1
|
Zhang X, Lv K, Xie H, Gan Y, Yu W, Gong Q. Cloning, expression and characterization of novel hyaluronan lyases Vhylzx1 and Vhylzx2 from Vibrio sp. ZG1. Carbohydr Res 2024; 543:109221. [PMID: 39067181 DOI: 10.1016/j.carres.2024.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Hyaluronidases are a class of enzymes that can degrade hyaluronic acid and have a wide range of applications in the medical field. In this study, the marine bacterium Vibrio sp. ZG1, which can degrade HA, was isolated, leading to the discovery of two novel hyaluronan lyases, Vhylzx1 and Vhylzx2, through genome sequencing and bioinformatic analysis. These lyases belong to the polysaccharide lyase-8 family. Vhylzx1 and Vhylzx2 specifically degrade HA, with highest activity at 35 °C, pH 5.7 and 50 °C, pH 7.1. Vhylzx1 and Vhylzx2 are endo-type enzymes that can fully degrade HA into unsaturated disaccharides. Sequence homology assessment and site-directed mutagenesis revealed that the catalytic residues of Vhylzx1 are Asn231, His281, and Tyr290, and that the catalytic residues of Vhylzx2 are Asn227, His277, and Tyr286. Moreover, this study used consensus sequences to enhance the specific activity of Vhylzx2 mutants. Notably, the mutants V564I, N742D, L619F, and D658G increases the specific activity by 2.4, 2.2, 1.3, and 1.2-fold. These characteristics are useful for further basic research and applications, and have a promising application in the preparation of biologically active hyaluronic acid oligosaccharides.
Collapse
Affiliation(s)
- Xinru Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kaiwen Lv
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Hongjie Xie
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yutai Gan
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
2
|
Yang Y, Hong Y, Han J, Yang Z, Huang N, Xu B, Wang Q. D-Limonene Alleviates Oxidative Stress Injury of the Testis Induced by Arsenic in Rat. Biol Trace Elem Res 2024; 202:2776-2785. [PMID: 37773484 DOI: 10.1007/s12011-023-03881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Long-term exposure to arsenic can lead to testicular damage and lower sperm quality in males, which is mediated by increased arsenic-induced oxidative stress and other damage mechanisms. D-Limonene, which is rich in oranges, lemons, oranges, grapes and other natural fruits, can relieve doxorubicin (DOX)-induced kidney injury and CCL4-induced cardiac toxicity by inhibiting oxidative stress and inflammatory response. The antioxidant and anti-inflammatory properties of D-limonene motivate us to further explore whether it can reduce arsenic-induced testicular injury. To verify this scientific hypothesis, testicular pathology, testicular oxidative stress levels and sperm motility were determined after intervention with D-limonene in rats chronically exposed to arsenic. As expected, long-term arsenic exposure caused testicular tissue structure disturbances, increased levels of oxidative stress, and decreased sperm activation, all of which were significantly inhibited due to treatment with D-limonene. In conclusion, our data reveal a previously unproven beneficial effect of D-limonene, namely that D-limonene can inhibit arsenic-induced testicular injury, and also provide theoretical and experimental basis for the application of D-limonene in the treatment of arsenic-induced testicular injury.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yan Hong
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jing Han
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Nanmin Huang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Binwei Xu
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
3
|
Modarressi SM, Koolivand Z, Akbari M. Enhancing hyaluronidase enzyme activity: Insights from advancement in bovine and ovine testicular hyaluronidase purification. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124031. [PMID: 38330521 DOI: 10.1016/j.jchromb.2024.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
This essay investigates the use of an affinity resin named Capto lentil lectin for the purification of bovine and ovine testicular hyaluronidase. Hyaluronidase, an enzyme that degrades hyaluronic acid, is used widely in medical fields like dermatology, orthopedics, and ophthalmology. The research highlights the importance of optimizing the purification process to increase enzyme activity and purity. A new purification method is proposed, which begins with ammonium sulfate precipitation, followed by Blue Sepharose and Capto Lentil Lectin chromatography. This novel approach significantly increases the yield, purity, and activity of the enzyme. This study paves the way for further research into improving the purification process. The study further discusses challenges in identifying hyaluronidase bands using SDS-PAGE and highlights the necessity of using Western blotting for precise results.
Collapse
Affiliation(s)
| | | | - Mojdeh Akbari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kawasaki K, Hirai M, Ishiki Y, Nagahama A, Konno T, Yamanaka K, Tatemoto H. The strong anti-hyaluronidase effect of ellagic acid markedly decreases polyspermy during in vitro fertilization, resulting in sustainment of the developmental potency in porcine oocytes. Theriogenology 2024; 215:95-102. [PMID: 38016306 DOI: 10.1016/j.theriogenology.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
The present study investigated the effects of ellagic acid, a type of polyphenol that does not have a glycan and is composed of four hydroxyl groups and two lactone functional groups, on porcine in vitro fertilization (IVF) by focusing on its anti-hyaluronidase activity. A comparative analysis of ellagic acid and apigenin, which is commonly used as a hyaluronidase inhibitor, was performed. It compared the effects of ellagic acid and apigenin on hyaluronidase activity at different concentrations. The results showed that 10, 20, and 40 μM ellagic acid strongly reduced hyaluronidase activity (P < 0.05). The addition of 20 μM ellagic acid, but not apigenin, to porcine IVF medium effectively reduced polyspermy without decreasing sperm penetration or the formation rates of male pronuclei in cumulus-free oocytes. However, neither ellagic acid nor apigenin affected the number of sperm that bound to zona pellucida (ZP) or the induction of zona hardening and protease resistance. The percentage of acrosome-reacting sperm that bound to the ZP was markedly lower in the presence of 20 μM ellagic acid than in the untreated and apigenin-treated groups, even though the antioxidant capacity of ellagic acid was weaker than that of apigenin. Furthermore, a markedly higher percentage of embryos developed to the blastocyst stage in the ellagic acid-treated group, and the apoptotic indexes of expanded blastocysts produced by the ellagic acid treatment during IVF were significantly low. Therefore, the anti-hyaluronidase effect of ellagic acid markedly suppressed the induction of the acrosome reaction in sperm that bound to the ZP, resulting in a marked decrease in polyspermy under conditions that maintained high sperm penetrability during IVF and sustainment of the developmental potency in porcine oocytes.
Collapse
Affiliation(s)
- Kokoro Kawasaki
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Moe Hirai
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Yuki Ishiki
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Ayari Nagahama
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Toshihiro Konno
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Kenichi Yamanaka
- Faculty of Agriculture, Saga University, Saga, Saga city, 840-8502, Japan
| | - Hideki Tatemoto
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
5
|
Horta Remedios M, Liang W, González LN, Li V, Da Ros VG, Cohen DJ, Zaremberg V. Ether lipids and a peroxisomal riddle in sperm. Front Cell Dev Biol 2023; 11:1166232. [PMID: 37397249 PMCID: PMC10309183 DOI: 10.3389/fcell.2023.1166232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.
Collapse
Affiliation(s)
| | - Weisheng Liang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lucas N. González
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Victoria Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Débora J. Cohen
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Goss DM, Vasilescu SA, Sacks G, Gardner DK, Warkiani ME. Microfluidics facilitating the use of small extracellular vesicles in innovative approaches to male infertility. Nat Rev Urol 2023; 20:66-95. [PMID: 36348030 DOI: 10.1038/s41585-022-00660-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Sperm are transcriptionally and translationally quiescent and, therefore, rely on the seminal plasma microenvironment for function, survival and fertilization of the oocyte in the oviduct. The male reproductive system influences sperm function via the binding and fusion of secreted epididymal (epididymosomes) and prostatic (prostasomes) small extracellular vesicles (S-EVs) that facilitate the transfer of proteins, lipids and nucleic acids to sperm. Seminal plasma S-EVs have important roles in sperm maturation, immune and oxidative stress protection, capacitation, fertilization and endometrial implantation and receptivity. Supplementing asthenozoospermic samples with normospermic-derived S-EVs can improve sperm motility and S-EV microRNAs can be used to predict non-obstructive azoospermia. Thus, S-EV influence on sperm physiology might have both therapeutic and diagnostic potential; however, the isolation of pure populations of S-EVs from bodily fluids with current conventional methods presents a substantial hurdle. Many conventional techniques lack accuracy, effectiveness, and practicality; yet microfluidic technology has the potential to simplify and improve S-EV isolation and detection.
Collapse
Affiliation(s)
- Dale M Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- IVF Australia, Sydney, NSW, Australia
| | - Steven A Vasilescu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- NeoGenix Biosciences pty ltd, Sydney, NSW, Australia
| | - Gavin Sacks
- IVF Australia, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - David K Gardner
- Melbourne IVF, East Melbourne, VIC, Australia.
