1
|
Bondelli G, Sardar S, Chiaravalli G, Vurro V, Paternò GM, Lanzani G, D'Andrea C. Shedding Light on Thermally Induced Optocapacitance at the Organic Biointerface. J Phys Chem B 2021; 125:10748-10758. [PMID: 34524830 PMCID: PMC8488932 DOI: 10.1021/acs.jpcb.1c06054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Photothermal
perturbation
of the cell membrane is typically achieved
using transducers that convert light into thermal energy, eventually
heating the cell membrane. In turn, this leads to the modulation of
the membrane electrical capacitance that is assigned to a geometrical
modification of the membrane structure. However, the nature of such
a change is not understood. In this work, we employ an all-optical
spectroscopic approach, based on the use of fluorescent probes, to
monitor the membrane polarity, viscosity, and order directly in living
cells under thermal excitation transduced by a photoexcited polymer
film. We report two major results. First, we show that rising temperature
does not just change the geometry of the membrane but indeed it affects
the membrane dielectric characteristics by water penetration. Second,
we find an additional effect, which is peculiar for the photoexcited
semiconducting polymer film, that contributes to the system perturbation
and that we tentatively assigned to the photoinduced polarization
of the polymer interface.
Collapse
Affiliation(s)
- Gaia Bondelli
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy.,Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Samim Sardar
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Greta Chiaravalli
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy.,Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Vito Vurro
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Giuseppe Maria Paternò
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Guglielmo Lanzani
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy.,Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Cosimo D'Andrea
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy.,Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| |
Collapse
|
2
|
Fischer FC, Abele C, Droge STJ, Henneberger L, König M, Schlichting R, Scholz S, Escher BI. Cellular Uptake Kinetics of Neutral and Charged Chemicals in in Vitro Assays Measured by Fluorescence Microscopy. Chem Res Toxicol 2018; 31:646-657. [PMID: 29939727 DOI: 10.1021/acs.chemrestox.8b00019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular uptake kinetics are key for understanding time-dependent chemical exposure in in vitro cell assays. Slow cellular uptake kinetics in relation to the total exposure time can considerably reduce the biologically effective dose. In this study, fluorescence microscopy combined with automated image analysis was applied for time-resolved quantification of cellular uptake of 10 neutral, anionic, cationic, and zwitterionic fluorophores in two reporter gene assays. The chemical fluorescence in the medium remained relatively constant during the 24-h assay duration, emphasizing that the proteins and lipids in the fetal bovine serum (FBS) supplemented to the assay medium represent a large reservoir of reversibly bound chemicals with the potential to compensate for chemical depletion by cell uptake, growth, and sorption to well materials. Hence FBS plays a role in stabilizing the cellular dose in a similar way as polymer-based passive dosing, here we term this process as serum-mediated passive dosing (SMPD). Neutral chemicals accumulated in the cells up to 12 times faster than charged chemicals. Increasing medium FBS concentrations accelerated uptake due to FBS-facilitated transport but led to lower cellular concentrations as a result of increased sorption to medium proteins and lipids. In vitro cell exposure results from the interaction of several extra- and intracellular processes, leading to variable and time-dependent exposure between different chemicals and assay setups. The medium FBS plays a crucial role for the thermodynamic equilibria as well as for the cellular uptake kinetics, hence influencing exposure. However, quantification of cellular exposure by an area under the curve (AUC) analysis illustrated that, for the evaluated bioassay setup, current in vitro exposure models that assume instantaneous equilibrium between medium and cells still reflect a realistic exposure because the AUC was typically reduced less than 20% compared to the cellular dose that would result from instantaneous equilibrium.
