1
|
The Role of Nonerythroid Spectrin αII in Cancer. JOURNAL OF ONCOLOGY 2019; 2019:7079604. [PMID: 31186638 PMCID: PMC6521328 DOI: 10.1155/2019/7079604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Nonerythroid spectrin αII (SPTAN1) is an important cytoskeletal protein that ensures vital cellular properties including polarity and cell stabilization. In addition, it is involved in cell adhesion, cell-cell contact, and apoptosis. The detection of altered expression of SPTAN1 in tumors indicates that SPTAN1 might be involved in the development and progression of cancer. SPTAN1 has been described in cancer and therapy response and proposed as a potential marker protein for neoplasia, tumor aggressiveness, and therapeutic efficiency. On one hand, the existing data suggest that overexpression of SPTAN1 in tumor cells reflects neoplastic and tumor promoting activity. On the other hand, nuclear SPTAN1 can have tumor suppressing effects by enabling DNA repair through interaction with DNA repair proteins. Moreover, SPTAN1 cleavage products occur during apoptosis and could serve as markers for the efficacy of cancer therapy. Due to SPTAN1's multifaceted functions and its role in adhesion and migration, SPTAN1 can influence tumor growth and progression in both positive and negative directions depending on its specific regulation. This review summarizes the current knowledge on SPTAN1 in cancer and depicts several mechanisms by which SPTAN1 could impact tumor development and aggressiveness.
Collapse
|
2
|
Black AR, Black JD. Protein kinase C signaling and cell cycle regulation. Front Immunol 2013; 3:423. [PMID: 23335926 PMCID: PMC3547298 DOI: 10.3389/fimmu.2012.00423] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s) and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in T cells.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
3
|
Michalczyk I, Sikorski AF, Kotula L, Junghans RP, Dubielecka PM. The emerging role of protein kinase Cθ in cytoskeletal signaling. J Leukoc Biol 2012. [PMID: 23192428 DOI: 10.1189/jlb.0812371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytoskeletal rearrangements often occur as the result of transduction of signals from the extracellular environment. Efficient awakening of this powerful machinery requires multiple activation and deactivation steps, which usually involve phosphorylation or dephosphorylation of different signaling units by kinases and phosphatases, respectively. In this review, we discuss the signaling characteristics of one of the nPKC isoforms, PKCθ, focusing on PKCθ-mediated signal transduction to cytoskeletal elements, which results in cellular rearrangements critical for cell type-specific responses to stimuli. PKCθ is the major PKC isoform present in hematopoietic and skeletal muscle cells. PKCθ plays roles in T cell signaling through the IS, survival responses in adult T cells, and T cell FasL-mediated apoptosis, all of which involve cytoskeletal rearrangements and relocation of this enzyme. PKCθ has been linked to the regulation of cell migration, lymphoid cell motility, and insulin signaling and resistance in skeletal muscle cells. Additional roles were suggested for PKCθ in mitosis and cell-cycle regulation. Comprehensive understanding of cytoskeletal regulation and the cellular "modus operandi" of PKCθ holds promise for improving current therapeutic applications aimed at autoimmune diseases.
Collapse
Affiliation(s)
- Izabela Michalczyk
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
4
|
Zhao KN, Masci PP, Lavin MF. Disruption of spectrin-like cytoskeleton in differentiating keratinocytes by PKCδ activation is associated with phosphorylated adducin. PLoS One 2011; 6:e28267. [PMID: 22163289 PMCID: PMC3233558 DOI: 10.1371/journal.pone.0028267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 11/04/2011] [Indexed: 02/01/2023] Open
Abstract
Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
5
|
Morrow JS, Rimm DL, Kennedy SP, Cianci CD, Sinard JH, Weed SA. Of Membrane Stability and Mosaics: The Spectrin Cytoskeleton. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Ma H, Li SY, Xu P, Babcock SA, Dolence EK, Brownlee M, Li J, Ren J. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 2010; 13:1751-1764. [PMID: 19602045 PMCID: PMC2829341 DOI: 10.1111/j.1582-4934.2008.00547.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diabetic cardiomyopathy is manifested by compromised systolic and diastolic function. This study was designed to examine the role of advanced glycation endproduct (AGE) and AGE receptor (RAGE) in diabetic cardiomyopathy. Heart function was assessed in isolated control and streptozotocin-induced diabetic hearts following in vivo RAGE gene knockdown using RNA interference. Cardiomyocyte mechanical properties were evaluated including peak shortening (PS), time-to-PS (TPS) and time-to-90% relengthening (TR(90)). RAGE was assayed by RT-PCR and immunoblot. Diabetes significantly enhanced cardiac MG, AGE and RAGE levels accompanied with colocalization of AGE and RAGE in cardiomyocytes. Diabetes-elicited increase in RAGE was inhibited by in vivo siRNA interference. The AGE formation inhibitor benfotiamine significantly attenuated diabetes-induced elevation in MG, AGE, RAGE and collagen cross-linking without affecting hypertriglyceridaemia and hypercholesterolaemia in diabetes. Diabetes markedly decreased LV contractility, as evidenced by reduced +/-dP/dt and LV developed pressure (LVDP), which were protected by RAGE gene knockdown. In addition, MG-derived AGE (MG-AGE) up-regulated cardiac RAGE mRNA and triggered cardiomyocyte contractile dysfunction reminiscent of diabetic cardiomyopathy. The MG-AGE-elicited prolongation of TPS and TR(90) was ablated by an anti-RAGE antibody in cardiomyocytes. Interestingly, MG-AGE-induced cardiomyocyte dysfunction was associated with mitochondrial membrane potential (MMP) depolarization and reduced GSK-3beta inactivation in control cardiomyocytes, similar to those from in vivo diabetes. Treatment with siRNA-RAGE ablated diabetes-induced MMP depolarization and GSK-3beta inactivation. Collectively, our result implicated a role of AGE-RAGE in the pathogenesis of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Heng Ma
- Department of Physiology, Fourth Military Medical University, Xi'an, China.,Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| | - Shi-Yan Li
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| | - Peisheng Xu
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| | - Sara A Babcock
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| | - E Kurt Dolence
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| | - Michael Brownlee
- Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Ji Li
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| | - Jun Ren
- Department of Physiology, Fourth Military Medical University, Xi'an, China.,Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
7
|
Guéguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C, Frippiat JP. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit? J Leukoc Biol 2009; 86:1027-38. [DOI: 10.1189/jlb.0309167] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Selvatici R, Falzarano S, Franceschetti L, Spisani S, Siniscalchi A. Effects of PKI55 protein, an endogenous protein kinase C modulator, on specific PKC isoforms activity and on human T cells proliferation. Arch Biochem Biophys 2007; 462:74-82. [PMID: 17467651 DOI: 10.1016/j.abb.2007.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 02/05/2023]
Abstract
PKI55 protein, coded by the recently identified KI55 gene [R. Selvatici, E. Melloni, M. Ferrati, C. Piubello, F.C. Marincola, E. Gandini, J. Mol. Evol. 57 (2003) 131-139] is synthesized following protein kinase C (PKC) activation and acts as a PKC modulator, establishing a feedback loop of inhibition. In this work, PKI55 was found to inhibit recombinant alpha, beta(1), beta(2), gamma, delta, zeta and eta PKC isoforms; the effect on conventional PKC was lost in the absence of calcium. Confocal immunofluorescence experiments showed that PKI55 can penetrate into peripheral blood mononuclear cells (PBMC), following a coordinated movement of calcium ions. The addition of PKI55 protein down-regulated the PKC enzyme activity in phytohaemagglutinin-activated PBMC, decreasing the activity of alpha, beta(1) and beta(2) PKC isoforms. Moreover, inhibition in PBMC proliferation was observed. Similar effects were detected in Jurkat T cells transfected with a plasmid containing the coding sequence of PKI55. The PKI55 protein functional role could be to control the pathological over-expression of specific PKC isoforms and to regulate proliferation.