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Chhikara N, Tomar AK, Datta SK, Yadav S. Proteomic changes in human spermatozoa during in vitro capacitation and acrosome reaction in normozoospermia and asthenozoospermia. Andrology 2023; 11:73-85. [PMID: 36057948 DOI: 10.1111/andr.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/31/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The cellular and molecular mechanisms of the events that help spermatozoa acquire their fertilizing capability during capacitation and acrosome reaction are not completely understood. OBJECTIVE This study was performed with a postulation that the identification of sperm proteins and their changes during in vitro capacitation and acrosome reaction will unravel unknown molecular aspects of fertilization that impact male fertility. MATERIALS AND METHODS Spermatozoa collected from sequential conditions, that is, separation of ejaculated spermatozoa by Percoll gradient centrifugation, in vitro capacitation, and acrosome reaction were processed for tandem mass spectrometric analysis, followed by protein identification, label-free quantitation, and statistical analysis. RESULTS AND DISCUSSION Collectively, a total of 1088 sperm proteins were identified. In comparison to ejaculated spermatozoa, 44 and 141 proteins were differentially expressed in capacitated and acrosome reacted spermatozoa, respectively. A large number of proteins were found downregulated, including clusterin, pyruvate dehydrogenase E1 component, semenogelin-1 and 2, heat shock protein 90, beta-microseminoprotein, and keratin. It was expected as sperm-membrane-associated proteins are removed during capacitation. There were significant proteomic alterations in asthenozoospermia compared to normozoospermia; however, variation was more noticeable among proteins of acrosome reacted spermatozoa and those released during the acrosome reaction. The processes enriched among downregulated proteins in asthenozoospermia included acrosome assembly, binding of spermatozoa to zona pellucida, nucleosome assembly, flagellated sperm motility, protein folding, oxidative phosphorylation, tricarboxylic acid cycle, chromatin silencing, gluconeogenesis, glycolytic process, and glycolysis. CONCLUSION The dynamic information generated about proteomic alterations in spermatozoa during capacitation and acrosome reaction and their variability in asthenozoospermia will contribute not only to enhancing our understanding of processes that prepare spermatozoa to acquire fertilization capability but also help in deciphering novel factors of male infertility.
Collapse
Affiliation(s)
- Nirmal Chhikara
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Rajabasadi F, Moreno S, Fichna K, Aziz A, Appelhans D, Schmidt OG, Medina-Sánchez M. Multifunctional 4D-Printed Sperm-Hybrid Microcarriers for Assisted Reproduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204257. [PMID: 36189842 DOI: 10.1002/adma.202204257] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Remotely controllable microrobots are appealing for various biomedical in vivo applications. In particular, in recent years, our group has focused on developing sperm-microcarriers to assist sperm cells with motion deficiencies or low sperm count (two of the most prominent male infertility problems) to reach the oocyte toward in-vivo-assisted fertilization. Different sperm carriers, considering their motion in realistic media and confined environments, have been optimized. However, the already-reported sperm carriers have been mainly designed to transport single sperm cell, with limited functionality. Thus, to take a step forward, here, the development of a 4D-printed multifunctional microcarrier containing soft and smart materials is reported. These microcarriers can not only transport and deliver multiple motile sperm cells, but also release heparin and mediate local enzymatic reactions by hyaluronidase-loaded polymersomes (HYAL-Psomes). These multifunctional facets enable in situ sperm capacitation/hyperactivation, and the local degradation of the cumulus complex that surrounds the oocyte, both to facilitate the sperm-oocyte interaction for the ultimate goal of in vivo assisted fertilization.
Collapse
Affiliation(s)
- Fatemeh Rajabasadi
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Silvia Moreno
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Kristin Fichna
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Azaam Aziz
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Dietmar Appelhans
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Oliver G Schmidt
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Nanophysics, Faculty of Physics, School of Science, Dresden University of Technology, 01062, Dresden, Germany
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| |
Collapse
|
9
|
Gómez-Torres MJ, Sáez-Espinosa P, Manzano-Santiago P, Robles-Gómez L, Huerta-Retamal N, Aizpurua J. Sperm Adhesion Molecule 1 (SPAM1) Distribution in Selected Human Sperm by Hyaluronic Acid Test. Biomedicines 2022; 10:biomedicines10102553. [PMID: 36289815 PMCID: PMC9599839 DOI: 10.3390/biomedicines10102553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022] Open
Abstract
The failures of binding to the oocyte zona pellucida are commonly attributed to defects in the sperm recognition, adhesion, and fusion molecules. SPAM1 (sperm adhesion molecule 1) is a hyaluronidase implicated in the dispersion of the cumulus-oocyte matrix. Therefore, the aim of this study was to characterize the SPAM1 distribution in the different physiological conditions of human sperm. Specifically, we evaluated the location of the SPAM1 protein in human sperm before capacitation, at one and four hours of capacitation and after hyaluronic acid (HA) selection test by fluorescence microscopy. Sperm bound to HA were considered mature and those that crossed it immature. Our results detected three SPAM1 fluorescent patterns: label throughout the head (P1), equatorial segment with acrosomal faith label (P2), and postacrosomal label (P3). The data obtained after recovering the mature sperm by the HA selection significantly (p < 0.05) highlighted the P1 in both capacitation times, being 79.74 and 81.48% after one hour and four hours, respectively. Thus, the HA test identified that human sperm require the presence of SPAM1 throughout the sperm head (P1) to properly contact the cumulus-oocyte matrix. Overall, our results provide novel insights into the physiological basis of sperm capacitation and could contribute to the improvement of selection techniques.
Collapse
Affiliation(s)
- María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain
- Cátedra Human Fertility, Universidad de Alicante, 03690 Alicante, Spain
- Correspondence: ; Tel.: +34-965-903-878
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain
| | | | - Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain
| | | | - Jon Aizpurua
- IVF Spain, Reproductive Medicine, 03540 Alicante, Spain
| |
Collapse
|
10
|
Bang H, Lee S, Jeong PS, Seol DW, Son D, Kim YH, Song BS, Sim BW, Park S, Lee DM, Wee G, Park JS, Kim SU, Kim E. Hyaluronidase 6 Does Not Affect Cumulus–Oocyte Complex Dispersal and Male Mice Fertility. Genes (Basel) 2022; 13:genes13050753. [PMID: 35627138 PMCID: PMC9141766 DOI: 10.3390/genes13050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Glycosylphosphatidylinositol-anchored sperm hyaluronidases (HYAL) assist sperm penetration through the cumulus–oocyte complex (COC), but their role in mammalian fertilization remains unclear. Previously, we demonstrated that sperm from HYAL 5 and 7 double-knockout (dKO) mice produced significantly less offspring than sperm from wild-type mice due to defective COC dispersal. However, the HYAL6 gene remained active in the sperm from the dKO mice, indicating that they were not entirely infertile. This study explored the role of HYAL6 in fertilization by analyzing HYAL6-mutant mice. In this mouse model, HYAL5 and HYAL7 were present in the HYAL6-knockout sperm, and they could disperse hyaluronic acid. We found that HYAL6 was present on the surface of sperm. However, male mice lacking the HYAL6 gene had normal fertility, testicular integrity, and sperm characteristics. Furthermore, in vitro fertilization assays demonstrated that HYAL6-deficient epididymal sperm functioned normally. Therefore, HYAL6 is dispensable for fertilization.
Collapse
Affiliation(s)
- Hyewon Bang
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si 38430, Korea; (H.B.); (S.L.); (D.S.)
| | - Sujin Lee
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si 38430, Korea; (H.B.); (S.L.); (D.S.)
| | - Pil-Soo Jeong
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (P.-S.J.); (S.-U.K.)
| | - Dong-Won Seol
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (D.-W.S.); (G.W.); (J.-S.P.)
| | - Daeun Son
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si 38430, Korea; (H.B.); (S.L.); (D.S.)
| | - Young-Hyun Kim
- National Primate Research Center (NPCR), Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (Y.-H.K.); (B.-S.S.); (B.-W.S.)
| | - Bong-Seok Song
- National Primate Research Center (NPCR), Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (Y.-H.K.); (B.-S.S.); (B.-W.S.)
| | - Bo-Woong Sim
- National Primate Research Center (NPCR), Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (Y.-H.K.); (B.-S.S.); (B.-W.S.)
| | - Soojin Park
- Department of Biochemistry and Molecular Biology, Melvin & Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine 635 Barnhill Drive, Indianapolis, IN 46202, USA;
| | - Dong-Mok Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si 38822, Korea;
| | - Gabbine Wee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (D.-W.S.); (G.W.); (J.-S.P.)
| | - Joon-Suk Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (D.-W.S.); (G.W.); (J.-S.P.)
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (P.-S.J.); (S.-U.K.)
| | - Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si 38430, Korea; (H.B.); (S.L.); (D.S.)
