1
|
Tamura K, Ueda H, Hara-Nishimura I. In vitro assembly of nuclear envelope in tobacco cultured cells. Nucleus 2021; 12:82-89. [PMID: 34030583 PMCID: PMC8158034 DOI: 10.1080/19491034.2021.1930681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
The coordinated regulation of the nucelar envelope (NE) reassembly during cell division is an essential event. However, there is little information on the molecular components involved in NE assembly in plant cells. Here we developed an in vitro assay of NE assembly using tobacco BY-2 cultured cells. To start the NE assembly reaction, the demembranated nuclei and the S12 fraction (cytosol and microsomes) were mixed in the presence of GTP and ATP nucleotides. Time-course analysis indicated that tubule structures were extended from the microsomal vesicles that accumulated on the demembranated nuclei, and finally sealed the NE. Immunofluorescence confirmed that the assembled membrane contains a component of nuclear pore complex. The efficiency of the NE assembly is significantly inhibited by GTPγS that suppresses membrane fusion. This in-vitro assay system may elucidate the role of specific proteins and provide important insights into the molecular machinery of NE assembly in plant cells.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | |
Collapse
|
2
|
The in silico characterization of neutral alpha-glucosidase C (GANC) and its evolution from GANAB. Gene X 2020; 726:144192. [DOI: 10.1016/j.gene.2019.144192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 07/26/2019] [Accepted: 10/20/2019] [Indexed: 11/21/2022] Open
|
3
|
Rai A, Singh PK, Singh V, Kumar V, Mishra R, Thakur AK, Mahadevan A, Shankar SK, Jana NR, Ganesh S. Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death Dis 2018; 9:201. [PMID: 29422655 PMCID: PMC5833817 DOI: 10.1038/s41419-017-0190-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022]
Abstract
Healthy neurons do not store glycogen while they do possess the machinery for the glycogen synthesis albeit at an inactive state. Neurons in the degenerating brain, however, are known to accumulate glycogen, although its significance was not well understood. Emerging reports present contrasting views on neuronal glycogen synthesis; a few reports demonstrate a neurotoxic effect of glycogen while a few others suggest glycogen to be neuroprotective. Thus, the specific role of glycogen and glycogen synthase in neuronal physiology is largely unexplored. Using cellular and animal models of Huntington's disease, we show here that the overexpression of cytotoxic mutant huntingtin protein induces glycogen synthesis in the neurons by activating glycogen synthase and the overexpressed glycogen synthase protected neurons from the cytotoxicity of the mutant huntingtin. Exposure of neuronal cells to proteasomal blockade and oxidative stress also activate glycogen synthase to induce glycogen synthesis and to protect against stress-induced neuronal death. We show that the glycogen synthase plays an essential and inductive role in the neuronal autophagic flux, and helps in clearing the cytotoxic huntingtin aggregate. We also show that the increased neuronal glycogen inhibits the aggregation of mutant huntingtin, and thus could directly contribute to its clearance. Finally, we demonstrate that excessive autophagy flux is the molecular basis of cell death caused by the activation of glycogen synthase in unstressed neurons. Taken together, our results thus provide a novel function for glycogen synthase in proteolytic processes and offer insight into the role of glycogen synthase and glycogen in both survival and death of the neurons.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Pankaj Kumar Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
- Institut de Génétique et de Biologie Moléculaire et Cellulare (IGBMC), Illkirch, France
| | - Virender Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | | | - Rohit Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neuroscience, Bengaluru, 560029, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neuroscience, Bengaluru, 560029, India
| | | | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
4
|
Silvestri S, Lepri E, Dall'Aglio C, Marchesi MC, Vitellozzi G. Nuclear Glycogen Inclusions in Canine Parietal Cells. Vet Pathol 2017; 54:520-526. [PMID: 28113038 DOI: 10.1177/0300985816688944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nuclear glycogen inclusions occur infrequently in pathologic conditions but also in normal human and animal tissues. Their function or significance is unclear. To the best of the authors' knowledge, no reports of nuclear glycogen inclusions in canine parietal cells exist. After initial observations of nuclear inclusions/pseudoinclusions during routine histopathology, the authors retrospectively examined samples of gastric mucosa from dogs presenting with gastrointestinal signs for the presence of intranuclear inclusions/pseudoinclusions and determined their composition using histologic and electron-microscopic methods. In 24 of 108 cases (22%), the authors observed various numbers of intranuclear inclusions/pseudoinclusions within scattered parietal cells. Nuclei were characterized by marked karyomegaly and chromatin margination around a central optically empty or slightly eosinophilic area. The intranuclear inclusions/pseudoinclusions stained positive with periodic acid-Schiff (PAS) and were diastase sensitive, consistent with glycogen. Several PAS-positive/diastase-sensitive sections were further examined by transmission electron microscopy, also using periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining to identify polysaccharides. Ultrastructurally, the nuclear inclusions were composed of electron-dense particles that were not membrane bound, without evidence of nuclear membrane invaginations or cytoplasmic organelles in the nuclei, and positive staining with PA-TCH-SP, confirming a glycogen composition. No cytoplasmic glycogen deposits were observed, suggesting that the intranuclear glycogen inclusions were probably synthesized in loco. Nuclear glycogen inclusions were not associated with gastritis or colonization by Helicobacter-like organisms ( P > .05). Our findings suggest that nuclear glycogen inclusions in canine parietal cells could be an incidental finding. Nevertheless, since nuclear glycogen is present in several pathologic conditions, further investigations could be warranted to determine their true significance.
Collapse
Affiliation(s)
- S Silvestri
- 1 Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - E Lepri
- 1 Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - C Dall'Aglio
- 1 Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - M C Marchesi
- 1 Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - G Vitellozzi
- 1 Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Abstract
The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Schellhaus AK, Magalska A, Schooley A, Antonin W. A Cell Free Assay to Study Chromatin Decondensation at the End of Mitosis. J Vis Exp 2015:e53407. [PMID: 26710245 DOI: 10.3791/53407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During the vertebrate cell cycle chromatin undergoes extensive structural and functional changes. Upon mitotic entry, it massively condenses into rod shaped chromosomes which are moved individually by the mitotic spindle apparatus. Mitotic chromatin condensation yields chromosomes compacted fifty-fold denser as in interphase. During exit from mitosis, chromosomes have to re-establish their functional interphase state, which is enclosed by a nuclear envelope and is competent for replication and transcription. The decondensation process is morphologically well described, but in molecular terms poorly understood: We lack knowledge about the underlying molecular events and to a large extent the factors involved as well as their regulation. We describe here a cell-free system that faithfully recapitulates chromatin decondensation in vitro, based on mitotic chromatin clusters purified from synchronized HeLa cells and X. laevis egg extract. Our cell-free system provides an important tool for further molecular characterization of chromatin decondensation and its co-ordination with processes simultaneously occurring during mitotic exit such as nuclear envelope and pore complex re-assembly.
