown that genomic regions associated with the NL are characterized by the paucity of active histone modifications in mammalian cells, and has revealed novel connections between subnuclear gene positioning, histone modifications and gene expression.
Collapse
Affiliation(s)
- Feinan Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | | |
Collapse
|
40
|
Abstract
Faithful execution of developmental gene expression programs occurs at multiple levels and involves many different components such as transcription factors, histone-modification enzymes, and mRNA processing proteins. Recent evidence suggests that nucleoporins, well known components that control nucleo-cytoplasmic trafficking, have wide-ranging functions in developmental gene regulation that potentially extend beyond their role in nuclear transport. Whether the unexpected role of nuclear pore proteins in transcription regulation, which initially has been described in fungi and flies, also applies to human cells is unknown. Here we show at a genome-wide level that the nuclear pore protein NUP98 associates with developmentally regulated genes active during human embryonic stem cell differentiation. Overexpression of a dominant negative fragment of NUP98 levels decreases expression levels of NUP98-bound genes. In addition, we identify two modes of developmental gene regulation by NUP98 that are differentiated by the spatial localization of NUP98 target genes. Genes in the initial stage of developmental induction can associate with NUP98 that is embedded in the nuclear pores at the nuclear periphery. Alternatively, genes that are highly induced can interact with NUP98 in the nuclear interior, away from the nuclear pores. This work demonstrates for the first time that NUP98 dynamically associates with the human genome during differentiation, revealing a role of a nuclear pore protein in regulating developmental gene expression programs.
Collapse
|
41
|
Affiliation(s)
- Chin Yee Ho
- Cornell University, Weill Institute for Cell and Molecular Biology, Department of Biomedical Engineering, Ithaca, NY 14853, USA
| | | |
Collapse
|
42
|
Jung HJ, Lee JM, Yang SH, Young SG, Fong LG. Nuclear lamins in the brain - new insights into function and regulation. Mol Neurobiol 2012; 47:290-301. [PMID: 23065386 DOI: 10.1007/s12035-012-8350-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/12/2012] [Indexed: 11/28/2022]
Abstract
The nuclear lamina is an intermediate filament meshwork composed largely of four nuclear lamins - lamins A and C (A-type lamins) and lamins B1 and B2 (B-type lamins). Located immediately adjacent to the inner nuclear membrane, the nuclear lamina provides a structural scaffolding for the cell nucleus. It also interacts with both nuclear membrane proteins and the chromatin and is thought to participate in many important functions within the cell nucleus. Defects in A-type lamins cause cardiomyopathy, muscular dystrophy, peripheral neuropathy, lipodystrophy, and progeroid disorders. In contrast, the only bona fide link between the B-type lamins and human disease is a rare demyelinating disease of the central nervous system - adult-onset autosomal-dominant leukoencephalopathy, caused by a duplication of the gene for lamin B1. However, this leukoencephalopathy is not the only association between the brain and B-type nuclear lamins. Studies of conventional and tissue-specific knockout mice have demonstrated that B-type lamins play essential roles in neuronal migration in the developing brain and in neuronal survival. The importance of A-type lamin expression in the brain is unclear, but it is intriguing that the adult brain preferentially expresses lamin C rather than lamin A, very likely due to microRNA-mediated removal of prelamin A transcripts. Here, we review recent studies on nuclear lamins, focusing on the function and regulation of the nuclear lamins in the central nervous system.
Collapse
Affiliation(s)
- Hea-Jin Jung
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
43
|
Young SG, Jung HJ, Coffinier C, Fong LG. Understanding the roles of nuclear A- and B-type lamins in brain development. J Biol Chem 2012; 287:16103-10. [PMID: 22416132 PMCID: PMC3351360 DOI: 10.1074/jbc.r112.354407] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear lamina is composed mainly of lamins A and C (A-type lamins) and lamins B1 and B2 (B-type lamins). Dogma has held that lamins B1 and B2 play unique and essential roles in the nucleus of every eukaryotic cell. Recent studies have raised doubts about that view but have uncovered crucial roles for lamins B1 and B2 in neuronal migration during the development of the brain. The relevance of lamins A and C in the brain remains unclear, but it is intriguing that prelamin A expression in the brain is low and is regulated by miR-9, a brain-specific microRNA.
Collapse
Affiliation(s)
| | - Hea-Jin Jung
- the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | | | | |
Collapse
|
44
|
Abstract
In metazoan cells, the heterochromatin is generally localized at the nuclear periphery, whereas active genes are preferentially found in the nuclear interior. In the present paper, we review current evidence showing that components of the nuclear lamina interact directly with heterochromatin, which implicates the nuclear lamina in a mechanism of specific gene retention at the nuclear periphery and release to the nuclear interior upon gene activation. We also discuss recent data showing that mutations in lamin proteins affect gene positioning and expression, providing a potential mechanism for how these mutations lead to tissue-specific diseases.