- Biohealth Convergence Research center for East sea Rim, Catholic University of Daegu, Gyeongsan-si 38430, Korea
- Correspondence: ; Tel.: +82-53-850-3619; Fax: +82-53-359-6728
| |
Collapse
|
11
|
Lierova A, Kasparova J, Filipova A, Cizkova J, Pekarova L, Korecka L, Mannova N, Bilkova Z, Sinkorova Z. Hyaluronic Acid: Known for Almost a Century, but Still in Vogue. Pharmaceutics 2022; 14:838. [PMID: 35456670 PMCID: PMC9029726 DOI: 10.3390/pharmaceutics14040838] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage. This review summarizes the history of this molecule's study, its distinctive metabolic pathway in the body, its unique properties, and current information regarding its interaction partners. Our main goal, however, is to intensively investigate whether this relatively simple polymer may find applications in protecting against ionizing radiation (IR) or for therapy in cases of radiation-induced damage. After exposure to IR, acute and belated damage develops in each tissue depending upon the dose received and the cellular composition of a given organ. A common feature of all organ damage is a distinct change in composition and structure of the ECM. In particular, the important role of HA was shown in lung tissue and the variability of this flexible molecule in the complex mechanism of radiation-induced lung injuries. Moreover, HA is also involved in intermediating cell behavior during morphogenesis and in tissue repair during inflammation, injury, and would healing. The possibility of using the HA polymer to affect or treat radiation tissue damage may point to the missing gaps in the responsible mechanisms in the onset of this disease. Therefore, in this article, we will also focus on obtaining answers from current knowledge and the results of studies as to whether hyaluronic acid can also find application in radiation science.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lenka Pekarova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Nikola Mannova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| |
Collapse
|
12
|
Fu Y, Zhang X, Liu X, Wang P, Chu W, Zhao W, Wang Y, Zhou G, Yu Y, Zhang H. The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis. Signal Transduct Target Ther 2022; 7:81. [PMID: 35307730 PMCID: PMC8934873 DOI: 10.1038/s41392-022-00896-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/31/2023] Open
Abstract
PH20 is a member of the human hyaluronidase family that degrades hyaluronan in the extracellular matrix and controls tumor progression. Inhibition of DNA methyltransferases (DNMTs) leads to elevated hyaluronan levels; however, whether DNMT inhibitors control PH20 remains unclear. Here, we report that the DNMT1 inhibitor, decitabine, suppresses PH20 expression by activating the long non-coding RNA PHACTR2-AS1 (PAS1). PAS1 forms a tripartite complex with the RNA-binding protein vigilin and histone methyltransferase SUV39H1. The interaction between PAS1 and vigilin maintains the stability of PAS1. Meanwhile, PAS1 recruits SUV39H1 to trigger the H3K9 methylation of PH20, resulting in its silencing. Functionally, PAS1 inhibits breast cancer growth and metastasis, at least partially, by suppressing PH20. Combination therapy of decitabine and PAS1-30nt-RNA, which directly binds to SUV39H1, effectively blocked breast cancer growth and metastasis in mice. Taken together, DNMT1, PAS1, and PH20 comprise a regulatory axis to control breast cancer growth and metastasis. These findings reveal that the DNMT1-PAS1-PH20 axis is a potential therapeutic target for breast cancer.
Collapse
|
13
|
Liu T, Li Y, Xu J, Guo Q, Zhang D, Song L, Li J, Qian W, Guo H, Zhou X, Hou S. N-Glycosylation and enzymatic activity of the rHuPH20 expressed in Chinese hamster ovary cells. Anal Biochem 2021; 632:114380. [PMID: 34520755 DOI: 10.1016/j.ab.2021.114380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
rHuPH20, a neutral pH-active hyaluronidase that degrades glycosaminoglycans under physiologic conditions, has six potential N-glycosylation sites. In this report, the rHuPH20 expressed in Chinese hamster ovary (CHO) cells was analyzed and characterized using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Removal of the N-linked glycans from rHuPH20 with PNGase F shifted the molecular weight from 66 kDa to approximately 52 kDa, its deduced molecular weight based on sequence analysis, suggesting that most, if not all, of the potential N-glycosylation sites are linked to oligosaccharides. Then the N-linked glycans released from the rHuPH20 by PNGase F were characterized by UPLC-FLR-MS, and the six N-glycosylation sites of the rHuPH20 were identified and characterized by UPLC-MS/MS at peptide levels. Subsequently, we found that the rHuPH20 increased the dispersion of locally subcutaneous injected drugs and the in vitro and in vivo bioactivity were decreased significantly after PNGase F treatment. In particular, rHuPH20 significantly augmented the absolute bioavailability of locally subcutaneous injected large protein therapeutics, while the bioavailability decreased after being digested by PNGase F. These results demonstrated that N-glycosylation is important for the bioactivity of the rHuPH20.
Collapse
Affiliation(s)
- Tao Liu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, 200043, China; State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, 201203, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, 201203, China
| | - Yantao Li
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, 201203, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, 201203, China
| | - Jin Xu
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, 201203, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, 201203, China; School of Pharmacy, Liaocheng University, Liaocheng, 252000, China; Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, 201203, China
| | - Qingcheng Guo
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, 201203, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, 201203, China; School of Pharmacy, Liaocheng University, Liaocheng, 252000, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou 225316, China
| | - Dapeng Zhang
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, 201203, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, 201203, China; School of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | | | - Jun Li
- School of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | - Weizhu Qian
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, 201203, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, 201203, China; School of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | - Huaizu Guo
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, 201203, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, 201203, China; School of Pharmacy, Liaocheng University, Liaocheng, 252000, China; Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, 201203, China.
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, 200043, China.
| | - Sheng Hou
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, 201203, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, 201203, China; School of Pharmacy, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
14
|
Keeble S, Firman RC, Sarver BAJ, Clark NL, Simmons LW, Dean MD. Evolutionary, proteomic, and experimental investigations suggest the extracellular matrix of cumulus cells mediates fertilization outcomes†. Biol Reprod 2021; 105:1043-1055. [PMID: 34007991 PMCID: PMC8511658 DOI: 10.1093/biolre/ioab082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Studies of fertilization biology often focus on sperm and egg interactions. However, before gametes interact, mammalian sperm must pass through the cumulus layer; in mice, this consists of several thousand cells tightly glued together with hyaluronic acid and other proteins. To better understand the role of cumulus cells and their extracellular matrix, we perform proteomic experiments on cumulus oophorus complexes (COCs) in house mice (Mus musculus), producing over 24,000 mass spectra to identify 711 proteins. Seven proteins known to stabilize hyaluronic acid and the extracellular matrix were especially abundant (using spectral counts as an indirect proxy for abundance). Through comparative evolutionary analyses, we show that three of these evolve rapidly, a classic signature of genes that influence fertilization rate. Some of the selected sites overlap regions of the protein known to impact function. In a follow-up experiment, we compared COCs from females raised in two different social environments. Female mice raised in the presence of multiple males produced COCs that were smaller and more resistant to dissociation by hyaluronidase compared to females raised in the presence of a single male, consistent with a previous study that demonstrated such females produced COCs that were more resistant to fertilization. Although cumulus cells are often thought of as enhancers of fertilization, our evolutionary, proteomic, and experimental investigations implicate their extracellular matrix as a potential mediator of fertilization outcomes.
Collapse
Affiliation(s)
- Sara Keeble
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Brice A J Sarver
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
15
|
Wu ZL, Ertelt JM. Assays for hyaluronidases and heparanase using nonreducing end fluorophore-labeled hyaluronan and heparan sulfate proteoglycan. Glycobiology 2021; 31:1435-1443. [PMID: 34280262 DOI: 10.1093/glycob/cwab061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/30/2023] Open
Abstract
Glycosaminoglycans (GAGs), such as hyaluronan (HA) and heparan sulfate (HS), are a large group of polysaccharides found in the extracellular matrix and on the cell surface. The turnover of these molecules is controlled by de novo synthesis and catabolism through specific endoglycosidases, which are the keys to our understanding of the homeostasis of GAGs and could hold opportunities for therapeutic intervention. Herein, we describe assays for endoglycosidases using nonreducing end fluorophore-labeled GAGs, in which GAGs were labeled via incorporation of GlcNAz by specific synthases and cycloaddition of alkyne fluorophores and then digested with corresponding endoglycosidases. Assays of various HA-specific hyaluronidases (HYALs), including PH-20 or SPAM1, and HS-specific heparanase (HPSE) are presented. We demonstrated the distinctive pH profiles, substrate specificities and specific activities of these enzymes and provided evidence that both HYAL3 and HYAL4 are authentic hyaluronidases. In addition, while all HYALs are active on high-molecular-weight HA, they are active on low-molecular-weight HA. Subsequently, we defined a new way of measuring the activities of HYALs. Our results indicate that the activities of HYALs must be under strict pH regulation. Our quantitative methods of measuring the activity GAG endoglycosidases could bring the opportunity of designing novel therapeutics by targeting these important enzymes.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - James M Ertelt
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| |
Collapse
|
16
|
Faraji S, Rashki Ghaleno L, Sharafi M, Hezavehei M, Totonchi M, Shahverdi A, Fathi R. Gene Expression Alteration of Sperm-Associated Antigens in Human Cryopreserved Sperm. Biopreserv Biobank 2021; 19:503-510. [PMID: 34009011 DOI: 10.1089/bio.2020.0165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Sperm-associated antigens (SPAGs) are 18 types of proteins, some of which play important roles in various biological functions associated with assisted reproductive technology outcomes, and are consequently important to the success of fertility programs. Despite the favorable outcomes of fecundity rates among male patients with cancer using cryopreserved sperm, the detrimental impact of freezing on cells has been noted in many studies. Cryopreservation has been thought to have adverse effects on sperm quality through disruptions in the expressions of SPAG genes. This study aimed to evaluate the effects of cryopreservation on the expressions of SPAGs genes and their transcriptome alterations in human sperm. Materials and Methods: A total of 12 normal ejaculations were prepared using the density gradient centrifugation procedure, and the motile sperm fractions were divided into fresh and frozen groups. In the latter, sperm samples were mixed with SpermFreeze® solution as the cryoprotectant. The cryovial of sperm suspension was first held just over nitrogen vapor and then dipped inside liquid nitrogen. After 3 days, the specimens were thawed in tap water and incubated for 2 hours for recovery. Then, RNA from sperm was extracted for SPAG gene expression analysis, using real-time polymerase chain reaction. Results: Our findings showed a decrease in expression of SPAG5 (p-value = 0.009), SPAG7 (p-value = 0.004), and SPAG12 (SNU13/NHP2L1; p-value = 0.039) genes during cryopreservation. Discussion: The results indicate that the freezing procedure could negatively affect gene expression and to some extent proteins in human spermatozoa. Conclusion: The alteration of SPAG expression could provide new information on the molecular correlation between cryopreservation and increased failure in intracytoplasmic sperm injection and in vitro fertilization.