Collapse
Affiliation(s)
| | - Adriana Magalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences
| | | | | |
Collapse
|
7
|
Wühr M, Güttler T, Peshkin L, McAlister GC, Sonnett M, Ishihara K, Groen AC, Presler M, Erickson BK, Mitchison TJ, Kirschner MW, Gygi SP. The Nuclear Proteome of a Vertebrate. Curr Biol 2015; 25:2663-71. [PMID: 26441354 DOI: 10.1016/j.cub.2015.08.047] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/15/2015] [Accepted: 08/20/2015] [Indexed: 12/31/2022]
Abstract
The composition of the nucleoplasm determines the behavior of key processes such as transcription, yet there is still no reliable and quantitative resource of nuclear proteins. Furthermore, it is still unclear how the distinct nuclear and cytoplasmic compositions are maintained. To describe the nuclear proteome quantitatively, we isolated the large nuclei of frog oocytes via microdissection and measured the nucleocytoplasmic partitioning of ∼9,000 proteins by mass spectrometry. Most proteins localize entirely to either nucleus or cytoplasm; only ∼17% partition equally. A protein's native size in a complex, but not polypeptide molecular weight, is predictive of localization: partitioned proteins exhibit native sizes larger than ∼100 kDa, whereas natively smaller proteins are equidistributed. To evaluate the role of nuclear export in maintaining localization, we inhibited Exportin 1. This resulted in the expected re-localization of proteins toward the nucleus, but only 3% of the proteome was affected. Thus, complex assembly and passive retention, rather than continuous active transport, is the dominant mechanism for the maintenance of nuclear and cytoplasmic proteomes.
Collapse
Affiliation(s)
- Martin Wühr
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Güttler
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Graeme C McAlister
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Sonnett
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Keisuke Ishihara
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron C Groen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Presler
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian K Erickson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Abstract
The context of the membrane is crucial for the interaction of many membrane proteins with their ligands. However, many detailed studies cannot be carried out in living cells. Therefore, studying these interactions requires model membrane systems that are compatible with the used analytical method. A big variety of these methods is available, each of which has its advantages and disadvantages. This chapter gives an overview over the existing techniques, a basic introduction into work with lipids, and detailed protocols for selected methods.
Collapse
Affiliation(s)
- Heiko Keller
- BIOTEC, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
9
|
Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin-α/β. Cell Res 2012; 22:1562-75. [PMID: 22847741 DOI: 10.1038/cr.2012.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mechanism for nuclear envelope (NE) assembly is not fully understood. Importin-β and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process. Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -β during NE assembly in Xenopus egg extracts. We show that along with the fast recruitment of the abundant NLS proteins such as nucleoplasmin and histones to the demembranated sperm chromatin in the extracts, importin-α binds the chromatin NLS proteins rapidly. Meanwhile, importin-β binds cytoplasmic NE precursor membrane vesicles and nucleoporins. Through interacting with importin-α on the chromatin NLS proteins, importin-β targets the membrane vesicles and nucleoporins to the chromatin surface. Once encountering Ran-GTP on the chromatin generated by RCC1, importin-β preferentially binds Ran-GTP and releases the membrane vesicles and nucleoporins for NE assembly. NE assembly is disrupted by blocking the interaction between importin-α and NLS proteins with excess soluble NLS proteins or by depletion of importin-β from the extract. Our findings reveal a novel molecular mechanism for NE assembly in Xenopus egg extracts.
Collapse
|
10
|
Puri R, Jain N, Ganesh S. Increased glucose concentration results in reduced proteasomal activity and the formation of glycogen positive aggresomal structures. FEBS J 2011; 278:3688-98. [PMID: 21815999 DOI: 10.1111/j.1742-4658.2011.08287.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies indicate that glycogen, besides being a principal storage product, confers protection against cellular stress through an unknown physiological pathway. Abnormal glycogen inclusions have also been considered to underlie pathology in a few neurodegenerative disorders that are caused by proteolytic dysfunctions, although a link between proteolytic pathways and glycogen accumulation is yet to be established. In the present study, we investigated the subcellular localization of glycogen particles and report that their distribution is altered under physiological stress. Using a cellular model, we show that glycogen particles are recruited to the centrosomal aggresomal structures upon proteasomal or lysosomal blockade, and that this recruitment is dependent on the microtubule function. We also show that an increase in the glucose concentration leads to decreased cellular proteasomal activity and the formation of glycogen positive aggresomal structures. Proteasomal blockade also leads to the formation of diastase-resistant polyglucosan bodies. The glycogen particles in aggresomes might provide energy to the proteolytic process and/or function as a scaffold. Taken together, the findings of the present study suggest a functional link between proteasomal function and polyglucosan bodies, and also suggest that these two physiological processes could be linked in neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajat Puri
- Department of Biological Sciences and Bioengineering, India Institute of Technology, Kanpur, India
| | | | | |
Collapse
|
11
|
Groen AC, Coughlin M, Mitchison TJ. Microtubule assembly in meiotic extract requires glycogen. Mol Biol Cell 2011; 22:3139-51. [PMID: 21737678 PMCID: PMC3164461 DOI: 10.1091/mbc.e11-02-0158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We identified a clarified extract containing the soluble factors for microtubule assembly. We found that microtubule assembly does not require ribosomes, mitochondria, or membranes. Our clarified extracts will provide a powerful tool for activity-based biochemical fractionations for microtubule assembly. The assembly of microtubules during mitosis requires many identified components, such as γ-tubulin ring complex (γ-TuRC), components of the Ran pathway (e.g., TPX2, HuRP, and Rae1), and XMAP215/chTOG. However, it is far from clear how these factors function together or whether more factors exist. In this study, we used biochemistry to attempt to identify active microtubule nucleation protein complexes from Xenopus meiotic egg extracts. Unexpectedly, we found both microtubule assembly and bipolar spindle assembly required glycogen, which acted both as a crowding agent and as metabolic source glucose. By also reconstituting microtubule assembly in clarified extracts, we showed microtubule assembly does not require ribosomes, mitochondria, or membranes. Our clarified extracts will provide a powerful tool for activity-based biochemical fractionations for microtubule assembly.