Collapse
Affiliation(s)
- Fabian C Fischer
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Cedric Abele
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Steven T J Droge
- Institute for Biodiversity and Ecosystem Dynamics , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , Netherlands
| | - Luise Henneberger
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Maria König
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Rita Schlichting
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Beate I Escher
- Department of Cell Toxicology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany.,Environmental Toxicology, Centre for Applied Geoscience , Eberhard Karls University Tübingen , 72074 Tübingen , Germany
| |
Collapse
|
3
|
Chakraborty R, Basu T. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line. NANOTECHNOLOGY 2017; 28:105101. [PMID: 28067213 DOI: 10.1088/1361-6528/aa57b0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In two earlier communications (Chatterjee et al 2012 Nanotechnology 23 085103, Chatterjee et al 2014 Nanotechnology 25 135101), we reported the development of a simple and unique method of synthesizing highly stable metallic copper nanoparticles (Cu NPs) with high antibacterial activity. Here we report on the cytotoxic potency of the NPs against cancer cells. The value of the IC50 dose of the Cu NPs against human skin cancer cell A-375 was found to be 1.71 μg ml-1 only, which was much less than values reported so far, and this concentration had no cytotoxic effect on normal white blood cells. The NPs caused (i) lowering of cell membrane rigidity, (ii) DNA degradation, (iii) chromosomal condensation, (iv) cell cycle arrest in the G2/M phase, (v) depolarization of the mitochondrial membrane and (vi) apoptosis of cells. Cellular apoptosis occurred in the caspase-9-mediated intrinsic pathway. This study revealed that our Cu NPs had high anticancer properties by killing tumor cells through the apoptotic pathway. Since this particle has high antibacterial activity, our Cu NPs might be developed in future as a dual action drug-anticancer as well as antibacterial.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani-741235, West Bengal, India
| | | |
Collapse
|
4
|
Wüstner D, Christensen T, Solanko LM, Sage D. Photobleaching kinetics and time-integrated emission of fluorescent probes in cellular membranes. Molecules 2014; 19:11096-130. [PMID: 25076144 PMCID: PMC6271172 DOI: 10.3390/molecules190811096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/02/2022] Open
Abstract
Since the pioneering work of Hirschfeld, it is known that time-integrated emission (TiEm) of a fluorophore is independent of fluorescence quantum yield and illumination intensity. Practical implementation of this important result for determining exact probe distribution in living cells is often hampered by the presence of autofluorescence. Using kinetic modelling of photobleaching combined with pixel-wise bleach rate fitting of decay models with an updated plugin to the ImageJ program, it is shown that the TiEm of a fluorophore in living cells can be determined exactly from the product of bleaching amplitude and time constant. This applies to mono-exponential bleaching from the first excited singlet and/or triplet state and to multi-exponential combinations of such processes. The TiEm can be used to correct for illumination shading and background autofluorescence without the need for fluorescent test layers or separate imaging of non-stained cells. We apply the method to simulated images and to images of cells, whose membranes were labelled with fluorescent sterols and sphingolipids. Our bleaching model can be extended to include a probability density function (PDF) of intrinsic bleach rate constants with a memory kernel. This approach results in a time-dependent bleach rate coefficient and is exemplified for fluorescent sterols in restricted intracellular environments, like lipid droplets. We show that for small deviations from the classical exponential bleaching, the TiEm of decay functions with rate coefficients remains largely independent of fluorescence lifetime and illumination, and thereby represents a faithful measure of probe distribution.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Tanja Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Lukasz M Solanko
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Daniel Sage
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Abstract
INTRODUCTION TMA-DPH (trimethylamine-diphenylhexatriene) is a fluorescent membrane probe that has classically been used to label the outer leaflet of a membrane bilayer, to label the outer leaflet of the plasma membrane in cells, and to report on membrane dynamics using the techniques of fluorescence polarization and/or fluorescence lifetime. This probe has also been used to follow exocytosis and endocytosis of labeled plasma membranes. The interaction of the aqueous environment with mitochondrial inner membrane dynamics has also been studied following the fluorescence polarization and the lifetime of TMA-DPH. This protocol describes the use of TMA-DPH to label the plasma membrane.
Collapse
|
6
|
Andrzejak M, Santiago M, Kessel D. Effects of endosomal photodamage on membrane recycling and endocytosis. Photochem Photobiol 2011; 87:699-706. [PMID: 21208213 DOI: 10.1111/j.1751-1097.2011.00890.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The flux of receptor-independent endocytosis can be estimated by addition of wortmannin to cell cultures. Membrane influx is unaffected but traffic out of late endosomes is impaired, resulting in a substantial enlargement of these organelles. Using the 1c1c7 murine hepatoma, we investigated the effect of endosomal photodamage on this endocytic pathway. We previously reported that photodamage catalyzed by the lysosomal photosensitizer NPe6 prevented wortmannin-induced endosomal swelling, indicating an earlier block in the process. In this study, we show that endosomal photodamage, initiated by photodamage from an asymmetrically substituted porphine or a phthalocyanine also prevents wortmannin-induced endosomal swelling, even when the photodynamic therapy (PDT) dose is insufficient to cause endosomal disruption. As the PDT dose is increased, endosomal breakage occurs, as does apoptosis and cell death. Very high PDT doses result in necrosis. We propose that photodamage to endosomes results in alterations in the endosomal structure such that influx of new material is inhibited and receptor-independent endocytosis is prevented. In an additional series of studies, we found that the swollen late endosomes induced by wortmannin are unable to retain previously accumulated fluorescent probes or photosensitizers.