Collapse
Affiliation(s)
- Samaneh Faraji
- Department of Molecular and Cellular Biology, Faculty of Basic Science and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Rashki Ghaleno
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Mortazavi B, Allahyari Fard N, Karkhane AA, Shokrpoor S, Heidari F. Evaluation of multi-epitope recombinant protein as a candidate for a contraceptive vaccine. J Reprod Immunol 2021; 145:103325. [PMID: 33930667 DOI: 10.1016/j.jri.2021.103325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Contraceptive vaccine (CV) is a valuable, non-invasive, and alternative method for purposeful contraception. Sperm antigens are useful targets for producing CVs due to their specialized expression in sperm. In this study, a recombinant protein containing three main sperm epitopes (IZUMO1, SACA3, and PH-20) was designed and evaluated as CV to control fertility in male mice. The chimeric recombinant protein was expressed and purified in E. coli. Male mice were immunized by 100 μg purified protein and sera were collected to assess IgG antibodies. Evaluating the reproductive performance, immunized male mice mated with normal-fertile female mice and mating rate and the number of newborns was studied. Immunized mice were sacrificed and necropsy and histopathology studies were conducted. The results revealed that the designed chimeric protein stimulated the immune system of the mice effectively. The level of IgG antibody was significantly higher in vaccinated mouse rather than control mouse. Eighty percent of the vaccinated mice became infertile and in the remaining ones, the number of children decreased to 4-6 offspring instead of 10-12 in normal mice. Histopathological studies showed that no organs including heart, brain, lung, liver, kidney and intestine were damaged. However, Normal spermatogenesis has been disrupted and necrotic spermatogonia cells were reported in Seminiferous tubules. We concluded that the designed chimeric protein containing IZUMO1, SACA3, and PH-20 epitopes can stimulate the immune system and cause male contraception without any side effects.
Collapse
Affiliation(s)
- Behnam Mortazavi
- Department of Animal Biotechnology, Faculty of Agriculture Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Najaf Allahyari Fard
- Department of Systems Biotechnology, Faculty of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Asghar Karkhane
- Department of Systems Biotechnology, Faculty of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Heidari
- Department of Animal Biotechnology, Faculty of Agriculture Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
18
|
da Fonseca Junior AM, Gaita V, Argumedo DR, de Castro LS, Losano JDDA, Ferreira Leite R, Nichi M, Assumpção MEOD, de Araújo DR, Neves AAR, Milazzotto MP. Changes in fertilization medium viscosity using hyaluronic acid impact bull sperm motility and acrosome status. Reprod Domest Anim 2020; 55:974-983. [PMID: 32506705 DOI: 10.1111/rda.13739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 11/26/2022]
Abstract
The female reproductive tract, in particular the composition of the uterine and oviduct fluids, is responsible, at least in part, for triggering sperm cell modifications, essential for the acquisition of fertilization ability. Hyaluronic acid (HA) is a glycosaminoglycan present in these fluids, and its role in the fertilization process and sperm functionality is still barely understood. This work was designed to (a) determine the rheological characteristics of the fertilization medium by the addition of HA and (b) determine the HA influence on sperm motility and functional status. To that end, the in vitro fertilization medium was supplemented with 4 doses of HA (6, 60, 600 and 6,000 µg/ml) and analysed for viscosity and adhesion strength characteristics. Then, thawed semen from 6 bulls were incubated in these media and assessed at 4 different moments for morphological and functional parameters (plasma and acrosomal membrane integrities, mitochondrial membrane potential, capacitation, acrosomal reaction, and motility). The rheological evaluation showed that the addition of HA was able to increase both the viscosity and the adhesion strength of the fertilization medium, especially in the 6,000 µg/ml group in which the effect was more pronounced. No influence of HA could be observed on mitochondrial potential, and acrosomal and plasma membrane integrities. However, HA supplementation, at lower doses, led to an increase in the number of reacted sperm, as well as changes in motility parameters, with increase in the number of motile, rapid and progressive spermatozoa. In conclusion, the addition of HA alters the rheological properties of the fertilization medium and leads to the improvement of the properties related to sperm motility and capacitation, without compromising other functional aspects of the cell.
Collapse
Affiliation(s)
| | - Vincenzo Gaita
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | | - Roberta Ferreira Leite
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marcilio Nichi
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
19
|
Fukuda TTH, Cassilly CD, Gerdt JP, Henke MT, Helfrich EJN, Mevers E. Research Tales from the Clardy Laboratory: Function-Driven Natural Product Discovery. JOURNAL OF NATURAL PRODUCTS 2020; 83:744-755. [PMID: 32105475 DOI: 10.1021/acs.jnatprod.9b01086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past 70 years, the search for small molecules from nature has transformed biomedical research: natural products are the basis for half of all pharmaceuticals; the quest for total synthesis of natural products fueled development of methodologies for organic synthesis; and their biosynthesis presented unprecedented biochemical transformations, expanding our chemo-enzymatic toolkit. Initially, the discovery of small molecules was driven by bioactivity-guided fractionation. However, this approach yielded the frequent rediscovery of already known metabolites. As a result, focus shifted to identifying novel scaffolds through either structure-first methods or genome mining, relegating function as a secondary concern. Over the past two decades, the laboratory of Jon Clardy has taken an alternative route and focused on an ecology-driven, function-first approach in pursuit of uncovering bacterial small molecules with biological activity. In this review, we highlight several examples that showcase this ecology-first approach. Though the highlighted systems are diverse, unifying themes are (1) to understand how microbes interact with their host or environment, (2) to gain insights into the environmental roles of microbial metabolites, and (3) to explore pharmaceutical potential from these ecologically relevant metabolites.
Collapse
Affiliation(s)
- Taise T H Fukuda
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew T Henke
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eric J N Helfrich
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Crapster JA, Rack PG, Hellmann ZJ, Le AD, Adams CM, Leib RD, Elias JE, Perrino J, Behr B, Li Y, Lin J, Zeng H, Chen JK. HIPK4 is essential for murine spermiogenesis. eLife 2020; 9:e50209. [PMID: 32163033 PMCID: PMC7067585 DOI: 10.7554/elife.50209] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/23/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian spermiogenesis is a remarkable cellular transformation, during which round spermatids elongate into chromatin-condensed spermatozoa. The signaling pathways that coordinate this process are not well understood, and we demonstrate here that homeodomain-interacting protein kinase 4 (HIPK4) is essential for spermiogenesis and male fertility in mice. HIPK4 is predominantly expressed in round and early elongating spermatids, and Hipk4 knockout males are sterile, exhibiting phenotypes consistent with oligoasthenoteratozoospermia. Hipk4 mutant sperm have reduced oocyte binding and are incompetent for in vitro fertilization, but they can still produce viable offspring via intracytoplasmic sperm injection. Optical and electron microscopy of HIPK4-null male germ cells reveals defects in the filamentous actin (F-actin)-scaffolded acroplaxome during spermatid elongation and abnormal head morphologies in mature spermatozoa. We further observe that HIPK4 overexpression induces branched F-actin structures in cultured fibroblasts and that HIPK4 deficiency alters the subcellular distribution of an F-actin capping protein in the testis, supporting a role for this kinase in cytoskeleton remodeling. Our findings establish HIPK4 as an essential regulator of sperm head shaping and potential target for male contraception.