Collapse
Affiliation(s)
- Aaron C Groen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
12
|
|
13
|
Li J, Zhang B, Han H, Cao Z, Lian Z, Li N. Metabolic properties of chicken embryonic stem cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1073-84. [PMID: 21104367 DOI: 10.1007/s11427-010-4055-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 04/19/2010] [Indexed: 11/26/2022]
Abstract
Cellular energy metabolism correlates with cell fate, but the metabolic properties of chicken embryonic stem (chES) cells are poorly understood. Using a previously established chES cell model and electron microscopy (EM), we found that undifferentiated chES cells stored glycogen. Additionally, undifferentiated chES cells expressed lower levels of glucose transporter 1 (GLUT1) and phosphofructokinase (PFK) mRNAs but higher levels of hexokinase 1 (HK1) and glycogen synthase (GYS) mRNAs compared with control primary chicken embryonic fibroblast (CEF) cells, suggesting that chES cells direct glucose flux towards the glycogenic pathway. Moreover, we demonstrated that undifferentiated chES cells block gluconeogenic outflow and impede the accumulation of glucose-6-phosphate (G6P) from this pathway, as evidenced by the barely detectable levels of pyruvate carboxylase (PCX) and mitochondrial phosphoenolpyruvate carboxykinase (PCK2) mRNAs. Additionally, cell death occurred in undifferentiated chES cells as shown by Hoechst 33342 and propidium iodide (PI) double staining, but it could be rescued by exogenous G6P. However, we found that differentiated chES cells decreased the glycogen reserve through the use of PAS staining. Moreover, differentiated chES cells expressed higher levels of GLUT1, HK1 and PFK mRNAs, while the level of GYS mRNA remained similar in control CEF cells. These data indicate that undifferentiated chES cells continue to synthesize glycogen from glucose at the expense of G6P, while differentiated chES cells have a decreased glycogen reserve, which suggests that the amount of glycogen is indicative of the chES cell state.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100194, China
| | | | | | | | | | | |
Collapse
|
14
|
Lu X, Shi Y, Lu Q, Ma Y, Luo J, Wang Q, Ji J, Jiang Q, Zhang C. Requirement for lamin B receptor and its regulation by importin {beta} and phosphorylation in nuclear envelope assembly during mitotic exit. J Biol Chem 2010; 285:33281-33293. [PMID: 20576617 PMCID: PMC2963407 DOI: 10.1074/jbc.m110.102368] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/24/2010] [Indexed: 11/06/2022] Open
Abstract
Lamin B receptor (LBR), a chromatin and lamin B-binding protein in the inner nuclear membrane, has been proposed to target the membrane precursor vesicles to chromatin mediated by importin β during the nuclear envelope (NE) assembly. However, the mechanisms for the binding of LBR with importin β and the membrane targeting by LBR in NE assembly remain largely unknown. In this report, we show that the amino acids (aa) 69-90 of LBR sequences are required to bind with importin β at aa 45-462, and the binding is essential for the NE membrane precursor vesicle targeting to the chromatin during the NE assembly at the end of mitosis. We also show that this binding is cell cycle-regulated and dependent on the phosphorylation of LBR Ser-71 by p34(cdc2) kinase. RNAi knockdown of LBR causes the NE assembly failure and abnormal chromatin decondensation of the daughter cell nuclei, leading to the daughter cell death at early G(1) phase by apoptosis. Perturbation of the interaction of LBR with importin β by deleting the LBR N-terminal spanning region or aa 69-73 also induces the NE assembly failure, the abnormal chromatin decondensation, and the daughter cell death. The first transmembrane domain of LBR promotes the NE production and expansion, because overexpressing this domain is sufficient to induce membrane overproduction of the NE. Thus, these results demonstrate that LBR targets the membrane precursor vesicles to chromatin by interacting with importin β in a LBR phosphorylation-dependent manner during the NE assembly at the end of mitosis and that the first transmembrane domain of LBR promotes the LBR-bearing membrane production and the NE expansion in interphase.
Collapse
Affiliation(s)
- Xuelong Lu
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Yang Shi
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Quanlong Lu
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Yan Ma
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Jia Luo
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Qingsong Wang
- State Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- State Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Chuanmao Zhang
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China.
| |
Collapse
|
15
|
Powers M, Evans EK, Yang J, Kornbluth S. Preparation and use of interphase Xenopus egg extracts. ACTA ACUST UNITED AC 2008; Chapter 11:Unit 11.10. [PMID: 18228302 DOI: 10.1002/0471143030.cb1110s09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this unit, Xenopus eggs are isolated from hormonally primed female frogs, and then the extract is treated with cyclohexamide so it remains in interphase of the cell cycle. In the presence of sperm chromatin and ATP, membrane vesicles in the extract fuse to assemble nuclei, making the extract suitable for studies of DNA replication and nuclear transport.
Collapse
Affiliation(s)
- M Powers
- Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
16
|
Hawryluk-Gara LA, Platani M, Santarella R, Wozniak RW, Mattaj IW. Nup53 is required for nuclear envelope and nuclear pore complex assembly. Mol Biol Cell 2008; 19:1753-62. [PMID: 18256286 DOI: 10.1091/mbc.e07-08-0820] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). These structures are composed of various subcomplexes of proteins that are each present in multiple copies and together establish the eightfold symmetry of the NPC. One evolutionarily conserved subcomplex of the NPC contains the nucleoporins Nup53 and Nup155. Using truncation analysis, we have defined regions of Nup53 that bind to neighboring nucleoporins as well as those domains that target Nup53 to the NPC in vivo. Using this information, we investigated the role of Nup53 in NE and NPC assembly using Xenopus egg extracts. We show that both events require Nup53. Importantly, the analysis of Nup53 fragments revealed that the assembly activity of Nup53 depleted extracts could be reconstituted using a region of Nup53 that binds specifically to its interacting partner Nup155. On the basis of these results, we propose that the formation of a Nup53-Nup155 complex plays a critical role in the processes of NPC and NE assembly.