Collapse
Affiliation(s)
- Rita Selvatici
- Department of Experimental and Diagnostic Medicine, Medical Genetics Section, University of Ferrara, via Fossato di Mortara 74, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
9
|
Lu D, Yan H, Othman T, Turner CP, Woolf T, Rivkees SA. Cytoskeletal protein 4.1G binds to the third intracellular loop of the A1 adenosine receptor and inhibits receptor action. Biochem J 2004; 377:51-9. [PMID: 12974671 PMCID: PMC1223836 DOI: 10.1042/bj20030952] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 09/08/2003] [Accepted: 09/16/2003] [Indexed: 01/24/2023]
Abstract
To identify binding partners of the A1AR (A1 adenosine receptor), yeast two-hybrid screening of a rat embryonic cDNA library was performed. This procedure led to the identification of erythrocyte membrane cytoskeletal protein (represented as 4.1G) as an A1AR-binding partner. Truncation studies revealed that the C-terminal domain of 4.1G was essential for binding to A1ARs and that the C-terminal domain of 4.1G and the third intracellular loop of A1ARs interacted. A1AR-4.1G interaction was also confirmed in studies using brain tissue. Studies in HEK-293 (human embryonic kidney 293) cells and Chinese-hamster ovary cells showed that 4.1G interfered with A1AR signal transduction, as 4.1G reduced A1AR-mediated inhibition of cAMP accumulation and intracellular calcium release. 4.1G also altered cell-surface A1AR expression. These observations identify 4.1G as a novel A1AR-binding partner that can regulate adenosine action.
Collapse
Affiliation(s)
- Dongcheng Lu
- Department of Pediatrics, Yale Child Health Research Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
10
|
Pradhan D, Morrow J. The spectrin-ankyrin skeleton controls CD45 surface display and interleukin-2 production. Immunity 2002; 17:303-15. [PMID: 12354383 DOI: 10.1016/s1074-7613(02)00396-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With T cell receptor stimulation, intracellular pools of CD45 and spectrin move to the surface. These processes are coupled. In both peripheral lymphocytes and Jurkat T cells, betaI spectrin and ankyrin associate with CD45. In Jurkat T cells, betaI spectrin peptides suppress surface recruitment of CD45 and CD3 and abrogate T cell activation. Other glycoproteins such as CD43 are not altered by the spectrin peptides. Spectrin's effects are mediated by ankyrin, which binds directly to the cytoplasmic domain of CD45 (K(d) = 4.3 +/- 3.0 nM). These data reveal a novel and unexpected contribution of the spectrin-ankyrin skeleton to the control of T lymphocyte function.
Collapse
Affiliation(s)
- Deepti Pradhan
- Department of Pathology, Yale University, 310 Cedar Street, New Haven, CT 06510, USA
| | | |
Collapse
|
11
|
Iannazzo L. Involvement of B-50 (GAP-43) phosphorylation in the modulation of transmitter release by protein kinase C. Clin Exp Pharmacol Physiol 2001; 28:901-4. [PMID: 11703393 DOI: 10.1046/j.1440-1681.2001.03545.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
1. Protein kinase C (PKC) is a family of enzymes that is activated by diacylglycerol (DAG) following phospholipase (PL) C activation. Protein kinase C may also be activated by metabolites and arachidonic acid generated by breakdown of membrane phospholipids by PLD and PLA2, respectively. Subsequent to PKC activation, key protein substrates are phosphorylated, resulting in the facilitation of transmitter release. 2. Phorbol esters are compounds that mimic the actions of DAG on PKC and have been shown to facilitate stimulation-induced (S-I) transmitter release in rat brain. However, some phorbol esters that have a high affinity for PKC have no effect on transmitter release, whereas others with a lower affinity for PKC markedly elevate S-I transmitter release. 3. The structure and, more importantly, the lipophilicity of the phorbol esters determines their ability to access and activate the intraneuronal pools of PKC that are involved with transmitter release. In studies in which cell membranes were intact, phorbol esters did not display the characteristics expected based on their affinities for PKC in contrast with studies in disrupted synaptosomes. This supports the hypothesis that the membrane plays a critical role in determining the effects of phorbol esters on PKC. 4. B-50, a PKC substrate thought to be involved in transmitter release, also appears to be differentially phosphorylated by various phorbol esters. The effects on B-50 phosphorylation in intact synaptosomes, but not disrupted synaptosomes, are well correlated with the effects of phorbol esters on S-I transmitter release. 5. B-50 is colocalized with actin, which has also been suggested to play an important role in facilitating the movement of reserve pools of transmitter vesicles to the readily releasable state. Therefore, it is possible that the phosphorylation status of B-50 directly influences the organization of actin filaments, thereby allowing transmitter output to be sustained under high levels of stimulation.
Collapse
Affiliation(s)
- L Iannazzo
- RMIT University, School of Medical Sciences, Bundoora, Victoria, Australia.
| |
Collapse
|
12
|
Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 2001; 81:1353-92. [PMID: 11427698 DOI: 10.1152/physrev.2001.81.3.1353] [Citation(s) in RCA: 718] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
13
|
Abstract
This review is focused on ankyrin which is a protein linker between the integral membrane proteins and spectrin-based cytoskeleton. Structure and distribution of different ankyrin isoforms that are products of alternative-spliced genes are described. Interaction of ankyrins with various membranes is considered. Special attention is paid to ankyrin participation in signal transduction and in assembly of integral membrane proteins in specialized membrane domains.
Collapse
Affiliation(s)
- A M Rubtsov
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, Moscow 199899, Russia
| | | |
Collapse
|
14
|
Ohmori S, Sakai N, Shirai Y, Yamamoto H, Miyamoto E, Shimizu N, Saito N. Importance of protein kinase C targeting for the phosphorylation of its substrate, myristoylated alanine-rich C-kinase substrate. J Biol Chem 2000; 275:26449-57. [PMID: 10840037 DOI: 10.1074/jbc.m003588200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We visualized the translocation of myristoylated alanine-rich protein kinase C substrate (MARCKS) in living Chinese hamster ovary-K1 cells using MARCKS tagged to green fluorescent protein (MARCKS-GFP). MARCKS-GFP was rapidly translocated from the plasma membrane to the cytoplasm after the treatment with phorbol ester, which translocates protein kinase C (PKC) to the plasma membrane. In contrast, PKC activation by hydrogen peroxide, which was not accompanied by PKC translocation, did not alter the intracellular localization of MARCKS-GFP. Non-myristoylated mutant of MARCKS-GFP was distributed throughout the cytoplasm, including the nucleoplasm, and was not translocated by phorbol ester or by hydrogen peroxide. Phosphorylation of wild-type MARCKS-GFP was observed in cells treated with phorbol ester but not with hydrogen peroxide, whereas non-myristoylated mutant of MARCKS-GFP was phosphorylated in cells treated with hydrogen peroxide but not with phorbol ester. Phosphorylation of both MARCKS-GFPs reduced the amount of F-actin. These findings revealed that PKC targeting to the plasma membrane is required for the phosphorylation of membrane-associated MARCKS and that a mutant MARCKS existing in the cytoplasm can be phosphorylated by PKC activated in the cytoplasm without translocation but not by PKC targeted to the membrane.