Collapse
Affiliation(s)
- J Aaron Crapster
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Paul G Rack
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Zane J Hellmann
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Austen D Le
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford UniversityStanfordUnited States
| | - Ryan D Leib
- Stanford University Mass Spectrometry, Stanford UniversityStanfordUnited States
| | - Joshua E Elias
- Chan Zuckerberg Biohub, Stanford UniversityStanfordUnited States
| | - John Perrino
- Cell Science Imaging Facility, Stanford University School of MedicineStanfordUnited States
| | - Barry Behr
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Stanford University School of MedicineStanfordUnited States
| | - Yanfeng Li
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - Jennifer Lin
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - Hong Zeng
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Chemistry, Stanford UniversityStanfordUnited States
| |
Collapse
|
21
|
Park S, Kim YH, Jeong PS, Park C, Lee JW, Kim JS, Wee G, Song BS, Park BJ, Kim SH, Sim BW, Kim SU, Triggs-Raine B, Baba T, Lee SR, Kim E. SPAM1/HYAL5 double deficiency in male mice leads to severe male subfertility caused by a cumulus-oocyte complex penetration defect. FASEB J 2019; 33:14440-14449. [PMID: 31670981 DOI: 10.1096/fj.201900889rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The glycosylphosphatidylinositol-anchored sperm hyaluronidases (Hyals), sperm adhesion molecule 1 (SPAM1) and HYAL5, have long been believed to assist in sperm penetration through the cumulus-oocyte complex (COC), but their role in mammalian fertilization remains unclear. Previously, we have shown that mouse sperm devoid of either Spam1 or Hyal5 are still capable of penetrating the COC and that the loss of either Spam1 or Hyal5 alone does not cause male infertility in mice. In the present study, we found that Spam1/Hyal5 double knockout (dKO) mice produced significantly fewer offspring compared with wild-type (WT) mice, and this was due to defective COC dispersal. A comparative analysis between WT and Spam1/Hyal5 dKO epididymal sperm revealed that the absence of these 2 sperm Hyals resulted in a marked accumulation of sperm on the outside of the COC. This impaired sperm activity is likely due to the deficiency in the sperm Hyals, even though other somatic Hyals are expressed normally in the dKO mice. The fertilization ability of the Spam1/Hyal5 dKO sperm was restored by adding purified human sperm Hyal to the in vitro fertilization medium. Our results suggest that Hyal deficiency in sperm may be a significant risk factor for male sterility.-Park, S., Kim, Y.-H., Jeong, P.-S., Park, C., Lee, J.-W., Kim, J.-S., Wee, G., Song, B.-S., Park, B.-J., Kim, S.-H., Sim, B.-W., Kim, S.-U., Triggs-Raine, B., Baba, T., Lee, S.-R., Kim, E. SPAM1/HYAL5 double deficiency in male mice leads to severe male subfertility caused by a cumulus-oocyte complex penetration defect.
Collapse
Affiliation(s)
- Soojin Park
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| | - Young-Hyun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Chaeri Park
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Deajeon, South Korea
| | - Ju-Sung Kim
- College of Applied Life Sciences, Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University, Jeju, South Korea
| | - Gabin Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Boon-Joo Park
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| | - Sang-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Bo-Woong Sim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Sun-Uk Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea.,Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tadashi Baba
- Faculty of Life and Environmental Sciences- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| |
Collapse
|
22
|
Locke KW, Maneval DC, LaBarre MJ. ENHANZE ® drug delivery technology: a novel approach to subcutaneous administration using recombinant human hyaluronidase PH20. Drug Deliv 2019; 26:98-106. [PMID: 30744432 PMCID: PMC6394283 DOI: 10.1080/10717544.2018.1551442] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ENHANZE® drug delivery technology is based on the proprietary recombinant human hyaluronidase PH20 enzyme (rHuPH20; Halozyme Therapeutics, Inc.) that facilitates the subcutaneous (SC) delivery of co‐administered therapeutics. rHuPH20 works by degrading the glycosaminoglycan hyaluronan (HA), which plays a role in resistance to bulk fluid flow in the SC space, limiting large volume SC drug delivery, dispersion, and absorption. Co-administration of rHuPH20 with partner therapies can overcome administration time and volume barriers associated with existing SC therapeutic formulations, and has been shown to reduce the burden on patients and healthcare providers compared with intravenous formulations. rHuPH20 (as HYLENEX® recombinant) is currently FDA-approved for subcutaneous fluid administration for achieving hydration, to increase the dispersion and absorption of other injected drugs, and in subcutaneous urography for improving resorption of radiopaque agents. rHuPH20 is also co-formulated with two anticancer therapies, trastuzumab (i.e. Herceptin® SC) and rituximab (i.e. RITUXAN HYCELA®/RITUXAN® SC/MabThera® SC) and dosed sequentially with human immunoglobin to treat primary immunodeficiency (i.e. HyQvia®/HYQVIA®). This article reviews pharmaceutical properties of rHuPH20, its current applications with approved therapeutics, and the potential for future developments.
Collapse
|
23
|
Liu Y, Liang C, Gao Y, Jiang S, He Y, Han Y, Olfati A, Manthari RK, Wang J, Zhang J. Fluoride Interferes with the Sperm Fertilizing Ability via Downregulated SPAM1, ACR, and PRSS21 Expression in Rat Epididymis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5240-5249. [PMID: 31008594 DOI: 10.1021/acs.jafc.9b01114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fluoride is a widespread environmental pollutant that can induce low sperm quality and fertilizing ability; however, the underlying mechanism still remains unclear. Hence, we aimed to investigate the influence of fluoride on the sperm fertilizing ability via some key proteins in the epididymis. For this, 40 adult rats were assigned randomly into four groups. The control group was given distilled water, while the other three groups were given 25, 50, and 100 mg of NaF/L via drinking water for 56 days, respectively. After 1 day, epididymides were processed for sperm-egg binding, RNA extraction, western blot, and immunofluorescence analysis. Fluoride exposure reduced the ability of sperm to break down the egg cumulus cell layer. A further study revealed that fluoride altered the expression levels of genes and proteins related to acrosome reaction in vivo, including SPAM1, ACR, and PRSS21. However, fluoride only affected the expression of the ACR protein only in the epididymis but not in the testis. Fluoride also affected the expression levels of the membrane proteins CD9 and CD81 of epididymosomes in the epididymis. From the results, it can be concluded that fluoride exposure reduced the ability of sperm to break down the egg cumulus cell layer, which could be one of the reasons for decreased fertility ability in males treated with fluoride. These results provide some theoretical guidance and new ideas for treatments of low fertility, infertility, and other reproductive diseases.
Collapse
Affiliation(s)
- Yu Liu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , People's Republic of China
| | - Chen Liang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , People's Republic of China
| | - Yan Gao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , People's Republic of China
| | - Shanshan Jiang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , People's Republic of China
| | - Yuyang He
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , People's Republic of China
| | - Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , People's Republic of China
| | - Ali Olfati
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , People's Republic of China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , People's Republic of China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , People's Republic of China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , People's Republic of China
| |
Collapse
|
24
|
Abstract
SummarySpermatogenesis is a dynamic process that culminates in the production of mature spermatozoa in the seminiferous tubules of sexually mature animals. Although sperm leaving the testis are fully differentiated, they must further undergo two additional maturation steps before acquiring the capability to fertilize the egg. Such processes take place during the epididymal residency and transport in the seminal fluid during ejaculation and, after delivery into the female reproductive tract, during the journey aiming the encountering the egg in the oviduct. Throughout this trip, spermatozoa are exposed to different reproductive fluids whose molecular compositions regulate the progress towards obtaining a fertilized competent cell. This review summarizes the evidence obtained so far supporting the participation of male and female reproductive tract-derived proteins in the modulation of sperm fertilizing ability and discusses the mechanisms by which such regulation may be accomplished.
Collapse
|
25
|
Sullivan WJ, Mullen PJ, Schmid EW, Flores A, Momcilovic M, Sharpley MS, Jelinek D, Whiteley AE, Maxwell MB, Wilde BR, Banerjee U, Coller HA, Shackelford DB, Braas D, Ayer DE, de Aguiar Vallim TQ, Lowry WE, Christofk HR. Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization. Cell 2018; 175:117-132.e21. [PMID: 30197082 PMCID: PMC6151140 DOI: 10.1016/j.cell.2018.08.017] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 05/16/2018] [Accepted: 08/09/2018] [Indexed: 01/05/2023]
Abstract
The metabolic state of a cell is influenced by cell-extrinsic factors, including nutrient availability and growth factor signaling. Here, we present extracellular matrix (ECM) remodeling as another fundamental node of cell-extrinsic metabolic regulation. Unbiased analysis of glycolytic drivers identified the hyaluronan-mediated motility receptor as being among the most highly correlated with glycolysis in cancer. Confirming a mechanistic link between the ECM component hyaluronan and metabolism, treatment of cells and xenografts with hyaluronidase triggers a robust increase in glycolysis. This is largely achieved through rapid receptor tyrosine kinase-mediated induction of the mRNA decay factor ZFP36, which targets TXNIP transcripts for degradation. Because TXNIP promotes internalization of the glucose transporter GLUT1, its acute decline enriches GLUT1 at the plasma membrane. Functionally, induction of glycolysis by hyaluronidase is required for concomitant acceleration of cell migration. This interconnection between ECM remodeling and metabolism is exhibited in dynamic tissue states, including tumorigenesis and embryogenesis.