Collapse
|
7
|
Kessel D, Price M, Caruso J, Reiners J. Effects of photodynamic therapy on the endocytic pathway. Photochem Photobiol Sci 2010; 10:491-8. [PMID: 21125114 DOI: 10.1039/c0pp00276c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we describe an effect of photodynamic therapy (PDT) on membrane trafficking in murine 1c1c7 hepatoma cells. A brief exposure of 1c1c7 cells to a 20 nM concentration of the phosphatidylinositol kinase class-3 antagonist wortmannin led to the rapid appearance of cytoplasmic vacuoles. Fluorescence monitoring of plasma membrane-associated 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TDPH) over time demonstrated that the wortmannin-induced vacuoles were derived from endocytosed plasma membrane. Low-dose photodamage catalyzed by the lysosomal photosensitizer NPe6, prior to the addition of wortmannin, prevented formation of these vacuoles. NPe6 was found to suppress for several hours the normal trafficking of TDPH-labeled plasma membrane to the cytosol, and the formation of punctate TDPH-labeled cytoplasmic vesicles. The ability of NPe6-induced photodamage to suppress wortmannin-induced vacuolization occurred under conditions that did not disrupt lysosomes and were at or below the threshold of cytostatic/cytotoxic effects. Furthermore, the suppressive effects of NPe6-PDT were not prevented by inclusion of an agent that stabilized lysosomal membranes, or by E64d, an inhibitor of lysosomal cathepsin proteases. Mitochondrial photodamage was less effective at preventing wortmannin-induced vacuole formation and PDT directed against the ER had no effect. The role of photodamage to the endocytic pathway may be a hitherto unexplored effect on cells that selectively accumulate photosensitizing agents. These results indicate that photodamage directed against endosomes/lysosomes has effects independent of the release of lysosomal proteases.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
8
|
Yoon J, Kim KJ, Choi YW, Shin HS, Kim YH, Min J. The dependence of enhanced lysosomal activity on the cellular aging of bovine aortic endothelial cells. Mol Cell Biochem 2010; 340:175-8. [PMID: 20174960 DOI: 10.1007/s11010-010-0415-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
Lysosomes are a cell organelle type processing antimicrobial activity. Here, we investigate the lysosomal activity in a primary cell line, bovine aortic endothelial cells (BAECs), during cellular aging, based on the antimicrobial activity of lysosomes isolated from BAECs at cell passages 4, 6, 8, and 10. Cytochemical analysis of lysosomes with LysoTracker reagent revealed the number of lysosome-like organelles surrounding the nucleus initially increased drastically in the BAECs and continued increasing gradually until passage 10. The lysosomes isolated from each successive passage of BAECs exhibited increased antimicrobial activity against Escherichia coli, and, in addition, an age-dependent increase in lysosome intensity coincided with increased lysosomal antimicrobial activity.
Collapse
Affiliation(s)
- Jihee Yoon
- Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University, 664-14 Duckjin-dong, Jeonju 561-756, South Korea
| | | | | | | | | | | |
Collapse
|
9
|
Peer WA, Hosein FN, Bandyopadhyay A, Makam SN, Otegui MS, Lee GJ, Blakeslee JJ, Cheng Y, Titapiwatanakun B, Yakubov B, Bangari B, Murphy AS. Mutation of the membrane-associated M1 protease APM1 results in distinct embryonic and seedling developmental defects in Arabidopsis. THE PLANT CELL 2009; 21:1693-721. [PMID: 19531600 PMCID: PMC2714933 DOI: 10.1105/tpc.108.059634] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/14/2009] [Accepted: 06/01/2009] [Indexed: 05/20/2023]
Abstract
Aminopeptidase M1 (APM1), a single copy gene in Arabidopsis thaliana, encodes a metallopeptidase originally identified via its affinity for, and hydrolysis of, the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Mutations in this gene result in haploinsufficiency. Loss-of-function mutants show irregular, uncoordinated cell divisions throughout embryogenesis, affecting the shape and number of cotyledons and the hypophysis, and is seedling lethal at 5 d after germination due to root growth arrest. Quiescent center and cell cycle markers show no signals in apm1-1 knockdown mutants, and the ground tissue specifiers SHORTROOT and SCARECROW are misexpressed or mislocalized. apm1 mutants have multiple, fused cotyledons and hypocotyls with enlarged epidermal cells with cell adhesion defects. apm1 alleles show defects in gravitropism and auxin transport. Gravistimulation decreases APM1 expression in auxin-accumulating root epidermal cells, and auxin treatment increases expression in the stele. On sucrose gradients, APM1 occurs in unique light membrane fractions. APM1 localizes at the margins of Golgi cisternae, plasma membrane, select multivesicular bodies, tonoplast, dense intravacuolar bodies, and maturing metaxylem cells. APM1 associates with brefeldin A-sensitive endomembrane structures and the plasma membrane in cortical and epidermal cells. The auxin-related phenotypes and mislocalization of auxin efflux proteins in apm1 are consistent with biochemical interactions between APM1 and NPA.