Collapse
Affiliation(s)
- S Ohmori
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
This article presents new insights into potential roles that three erythrocyte cytoskeletal proteins, protein 4.1, ankyrin, and spectrin, may play in nonerythroid nucleated cells. Each of these proteins is encoded by several closely related genes characterized by complex alternative splicing of their pre-mRNA, thus resulting in the cellular expression of a broad repertoire of isoforms that can adopt tissue- and cell-specific distribution. This could account for the presence of skeletal networks in intracellular organelles such as lysosomes, the Golgi apparatus, or the nucleus. In addition to providing structural support to cell membranes, these cytoskeletal proteins regulate the functions of various transmembrane proteins they interact with, in particular ion channels, as well as the activity of membrane-bound enzymes. Thus, they appear to be key players in major unsuspected cell functions such as protein sorting, dynamics of nuclear architecture during mitosis, or regulation of signal transduction pathways.
Collapse
Affiliation(s)
- P Gascard
- Lawrence Berkeley National Laboratory, Department of Subcellular Structure, California 94720, USA
| | | |
Collapse
|
16
|
Hashemi BB, Penkala JE, Vens C, Huls H, Cubbage M, Sams CF. T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 1999; 13:2071-82. [PMID: 10544190 DOI: 10.1096/fasebj.13.14.2071] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Studies of T lymphocyte activation with mitogenic lectins during spaceflight have shown a dramatic inhibition of activation as measured by DNA synthesis at 72 h, but the mechanism of this inhibition is unknown. We have investigated the progression of cellular events during the first 24 h of activation using both spaceflight microgravity culture and a ground-based model system that relies on the low shear culture environment of a rotating clinostat (clinorotation). Stimulation of human peripheral blood mononuclear cells (PBMCs) with soluble anti-CD3 (Leu4) in clinorotation and in microgravity culture shows a dramatic reduction in surface expression of the receptor for IL-2 (CD25) and CD69. An absence of bulk RNA synthesis in clinorotation indicates that stimulation with soluble Leu4 does not induce transition of T cells from G0 to the G1 stage of the cell cycle. However, internalization of the TCR by T cells and normal levels of IL-1 synthesis by monocytes indicate that intercellular interactions that are required for activation occur during clinorotation. Complementation of TCR-mediated signaling by phorbol ester restores the ability of PBMCs to express CD25 in clinorotation, indicating that a PKC-associated pathway may be compromised under these conditions. Bypassing the TCR by direct activation of intracellular pathways with a combination of phorbol ester and calcium ionophore in clinorotation resulted in full expression of CD25; however, only partial expression of CD25 occurred in microgravity culture. Though stimulation of purified T cells with Bead-Leu4 in microgravity culture resulted in the engagement and internalization of the TCR, the cells still failed to express CD25. When T cells were stimulated with Bead-Leu4 in microgravity culture, they were able to partially express CD69, a receptor that is constitutively stored in intracellular pools and can be expressed in the absence of new gene expression. Our results suggest that the inhibition of T cell proliferative response in microgravity culture is a result of alterations in signaling events within the first few hours of activation, which are required for the expression of important regulatory molecules.
Collapse
Affiliation(s)
- B B Hashemi
- Life Sciences Research Laboratories/SD3, NASA-Johnson Space Center, Houston, Texas 77058, USA
| | | | | | | | | | | |
Collapse
|
17
|
da Cruz LA, Penfold S, Zhang J, Somani AK, Shi F, McGavin MK, Song X, Siminovitch KA. Involvement of the lymphocyte cytoskeleton in antigen-receptor signaling. Curr Top Microbiol Immunol 1999; 245:135-67. [PMID: 10533312 DOI: 10.1007/978-3-642-57066-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L A da Cruz
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rodriguez MM, Ron D, Touhara K, Chen CH, Mochly-Rosen D. RACK1, a protein kinase C anchoring protein, coordinates the binding of activated protein kinase C and select pleckstrin homology domains in vitro. Biochemistry 1999; 38:13787-94. [PMID: 10529223 DOI: 10.1021/bi991055k] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pleckstrin homology (PH) domain, identified in numerous signaling proteins including the beta-adrenergic receptor kinase (betaARK), was found to bind to various phospholipids as well as the beta subunit of heterotrimeric G proteins (Gbeta) [Touhara, K., et al. (1994) J. Biol. Chem. 269, 10217-10220]. Several PH domain-containing proteins are also substrates of protein kinase C (PKC). Because RACK1, an anchoring protein for activated PKC, is homologous to Gbeta (both contain seven repeats of the WD-40 motif), we determined (i) whether a direct interaction between various PH domains and RACK1 occurs and (ii) the effect of PKC on this interaction. We found that recombinant PH domains of several proteins exhibited differential binding to RACK1. Activated PKC and the PH domain of beta-spectrin or dynamin-1 concomitantly bound to RACK1. Although PH domains bind acidic phospholipids, the interaction between various PH domains and RACK1 was not dependent on the phospholipid activators of PKC, phosphatidylserine and 1, 2-diacylglycerol. Binding of these PH domains to RACK1 was also not affected by either inositol 1,4,5-triphosphate (IP(3)) or phosphatidylinositol 4,5-bisphosphate (PIP(2)). Our in vitro data suggest that RACK1 binds selective PH domains, and that PKC regulates this interaction. We propose that, in vivo, RACK1 may colocalize the kinase with its PH domain-containing substrates.
Collapse
Affiliation(s)
- M M Rodriguez
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA
| | | | | | | | | |
Collapse
|
19
|
Nixon JB, McPhail LC. Protein Kinase C (PKC) Isoforms Translocate to Triton-Insoluble Fractions in Stimulated Human Neutrophils: Correlation of Conventional PKC with Activation of NADPH Oxidase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The responses of human neutrophils (PMN) involve reorganization and phosphorylation of cytoskeletal components. We investigated the translocation of protein kinase C (PKC) isoforms to PMN cytoskeletal (Triton-insoluble) fractions, in conjunction with activation of the respiratory burst enzyme NADPH oxidase. In resting PMN, PKC-δ (29%) and small amounts of PKC-α (0.6%), but not PKC-βII, were present in cytoskeletal fractions. Upon stimulation with the PKC agonist PMA, the levels of PKC-α, PKC-βII, and PKC-δ increased in the cytoskeletal fraction, concomitant with a decrease in the noncytoskeletal (Triton-soluble) fractions. PKC-δ maximally associated with cytoskeletal fractions at 160 nM PMA and then declined, while PKC-α and PKC-βII plateaued at 300 nM PMA. Translocation of PKC-δ was maximal by 2 min and sustained for at least 10 min. Translocation of PKC-α and PKC-βII was biphasic, plateauing at 2–3 min and then increasing up to 10 min. Under maximal stimulation conditions, PKC isoforms were entirely cytoskeletal associated. Translocation of the NADPH oxidase component p47phox to the cytoskeletal fraction correlated with translocation of PKC-α and PKC-βII, but not with translocation of PKC-δ. Oxidase activity in cytoskeletal fractions paralleled translocation of PKC-α, PKC-βII, and p47phox. Stimulation with 1,2-dioctanoylglycerol resulted in little translocation of PKC isoforms or p47phox, and in minimal oxidase activity. We conclude that conventional PKC isoforms (PKC-α and/or PKC-βII) may regulate PMA-stimulated cytoskeletal association and activation of NADPH oxidase. PKC-δ may modulate other PMN responses that involve cytoskeletal components.