Collapse
Affiliation(s)
- William J Sullivan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Peter J Mullen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ernst W Schmid
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Aimee Flores
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Milica Momcilovic
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Mark S Sharpley
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - David Jelinek
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Andrew E Whiteley
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Matthew B Maxwell
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Blake R Wilde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Utpal Banerjee
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| | - Hilary A Coller
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - David B Shackelford
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Daniel Braas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Metabolomics Center, Los Angeles, CA 90095, USA
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - William E Lowry
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Fujihara Y, Miyata H, Ikawa M. Factors controlling sperm migration through the oviduct revealed by gene-modified mouse models. Exp Anim 2018; 67:91-104. [PMID: 29353867 PMCID: PMC5955741 DOI: 10.1538/expanim.17-0153] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian fertilization is comprised of many steps including sperm survival in the
uterus, sperm migration in the female reproductive tract, physiological and morphological
changes to the spermatozoa, and sperm-egg interaction in the oviduct. In
vitro studies have revealed essential factors for these fertilization steps for
over half a century. However, the molecular mechanism of fertilization has recently been
revised by the emergence of genetically modified animals. Here, we focus on essential
factors for sperm fertilizing ability and describe recent advances in our knowledge of the
mechanisms of mammalian fertilization, especially of sperm migration from the uterus into
the oviduct.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
27
|
Ojaghi M, Kastelic J, Thundathil J. Testis-specific isoform of angiotensin-converting enzyme (tACE) is involved in the regulation of bovine sperm capacitation. Mol Reprod Dev 2017; 84:376-388. [PMID: 28244620 DOI: 10.1002/mrd.22790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 11/08/2022]
Abstract
We hypothesized that the testis-specific isoform of angiotensin-converting enzyme (tACE) is released during bovine sperm capacitation, and its peptidase activity is required for capacitation. Specific objectives of this study were to (i) develop an anti-tACE antibody; (ii) characterize expression of tACE in bovine testes and sperm; and (iii) determine the role of tACE in capacitation. A 110-kDa protein, consistent with the mass of tACE, was detected in sperm extract by our anti-tACE immunoserum. This immunotarget localized at the acrosomal region and principal piece, but was only expressed in testis of mature bulls. When bull sperm were incubated in Sp-TALP (0 and 4 hr) plus 10 µg/ml heparin (capacitation group) or 10 µg/ml heparin + 10 µM captopril (an ACE inhibitor) for 4 hr, the number of acrosome-reacted (40.1 vs. 24.0%, respectively) and hyperactivated (15.0 vs. 9.7%) sperm increased, and tyrosine phosphoprotein content were higher (p < 0.05) for sperm in heparin alone. tACE activity was also higher (0.04 U/ml; p < 0.01) in incubation medium of sperm exposed to heparin compared to 0- and 4-hr incubation controls or heparin + captopril conditions (0, 0.005, and 0.009 U/ml, respectively). Furthermore, capacitation-associated shedding of a portion of tACE into the medium decreased sperm content of the 110-kDa tACE, but concurrently increased the abundance of a 60-kDa tACE variant. Thus, a portion of the extracellular region of tACE (containing its catalytic site) is released from bovine sperm during capacitation, and tACE activity may be required for sperm capacitation.
Collapse
Affiliation(s)
- Mina Ojaghi
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - John Kastelic
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - Jacob Thundathil
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
Marella M, Ouyang J, Zombeck J, Zhao C, Huang L, Connor RJ, Phan KB, Jorge MC, Printz MA, Paladini RD, Gelb AB, Huang Z, Frost GI, Sugarman BJ, Steinman L, Wei G, Shepard HM, Maneval DC, Lapinskas PJ. PH20 is not expressed in murine CNS and oligodendrocyte precursor cells. Ann Clin Transl Neurol 2017; 4:191-211. [PMID: 28275653 PMCID: PMC5338182 DOI: 10.1002/acn3.393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 12/08/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
Objective Expression of Spam1/PH20 and its modulation of high/low molecular weight hyaluronan substrate have been proposed to play an important role in murine oligodendrocyte precursor cell (OPC) maturation in vitro and in normal and demyelinated central nervous system (CNS). We reexamined this using highly purified PH20. Methods Steady‐state expression of mRNA in OPCs was evaluated by quantitative polymerase chain reaction; the role of PH20 in bovine testicular hyaluronidase (BTH) inhibition of OPC differentiation was explored by comparing BTH to a purified recombinant human PH20 (rHuPH20). Contaminants in commercial BTH were identified and their impact on OPC differentiation characterized. Spam1/PH20 expression in normal and demyelinated mouse CNS tissue was investigated using deep RNA sequencing and immunohistological methods with two antibodies directed against recombinant murine PH20. Results BTH, but not rHuPH20, inhibited OPC differentiation in vitro. Basic fibroblast growth factor (bFGF) was identified as a significant contaminant in BTH, and bFGF immunodepletion reversed the inhibitory effects of BTH on OPC differentiation. Spam1 mRNA was undetected in OPCs in vitro and in vivo; PH20 immunolabeling was undetected in normal and demyelinated CNS. Interpretation We were unable to detect Spam1/PH20 expression in OPCs or in normal or demyelinated CNS using the most sensitive methods currently available. Further, “BTH” effects on OPC differentiation are not due to PH20, but may be attributable to contaminating bFGF. Our data suggest that caution be exercised when using some commercially available hyaluronidases, and reports of Spam1/PH20 morphogenic activity in the CNS may be due to contaminants in reagents.
Collapse
Affiliation(s)
| | - Joe Ouyang
- Halozyme Therapeutics, Inc. San Diego California
| | | | - Chunmei Zhao
- Halozyme Therapeutics, Inc. San Diego California
| | - Lei Huang
- Halozyme Therapeutics, Inc. San Diego California
| | | | - Kim B Phan
- Halozyme Therapeutics, Inc. San Diego California
| | | | | | | | | | | | | | | | - Lawrence Steinman
- University School of Medicine Department of Neurology and Neurological Sciences Beckman Center for Molecular Medicine Stanford University Stanford California
| | - Ge Wei
- Halozyme Therapeutics, Inc. San Diego California
| | | | | | | |
Collapse
|
29
|
Chen KJ, Sabrina S, El-Safory NS, Lee GC, Lee CK. Constitutive expression of recombinant human hyaluronidase PH20 by Pichia pastoris. J Biosci Bioeng 2016; 122:673-678. [DOI: 10.1016/j.jbiosc.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/26/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
|
30
|
Michailidou-Ahmed C, Sharpe AA, Burrell EV, Blower JA, Potdar N. HBA score in relation to donor semen profiles and live birth rates: a preliminary study. HUM FERTIL 2016; 19:289-298. [PMID: 27819492 DOI: 10.1080/14647273.2016.1241433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We sought to determine whether sperm donor selection could be improved by using the hyaluronan binding assay (HBA) score to predict live birth rates (LBRs) in donor insemination treatments. Thirty donor samples were included: five fresh samples to assess whether HBA score is affected by cryopreservation and 25 frozen samples from donors whose sperm gave rise to known live births, divided into three groups, with success rates ≥50%, <50-33% and <33%, to examine whether HBA score correlates with LBRs. Correlations with semen analysis parameters, as well as donor demographic factors, known causes of patient subfertility and/or the type of treatment provided were also assessed. There was no significant difference in the mean HBA score pre- and post-cryopreservation (p = 0.998) nor in the HBA score of the three different outcome groups (p = 0.89). HBA score was not significantly affected by other semen analysis parameters (r2=0.394, p = 0.127) or any of the other examined factors. This was the first study to investigate HBA score for cryopreserved donor samples with known LBRs. HBA score was not correlated with LBRs in this small pilot study. Larger studies are required to validate HBA score as a tool for sperm donor selection and predictor of LBRs.
Collapse
Affiliation(s)
| | - A A Sharpe
- a Leicester Fertility Centre , Leicester , UK
| | - E V Burrell
- a Leicester Fertility Centre , Leicester , UK
| | - J A Blower
- a Leicester Fertility Centre , Leicester , UK
| | - N Potdar
- a Leicester Fertility Centre , Leicester , UK
| |
Collapse
|
31
|
Buhren BA, Schrumpf H, Hoff NP, Bölke E, Hilton S, Gerber PA. Hyaluronidase: from clinical applications to molecular and cellular mechanisms. Eur J Med Res 2016; 21:5. [PMID: 26873038 PMCID: PMC4752759 DOI: 10.1186/s40001-016-0201-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/05/2016] [Indexed: 12/22/2022] Open
Abstract
Over the past 60 years, hyaluronidase has been successfully utilized in ophthalmic surgery and is now being implemented in dermatosurgery as well as in other surgical disciplines. The enzyme is considered a “spreading factor” as it decomplexes hyaluronic acid (also called hyaluronan, HA), an essential component of the extracellular matrix (ECM). When applied as an adjuvant, hyaluronidase enhances the diffusion capacity and bioavailability of injected drugs. Therefore, the enzyme has been used as a local adjuvant to increase the diffusion capacity of local anesthetics, increasing the analgesic efficacy, and the anesthetized area particularly in the first minutes following injection, resulting in diminished intra- and postoperative pain. In aesthetic medicine, the off-label use of hyaluronidase is considered the gold standard for the management of HA-filler-associated complications. Here, we review the clinical use, underlying biological mechanisms, and future directions for the application of hyaluronidase in surgical and aesthetic medicine.
Collapse
Affiliation(s)
| | - Holger Schrumpf
- Department of Dermatology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Norman-Philipp Hoff
- Department of Dermatology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Edwin Bölke
- Department of Radiation Oncology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Said Hilton
- Medical Skin Center Dr. Hilton & Partners, Düsseldorf, Germany.
| | - Peter Arne Gerber
- Department of Dermatology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
32
|
Biner O, Trachsel C, Moser A, Kopp L, Langenegger N, Kämpfer U, von Ballmoos C, Nentwig W, Schürch S, Schaller J, Kuhn-Nentwig L. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei. PLoS One 2015; 10:e0143963. [PMID: 26630650 PMCID: PMC4667920 DOI: 10.1371/journal.pone.0143963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022] Open
Abstract
Structure of Cupiennius salei venom hyaluronidase Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40–60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. Function of venom hyaluronidases Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well the current phylogenetic idea on a more isolated position of these families and can perhaps be explained by specialized prey catching techniques.