Collapse
|
17
|
Reinsch S. Movement of nuclei. CURRENT PROTOCOLS IN CELL BIOLOGY 2008; Chapter 13:Unit 13.4. [PMID: 18228323 DOI: 10.1002/0471143030.cb1304s10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit describes the first assay that reconstructs the movement of the female pronucleus in the newly fertilized frog egg. Nuclei are assembled in frog egg extracts and translocated along microtubules using the microtubule motor dynein.
Collapse
Affiliation(s)
- S Reinsch
- NASA-Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
18
|
Franz C, Askjaer P, Antonin W, Iglesias CL, Haselmann U, Schelder M, de Marco A, Wilm M, Antony C, Mattaj IW. Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates. EMBO J 2005; 24:3519-31. [PMID: 16193066 PMCID: PMC1276708 DOI: 10.1038/sj.emboj.7600825] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 08/26/2005] [Indexed: 11/08/2022] Open
Abstract
Nuclear envelope (NE) formation during cell division in multicellular organisms is a central yet poorly understood biological process. We report that the conserved nucleoporin Nup155 has an essential function in NE formation in Caenorhabditis elegans embryos and in Xenopus laevis egg extracts. In vivo depletion of Nup155 led to failure of nuclear lamina formation and defects in chromosome segregation at anaphase. Nup155 depletion inhibited accumulation of nucleoporins at the nuclear periphery, including those recruited to chromatin early in NE formation. Electron microscopy analysis revealed that Nup155 is also required for the formation of a continuous nuclear membrane in vivo and in vitro. Time-course experiments indicated that Nup155 is recruited to chromatin at the time of NE sealing, suggesting that nuclear pore complex assembly has to progress to a relatively late stage before NE membrane assembly occurs.
Collapse
Affiliation(s)
- Cerstin Franz
- European Molecular Biology Laboratory, Heidelberg, Germany
- These authors contributed equally to this work
| | - Peter Askjaer
- European Molecular Biology Laboratory, Heidelberg, Germany
- Institute of Biomedical Research, Barcelona Science Park IRB-PCB, Barcelona, Spain
- These authors contributed equally to this work
- Cell Division Group, Parc Científic de Barcelona, C/Josep Samitier 1-5, 08028 Barcelona, Spain. Tel.: +34 93 403 70 18; Fax: +34 93 403 71 09; E-mail:
| | | | | | - Uta Haselmann
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Ario de Marco
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Matthias Wilm
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Claude Antony
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Iain W Mattaj
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Tel.: +49 6221 387 200; Fax: +49 6221 387 211; E-mail:
| |
Collapse
|
19
|
Cid E, Cifuentes D, Baqué S, Ferrer JC, Guinovart JJ. Determinants of the nucleocytoplasmic shuttling of muscle glycogen synthase. FEBS J 2005; 272:3197-213. [PMID: 15955076 DOI: 10.1111/j.1742-4658.2005.04738.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Muscle glycogen synthase (MGS) presents a nuclear speckled pattern in primary cultured human muscle and in 3T3-L1 cells deprived of glucose and with depleted glycogen reserves. Nuclear accumulation of the enzyme correlates inversely with cellular glycogen content. Although the glucose-induced export of MGS from the nucleus to the cytoplasm is blocked by leptomycin B, and therefore mediated by CRM1, no nuclear export signal was identified in the sequence of the protein. Deletion analysis shows that the region comprising amino acids 555-633 of human MGS, which encompasses an Arg-rich cluster involved in the allosteric activation of the enzyme by Glc6P, is crucial for its nuclear concentration and aggregation. Mutation of these Arg residues, which desensitizes the enzyme towards Glc6P, interferes with its nuclear accumulation. In contrast, the known phosphorylation sites of MGS that regulate its activity are not involved in the control of its subcellular distribution. Nuclear human MGS co-localizes with the promyelocytic leukaemia oncoprotein and p80-coilin, a marker of Cajal bodies. The subnuclear distribution of MGS is altered by incubation with transcription inhibitors. These observations suggest that, in addition to its metabolic function, MGS may participate in nuclear processes.
Collapse
Affiliation(s)
- Emili Cid
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
20
|
Antonin W, Franz C, Haselmann U, Antony C, Mattaj IW. The integral membrane nucleoporin pom121 functionally links nuclear pore complex assembly and nuclear envelope formation. Mol Cell 2005; 17:83-92. [PMID: 15629719 DOI: 10.1016/j.molcel.2004.12.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/02/2004] [Accepted: 12/08/2004] [Indexed: 10/26/2022]
Abstract
The metazoan nuclear envelope (NE) breaks down and reforms at each mitosis. Nuclear pore complexes (NPCs), which allow nucleocytoplasmic transport during interphase, assemble into the reforming NE at the end of mitosis. Using in vitro NE assembly assays, we show that one of the two transmembrane nucleoporins, pom121, is essential for NE formation, whereas the second, gp210, is dispensable. Depletion of either pom121-containing membrane vesicles or the protein alone does not affect vesicle binding to chromatin but prevents their fusion to form a closed NE. When the Nup107-160 complex, which is essential for integration of NPCs into the NE, is also depleted, pom121 becomes dispensable for NE formation, suggesting a close functional link between NPC and NE formation and the existence of a checkpoint that monitors NPC assembly state.
Collapse
Affiliation(s)
- Wolfram Antonin
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
21
|
The microtubule aster formation and its role in nuclear envelope assembly around the sperm chromatin inXenopus egg extracts. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03183977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Salman H, Zbaida D, Rabin Y, Chatenay D, Elbaum M. Kinetics and mechanism of DNA uptake into the cell nucleus. Proc Natl Acad Sci U S A 2001; 98:7247-52. [PMID: 11390964 PMCID: PMC34654 DOI: 10.1073/pnas.121067698] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene transfer to eukaryotic cells requires the uptake of exogenous DNA into the cell nucleus. Except during mitosis, molecular access to the nuclear interior is limited to passage through the nuclear pores. Here we demonstrate the nuclear uptake of extended linear DNA molecules by a combination of fluorescence microscopy and single-molecule manipulation techniques, using the latter to follow uptake kinetics of individual molecules in real time. The assays were carried out on nuclei reconstituted in vitro from extracts of Xenopus eggs, which provide both a complete complement of biochemical factors involved in nuclear protein import, and unobstructed access to the nuclear pores. We find that uptake of DNA is independent of ATP or GTP hydrolysis, but is blocked by wheat germ agglutinin. The kinetics are much slower than would be expected from hydrodynamic considerations. A fit of the data to a simple model suggests femto-Newton forces and a large friction relevant to the uptake process.