Collapse
Affiliation(s)
| | - Linda C. McPhail
- *Biochemistry and
- †Medicine, Division of Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
20
|
Deschambeault J, Lalonde JP, Cervantes-Acosta G, Lodge R, Cohen EA, Lemay G. Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine-based signal and favors cell-to-cell viral transmission. J Virol 1999; 73:5010-7. [PMID: 10233963 PMCID: PMC112545 DOI: 10.1128/jvi.73.6.5010-5017.1999] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Maturation and release of human immunodeficiency virus type 1 (HIV-1) is targeted at the pseudopod of infected mononuclear cells. However, the intracellular mechanism or targeting signals leading to this polarized viral maturation are yet to be identified. We have recently demonstrated the presence of a functional YXXL motif for specific targeting of HIV-1 virions to the basolateral membrane surface in polarized epithelial Madin-Darby canine kidney cells (MDCK). Site-directed mutagenesis was used to demonstrate that the membrane-proximal tyrosine in the intracytoplasmic tail of the HIV-1 transmembrane glycoprotein (gp41) is an essential component of this signal. In the present study, immunolocalization of viral budding allowed us to establish that this tyrosine-based signal is involved in determining the exact site of viral release at the surface of infected mononuclear cells. Substitution of the critical tyrosine residue was also shown to increase the amount of envelope glycoprotein at the cell surface, supporting previous suggestions that the tyrosine-based motif can promote endocytosis. Although alteration of the dual polarization-endocytosis motif did not affect the infectivity of cell-free virus, it could play a key role in cell-to-cell viral transmission. Accordingly, chronically infected lymphocytes showed a reduced ability to transmit the mutant virus to a cocultivated cell line. Overall, our data indicate that the YXXL targeting motif of HIV is active in various cell types and could play an important role in viral propagation; this may constitute an alternative target for HIV therapeutics and vaccine development.
Collapse
Affiliation(s)
- J Deschambeault
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Evans SS, Schleider DM, Bowman LA, Francis ML, Kansas GS, Black JD. Dynamic Association of L-Selectin with the Lymphocyte Cytoskeletal Matrix. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
L-selectin mediates lymphocyte extravasation into lymphoid tissues through binding to sialomucin-like receptors on the surface of high endothelial venules (HEV). This study examines the biochemical basis and regulation of interactions between L-selectin, an integral transmembrane protein, and the lymphocyte cytoskeleton. Using a detergent-based extraction procedure, constitutive associations between L-selectin and the insoluble cytoskeletal matrix could not be detected. However, engagement of the L-selectin lectin domain by Abs or by glycosylation-dependent cell adhesion molecule-1, an HEV-derived ligand for L-selectin, rapidly triggered redistribution of L-selectin to the detergent-insoluble cytoskeleton. L-selectin attachment to the cytoskeleton was not prevented by inhibitors of actin/microtubule polymerization (cytochalasin B, colchicine, or nocodozole) or serine/threonine and tyrosine kinase activity (staurosporine, calphostin C, or genistein), although L-selectin-mediated adhesion of human PBL was markedly suppressed by these agents. Exposure of human PBL or murine pre-B transfectants expressing full-length human L-selectin to fever-range hyperthermia also markedly increased L-selectin association with the cytoskeleton, directly correlating with enhanced L-selectin-mediated adhesion. In contrast, a deletion mutant of L-selectin lacking the COOH-terminal 11 amino acids failed to associate with the cytoskeletal matrix in response to Ab cross-linking or hyperthermia stimulation and did not support adhesion to HEV. These studies, when taken together with the previously demonstrated interaction between the L-selectin cytoplasmic domain and the cytoskeletal linker protein α-actinin, strongly implicate the actin-based cytoskeleton in dynamically controlling L-selectin adhesion.
Collapse
Affiliation(s)
| | | | | | | | - Geoffrey S. Kansas
- ‡Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Jennifer D. Black
- †Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| |
Collapse
|
22
|
Wang XY, Ostberg JR, Repasky EA. Effect of Fever-Like Whole-Body Hyperthermia on Lymphocyte Spectrin Distribution, Protein Kinase C Activity, and Uropod Formation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Regional inflammation and systemic fever are hallmarks of host immune responses to pathogenic stimuli. Although the thermal element of fever is thought to enhance the activity of immune effector cells, it is unclear what the precise role of increased body temperatures is on the activation state and effector functions of lymphocytes. We report here that mild, fever-like whole body hyperthermia (WBH) treatment of mice results in a distinct increase in the numbers of tissue lymphocytes with polarized spectrin cytoskeletons and uropods, as visualized in situ. WBH also induces a coincident reorganization of protein kinase C (PKC) isozymes and increased PKC activity within T cells. These hyperthermia-induced cellular alterations are nearly identical with the previously described effects of Ag- and mitogen-induced activation on lymphocyte spectrin and PKC. Immunoprecipitation studies combined with dual staining and protein overlay assays confirmed the association of PKCβ and PKCθ with spectrin following its reorganization. The receptor for activated C kinase-1 was also found to associate with the spectrin-based cytoskeleton. Furthermore, all these molecules (spectrin, PKCβ, PKCθ, and receptor for activated C kinase-1) cotranslocate to the uropod. Enhanced intracellular spectrin phosphorylation upon WBH treatment of lymphocytes was also found and could be blocked by the PKC inhibitor bisindolylmaleimide I (GF109203X). These data suggest that the thermal element of fever, as mimicked by these studies, can modulate critical steps in the signal transduction pathways necessary for effective lymphocyte activation and function. Further work is needed to determine the cellular target(s) that transduces the signaling pathway(s) induced by hyperthermia.
Collapse
Affiliation(s)
- Xiang-Yang Wang
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Julie R. Ostberg
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | |
Collapse
|
23
|
Gunning P, Weinberger R, Jeffrey P, Hardeman E. Isoform sorting and the creation of intracellular compartments. Annu Rev Cell Dev Biol 1999; 14:339-72. [PMID: 9891787 DOI: 10.1146/annurev.cellbio.14.1.339] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The generation of isoforms via gene duplication and alternative splicing has been a valuable evolutionary tool for the creation of biological diversity. In addition to the formation of molecules with related but different functional characteristics, it is now apparent that isoforms can be segregated into different intracellular sites within the same cell. Sorting has been observed in a wide range of genes, including those encoding structural molecules, receptors, channels, enzymes, and signaling molecules. This results in the creation of intracellular compartments that (a) can be independently controlled and (b) have different functional properties. The sorting mechanisms are likely to operate at the level of both proteins and mRNAs. Isoform sorting may be an important consequence of the evolution of isoforms and is likely to have contributed to the diversity of functional properties within groups of isoforms.
Collapse
Affiliation(s)
- P Gunning
- Oncology Research Unit, New Children's Hospital, Parramatta, NSW, Australia.
| | | | | | | |
Collapse
|
24
|
Volkov Y, Long A, Kelleher D. Inside the Crawling T Cell: Leukocyte Function-Associated Antigen-1 Cross-Linking Is Associated with Microtubule-Directed Translocation of Protein Kinase C Isoenzymes β(I) and δ. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.12.6487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
T cells activated via integrin receptors can polarize and start crawling locomotion with repeated cycles of cytoskeletal reassembly processes, many of which depend on phosphorylation. We demonstrate that protein kinase C (PKC) activation represents an essential event in induction of active T cell motility. We find that in crawling T cells triggered via cross-linking of integrin LFA-1 two PKC isoenzymes, β(I) and δ, are targeted to the cytoskeleton with specific localization corresponding to the microtubule-organizing center (MTOC) and microtubules, as detected by immunocytochemistry and immunoblotting. Clustering of LFA-1 associated with its signaling function also occurs at the membrane sites adjacent to the MTOC. We further show that cells of a PKC-β-deficient clone derived from parental PKC-β-expressing T cell line can neither crawl nor develop a polarized microtubule array upon integrin cross-linking. However, their adhesion and formation of actin-based pseudopodia remain unaffected. Our data demonstrate the critical importance of the microtubule cytoskeleton in T cell locomotion and suggest a novel microtubule-directed intracellular signaling pathway mediated by integrins and involving two distinctive PKC isoforms.