Collapse
|
45
|
Abstract
The B-type lamins are widely assumed to be essential for mammalian cells. In part, this assumption is based on a highly cited study that found that RNAi-mediated knockdown of lamin B1 or lamin B2 in HeLa cells arrested cell growth and led to apoptosis. Studies indicating that B-type lamins play roles in DNA replication, the formation of the mitotic spindle, chromatin organization and regulation of gene expression have fueled the notion that B-type lamins must be essential. But surprisingly, this idea had never been tested with genetic approaches. Earlier this year, a research group from UCLA reported the development of genetically modified mice that lack expression of both Lmnb1 and Lmnb2 in skin keratinocytes (a cell type that proliferates rapidly and participates in complex developmental programs). They reasoned that if lamins B1 and B2 were truly essential, then keratinocyte-specific lamin B1/lamin B2 knockout mice would exhibit severe pathology. Contrary to expectations, the skin and hair of lamin B1/lamin B2-deficient mice were quite normal, indicating that the B-type lamins are dispensable in some cell types. The same UCLA research group has gone on to show that lamin B1 and lamin B2 are critical for neuronal migration in the developing brain and for neuronal survival. The absence of either lamin B1 or lamin B2, or the absence of both B-type lamins, results in severe neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Shao H. Yang
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Hea-Jin Jung
- Molecular Biology Institute; University of California; Los Angeles, CA USA
| | - Catherine Coffinier
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Loren G. Fong
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Stephen G. Young
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, CA USA
- Molecular Biology Institute; University of California; Los Angeles, CA USA
| |
Collapse
|
46
|
Mattout A, Pike BL, Towbin BD, Bank EM, Gonzalez-Sandoval A, Stadler MB, Meister P, Gruenbaum Y, Gasser SM. An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity. Curr Biol 2011; 21:1603-14. [PMID: 21962710 DOI: 10.1016/j.cub.2011.08.030] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/30/2011] [Accepted: 08/12/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND In worms, as in other organisms, many tissue-specific promoters are sequestered at the nuclear periphery when repressed and shift inward when activated. It has remained unresolved, however, whether the association of facultative heterochromatin with the nuclear periphery, or its release, has functional relevance for cell or tissue integrity. RESULTS Using ablation of the unique lamin gene in C. elegans, we show that lamin is necessary for the perinuclear positioning of heterochromatin. We then express at low levels in otherwise wild-type worms a lamin carrying a point mutation, Y59C, which in humans is linked to an autosomal-dominant form of Emery-Dreifuss muscular dystrophy. Using embryos and differentiated tissues, we track the subnuclear position of integrated heterochromatic arrays and their expression. In LMN-1 Y59C-expressing worms, we see abnormal retention at the nuclear envelope of a gene array bearing a muscle-specific promoter. This correlates with impaired activation of the array-borne myo-3 promoter and altered expression of a number of muscle-specific genes. However, an equivalent array carrying the intestine-specific pha-4 promoter is expressed normally and shifts inward when activated in gut cells of LMN-1 Y59C worms. Remarkably, adult LMN-1 Y59C animals have selectively perturbed body muscle ultrastructure and reduced muscle function. CONCLUSION Lamin helps sequester heterochromatin at the nuclear envelope, and wild-type lamin permits promoter release following tissue-specific activation. A disease-linked point mutation in lamin impairs muscle-specific reorganization of a heterochromatic array during tissue-specific promoter activation in a dominant manner. This dominance and the correlated muscle dysfunction in LMN-1 Y59C worms phenocopies Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Anna Mattout
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
In the past 15 years our perception of nuclear envelope function has evolved perhaps nearly as much as the nuclear envelope itself evolved in the last 3 billion years. Historically viewed as little more than a diffusion barrier between the cytoplasm and the nucleoplasm, the nuclear envelope is now known to have roles in the cell cycle, cytoskeletal stability and cell migration, genome architecture, epigenetics, regulation of transcription, splicing, and DNA replication. Here we will review both what is known and what is speculated about the role of the nuclear envelope in genome organization, particularly with respect to the positioning and repositioning of genes and chromosomes within the nucleus during differentiation.
Collapse
Affiliation(s)
- Nikolaj Zuleger
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
48
|
Abstract
The lamins are the major architectural proteins of the animal cell nucleus. Lamins line the inside of the nuclear membrane, where they provide a platform for the binding of proteins and chromatin and confer mechanical stability. They have been implicated in a wide range of nuclear functions, including higher-order genome organization, chromatin regulation, transcription, DNA replication and DNA repair. The lamins are members of the intermediate filament (IF) family of proteins, which constitute a major component of the cytoskeleton. Lamins are the only nuclear IFs and are the ancestral founders of the IF protein superfamily. Lamins polymerize into fibers forming a complex protein meshwork in vivo and, like all IF proteins, have a tripartite structure with two globular head and tail domains flanking a central α-helical rod domain, which supports the formation of higher-order polymers. Mutations in lamins cause a large number of diverse human diseases, collectively known as the laminopathies, underscoring their functional importance.
Collapse
Affiliation(s)
- Travis A Dittmer
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20896, USA.
| | | |
Collapse
|
49
|
van Bemmel JG, Pagie L, Braunschweig U, Brugman W, Meuleman W, Kerkhoven RM, van Steensel B. The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLoS One 2010; 5:e15013. [PMID: 21124834 PMCID: PMC2991331 DOI: 10.1371/journal.pone.0015013] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/05/2010] [Indexed: 12/11/2022] Open
Abstract
Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome - NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome - NL interactions.
Collapse
Affiliation(s)
- Joke G. van Bemmel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ludo Pagie
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ulrich Braunschweig
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wim Brugman
- Central Microarray Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter Meuleman
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ron M. Kerkhoven
- Central Microarray Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Abstract
The nuclear lamins are type V intermediate filament proteins that are critically important for the structural properties of the nucleus. In addition, they are involved in the regulation of numerous nuclear processes, including DNA replication, transcription and chromatin organization. The developmentally regulated expression of lamins suggests that they are involved in cellular differentiation. Their assembly dynamic properties throughout the cell cycle, particularly in mitosis, are influenced by posttranslational modifications. Lamins may regulate nuclear functions by direct interactions with chromatin and determining the spatial organization of chromosomes within the nuclear space. They may also regulate chromatin functions by interacting with factors that epigenetically modify the chromatin or directly regulate replication or transcription.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|