Collapse
Affiliation(s)
- H Salman
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
23
|
Pantaleon M, Ryan JP, Gil M, Kaye PL. An unusual subcellular localization of GLUT1 and link with metabolism in oocytes and preimplantation mouse embryos. Biol Reprod 2001; 64:1247-54. [PMID: 11259273 DOI: 10.1095/biolreprod64.4.1247] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although mouse oocytes and cleavage-stage embryos prefer pyruvate and lactate for metabolic fuels, they do take up and metabolize glucose. Indeed, presentation of glucose during the cleavage stages is required for subsequent blastocyst formation, which normally relies on uptake and metabolism of large amounts of glucose. Expression of the facilitative glucose transporter GLUT1 was examined using immunohistochemistry and Western blotting, and in polyspermic oocytes, metabolism of glucose was measured and compared with that of pyruvate and glutamine. GLUT1 was observed in all oocytes and embryos, and membrane and vesicular staining was present. Additionally, however, in polyspermic oocytes, the most intense staining was in the pronuclei, and this nuclear staining persisted in cleaving normal embryos. Furthermore, GLUT1 expression appeared to be up-regulated both in nuclei and plasma membranes following culture of oocytes in the absence of glucose. In polyspermic oocytes, the metabolism of glucose, but not of pyruvate or glutamine, was directly proportional to the number of pronuclei formed. After compaction, nuclear staining diminished, and GLUT1 localized to basolateral membranes of the outer cells and trophectoderm. In blastocysts, a weak but uniform staining of inner-cell-mass plasma membranes was apparent. The results are discussed in terms of potential roles for GLUT1 in pronuclei of oocytes and zygotes, nuclei of cleavage-stage embryos, and a transepithelial transport function for GLUT1, probably coupled with GLUT3, in compacted embryos and blastocysts.
Collapse
Affiliation(s)
- M Pantaleon
- Department of Physiology & Pharmacology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
24
|
Miller BR, Powers M, Park M, Fischer W, Forbes DJ. Identification of a new vertebrate nucleoporin, Nup188, with the use of a novel organelle trap assay. Mol Biol Cell 2000; 11:3381-96. [PMID: 11029043 PMCID: PMC15000 DOI: 10.1091/mbc.11.10.3381] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The study of the nuclear pore in vertebrates would benefit from a strategy to directly identify new nucleoporins and interactions between those nucleoporins. We have developed a novel two-step "organelle trap" assay involving affinity selection and in vitro pore assembly. In the first step, soluble proteins derived from Xenopus egg extracts are applied to a column containing a ligand of interest. The bound proteins are then tagged by biotinylation and eluted. In the second step, potential nucleoporins are selected for by virtue of their ability to assemble into annulate lamellae, a cytoplasmic mimic of nuclear pores. The incorporated proteins are then recognized by their biotin tag. Here we use the lectin wheat germ agglutinin (WGA) as ligand; WGA inhibits nuclear transport and has been shown to directly bind three known nucleoporins from Xenopus extract, Nup62, Nup98, and Nup214, all of which contain N-acetylglucosamine residues. Under reduced-stringency conditions, three additional proteins bind to WGA-Sepharose and are revealed by the organelle trap assay. We identified all three as partner nucleoporins. Two were discovered to be Xenopus Nup93 and Nup205. The third is a novel vertebrate nucleoporin, Nup188. This new vertebrate protein, Xenopus Nup188, exists in a complex with xNup93 and xNup205. The Nup93-Nup188-Nup205 complex does not bind directly to WGA but binds indirectly via the N-acetylglucosamine-modified nucleoporins. A gene encoding human Nup188 was also identified. The discovery of vertebrate Nup188, related to a yeast nucleoporin, and its novel protein-protein interactions illustrates the power of the two-step organelle trap assay and identifies new building blocks for constructing the nuclear pore.
Collapse
Affiliation(s)
- B R Miller
- Department of Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
25
|
Crowe AJ, Piechan JL, Sang L, Barton MC. S-Phase progression mediates activation of a silenced gene in synthetic nuclei. Mol Cell Biol 2000; 20:4169-80. [PMID: 10805758 PMCID: PMC85786 DOI: 10.1128/mcb.20.11.4169-4180.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aberrant expression of developmentally silenced genes, characteristic of tumor cells and regenerating tissue, is highly correlated with increased cell proliferation. By modeling this process in vitro in synthetic nuclei, we find that DNA replication leads to deregulation of established developmental expression patterns. Chromatin assembly in the presence of adult mouse liver nuclear extract mediates developmental stage-specific silencing of the tumor marker gene alpha-fetoprotein (AFP). Replication of silenced AFP chromatin in synthetic nuclei depletes sequence-specific transcription repressors, thereby disrupting developmentally regulated repression. Hepatoma-derived factors can target partial derepression of AFP, but full transcription activation requires DNA replication. Thus, unscheduled entry into S phase directly mediates activation of a developmentally silenced gene by (i) depleting developmental stage-specific transcription repressors and (ii) facilitating binding of transactivators.
Collapse
Affiliation(s)
- A J Crowe
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | | | | | |
Collapse
|
26
|
Hetzer M, Bilbao-Cortés D, Walther TC, Gruss OJ, Mattaj IW. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 2000; 5:1013-24. [PMID: 10911995 DOI: 10.1016/s1097-2765(00)80266-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nuclear formation in Xenopus egg extracts requires cytosol and is inhibited by GTP gamma S, indicating a requirement for GTPase activity. Nuclear envelope (NE) vesicle fusion is extensively inhibited by GTP gamma S and two mutant forms of the Ran GTPase, Q69L and T24N. Depletion of either Ran or RCC1, the exchange factor for Ran, from the assembly reaction also inhibits this step of NE formation. Ran depletion can be complemented by the addition of Ran loaded with either GTP or GDP but not with GTP gamma S. RCC1 depletion is only complemented by RCC1 itself or by RanGTP. Thus, generation of RanGTP by RCC1 and GTP hydrolysis by Ran are both required for the extensive membrane fusion events that lead to NE formation.