Collapse
Affiliation(s)
- Yuri Volkov
- *Department of Clinical Medicine, University of Dublin, Trinity College, Dublin, Ireland; and
| | | | - Dermot Kelleher
- *Department of Clinical Medicine, University of Dublin, Trinity College, Dublin, Ireland; and
| |
Collapse
|
25
|
Gregorio CC, Trombitás K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Labeit S. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 1998; 143:1013-27. [PMID: 9817758 PMCID: PMC2132961 DOI: 10.1083/jcb.143.4.1013] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/1998] [Revised: 09/30/1998] [Indexed: 11/22/2022] Open
Abstract
Titin is a giant elastic protein in vertebrate striated muscles with an unprecedented molecular mass of 3-4 megadaltons. Single molecules of titin extend from the Z-line to the M-line. Here, we define the molecular layout of titin within the Z-line; the most NH2-terminal 30 kD of titin is located at the periphery of the Z-line at the border of the adjacent sarcomere, whereas the subsequent 60 kD of titin spans the entire width of the Z-line. In vitro binding studies reveal that mammalian titins have at least four potential binding sites for alpha-actinin within their Z-line spanning region. Titin filaments may specify Z-line width and internal structure by varying the length of their NH2-terminal overlap and number of alpha-actinin binding sites that serve to cross-link the titin and thin filaments. Furthermore, we demonstrate that the NH2-terminal titin Ig repeats Z1 and Z2 in the periphery of the Z-line bind to a novel 19-kD protein, referred to as titin-cap. Using dominant-negative approaches in cardiac myocytes, both the titin Z1-Z2 domains and titin-cap are shown to be required for the structural integrity of sarcomeres, suggesting that their interaction is critical in titin filament-regulated sarcomeric assembly.
Collapse
MESH Headings
- Actinin/chemistry
- Actinin/metabolism
- Amino Acid Sequence
- Animals
- Cells, Cultured
- Chick Embryo
- Connectin
- Gene Expression/physiology
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle Proteins/chemistry
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myocardium/chemistry
- Myocardium/cytology
- Myocardium/metabolism
- Myofibrils/chemistry
- Myofibrils/metabolism
- Myofibrils/ultrastructure
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Structure, Tertiary
- Sarcomeres/chemistry
- Sarcomeres/metabolism
- Sarcomeres/ultrastructure
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- C C Gregorio
- Departments of Cell Biology and Anatomy, and Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hunter SJ, Gay CV, Osdoby PA, Peters LL. Spectrin localization in osteoclasts: Immunocytochemistry, cloning, and partial sequencing. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19981101)71:2<204::aid-jcb6>3.0.co;2-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Zhang Z, Devarajan P, Dorfman AL, Morrow JS. Structure of the ankyrin-binding domain of alpha-Na,K-ATPase. J Biol Chem 1998; 273:18681-4. [PMID: 9668035 DOI: 10.1074/jbc.273.30.18681] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ankyrin 33-residue repeating motif, an L-shaped structure with protruding beta-hairpin tips, mediates specific macromolecular interactions with cytoskeletal, membrane, and regulatory proteins. The association between ankyrin and alpha-Na,K-ATPase, a ubiquitous membrane protein critical to vectorial transport of ions and nutrients, is required to assemble and stabilize Na,K-ATPase at the plasma membrane. alpha-Na,K-ATPase binds both red cell ankyrin (AnkR, a product of the ANK1 gene) and Madin-Darby canine kidney cell ankyrin (AnkG, a product of the ANK3 gene) utilizing residues 142-166 (SYYQEAKSSKIMESFK NMVPQQALV) in its second cytoplasmic domain. Fusion peptides of glutathione S-transferase incorporating these 25 amino acids bind specifically to purified ankyrin (Kd = 118 +/- 50 nM). The three-dimensional structure (2.6 A) of this minimal ankyrin-binding motif, crystallized as the fusion protein, reveals a 7-residue loop with one charged hydrophilic face capping a double beta-strand. Comparison with ankyrin-binding sequences in p53, CD44, neurofascin/L1, and the inositol 1,4,5-trisphosphate receptor suggests that the valency and specificity of ankyrin binding is achieved by the interaction of 5-7-residue surface loops with the beta-hairpin tips of multiple ankyrin repeat units.
Collapse
Affiliation(s)
- Z Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
28
|
Verstovsek G, Byrd A, Frey MR, Petrelli NJ, Black JD. Colonocyte differentiation is associated with increased expression and altered distribution of protein kinase C isozymes. Gastroenterology 1998; 115:75-85. [PMID: 9649461 DOI: 10.1016/s0016-5085(98)70367-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Colon cancer cells express reduced levels of protein kinase C (PKC). This study examines the regulation of PKC isozymes in normal colonic epithelium, as a basis for understanding the significance of alterations in this enzyme system in colon carcinogenesis. METHODS The expression and localization of PKC isozymes in mouse and rat colonocytes at different developmental stages were determined using a combined morphological and biochemical approach. PKC alpha expression was compared in colonic adenocarcinomas and adjacent normal mucosa by immunoblot analysis. RESULTS Mouse and rat colonocytes express PKC alpha, beta II, delta, epsilon, and zeta. Relatively low levels of these isozymes were detected in proliferating cells of the crypt base, predominantly in the cytosolic compartment. Coincident with colonocyte growth arrest/differentiation, PKC isozyme expression markedly increased in both the cytosolic and, more significantly, in the membrane/cytoskeletal fraction. Colonic tumors express reduced levels of PKC alpha, an isozyme that has been implicated in negative control of intestinal cell growth. CONCLUSIONS These findings are supportive of a role for certain PKC isozyme(s) in signaling pathways mediating postmitotic events in colonocytes in situ, and suggest that diminished activity of these pathway(s) may contribute to the alterations in growth control/differentiation associated with colonic neoplasia.
Collapse
Affiliation(s)
- G Verstovsek
- Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The protein kinase C family of serine-threonine kinases are important signal transducers participating in many different agonist-induced signalling cascades. PKC is activated by increases in diacylglycerol produced in response to agonist-induced hydrolysis of inositol phospholipids. PKC is thought to reside in the cytosol in an inactive conformation and translocate to the plasma membrane upon cell activation where it modifies various cellular functions through phosphorylation of target substrates. Increasing evidence has illustrated that this family of enzymes is capable of translocating to other subcellular sites than the plasma membrane. A key to understanding the functions of the members of this family is identifying their physiological substrates and their relationship with those target substrates. The idea that PKC may be an important regulator of cytoskeletal function has been suggested by numerous studies. Activation of PKC in a variety of different cell types leads to changes in the cell cytoskeleton including lymphocyte surface receptor capping, smooth muscle contraction and actin rearrangement in T cells and neutrophils. Given the ubiquitous expression of PKC and the diversity of cytoskeletons in different cell types it is not surprising that PKC has been shown to be associated with and/or phosphorylate a wide range of cytoskeletal components. This review examines the interaction of PKC with the cytoskeleton and discusses some of the cytoskeletal functions ascribed to PKC to date.
Collapse
Affiliation(s)
- C Keenan
- Department of Biochemistry, Oxford University, UK
| | | |
Collapse
|
30
|
Abstract
In a wide variety of organisms, gametes develop within clusters of interconnected germline cells called cysts. Four major principles guide the construction of most cysts: synchronous division, a maximally branched pattern of interconnection between cells, specific changes in cyst geometry, and cyst polarization. The fusome is a germline-specific organelle that is associated with cyst formation in many insects and is likely to play an essential role in these processes. This review examines the cellular and molecular processes that underlie fusome formation and cyst initiation, construction, and polarization in Drosophila melanogaster. The studies described here highlight the importance of cyst formation to the subsequent development of functional gametes.