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Horticulture, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A, Yang H, Mravec J, Sauer M, Cheng Y, Adamec J, Nagashima A, Geisler M, Sakai T, Friml J, Peer WA, Murphy AS. ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:27-44. [PMID: 18774968 DOI: 10.1111/j.1365-313x.2008.03668.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Auxin transport is mediated at the cellular level by three independent mechanisms that are characterised by the PIN-formed (PIN), P-glycoprotein (ABCB/PGP) and AUX/LAX transport proteins. The PIN and ABCB transport proteins, best represented by PIN1 and ABCB19 (PGP19), have been shown to coordinately regulate auxin efflux. When PIN1 and ABCB19 coincide on the plasma membrane, their interaction enhances the rate and specificity of auxin efflux and the dynamic cycling of PIN1 is reduced. However, ABCB19 function is not regulated by the dynamic cellular trafficking mechanisms that regulate PIN1 in apical tissues, as localisation of ABCB19 on the plasma membrane was not inhibited by short-term treatments with latrunculin B, oryzalin, brefeldin A (BFA) or wortmannin--all of which have been shown to alter PIN1 and/or PIN2 plasma membrane localisation. When taken up by endocytosis, the styryl dye FM4-64 labels diffuse rather than punctuate intracellular bodies in abcb19 (pgp19), and some aggregations of PIN1 induced by short-term BFA treatment did not disperse after BFA washout in abcb19. Although the subcellular localisations of ABCB19 and PIN1 in the reciprocal mutant backgrounds were like those in wild type, PIN1 plasma membrane localisation in abcb19 roots was more easily perturbed by the detergent Triton X-100, but not other non-ionic detergents. ABCB19 is stably associated with sterol/sphingolipid-enriched membrane fractions containing BIG/TIR3 and partitions into Triton X-100 detergent-resistant membrane (DRM) fractions. In the wild type, PIN1 was also present in DRMs, but was less abundant in abcb19 DRMs. These observations suggested a rationale for the observed lack of auxin transport activity when PIN1 is expressed in a non-plant heterologous system. PIN1 was therefore expressed in Schizosaccharomyces pombe, which has plant-like sterol-enriched microdomains, and catalysed auxin transport in these cells. These data suggest that ABCB19 stabilises PIN1 localisation at the plasma membrane in discrete cellular subdomains where PIN1 and ABCB19 expression overlaps.
Collapse
|
11
|
Cauchon N, Nader M, Bkaily G, van Lier JE, Hunting D. Photodynamic activity of substituted zinc trisulfophthalocyanines: role of plasma membrane damage. Photochem Photobiol 2007; 82:1712-20. [PMID: 16906790 DOI: 10.1562/2005-12-13-ra-752] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We recently reported that variations in cellular phototoxicity among a series of alkynyl-substituted zinc trisulfophthalocyanines (ZnPcS3Cn) correlates with their hydrophobicity, with the most amphiphilic derivatives showing the highest cell uptake and phototoxicity. In this study we address the role of the plasma membrane in the photodynamic response as it relates to the overall hydrophobicity of the photosensitizer. The membrane tracker dye 1-[4(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), which is incorporated into plasma membranes by endocytosis, was used to establish plasma membrane uptake by EMT-6 cells of the ZnPcS3C, by colocalization, and TMA-DPH membrane uptake rates after photodynamic therapy were used to quantify membrane damage. TMA-DPH colocalization patterns show plasma membrane uptake of the photosensitizers after short 1 h incubation periods. TMA-DPH plasma membrane uptake rates after illumination of the photosensitizer-treated cells show a parabolic relationship with photosensitizer hydrophobicity that correlates well with the phototoxicity of the ZnPcS3C,. After a 1 h incubation period, overall phototoxicity correlates closely with the postillumination rate of TMA-DPH incorporation into the cell membrane, suggesting a major role of plasma membrane damage in the overall PDT effect. In contrast, after a 24 h incubation, phototoxicity shows a stronger but imperfect correlation with total cellular photosensitizer uptake rather than TMA-DPH membrane uptake, suggesting a partial shift in the cellular damage responsible for photosensitization from the plasma membrane to intracellular targets. We conclude that plasma membrane localization of the amphiphilic ZnPcS3C6-C9 is a major factor in their overall photodynamic activity.