Collapse
Affiliation(s)
- M Hetzer
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
27
|
Miller MW, Caracciolo MR, Berlin WK, Hanover JA. Phosphorylation and glycosylation of nucleoporins. Arch Biochem Biophys 1999; 367:51-60. [PMID: 10375398 DOI: 10.1006/abbi.1999.1237] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nuclear pore complex mediates macromolecular transport between the nucleus and cytoplasm. Many nuclear pore components (nucleoporins) are modified by both phosphate and O-linked N-acetylglucosamine (O-GlcNAc). Among its many functions, protein phosphorylation plays essential roles in cell cycle progression. The role of O-GlcNAc addition is unknown. Here, levels of nucleoporin phosphorylation and glycosylation during cell cycle progression are examined. Whereas nuclear pore glycoproteins are phosphorylated in a cell-cycle-dependent manner, levels of O-GlcNAc remain constant. The major nucleoporin p62 can be phosphorylated in vitro by protein kinase A and glycogen synthase kinase (GSK)-3alpha but not by cyclin B/cdc2 or GSK-3beta. The consensus sites of these kinases resemble sites which can be glycosylated by O-GlcNAc transferase. These data are consistent with a model that O-GlcNAc limits nucleoporin hyperphosphorylation during M-phase and hastens the resumption of regulated nuclear transport at the completion of cell division.
Collapse
Affiliation(s)
- M W Miller
- Department of Biological Sciences, Wright State University, Dayton, Ohio, 45435-0001, USA.
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- A J Crowe
- Department of Molecular Genetics, University of Cincinnati Medical Center, Ohio 45267, USA
| | | |
Collapse
|
29
|
Abstract
Numerous regulatory mechanisms contribute to the control of eukaryotic transcription. These controls are manifested through higher-order protein-DNA structure within the nucleus. In vitro assays have proven extremely useful in deciphering the potential regulatory roles of chromatin and nuclear structure in transcription. Embryonic egg extracts of Xenopus with their vast maternal stores and rapid cell-cycle oscillations can be exploited to recapitulate multiple layers of nuclear regulation. Incubation of cloned DNA templates in Xenopus egg extracts promotes a self-ordered assembly of physiologically spaced nucleosomes and synthetic nuclei structure formation. Interaction of membrane vesicles with chromatin leads to formation of a bilayer nuclear envelope encapsulating the DNA. These synthetic nuclei are functional organelles capable of active protein transport and a single round of semiconservative DNA synthesis. This system can be used to directly test the mechanisms by which trans-acting factors promote transcription on nucleosomal DNA, either during chromatin assembly or postassembly or in conjunction with remodeling machinery and/or DNA replication. The functional consequences of trans-acting factor interaction within synthetic nuclei are determined by a coupled in vitro transcription analysis. Immobilizing biotin end-labeled DNA templates on paramagnetic streptavidin beads greatly improves the flexibility of the system. The ease of chromatin-assembled template recovery allows the introduction of wash steps, buffer changes, and specific reaction optimization. These methods for reconstituting gene regulatory mechanisms in vitro are an attempt to strike a balance between biochemical accessibility and physiological relevance.
Collapse
Affiliation(s)
- A J Crowe
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati Medical Center, 231 Bethesda Avenue, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
30
|
Lourim D, Krohne G. Chromatin binding and polymerization of the endogenous Xenopus egg lamins: the opposing effects of glycogen and ATP. J Cell Sci 1998; 111 ( Pt 24):3675-86. [PMID: 9819358 DOI: 10.1242/jcs.111.24.3675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified and quantitated three B-type lamin isoforms present in the nuclei of mature Xenopus laevis oocytes, and in cell-free egg extracts. As Xenopus egg extracts are frequently used to analyze nuclear envelope assembly and lamina functions, we felt it was imperative that the polymerization and chromatin-binding properties of the endogenous B-type egg lamins be investigated. While we have demonstrated that soluble B-type lamins bind to chromatin, we have also observed that the polymerization of egg lamins does not require membranes or chromatin. Lamin assembly is enhanced by the addition of glycogen/glucose, or by the depletion of ATP from the extract. Moreover, the polymerization of egg cytosol lamins and their binding to demembranated sperm or chromatin assembled from naked lambda-DNA is inhibited by an ATP regeneration system. These ATP-dependent inhibitory activities can be overcome by the coaddition of glycogen to egg cytosol. We have observed that glycogen does not alter ATP levels during cytosol incubation, but rather, as glycogen-enhanced lamin polymerization is inhibited by okadaic acid, we conclude that glycogen activates protein phosphatases. Because protein phosphatase 1 (PP1) is the only phosphatase known to be specifically regulated by glycogen our data indicate that PP1 is involved in lamin polymerization. Our results show that ATP and glycogen effect lamin polymerization and chromatin binding by separate and opposing mechanisms.
Collapse
Affiliation(s)
- D Lourim
- Division of Electron Microscopy, Biocenter of the University of W urzburg, Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
31
|
Ragano-Caracciolo M, Berlin WK, Miller MW, Hanover JA. Nuclear glycogen and glycogen synthase kinase 3. Biochem Biophys Res Commun 1998; 249:422-7. [PMID: 9712712 DOI: 10.1006/bbrc.1998.9159] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycogen is the principal storage form of glucose in animal cells. It accumulates in electron-dense cytoplasmic granules and is synthesized by glycogen synthase (GS), the rate-limiting enzyme of glycogen deposition. Glycogen synthase kinase-3 (GSK-3) is a protein kinase that phosphorylates GS. Two nearly identical forms of GSK-3 exist: GSK-3 alpha and GSK-3 beta. Both are constitutively active in resting cells and their activity can be modulated by hormones and growth factors. GSK-3 is implicated in the regulation of many physiological responses in mammalian cells by phosphorylating substrates including neuronal cell adhesion molecule, neurofilaments, synapsin I, and tau. Recent observations point to functions for glycogen and glycogen metabolism in the nucleus. GSK-3 phosphorylates several transcription factors, and we have recently shown that it modifies the major nuclear pore protein p62. It also regulates PK1, a protein kinase required for maintaining the interphase state and for DNA replication in cycling Xenopus egg extracts. Recently, glycogen was shown to be required for nuclear reformation in vitro using ovulated Xenopus laevis egg lysates. Because neither glycogen nor GSK-3 has been localized to the nuclear envelope or intranuclear sites, glycogen and GSK-3 activites were measured in rat liver nuclei and nuclear reformation extracts. Significant quantities of glycogen-like material co-purified with the rat-liver nuclear envelope. GSK-3 is also highly enriched in the glycogen pellet of egg extracts of Xenopus that is required for nuclear assembly in vitro. Based on the finding that enzymes of glycogen metabolism copurify with glycogen, we propose that glycogen may serve a structural role as a scaffold for nuclear assembly and sequestration of critical kinases and phosphatases in the nucleus.