Collapse
Affiliation(s)
- Olivier Biner
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Aline Moser
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Lukas Kopp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Nicolas Langenegger
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Urs Kämpfer
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | - Wolfgang Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Johann Schaller
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Fujihara Y, Ikawa M. GPI-AP release in cellular, developmental, and reproductive biology. J Lipid Res 2015; 57:538-45. [PMID: 26593072 DOI: 10.1194/jlr.r063032] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 12/13/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) contain a covalently linked GPI anchor located on outer cell membranes. GPI-APs are ubiquitously conserved from protozoa to vertebrates and are critical for physiological events such as development, immunity, and neurogenesis in vertebrates. Both membrane-anchored and soluble GPI-APs play a role in regulating their protein conformation and functional properties. Several pathways mediate the release of GPI-APs from the plasma membrane by vesiculation or cleavage. Phospholipases and putative substrate-specific GPI-AP-releasing enzymes, such as NOTUM, glycerophosphodiesterase 2, and angiotensin-converting enzyme, have been characterized in mammals. Here, the protein modifications resulting from the cleavage of the GPI anchor are discussed in the context of its physiological functions.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Affiliation(s)
- Min Liu
- Department of Life Science and Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Republic of China
| |
Collapse
|
35
|
Cohen M. Notable Aspects of Glycan-Protein Interactions. Biomolecules 2015; 5:2056-72. [PMID: 26340640 PMCID: PMC4598788 DOI: 10.3390/biom5032056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses).
Collapse
Affiliation(s)
- Miriam Cohen
- Depatment of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, BRF2 MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
36
|
Triggs-Raine B, Natowicz MR. Biology of hyaluronan: Insights from genetic disorders of hyaluronan metabolism. World J Biol Chem 2015; 6:110-120. [PMID: 26322170 PMCID: PMC4549756 DOI: 10.4331/wjbc.v6.i3.110] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/08/2015] [Accepted: 07/17/2015] [Indexed: 02/05/2023] Open
Abstract
Hyaluronan is a rapidly turned over component of the vertebrate extracellular matrix. Its levels are determined, in part, by the hyaluronan synthases, HAS1, HAS2, and HAS3, and three hyaluronidases, HYAL1, HYAL2 and HYAL3. Hyaluronan binding proteins also regulate hyaluronan levels although their involvement is less well understood. To date, two genetic disorders of hyaluronan metabolism have been reported in humans: HYAL1 deficiency (Mucopolysaccharidosis IX) in four individuals with joint pathology as the predominant phenotypic finding and HAS2 deficiency in a single person having cardiac pathology. However, inherited disorders and induced mutations affecting hyaluronan metabolism have been characterized in other species. Overproduction of hyaluronan by HAS2 results in skin folding and thickening in shar-pei dogs and the naked mole rat, whereas a complete deficiency of HAS2 causes embryonic lethality in mice due to cardiac defects. Deficiencies of murine HAS1 and HAS3 result in a predisposition to seizures. Like humans, mice with HYAL1 deficiency exhibit joint pathology. Mice lacking HYAL2 have variably penetrant developmental defects, including skeletal and cardiac anomalies. Thus, based on mutant animal models, a partial deficiency of HAS2 or HYAL2 might be compatible with survival in humans, while complete deficiencies of HAS1, HAS3, and HYAL3 may yet be recognized.
Collapse
|
37
|
Schmaus A, Bauer J, Sleeman JP. Sugars in the microenvironment: the sticky problem of HA turnover in tumors. Cancer Metastasis Rev 2015; 33:1059-79. [PMID: 25324146 DOI: 10.1007/s10555-014-9532-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The properties and behavior of tumor cells are closely regulated by their microenvironment. Accordingly, stromal cells and extracellular matrix components can have a pronounced effect on cancer initiation, growth, and progression. The linear glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix. Altered synthesis and degradation of HA in the tumor context has been implicated in many aspects of tumor biology. In particular, the accumulation of small HA oligosaccharides (sHA) in the tumor interstitial space may play a decisive role, due to the ability of sHA to activate a number of biological processes that are not modulated by high molecular weight (HMW)-HA. In this article, we review the normal physiological role and metabolism of HA and then survey the evidence implicating HA in tumor growth and progression, focusing in particular on the potential contribution of sHA to these processes.
Collapse
Affiliation(s)
- Anja Schmaus
- Institut für Toxikologie und Genetik, Karlsruhe Institute for Technology (KIT), Campus Nord, Postfach 3640, 76021, Karlsruhe, Germany
| | | | | |
Collapse
|
38
|
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol 2015; 6:201. [PMID: 25999946 PMCID: PMC4422082 DOI: 10.3389/fimmu.2015.00201] [Citation(s) in RCA: 530] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland , Ohio, OH , USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
39
|
Abstract
Experimental evidence from the last 30 years supports the fact that the oviduct is involved in the modulation of the reproductive process in eutherian mammals. Oviductal secretion contains molecules that contribute to regulation of gamete function, gamete interaction, and the early stages of embryo development. The oviductal environment would act as a sperm reservoir, maintaining sperm viability, and modulating the subpopulation of spermatozoa that initiates the capacitation process. It could also contribute to prevent the premature acrosome reaction and to reduce polyspermy. Many studies have reported the beneficial effects of the oviductal environment on fertilization and on the first stages of embryo development. Some oviductal factors have been identified in different mammalian species. The effects of oviductal secretion on the reproductive process could be thought to result from the dynamic combined action (inhibitory or stimulatory) of multiple factors present in the oviductal lumen at different stages of the ovulatory cycle and in the presence of gametes or embryos. It could be hypothesized that the absence of a given molecule would not affect fertility as its action could be compensated by another factor with similar functions. However, any alteration in this balance could affect certain events of the reproductive process and could perhaps impair fertility. Thus, the complexity of the reproductive process warrants a continuous research effort to unveil the mechanisms and factors behind its regulation in the oviductal microenvironment.
Collapse
|
40
|
Modelski MJ, Menlah G, Wang Y, Dash S, Wu K, Galileo DS, Martin-DeLeon PA. Hyaluronidase 2: a novel germ cell hyaluronidase with epididymal expression and functional roles in mammalian sperm. Biol Reprod 2014; 91:109. [PMID: 25232017 DOI: 10.1095/biolreprod.113.115857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To initiate the crucial cell adhesion events necessary for fertilization, sperm must penetrate extracellular matrix barriers containing hyaluronic acid (HA), a task thought to be accomplished by neutral-active hyaluronidases. Here we report that the ~57 kDa hyaluronidase 2 (HYAL2) that in somatic tissues has been highly characterized to be acid-active is present in mouse and human sperm, as detected by Western blot, flow cytometric, and immunoprecipitation assays. Immunofluorescence revealed its presence on the plasma membrane over the acrosome, the midpiece, and proximal principal piece in mice where protein fractionation demonstrated a differential distribution in subcellular compartments. It is significantly more abundant in the acrosome-reacted (P = 0.04) and soluble acrosomal fractions (P = 0.006) (microenvironments where acid-active hyaluronidases function) compared to that of the plasma membrane where neutral hyaluronidases mediate cumulus penetration. Using HA substrate gel electrophoresis, immunoprecipitated HYAL 2 was shown to have catalytic activity at pH 4.0. Colocalization and coimmunoprecipitation assays reveal that HYAL2 is associated with its cofactor, CD44, consistent with CD44-dependent HYAL2 activity. HYAL2 is also present throughout the epididymis, where Hyal2 transcripts were detected, and in the epididymal luminal fluids. In vitro assays demonstrated that HYAL2 can be acquired on the sperm membrane from epididymal luminal fluids, suggesting that it plays a role in epididymal maturation. Because similar biphasic kinetics are seen for HYAL2 and SPAM1 (Sperm adhesion molecule 1), it is likely that HYAL2 plays a redundant role in the catalysis of megadalton HA to its 20 kDa intermediate during fertilization.
Collapse
Affiliation(s)
- Mark J Modelski
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Gladys Menlah
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Yipei Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Kathie Wu
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | | |
Collapse
|
41
|
Characterization of pig sperm hyaluronidase and improvement of the digestibility of cumulus cell mass by recombinant pSPAM1 hyaluronidase in an in vitro fertilization assay. Anim Reprod Sci 2014; 150:107-14. [PMID: 25261076 DOI: 10.1016/j.anireprosci.2014.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/23/2022]
Abstract
Although sperm hyaluronidase is thought to play an important role in mammalian fertilization, the molecular function underlying these steps remains largely unknown. In mouse models, sperm-specific SPAM1 and HYAL5 hyaluronidase are believed to function in both sperm penetration of the cumulus matrix and sperm-ZP binding. However, gene-targeting studies for SPAM1 or HYAL5 show that hyaluronidases are not essential for fertilization, despite the fact that exogenous hyaluronidase can disrupt the cumulus matrix. Therefore, to evaluate whether sperm hyaluronidase is essential for mammalian fertilization, it is necessary to generate HYAL5/SPAM1 double-knockout mice. However, generating double-knockout mice is very difficult because these two genes exist on the same chromosome. Recently, investigators have begun to employ the pig model system to study human disease due to its similarities to human anatomy and physiology. In this study, we confirmed that pig SPAM1 exists as a single copy gene on chromosome 18 and is specifically expressed in the testis. In addition, we expressed recombinant pig SPAM1 in human embryonic kidney 293 cells and showed that these enzymes possess hyaluronidase activity. We also demonstrated that a polyclonal antibody against pig sperm hyaluronidase inhibits sperm-egg interactions in an in vitro fertilization (IVF) assay. Our results suggest that pig SPAM1 may play a critical role in pig fertilization and that recombinant SPAM1 can disperse the oocyte-cumulus complex in an IVF assay.