Collapse
Affiliation(s)
- Nicole Cauchon
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
12
|
Cauchon N, Nader M, Bkaily G, Lier JE, Hunting D. Photodynamic Activity of Substituted Zinc Trisulfophthalocyanines: Role of Plasma Membrane Damage. Photochem Photobiol 2006. [DOI: 10.1111/j.1751-1097.2006.tb09835.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Hansen CB, Pyke C, Petersen LC, Rao LV. Tissue factor-mediated endocytosis, recycling, and degradation of factor VIIa by a clathrin-independent mechanism not requiring the cytoplasmic domain of tissue factor. Blood 2001; 97:1712-20. [PMID: 11238112 DOI: 10.1182/blood.v97.6.1712] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endocytosis and recycling of coagulation factor VIIa (VIIa) bound to tissue factor (TF) was investigated in baby hamster kidney (BHK) cells stably transfected with TF or TF derivatives. Cell surface expression of TF on BHK cells was required for VIIa internalization and degradation. Approximately 50% of cell surface-bound VIIa was internalized in one hour, and a majority of the internalized VIIa was degraded soon thereafter. Similar rates of VIIa internalization and degradation were obtained with BHK cells transfected with a cytoplasmic domain-deleted TF variant or with a substitution of serine for cysteine at amino acid residue 245 (C245S). Endocytosis of VIIa bound to TF was an active process. Acidification of the cytosol, known to inhibit the internalization via clathrin-coated pits, did not affect the internalization of VIIa. Furthermore, receptor-associated protein, known to block binding of all established ligands to members of the low-density lipoprotein receptor family, was without an effect on the internalization of VIIa. Addition of tissue factor pathway inhibitor/factor Xa complex did not affect the internalization rate significantly. A substantial portion (20% to 25%) of internalized VIIa was recycled back to the cell surface as an intact and functional protein. Although the recycled VIIa constitutes to only approximately 10% of available cell surface TF/VIIa sites, it accounts for 65% of the maximal activation of factor X by the cell surface TF/VIIa. In summary, the present data provide evidence that TF-dependent internalization of VIIa in kidney cells occurs through a clathrin-independent mechanism and does not require the cytoplasmic domain of TF.
Collapse
Affiliation(s)
- C B Hansen
- Department of Tissue Factor/Factor VIIa (TF/VIIa) Research, Health Care Discovery, Novo Nordisk A/S, Maalov, Denmark
| | | | | | | |
Collapse
|
14
|
Schaller-Bals S, Bates SR, Notarfrancesco K, Tao JQ, Fisher AB, Shuman H. Surface-expressed lamellar body membrane is recycled to lamellar bodies. Am J Physiol Lung Cell Mol Physiol 2000; 279:L631-40. [PMID: 11000122 DOI: 10.1152/ajplung.2000.279.4.l631] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monoclonal antibody (MAb) 3C9, an antibody generated to the lamellar body of rat lung type II pneumocytes, specifically labels the luminal face of the lamellar body membrane. To follow the retrieval of lamellar body membrane from the cell surface in these cells, MAb 3C9 was instilled into rat lungs. In vivo, it was endocytosed by type II cells but not by other lung cells. In type II cells that were isolated from rat lungs by elastase digestion and cultured on plastic for 24 h, MAb 3C9 first bound to the cell surface, then was found in endosomes, vesicular structures, and multivesicular bodies and, finally, clustered on the luminal face of lamellar body membranes. The amount internalized reached a plateau after 1.5 h of incubation and was stimulated with the secretagogue ATP. In double-labeling experiments, internalized MAb 3C9 did not completely colocalize with NBD-PC liposomes or the nonspecific endocytic marker TMA-DPH, suggesting that lamellar body membrane is retrieved back to existing lamellar bodies by a pathway different from that of bulk membrane and may be one pathway for surfactant endocytosis. The lamellar body membrane components are retrieved as subunits that are redistributed among the preexisting lamellar bodies in the cell.
Collapse
Affiliation(s)
- S Schaller-Bals
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6068, USA
| | | | | | | | | | | |
Collapse
|
15
|
Fialka I, Steinlein P, Ahorn H, Böck G, Burbelo PD, Haberfellner M, Lottspeich F, Paiha K, Pasquali C, Huber LA. Identification of syntenin as a protein of the apical early endocytic compartment in Madin-Darby canine kidney cells. J Biol Chem 1999; 274:26233-9. [PMID: 10473577 DOI: 10.1074/jbc.274.37.26233] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used flow cytometry to sort and analyze apical and basolateral endocytic vesicles from filter-grown Madin-Darby canine kidney (MDCK) cells after membrane internalization of the lipophilic fluorescent probe trimethylamino-diphenylhexatriene. Western blot analysis of sorted fractions showed enrichment of the early endosomal markers transferrin receptor and the small GTPase Rab5. Two-dimensional gel analysis indicated that the apical and basolateral early endosomes differed significantly in their protein composition. We found nine polypeptides to be specifically enriched in apical or basolateral endocytic vesicles. An apical protein identified by microsequencing was the adaptor molecule syntenin. This protein contains two PDZ domains (PSD-95, Dlg, and ZO-1 homology) that bind syndecan and ephrin-B2 cytoplasmic domains. In MDCK cells, transiently overexpressed Myc-tagged syntenin localized to both plasma membrane domains and to an intracellular vesicular compartment. Syntenin positive vesicles colocalized with internalized transferrin in the perinuclear region. In addition, syntenin colocalized in the apical supranuclear region with Rab5 and Rab11; the latter is a marker for the apical recycling endosomes in MDCK cells.