Collapse
Affiliation(s)
- M Ragano-Caracciolo
- Laboratory of Cell Biochemestry and Biology (LCBB), National Institute of Diabetes and Kidney and Digestive Disease, National institutes of Health, 8 Center Drive, Bethesda, Maryland, 20892-MSC-0851, USA.
| | | | | | | |
Collapse
|
32
|
Zhang B, Chen Y, Han Z, Ris H, Zhai Z. The role of keratin filaments during nuclear envelope reassembly in Xenopus egg extracts. FEBS Lett 1998; 428:52-6. [PMID: 9645473 DOI: 10.1016/s0014-5793(98)00484-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report here a new structure, named 'strings-of-pearls', which are seen to form in Xenopus egg extracts after incubation, as 200 nm membrane vesicles attach to 10 nm filaments. These membrane vesicles fuse together along the filaments to form annulate lamellae (AL) or attach to demembranated sperm chromatin to initiate assembly of a nuclear envelope. Immunoassay with anti-keratin antibodies AE3 showed that the filaments were mainly composed of a 56 kDa keratin-like protein. Addition of AE3 to the extracts resulted in inhibition of AL formation and defective assembly of NE. These results suggest a function of keratins in the assembly of nuclear envelopes during Xenopus development.
Collapse
Affiliation(s)
- B Zhang
- College of Life Sciences, Peking University, Beijing, PR China
| | | | | | | | | |
Collapse
|
33
|
Abstract
We review old and new insights into the structure of the nuclear envelope and the components responsible for its dynamic reassembly during mitosis. New information is coming to light about several of the proteins that mediate nuclear reassembly. These proteins include the lamins and their emerging relationship with proteins such as otefin and the MAN antigens: peripheral proteins that might participate in lamina structure. There are four identified proteins localized to the inner nuclear membrane: the lamina-associated proteins LAP1 and LAP2, emerin, and the lamin B receptor (LBR). LBR can interact independently with lamin B and a chromodomain protein, Hp1, and appears to be a central player in targeting nuclear membranes to chromatin. Intermediates in the assembly of nuclear pore complexes (NPCs) can now be studied biochemically and visualized by high resolution scanning electron microscopy. We discuss the possibility that the filament-forming proteins Tpr/p270, NuMA, and perhaps actin may have roles in nuclear assembly.
Collapse
Affiliation(s)
- T M Gant
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
34
|
Arts GJ, Englmeier L, Mattaj IW. Energy- and temperature-dependent in vitro export of RNA from synthetic nuclei. Biol Chem 1997; 378:641-9. [PMID: 9278143 DOI: 10.1515/bchm.1997.378.7.641] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe a novel assay for the study of RNA export from the nucleus in vitro. Nuclei are assembled in Xenopus egg extract on paramagnetic beads coated with DNA containing a specific template for transcription. T7 RNA polymerase, to which a nuclear localisation signal is attached, is added to the nuclei, and after its import into the assembled nuclei, transcription is allowed to proceed. The use of radioactive NTPs coupled with the possibility to purify the nuclei on a magnet and thus rapidly change the extract in which the nuclei are incubated allows pulse-chase labelling experiments. Using these protocols we show that U1 snRNA-derived templates are transcribed inside the synthetic nuclei, and that the transcripts leave the intact nuclei in a time-, temperature- and energy-dependent way. This offers the possibility of a biochemical approach to the dissection of RNA export.
Collapse
Affiliation(s)
- G J Arts
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
35
|
Abstract
Microtubules are implicated in the movement and positioning of nuclei in many cell types. Nuclei can be moved by forces acting on microtubules nucleated at the spindle pole body, as in fungi [1], or microtubules nucleated at the centrosome, as during migration of the male (sperm) pronucleus towards the centre of the zygote after fertilization [2] [3] [4]. The dramatic movements of the female pronucleus towards the male pronucleus potentially involve another mechanism: movement along the microtubules of the sperm aster towards their slower growing, attached or 'minus' ends [3] [5]. Here, we have reconstituted this last type of nuclear movement in vitro. Synthetic nuclei assembled in cytoplasmic extracts made from interphase Xenopus eggs move along microtubules towards their minus ends. We provide strong experimental evidence that cytoplasmic dynein is the motor for nuclear movement in this in vitro system, and discuss our results in terms of current knowledge of motility of the endoplasmic reticulum.
Collapse
Affiliation(s)
- S Reinsch
- Cell Biology Program, EMBL, Meyerhofstrasse 1, Postfach 10.2209, 69012 Heidelberg, Germany.
| | | |
Collapse
|
36
|
Abstract
In higher eukaryotes, the entire nucleus disassembles during prometaphase of the cell cycle and later reassembles around daughter chromosomes. Remarkably, the complex events that occur to create a functional nucleus in vivo can be duplicated in vitro by using cell-free extracts. Current experiments are aimed at understanding the molecular mechanisms of assembly and disassembly of the nuclear pore complexes and nuclear membranes, and the functional roles of four identified inner membrane proteins, two of which bind to both chromatin and the nuclear lamina.