Collapse
Affiliation(s)
- M de Cuevas
- Howard Hughes Medical Institute/Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | | | |
Collapse
|
31
|
Keenan C, Long A, Kelleher D. Protein kinase C and T cell function. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1358:113-26. [PMID: 9332448 DOI: 10.1016/s0167-4889(97)00080-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C Keenan
- Department of Biochemistry, Oxford University, UK.
| | | | | |
Collapse
|
32
|
Zhao X, Gschwend JE, Powell CT, Foster RG, Day KC, Day ML. Retinoblastoma protein-dependent growth signal conflict and caspase activity are required for protein kinase C-signaled apoptosis of prostate epithelial cells. J Biol Chem 1997; 272:22751-7. [PMID: 9278434 DOI: 10.1074/jbc.272.36.22751] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Both protein kinase C and the retinoblastoma tumor suppressor protein have been linked to the regulation of cell growth and cell death, suggesting the differential roles these factors play in mediating cell fate. In some cells, protein kinase C-induced activation of the retinoblastoma protein results in G1 arrest. However, inducible overexpression and activation of the protein kinase Calpha isozyme or the addition of 12-O-tetradecanoylphorbol-13-acetate in the prostate epithelial cell line, LNCaP, resulted in apoptosis preceded by induction of p21 and dephosphorylation of the retinoblastoma protein. Consistent with a role for the retinoblastoma growth suppressor protein in protein kinase C-induced apoptosis, DU145 cells, which do not express functional retinoblastoma protein or LNCaP cells, which have been transfected with the retinoblastoma inhibitor, E1a, were resistant to apoptosis. LNCaP apoptosis was initiated by a unique conflict between the growth-suppressive activity of the retinoblastoma protein and growth-promoting mitogenic signals. Thus, when this conflict was prevented by serum depletion, apoptosis was suppressed. The caspase family of cysteine proteases is believed to encompass the execution machinery of mammalian apoptosis, and addition of the cell-permeable caspase inhibitor, Z-Val-Ala-Asp-fluoromethylketone, afforded nearly total protection from protein kinase C-signaled apoptosis. This protection correlated with the total loss of caspase activity as measured by the proteolytic cleavage of nuclear poly(ADP-ribose) polymerase. On the basis of these results, we propose that protein kinase C regulates a novel cell death pathway that is initiated by a cellular conflict between retinoblastoma growth-suppressive signals and serum mitogenic signals in proliferating prostate epithelial cells and that is executed by the caspase family of cysteine proteases.
Collapse
Affiliation(s)
- X Zhao
- Department of Surgery, Section of Urology and The University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
33
|
Di YP, Repasky EA, Subjeck JR. Distribution of HSP70, protein kinase C, and spectrin is altered in lymphocytes during a fever-like hyperthermia exposure. J Cell Physiol 1997; 172:44-54. [PMID: 9207924 DOI: 10.1002/(sici)1097-4652(199707)172:1<44::aid-jcp5>3.0.co;2-d] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many B and T lymphocytes display a significant heterogeneity with respect to the subcellular distribution of the cytoskeletal protein spectrin and protein kinase C (PKC), both of which often can be found in a large cytoplasmic aggregate in these cell types. In addition to spectrin and PKC, we recently have reported that HSP70 is also a component of this lymphocyte aggregate. Moreover, these three proteins can undergo dynamic and reversible changes in their localization causing "assembly" of the aggregate in response to various conditions associated with lymphocyte activation, indicating that this naturally occurring aggregate structure is sensitive to activation status. We show here that the same changes in HSP70/spectrin/PKC localization induced by PKC activation also can be caused, in vitro and in vivo, by a mild hyperthermia exposure, as occurs during a natural fever (39.5-40 degrees C, 2-12 hr). This mild heat exposure also triggers the activation of PKC, a major heat shock response, and lymphocyte proliferation. The increase in PKC activity, HSP70-spectrin-PKC aggregate formation, and heat shock protein expression resulting from exposure to fever-like hyperthermia are all inhibited by calphostin C, a specific inhibitor of PKC. These data demonstrate that changes observed during lymphocyte activation could be induced by a mild hyperthermia exposure occurring during a normal febrile episode.
Collapse
Affiliation(s)
- Y P Di
- Department of Molecular and Cellular Biology, Roswell Cancer Institute, Buffalo, New York, USA
| | | | | |
Collapse
|
34
|
Frey MR, Saxon ML, Zhao X, Rollins A, Evans SS, Black JD. Protein kinase C isozyme-mediated cell cycle arrest involves induction of p21(waf1/cip1) and p27(kip1) and hypophosphorylation of the retinoblastoma protein in intestinal epithelial cells. J Biol Chem 1997; 272:9424-35. [PMID: 9083081 DOI: 10.1074/jbc.272.14.9424] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The molecular mechanisms underlying protein kinase C (PKC) isozyme-mediated control of cell growth and cell cycle progression are poorly understood. Our previous analysis of PKC isozyme regulation in the intestinal epithelium in situ revealed that multiple members of the PKC family undergo changes in expression and subcellular distribution precisely as the cells cease proliferating in the mid-crypt region, suggesting that activation of one or more of these molecules is involved in negative regulation of cell growth in this system (Saxon, M. L., Zhao, X., and Black, J. D. (1994) J. Cell Biol. 126, 747-763). In the present study, the role of PKC isozyme(s) in control of intestinal epithelial cell growth and cell cycle progression was examined directly using the IEC-18 immature crypt cell line as a model system. Treatment of IEC-18 cells with PKC agonists resulted in translocation of PKC alpha, delta, and epsilon from the soluble to the particulate subcellular fraction, cell cycle arrest in G1 phase, and delayed transit through S and/or G2/M phases. PKC-mediated cell cycle arrest in G1 was accompanied by accumulation of the hypophosphorylated, growth-suppressive form of the retinoblastoma protein and induction of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). Reversal of these cell cycle regulatory effects was coincident with activator-induced down-regulation of PKC alpha, delta, and epsilon. Differential down-regulation of individual PKC isozymes revealed that PKC alpha in particular is sufficient to mediate cell cycle arrest by PKC agonists in this system. Taken together, the data implicate PKC alpha in negative regulation of intestinal epithelial cell growth both in vitro and in situ via pathways which involve modulation of Cip/Kip family cyclin-dependent kinase inhibitors and the retinoblastoma growth suppressor protein.
Collapse
Affiliation(s)
- M R Frey
- Departments of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
35
|
McKearin D. The Drosophila fusome, organelle biogenesis and germ cell differentiation: if you build it.... Bioessays 1997; 19:147-52. [PMID: 9046244 DOI: 10.1002/bies.950190209] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
From stem cells to oocyte, Drosophila germ cells undergo a short, defined lineage. Molecular genetic analyses of a collection of female sterile mutations have indicated that a germ cell-specific organelle called the fusome has a central role at several steps in this lineage. The fusome grows from a prominent spherical organelle to an elongated and branched structure that connects all mitotic sisters in a germ cell syncytium. The organelle is assembled from proteins normally found in the membrane skeleton and, additionally, contains an extensive membranous reticulum, the probable product of differentiation-dependent vesicle trafficking. This review briefly summarizes a current view of the processes that drive germ cell differentiation particularly the various roles that the fusome might play in regulating the developmental events. Future efforts will consider to what extent an organelle assembly-dependent model for differentiation is heuristic and whether the Drosophila fusome represents a homolog of a similar organelle in vertebrate lymphocytes.