Collapse
Affiliation(s)
- I Fialka
- Research Institute of Molecular Pathology, Dr. Bohr Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Coupin GT, Muller CD, Rémy-Kristensen A, Kuhry JG. Cell surface membrane homeostasis and intracellular membrane traffic balance in mouse L929 cells. J Cell Sci 1999; 112 ( Pt 14):2431-40. [PMID: 10381398 DOI: 10.1242/jcs.112.14.2431] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a simple method for synchronizing L929 mouse fibroblasts. Cultured as monolayers, these cells stop growing at confluency and arrest at the end of the G1 phase. Upon seeding at low density, they enter the S phase simultaneously. Using these cells we then looked at the evolution of the surface membrane area during the cell cycle using the fluorescence membrane probe TMA-DPH. In contact with cells, this probe partitions between the membrane (probe fluorescent) and the external medium (non-fluorescent), delivering a signal proportional to the membrane area. This area was constant until just before mitosis, when it increased at once. With the same probe as an endocytic marker, we examined how this membrane homeostasis could be consistent with intracellular membrane trafficking. The study was limited to one selected period of the cell cycle (6-9 hours). We observed that 14% of the membrane endocytosed was not recycled, but was replaced at the cell surface by newly formed membrane from biosynthetic pathways. Brefeldin A modified the membrane traffic, but not the overall membrane homeostasis. The results are discussed in the framework of a maturation model.
Collapse
Affiliation(s)
- G T Coupin
- Laboratoire d'Immunopharmacologie and Laboratoire de Pharmacologie et Physico-Chimie, UMR (ex ERS 653, ex URA491), Faculté de Pharmacie de Strasbourg, BP 24, France
| | | | | | | |
Collapse
|
17
|
Coupin G, Kuhry JG. Differentiation between clathrin-dependent and clathrin-independent endocytosis by means of membrane fluidity measurements. Cell Biochem Biophys 1999; 30:25-34. [PMID: 10099821 DOI: 10.1007/bf02737883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The fluorescence probe [1-(4-trimethylammonium]-6-phenyl-1,3,5-hexatriene (TMA-DPH) displays properties relevant for both monitoring endocytosis kinetics and assessing membrane fluidity by fluorescence-anisotropy measurements (1). Thus, it is, possible with this probe to follow the evolution of membrane fluidity during endocytosis, from the very beginning of the process, i.e., the formation of endocytic vesicles. In most cases, endocytosis is known to start with clathrin-coated vesicles. Still, there are more and more arguments in favor of a complementary endocytic pathway without clathrin. In this article we present membrane-fluidity data for very early endocytosis, which allow an upper limit to be determined for the contribution of a putative nonclathrin pathway. We show that this limit is markedly higher for bone marrow-derived macrophages than for mouse fibroblasts of the L929 cell line.
Collapse
Affiliation(s)
- G Coupin
- Laboratoire d'Immunopharmacologie, URA 491, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| | | |
Collapse
|
18
|
Lenne-Gouverneur AF, Lobstein A, Haan-Archipoff G, Duportail G, Anton R, Kuhry JG. Interactions of the monomeric and dimeric flavones apigenin and amentoflavone with the plasma membrane of L929 cells; a fluorescence study. Mol Membr Biol 1999; 16:157-65. [PMID: 10417980 DOI: 10.1080/096876899294616] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flavonoids are ubiquitous polyphenolic compounds, found in vascular plants, which are endowed with a large variety of biological effects. Some of these effects have been assumed to result from interactions with the cell plasma membrane. In order to investigate the nature of these interactions a fluorescence study was performed with two flavonoids, currently used in one of the laboratories: apigenin and its homologous dimer amentoflavone. After preliminary assays with DPH in several types of phospholipid liposomes, the effects of these flavonoids on the membrane of mouse L929 fibroblasts were compared, using the non-permeant probe TMA-DPH. Amentoflavone, unlike apigenin, induced a static quenching effect, which denoted an important, but reversible, association of the molecule with the plasma membrane. In addition, amentoflavone treatment induced a dose-dependent increase in TMA-DPH fluorescence anisotropy, which could be interpreted as an increase in membrane lipidic order. For apigenin, the effect was much less important. Moreover, exploiting the capacity of TMA-DPH to label endocytic compartments, it was shown that, after association with the membrane, amentoflavone is not internalized into the cell. Possible correlations of these membrane effects with other biological properties are discussed.