Collapse
|
37
|
Barton MC, Emerson BM. Regulated gene expression in reconstituted chromatin and synthetic nuclei. Methods Enzymol 1996; 274:299-312. [PMID: 8902814 DOI: 10.1016/s0076-6879(96)74026-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M C Barton
- Department of Molecular Genetics, University of Cincinati, Ohio 45267, USA
| | | |
Collapse
|
38
|
Ullman KS, Forbes DJ. RNA polymerase III transcription in synthetic nuclei assembled in vitro from defined DNA templates. Mol Cell Biol 1995; 15:4873-83. [PMID: 7651406 PMCID: PMC230733 DOI: 10.1128/mcb.15.9.4873] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although much is known of the basic control of transcription, little is understood of the way in which the structural organization of the nucleus affects transcription. Synthetic nuclei, assembled de novo in extracts of Xenopus eggs, would be predicted to have a large potential for approaching the role of nuclear structure in RNA biogenesis. Synthetic nuclei provide a system in which the genetic content of the nuclei, as well as the structural and enzymatic proteins within the nuclei, can be manipulated. In this study, we have begun to examine transcription in such nuclei by using the most simple of templates, RNA polymerase III (pol III)-transcribed genes. DNA encoding tRNA or 5S genes was added to an assembly extract, and nuclei were formed entirely from the pol III templates. Conditions which allowed nuclear assembly and pol III transcription to take place efficiently and simultaneously in the assembly extract were found. To examine whether pol III transcription could initiate within synthetic nuclei, or instead was inhibited in nuclei and initiated only on rare unincorporated templates, we identified transcriptional inhibitors that were excluded from nuclei. We found that these inhibitors, heparin and dextran sulfate, blocked pol III transcription in the absence of assembly but did not do so following nuclear assembly. At the concentrations used, the inhibitors had no deleterious effect on nuclear structure itself or on nuclear import. We conclude that pol III transcription is active in synthetic nuclei, and this conclusion is further strengthened by the finding that pol III transcripts could be coisolated with synthetic nuclei. The rapid and direct transcriptional analysis possible with pol III templates, coupled with the simple experimental criteria developed in this study for distinguishing between nuclear and non-nuclear transcription, should now allow a molecular analysis of the effect of nuclear structure on transcriptional and posttranscriptional control.
Collapse
Affiliation(s)
- K S Ullman
- Department of Biology, University of California at San Diego, La Jolla 92093-0347, USA
| | | |
Collapse
|
39
|
Meier E, Miller BR, Forbes DJ. Nuclear pore complex assembly studied with a biochemical assay for annulate lamellae formation. J Cell Biol 1995; 129:1459-72. [PMID: 7790348 PMCID: PMC2291182 DOI: 10.1083/jcb.129.6.1459] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Formation of the nuclear pore is an intricate process involving membrane fusion and the ordered assembly of up to 1,000 pore proteins. As such, the study of pore assembly is not a simple one. Interestingly, annulate lamellae, a cytoplasmic organelle consisting of stacks of flattened membrane cisternae perforated by numerous pore complexes, have been found to form spontaneously in a reconstitution system derived from Xenopus egg extracts, as determined by electron microscopy (Dabauvalle et al., 1991). In this work, a biochemical assay for annulate lamellae (AL) formation was developed and used to study the mechanism of AL assembly in general and the assembly of individual nucleoporins into pore complexes in particular. Upon incubation of Xenopus egg cytosol and membrane vesicles, the nucleoporins nup58, nup60, nup97, nup153, and nup200 initially present in a disassembled form in the cytosol became associated with membranes and were pelletable. The association was time and temperature dependent and could be measured by immunoblotting. Thin-section electron microscopy as well as negative staining confirmed that annulate lamellae were forming coincident with the incorporation of pore proteins into membranes. Homogenization and subsequent flotation of the membrane fraction allowed us to separate a population of dense membranes, containing the integral membrane pore protein gp210 and all other nucleoporins tested, from the bulk of cellular membranes. Electron microscopy indicated that annulate lamellae were enriched in this dense, pore protein-containing fraction. GTP gamma S prevented incorporation of the soluble pore proteins into membranes. To address whether AL form in the absence of N-acetylglucosaminylated pore proteins, AL assembly was carried out in WGA-sepharose-depleted cytosol. Under these conditions, annulate lamellae formed but were altered in appearance. When the membrane fraction containing this altered AL was homogenized and subjected to flotation, the pore protein-containing membranes still sedimented in a distinct peak but were less dense than control annulate lamellae.
Collapse
Affiliation(s)
- E Meier
- Department of Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
40
|
Powers MA, Macaulay C, Masiarz FR, Forbes DJ. Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication. J Cell Biol 1995; 128:721-36. [PMID: 7876300 PMCID: PMC2120401 DOI: 10.1083/jcb.128.5.721] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Xenopus egg extracts provide a powerful system for in vitro reconstitution of nuclei and analysis of nuclear transport. Such cell-free extracts contain three major N-acetylglucosaminylated proteins: p200, p97, and p60. Both p200 and p60 have been found to be components of the nuclear pore. Here, the role of p97 has been investigated. Xenopus p97 was isolated and antisera were raised and affinity purified. Immunolocalization experiments indicate that p97 is present in a punctate pattern on the nuclear envelope and also in the nuclear interior. Peptide sequence analysis reveals that p97 contains a GLFG motif which defines a family of yeast nuclear pore proteins, as well as a peptide that is identical at 11/15 amino acids to a specific member of the GLFG family, NUP116. An additional peptide is highly homologous to a second sequence found in NUP116 and other members of the yeast GLFG family. A monoclonal antibody to the GLFG domain cross-reacts with a major Xenopus protein of 97 kD and polyclonal antiserum to p97 recognizes the yeast GLFG nucleoporin family. The p97 antiserum was used to immunodeplete Xenopus egg cytosol and p97-deficient nuclei were reconstituted. The p97-depleted nuclei remained largely competent for nuclear protein import. However, in contrast to control nuclei, nuclei deficient in p97 fail to grow in size over time and do not replicate their chromosomal DNA. ssDNA replication in such extracts remains unaffected. Addition of the N-acetylglucosaminylated nuclear proteins of Xenopus or rat reverses these replication and growth defects. The possible role(s) of p97 in these nuclear functions is discussed.
Collapse
Affiliation(s)
- M A Powers
- Department of Biology 0347, University of California at San Diego, La Jolla 92093-0347
| | | | | | | |
Collapse
|
41
|
Abstract
Regulated gene expression within a complex chromosomal locus requires multiple nuclear processes. We have analyzed the transcriptional properties of the cloned chick beta-globin gene family when assembled into synthetic nuclei made by use of Xenopus egg extracts. Assembly in an erythroid protein environment correctly recapitulates tissue-specific chromatin structure and long-range promoter-enhancer interaction within the chromosomal locus, resulting in beta-globin gene activation. Nucleosome-repressed beta-globin templates can be transcriptionally activated by double-stranded DNA replication in the presence of staged erythroid proteins by remodeling of the chromatin structure within the promoter region and establishment of distal promoter-enhancer communication. The programmed transcriptional state of a gene, as encoded by its chromatin structure and long-range promoter-enhancer interactions, is stable to nuclear decondensation and DNA replication unless active remodeling occurs in the presence of specific DNA-binding proteins.
Collapse
Affiliation(s)
- M C Barton
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | | |
Collapse
|