Collapse
Affiliation(s)
- D McKearin
- Department of Molecular Biology and Oncology, University of Texas-Southwestern Medical Center, Dallas 75235-9148, USA.
| |
Collapse
|
36
|
de Cuevas M, Lee JK, Spradling AC. alpha-spectrin is required for germline cell division and differentiation in the Drosophila ovary. Development 1996; 122:3959-68. [PMID: 9012516 DOI: 10.1242/dev.122.12.3959] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Drosophila oogenesis, developing germline cysts are spanned by a large cytoplasmic structure called a fusome, containing alpha-spectrin and the adducin-like product of the hu-li tai shao (hts) gene. We found that fusomes contain two additional membrane skeletal proteins: beta-spectrin and ankyrin. hts was shown previously to be required for cyst formation and oocyte differentiation; the role of the fusome itself, however, and the organization and function of its other components, remains unclear. Using the FRT/FLP recombinase system to generate clones of alpha-spectrin-deficient cells in the ovary, we have shown that alpha-spectrin is also required for cyst formation and oocyte differentiation, but that its role in each process is distinct from that of Hts protein. Furthermore, alpha-spectrin is required for these processes in germline cells, but not in the follicle cells that surround each cyst. We have also found that the organization of membrane skeletal proteins is more dependent on alpha-spectrin in the fusome than at the plasma membrane in other cells. Our results suggest that the fusome and its associated membrane skeleton play a central role in regulating the divisions and differentiation of cyst cells.
Collapse
Affiliation(s)
- M de Cuevas
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA
| | | | | |
Collapse
|
37
|
Blobe GC, Stribling DS, Fabbro D, Stabel S, Hannun YA. Protein kinase C beta II specifically binds to and is activated by F-actin. J Biol Chem 1996; 271:15823-30. [PMID: 8663149 DOI: 10.1074/jbc.271.26.15823] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The two most closely related isoenzymes of protein kinase C (PKC), PKC betaI and betaII, are distinct but highly homologous isoenzymes derived via alternative splicing of the same gene product. In this study, PKC betaII, but not PKC betaI, translocated to the actin cytoskeleton upon stimulation of cells with phorbol esters. In cells, antibodies to PKC betaII, but not to PKC betaI, co-immunoprecipitated actin. Using an actin-binding co-sedimentation assay, we show in vitro that PKC betaII, but not PKC betaI, binds to actin specifically. This binding was inhibited by peptides based on sequences unique to PKC betaII; thus defining an actin-binding site in PKC betaII that is not present in PKC betaI. The binding of PKC betaII to actin was not inhibited by kinase inhibitors of PKC (sphingosine and staurosporine), suggesting that prior activation and/or substrate phosphorylation are not required for the interaction of PKC betaII with actin. On the other hand, the interaction of PKC betaII with actin resulted in marked enhancement of autophosphorylation of PKC betaII and in an alteration in substrate specificity. These studies serve to define a novel functional domain in the carboxyl-terminal region of PKC beta, which is involved in directing isoenzyme-specific protein-protein interactions, and consequently, isoenzyme-specific functions in vivo.
Collapse
Affiliation(s)
- G C Blobe
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
38
|
Dubreuil RR, MacVicar G, Dissanayake S, Liu C, Homer D, Hortsch M. Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites. J Cell Biol 1996; 133:647-55. [PMID: 8636238 PMCID: PMC2120821 DOI: 10.1083/jcb.133.3.647] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The protein ankyrin links integral membrane proteins to the spectrin-based membrane skeleton. Ankyrin is often concentrated within restricted membrane domains of polarized epithelia and neurons, but the mechanisms responsible for membrane targeting and its segregation within a continuous lipid bilayer remain unexplained. We provide evidence that neuroglian, a cell adhesion molecule related to L1 and neurofascin, can transmit positional information directly to ankyrin and thereby polarize its distribution in Drosophila S2 tissue culture cells. Ankyrin was not normally associated with the plasma membrane of these cells. Upon expression of an inducible neuroglian minigene, however, cells aggregated into large clusters and ankyrin became concentrated at sites of cell-cell contact. Spectrin was also recruited to sites of cell contact in response to neuroglian expression. The accumulation of ankyrin at cell contacts required the presence of the cytoplasmic domain of neuroglian since a glycosyl phosphatidylinositol-linked form of neuroglian failed to recruit ankyrin to sites of cell-cell contact. Double-labeling experiments revealed that, whereas ankyrin was strictly associated with sites of cell-cell contact, neuroglian was more broadly distributed over the cell surface. A direct interaction between neuroglian and ankyrin was demonstrated using yeast two-hybrid analysis. Thus, neuroglian appears to be activated by extracellular adhesion so that ankyrin and the membrane skeleton selectively associate with sites of cell contact and not with other regions of the plasma membrane.
Collapse
Affiliation(s)
- R R Dubreuil
- Department of Pharmacological & Physiological Sciences, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell Membranes. CURRENT TOPICS IN MEMBRANES 1996. [DOI: 10.1016/s0070-2161(08)60386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
40
|
Repasky EA, Black JD. Chapter 15 Dynamic Properties of the Lymphocyte Membrane-Cytoskeleton: Relationship to Lymphocyte Activation Status, Signal Transduction, and Protein Kinase C. CURRENT TOPICS IN MEMBRANES 1996. [DOI: 10.1016/s0070-2161(08)60395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Di YP, Repasky E, Laszlo A, Calderwood S, Subjeck J. Hsp70 translocates into a cytoplasmic aggregate during lymphocyte activation. J Cell Physiol 1995; 165:228-38. [PMID: 7593200 DOI: 10.1002/jcp.1041650203] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The percentage of T and B lymphocytes expressing a distinct cytoplasmic aggregate enriched in spectrin, ankyrin, and in several other proteins including protein kinase C greatly increases following various activation protocols. Members of the 70 kDa family of heat shock proteins (hsp70) temporarily bind to and stabilize unfolded segments of other proteins, a function apparently required for proper protein folding and assembly. Considering the multiprotein and dynamic nature of the lymphocyte aggregate, the possibility that hsp70 also might be associated with components of this structure is considered here. Double immunofluorescence analysis indicates that hsp70 is a component of the lymphocyte aggregate and is coincident with spectrin in a subpopulation of freshly isolated, untreated lymphocytes from various murine tissues and in a T-lymphocyte hybridoma. When cell lysates of lymph node T cells are immunoprecipitated using an antibody against hsp70 or spectrin and then analyzed by Western blot utilizing the alternate antibody, it was found that hsp70 and spectrin coprecipitated with one another. Moreover, this coprecipitation could be abolished by addition of ATP. This latter observation was extended to lymphoid cells using a transient permeabilization procedure, and it was shown that addition of exogenous ATP results in the dissipation of the aggregate structure itself. Finally, conditions that result in T-cell activation and aggregate formation, i.e., treatment with the phorbol ester PMA or T-cell receptor cross-linking, also lead to the repositioning of hsp70 into the aggregate from a membrane/cytosolic locale in congruence with spectrin. These data suggest that hsp70 is an active component of the aggregate and that it may function in the interactions believed to occur in this unique activation-associated organelle.