Collapse
|
19
|
Marcusson EG, Bhat B, Manoharan M, Bennett CF, Dean NM. Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res 1998; 26:2016-23. [PMID: 9518498 PMCID: PMC147486 DOI: 10.1093/nar/26.8.2016] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antisense oligonucleotides complementary to specific mRNA sequences are widely used inhibitors of gene expression in vitro and in vivo . In vitro cationic lipids have been demonstrated to increase the pharmacological activity of antisense oligonucleotides by increasing cellular uptake and facilitating nuclear accumulation. We have investigated the intracellular fate of oligonucleotide/cationic lipid complexes using fluorescently labeled lipids and oligonucleotides targeted to protein kinase C-alpha. After addition to cells the lipids initially co-localized with the oligonucleotide on the cell surface and in fine punctate structures within the cytoplasm. At later times the oligonucleotide began to accumulate in the nucleus as well as the cytoplasm. In contrast, the cationic lipid remained localized to the cell surface and the cytoplasm and was never found in the nucleus. Expression of protein kinase C-alpha mRNA did not begin to decline until after oligonucleotide was seen in the nucleus. This was also coincident with the transient appearance of a smaller mRNA transcript believed to result from RNase H cleavage of protein kinase C-alpha mRNA. These data suggest that although cationic lipids facilitate uptake of oligonucleotides, the complex must disassociate before the oligonucleotide can gain access to the nucleus and induce degradation of targeted mRNA.
Collapse
Affiliation(s)
- E G Marcusson
- Isis Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, CA 92008, USA
| | | | | | | | | |
Collapse
|
20
|
Tsutsumi T, Tokumura A, Kitazawa S. Undifferentiated HL-60 cells internalize an antitumor alkyl ether phospholipid more rapidly than resistant K562 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1390:73-84. [PMID: 9487142 DOI: 10.1016/s0005-2760(97)00171-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we confirmed a previous finding that 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (methyl-PAF) expresses higher antineoplastic activity against the promyelocytic leukemia cell line HL-60, than against the erythroleukemic cell line K562, and intended to clarify the reason for this. Using an albumin back-exchange method, we measured the rates of binding and internalization of [3H]methyl-PAF by HL-60 and K562 cells. We found that methyl-PAF associated very rapidly and to similar extents with the two types of cells at low concentrations of extracellular bovine serum albumin, but that when bound to the cell surface, it was internalized into HL-60 cells faster than into K562 cells. The internalization of methyl-PAF by HL-60 cells was concentration-independent, intracellular ATP-independent and susceptible to thiol group-modifying reagents and cytochalasin B. Thus the inward transbilayer movement of methyl-PAF seems to occur by cytochalasin B-sensitive protein-mediated mechanism based on passive diffusion not requiring energy, in which SH-groups of protein play a critical role. We also found that the internalization of 1-hexadecanoyl-2-(4,4-difluoro-5,7- dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphocholine (Bodipy-C5-PC), whose structure resembles that of methyl-PAF, into HL-60 cells was faster than that into K562 cells. Using a combination of an albumin back-exchange method and observation by confocal laser scanning microscopy, we next examined the intracellular distribution of this fluorescent phospholipid probe after its internalization. Intracellular membranes, especially those peripheral to nuclei, were fluorescence-labeled in both HL-60 and K562 cells, but fluorescence of the nuclear membranes was weak, suggesting that this probe seems mainly to accumulate in intracellular granules, and may interact directly with several key enzymes for phospholipid metabolism, leading to cell injury. Because the difference between the internalization rates of methyl-PAF in HL-60 and K562 cells was correlated with their different susceptibilities to the cytotoxic effect of methyl-PAF, we suggest that the capacities for uptake of methyl-PAF and its accumulation in intracellular membranes are critical factor for its induction of apoptosis. (c) 1998 Elsevier Science B.V.
Collapse
Affiliation(s)
- T Tsutsumi
- Department of Hospital Pharmacy, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan.
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Margus Pooga
- Department of Neurochemistry and NeurotoxicologyArrhenius LaboratoriesStockholm UniversityS-10691 Stockholm Sweden
- Estonian BiocentreEE‐2400 Tartu Estonia
| | - Mattias Hällbrink
- Department of Neurochemistry and NeurotoxicologyArrhenius LaboratoriesStockholm UniversityS-10691 Stockholm Sweden
| | - Matjal Zorko
- Department of Neurochemistry and NeurotoxicologyArrhenius LaboratoriesStockholm UniversityS-10691 Stockholm Sweden
- Institute of BiochemistryMedical FacultyUniversity of Ljubljana1000 Ljubljana Slovenia
| | - Ülo Langel
- Department of Neurochemistry and NeurotoxicologyArrhenius LaboratoriesStockholm UniversityS-10691 Stockholm Sweden
| |
Collapse
|
22
|
Abstract
Transportan is a 27 amino acid-long peptide containing 12 functional amino acids from the amino terminus of the neuropeptide galanin and mastoparan in the carboxyl terminus, connected via a lysine. Transportan is a cell-penetrating peptide as judged by indirect immunofluorescence using N epsilon13-biotinyl-transportan. The internalization of biotinyl-transportan is energy independent and takes place efficiently at 37 degrees, 4 degrees, and 0 degrees C. Cellular uptake of transportan is probably not mediated by endocytosis, since it cannot be blocked by treating the cells with phenylarsine oxide or hyperosmolar sucrose solution and is nonsaturable. The kinetics of internalization was studied with the aid of the 125I-labeled peptide. At 37 degrees C, the maximal intracellular concentration is reached in about 20 min. The internalized transportan is protected from trypsin. The cell-penetrating ability of transportan is not restricted by cell type, but seems to be a general feature of this peptide. In Bowes' melanoma cells, transportan first localizes in the outer membrane and cytoplasmatic membrane structures. This is followed by a redistribution into the nuclear membrane and uptake into the nuclei where transportan concentrates in distinct substructures, probably the nucleoli.
Collapse
Affiliation(s)
- M Pooga
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden
| | | | | | | |
Collapse
|
23
|
Illinger D, Duportail G, Mely Y, Poirel-Morales N, Gerard D, Kuhry JG. A comparison of the fluorescence properties of TMA-DPH as a probe for plasma membrane and for endocytic membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1239:58-66. [PMID: 7548145 DOI: 10.1016/0005-2736(95)00135-p] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In earlier studies, the fluorescence probe 1-(4-(trimethylamino)phenyl)-6-phenylhexa-1,3,5-triene (TMA-DPH) was shown to interact with living cells by instantaneous incorporation into the plasma membrane, according to a water (probe not fluorescent)/membrane (probe highly fluorescent) partition equilibrium. This made it interesting both as a fluorescence anisotropy probe for plasma membrane fluidity determinations and as a quantitative tracer for endocytosis and intracellular membrane traffic. In order to ascertain the limiting concentrations for its use in these applications, we performed a systematic study of its fluorescence properties (intensity, lifetime, anisotropy) in the plasma membrane and in endocytic membranes of intact L929 mouse fibroblasts. Some of the experiments were repeated on mouse-bone-marrow-derived macrophages and on phospholipidic LUV to confirm the results. Rather unexpectedly, it was observed that: (i) the incorporation of TMA-DPH into the membranes, monitored by UV absorption measurements, remained proportional to the probe concentration over the wide range explored (5 x 10(-7) M-2.5 x 10(-5) M); (ii) however, concerning fluorescence, quenching effects occurred in the membranes above certain critical concentrations. These effects were shown to result from Förster-type resonance auto-transfer; (iii) strikingly, the critical concentrations were considerably higher in early-endocytic-vesicle membranes than in the bulk plasma membrane. It was established that membrane fluidity was involved and this was confirmed by the parallel study on phospholipidic vesicles. Potential applications of these properties as a novel approach for evaluating membrane fluidity are suggested.
Collapse
Affiliation(s)
- D Illinger
- Laboratoire de Biophysique, URA 491 du CNRS, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | | | | | | | | | |
Collapse
|
24
|
Cupers P, Veithen A, Kiss A, Baudhuin P, Courtoy PJ. Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts. J Biophys Biochem Cytol 1994; 127:725-35. [PMID: 7962055 PMCID: PMC2120224 DOI: 10.1083/jcb.127.3.725] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To assess the role of clathrin in the bulk endocytic flow of rat foetal fibroblasts, the rate of internalization of fluid-phase and membrane-lipid tracers were compared, under control conditions and after inhibition of endocytic clathrin-coated pit formation. After intracellular potassium depletion or upon cell transfer into 0.35 M NaCl, the rate of internalization of receptor-bound transferrin and the residual membrane area of plasmalemmal clathrin-coated pits and vesicles were similarly decreased by approximately 90%. In contrast, the initial rate (< 5 min) of intracellular accumulation of the fluid-phase tracer HRP was not affected. Both in control and treated cells, the rate of HRP accumulation declined after approximately 5 min, and was twofold lower in treated cells, due to enhanced regurgitation. After correction for regurgitation, the endocytic rate constant was similar to measurements at shorter intervals and identical in control and treated cells. Similarly, the rate of internalization and the steady-state level of intracellular accumulation of two fluorescent lipid derivatives, 6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoylglucosylsp hingosine (C6-NBD-GlcCer) and 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), were not affected by potassium depletion, indicating that the endocytic membrane traffic was equally preserved. Finally, the size distribution of primary endocytic particles that were accessible to HRP within 15 s before glutaraldehyde fixation was also indistinguishable in control and potassium-depleted cells. The simplest explanation is that clathrin polymerization is necessary to concentrate receptor-bound ligands in primary endocytic vesicles, but superfluous to the basic endocytic machinery in rat foetal fibroblasts.
Collapse
Affiliation(s)
- P Cupers
- Cell Biology Unit, University of Louvain Medical School, Brussels, Belgium
| | | | | | | | | |
Collapse
|