Collapse
Affiliation(s)
- Y P Di
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
42
|
Peters LL, John KM, Lu FM, Eicher EM, Higgins A, Yialamas M, Turtzo LC, Otsuka AJ, Lux SE. Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. J Biophys Biochem Cytol 1995; 130:313-30. [PMID: 7615634 PMCID: PMC2199924 DOI: 10.1083/jcb.130.2.313] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We cloned a novel ankyrin, Ank3, from mouse kidney cDNA. The full-length transcript is predicted to encode a 214-kD protein containing an 89 kD, NH2 terminal "repeat" domain; a 65 kD, central "spectrin-binding" domain; and a 56 kD, COOH-terminal "regulatory" domain. The Ank3 gene maps to mouse Chromosome 10, approximately 36 cM from the centromere, a locus distinct from Ank1 and Ank2. Ank3 is the major kidney ankyrin. Multiple transcripts of approximately 7.5, 6.9, 6.3, 5.7, 5.1, and 4.6 kb are highly expressed in kidney where Ank1 and Ank2 mRNAs are barely detectable. The smaller mRNAs (< or = 6.3 kb) lack the entire repeat domain. These transcripts have a unique 5'untranslated region and NH2-terminal sequence and encode a predicted protein of 121 kD. Two small sequences of 21 and 18 amino acids are alternatively spliced at the junction of the repeat and spectrin-binding domains in the larger (> or = 6.9 kb) RNAs. Alternative splicing of a 588 bp sequence (corresponding to a 21.5-kD acidic amino acid sequence) within the regulatory domain also occurs. Ank3 is much more widely expressed than previously described ankyrins. By Northern hybridization or immunocytochemistry, it is present in most epithelial cells, in neuronal axons, in muscle cells, and in megakaryocytes/platelets, macrophages, and the interstitial cells of Leydig (testis). On immunoblots, an antibody raised to a unique regions of the regulatory domain detects multiple Ank3 isoforms in the kidney (215, 200, 170, 120, 105 kD) and in other tissues. The 215/200 kD and 120/105-kD kidney proteins are close to the sizes predicted for the 7.5/6.9- and 6.3/5.7-kb RNAs (with/without the 588-bp acidic insert). Interestingly, it appears that Ank3 exhibits a polarized distribution only in tissues that express the approximately 7.0-kb isoforms, the only isoforms in the kidney that contain the repeat domain. In tissues where smaller transcripts (< or = 6.3 kb) are expressed. Ank3 is diffusely distributed in some or all cells and may be associated with cytoplasmic structures. We conclude that Ank3 is a broadly distributed epithelial ankyrin and is the major ankyrin in the kidney and other tissues, where it plays an important role in the polarized distribution of many integral membrane proteins.
Collapse
Affiliation(s)
- L L Peters
- Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gregorio CC, Fowler VM. Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J Cell Biol 1995; 129:683-95. [PMID: 7730404 PMCID: PMC2120443 DOI: 10.1083/jcb.129.3.683] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tropomodulin is a pointed end capping protein for tropomyosin-coated actin filaments that is hypothesized to play a role in regulating the precise lengths of striated muscle thin filaments (Fowler, V. M., M. A. Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120:411-420; Weber, A., C. C. Pennise, G. G. Babcock, and V. M. Fowler. 1994, J. Cell Biol. 127:1627-1635). To gain insight into the mechanisms of thin filament assembly and the role of tropomodulin therein, we have characterized the temporal appearance, biosynthesis and mechanisms of assembly of tropomodulin onto the pointed ends of thin filaments during the formation of striated myofibrils in primary embryonic chick cardiomyocyte cultures. Our results demonstrate that tropomodulin is not assembled coordinately with other thin filament proteins. Double immunofluorescence staining and ultrastructural immunolocalization demonstrate that tropomodulin is incorporated in its characteristic sarcomeric location at the pointed ends of the thin filaments after the thin filaments have become organized into periodic I bands. In fact, tropomodulin assembles later than all other well characterized myofibrillar proteins studied including: actin, tropomyosin, alpha-actinin, titin, myosin and C-protein. Nevertheless, at steady state, a significant proportion (approximately 39%) of tropomodulin is present in a soluble pool throughout myofibril assembly. Thus, the absence of tropomodulin in some striated myofibrils is not due to limiting quantities of the protein. In addition, kinetic data obtained from [35S]methionine pulse-chase experiments indicate that tropomodulin assembles more slowly into myofibrils than does tropomyosin. This observation, together with results obtained using a novel permeabilized cell model for thin filament assembly, indicate that tropomodulin assembly is dependent on the prior association of tropomyosin with actin filaments. We conclude that tropomodulin is a late marker for the assembly of striated myofibrils in cardiomyocytes; its assembly appears to be linked to their maturity. We propose that tropomodulin is involved in maintaining and stabilizing the final lengths of thin filaments after they are assembled.
Collapse
Affiliation(s)
- C C Gregorio
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
44
|
Goodnight JA, Mischak H, Kolch W, Mushinski JF. Immunocytochemical localization of eight protein kinase C isozymes overexpressed in NIH 3T3 fibroblasts. Isoform-specific association with microfilaments, Golgi, endoplasmic reticulum, and nuclear and cell membranes. J Biol Chem 1995; 270:9991-10001. [PMID: 7730383 DOI: 10.1074/jbc.270.17.9991] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have used immunocytochemical analyses to characterize the subcellular distribution of protein kinase C (PKC)-alpha, -beta I, -beta II, -gamma, -delta, -epsilon, -zeta, and -eta in NIH 3T3 fibroblasts that overexpress these different PKC isozymes. Immunofluorescence studies and Western blotting with antibodies specific for individual isoforms revealed that before activation the majority of the PKCs are not membrane-bound and are diffusely distributed throughout the cytoplasm. In addition, a fraction of PKC-delta and -eta appears membrane-bound and concentrated in the Golgi apparatus. Activation of each isozyme's kinase activity (with the exception of PKC-zeta) by treatment of these cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate results in isozyme-specific alterations of cell morphology, as well as in a rapid, selective redistribution of the different PKC isozymes to distinct subcellular structures. Within minutes after 12-O-tetradecanoylphorbol-13-acetate treatment, PKC-alpha and -epsilon concentrate at cell margins. In addition, PKC-alpha accumulates in the endoplasmic reticulum, PKC-beta II associates with actin-rich microfilaments of the cytoskeleton, PKC-gamma accumulates in Golgi organelles, and PKC-epsilon associates with nuclear membranes. Our results demonstrate that each activated PKC isozyme specifically associates with a particular cellular structure, presumably containing the substrate for that isozyme. These findings support the hypothesis that PKC substrate specificity in vivo is mediated, at least in part, by the restricted subcellular locale for each PKC isozyme and its target protein.
Collapse
Affiliation(s)
- J A Goodnight
- Molecular Genetics Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | |
Collapse
|
45
|
Saxon ML, Zhao X, Black JD. Activation of protein kinase C isozymes is associated with post-mitotic events in intestinal epithelial cells in situ. J Biophys Biochem Cytol 1994; 126:747-63. [PMID: 8045938 PMCID: PMC2120146 DOI: 10.1083/jcb.126.3.747] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanisms underlying control of cell growth and differentiation in epithelial tissues are poorly understood. Protein kinase C (PKC) isozymes, members of a large family of serine/threonine kinases of fundamental importance in signal transduction, have been increasingly implicated in the regulation of cell growth, differentiation, and function. Using the rat intestinal epithelium as a model system, we have examined PKC-specific activity as well as individual PKC isozyme expression and distribution (i.e., activation status) in epithelial cells in situ. Increased PKC activity was detected in differentiating and functional cells relative to immature proliferating crypt cells. Immunofluorescence and Western blot analysis using a panel of isozyme-specific antibodies revealed that PKC alpha, beta II, delta, epsilon, and zeta are expressed in rat intestinal epithelial cells and exhibit distinct subcellular distribution patterns along the crypt-villus unit. The combined morphological and biochemical approach used permitted analysis of the activation status of specific PKC isozymes at the individual cell level. These studies showed that marked changes in membrane association and level of expression for PKC alpha, beta II, delta, and zeta occur as cells cease division in the mid-crypt region and begin differentiation. Additional changes in PKC activation status are observed with acquisition of mature function on the villus. These studies clearly demonstrate naturally occurring alterations in PKC isozyme activation status at the individual cell level within the context of a developing tissue. Direct activation of PKC in an immature intestinal crypt cell line was shown to result in growth inhibition and coincident translocation of PKC alpha from the cytosolic to the particulate subcellular fraction, paralleling observations made in situ and providing further support for a role of intestinal PKC isozymes in post-mitotic events. PKC isozymes were also found to be tightly associated with cytoskeletal elements, suggesting participation in control of the structural organization of the enterocyte. Taken together, the results presented strongly suggest an involvement of PKC isoforms in cellular processes related to growth cessation, differentiation, and function of intestinal epithelial cells in situ.
Collapse
Affiliation(s)
- M L Saxon
- Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | |
Collapse
|