Collapse
|
42
|
A role for carbohydrate recognition in mammalian sperm-egg binding. Biochem Biophys Res Commun 2014; 450:1195-203. [DOI: 10.1016/j.bbrc.2014.06.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022]
|
43
|
Nguyen EB, Westmuckett AD, Moore KL. SPACA7 is a novel male germ cell-specific protein localized to the sperm acrosome that is involved in fertilization in mice. Biol Reprod 2014; 90:16. [PMID: 24307706 DOI: 10.1095/biolreprod.113.111831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sperm acrosome associated 7 (SPACA7) is a novel protein of unknown function with no homology to any known protein. Spaca7 transcripts are detected only in testis and predict a 158-residue mature polypeptide with one potential N-glycosylation site and no cysteines. Orthologs are present in various species, including mice and humans. We developed a polyclonal antibody to mouse SPACA7 to study its expression and function. Western blotting and immunofluorescence microscopy detected SPACA7 only in testis, and it was detected in testis starting at Postnatal Day 21 and into adulthood. Immunofluorescence staining of testicular germ cells detected weak SPACA7 expression as early as zygotene spermatocytes. Higher expression was observed in round spermatids, where SPACA7 was localized to a perinuclear spot adjacent to the Golgi and to the acrosome of elongating spermatids and spermatozoa. Immunogold electron microscopy demonstrated that SPACA7 is localized within the proacrosomal granule of round spermatids and the acrosome of spermatozoa. Finally, we showed that SPACA7 was retained within the acrosome of epididymal sperm and was released upon the acrosome reaction. To assess if SPACA7 was involved in fertilization, in vitro fertilization assays in the presence of anti-SPACA7 IgG were performed. Anti-SPACA7 inhibited fertilization of cumulus-intact eggs and prominently delayed cumulus dispersal. However, anti-SPACA7 did not inhibit fertilization of cumulus-free eggs. Our findings indicate that release of SPACA7 from the acrosome accelerates cumulus dispersal and facilitates fertilization via unknown mechanisms. This study is the first to document the expression of endogenous SPACA7 and a function for this novel acrosomal protein.
Collapse
Affiliation(s)
- Edward B Nguyen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | |
Collapse
|
44
|
|
45
|
Avella MA, Xiong B, Dean J. The molecular basis of gamete recognition in mice and humans. Mol Hum Reprod 2013; 19:279-89. [PMID: 23335731 DOI: 10.1093/molehr/gat004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Successful fertilization heralds the onset of development and requires both gamete recognition and a definitive block to polyspermy. Sperm initially bind and penetrate the extracellular zona pellucida (ZP) that surrounds ovulated eggs, but are unable to bind the zona surrounding preimplantation embryos. The ZP of humans is composed of four (ZP1-4) and that of mouse three (ZP1-3) glycoproteins. Models for gamete recognition developed in mice had proposed that sperm bind to ZP3 glycans. However, phenotypes observed in genetically engineered mice are not consistent with this widely accepted model. More recently, taking advantage of the observation that human sperm do not bind to mouse eggs, human ZP2 was defined as the zona ligand in transgenic mouse models using gain-of-function assays. The sperm-binding site is an N-terminal domain of ZP2 that is cleaved by ovastacin, a metalloendoprotease released from egg cortical granules following fertilization. Proteolysis of this docking site provides a definitive block to polyspermy as sperm bind to uncleaved, but not cleaved ZP2 even after fertilization and cortical granule exocytosis. While progress has been made in defining the ZP ligand, less headway has been made in identifying the cognate sperm receptor. Although a number of sperm receptor candidates have been documented to interact with specific proteins in the ZP in vitro, continued fertility after genetic ablation of the cognate gene indicates that none are essential for gamete recognition. These on-going investigations inform reproductive medicine and suggest new therapies to improve fertility and/or provide contraception, thus expanding reproductive choices for human couples.
Collapse
Affiliation(s)
- Matteo A Avella
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
46
|
Chen H, Kui C, Chan HC. Ca2+ mobilization in cumulus cells: Role in oocyte maturation and acrosome reaction. Cell Calcium 2013; 53:68-75. [DOI: 10.1016/j.ceca.2012.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
|
47
|
Hyaluronidases Have Strong Hydrolytic Activity toward Chondroitin 4-Sulfate Comparable to that for Hyaluronan. Biomolecules 2012; 2:549-63. [PMID: 24970149 PMCID: PMC4030862 DOI: 10.3390/biom2040549] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 10/22/2012] [Accepted: 11/08/2012] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate (CS) chains are involved in the regulation of various biological processes. However, the mechanism underlying the catabolism of CS is not well understood. Hyaluronan (HA)-degrading enzymes, the hyaluronidases, are assumed to act at the initial stage of the degradation process, because HA is similar in structure to nonsulfated CS, chondroitin (Chn). Although human hyaluronidase-1 (HYAL1) and testicular hyaluronidase (SPAM1) can degrade not only HA but also CS, they are assumed to digest CS to only a limited extent. In this study, the hydrolytic activities of HYAL1 and SPAM1 toward CS-A, CS-C, Chn, and HA were compared. HYAL1 depolymerized CS-A and HA to a similar extent. SPAM1 degraded CS-A, Chn, and HA to a similar extent. CS is widely distributed from very primitive organisms to humans, whereas HA has been reported to be present only in vertebrates with the single exception of a mollusk. Therefore, a genuine substrate of hyaluronidases appears to be CS as well as HA.
Collapse
|
48
|
Kaneiwa T, Miyazaki A, Kogawa R, Mizumoto S, Sugahara K, Yamada S. Identification of amino acid residues required for the substrate specificity of human and mouse chondroitin sulfate hydrolase (conventional hyaluronidase-4). J Biol Chem 2012; 287:42119-28. [PMID: 23086929 DOI: 10.1074/jbc.m112.360693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human hyaluronidase-4 (hHYAL4), a member of the hyaluronidase family, has no hyaluronidase activity, but is a chondroitin sulfate (CS)-specific endo-β-N-acetylgalactosaminidase. The expression of hHYAL4 is not ubiquitous but restricted to placenta, skeletal muscle, and testis, suggesting that hHYAL4 is not involved in the systemic catabolism of CS, but rather has specific functions in particular organs or tissues. To elucidate the function of hyaluronidase-4 in vivo, mouse hyaluronidase-4 (mHyal4) was characterized. mHyal4 was also demonstrated to be a CS-specific endo-β-N-acetylgalactosaminidase. However, mHyal4 and hHYAL4 differed in the sulfate groups they recognized. Although hHYAL4 strongly preferred GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)-containing sequences typical in CS-D, where GlcUA represents d-glucuronic acid, mHyal4 depolymerized various CS isoforms to a similar extent, suggesting broad substrate specificity. To identify the amino acid residues responsible for this difference, a series of human/mouse HYAL4 chimeric proteins and HYAL4 point mutants were generated, and their preference for substrates was investigated. A combination of the amino acid residues at 261-265 and glutamine at 305 was demonstrated to be essential for the enzymatic activity as well as substrate specificity of mHyal4.
Collapse
Affiliation(s)
- Tomoyuki Kaneiwa
- Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Sapporo 001-0021, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The evolution of the egg is dynamic, and eggs have numerous species-specific properties across vertebrates and invertebrates. Interestingly, although the structure and function of the egg have remained relatively conserved over time, some constituents of the egg's extracellular barriers are undergoing rapid evolution. In this article, we review current ideas regarding sperm-egg interactions, discuss genetic approaches used to elucidate egg gene functions, and highlight the interesting differences that have evolved across taxa. We suggest that the rapid evolution of egg components and the mechanisms behind sperm-egg interactions are integrally connected, and delve in depth into each component of the egg's extracellular matrices. Finally, we discuss the promising future of reproductive research and how high-throughput genomics and proteomics have the potential to revolutionize the field and provide new evidence that will challenge previously held views about the fertilization process.
Collapse
Affiliation(s)
- Katrina G Claw
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA.
| | | |
Collapse
|
50
|
Tulsiani DRP, Abou-Haila A. Biological Processes that Prepare Mammalian Spermatozoa to Interact with an Egg and Fertilize It. SCIENTIFICA 2012; 2012:607427. [PMID: 24278720 PMCID: PMC3820447 DOI: 10.6064/2012/607427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/10/2012] [Indexed: 05/15/2023]
Abstract
In the mouse and other mammals studied, including man, ejaculated spermatozoa cannot immediately fertilize an egg. They require a certain period of residence in the female genital tract to become functionally competent cells. As spermatozoa traverse through the female genital tract, they undergo multiple biochemical and physiological changes collectively referred to as capacitation. Only capacitated spermatozoa interact with the extracellular egg coat, the zona pellucida. The tight irreversible binding of the opposite gametes triggers a Ca(2+)-dependent signal transduction cascade. The net result is the fusion of the sperm plasma membrane and the underlying outer acrosomal membrane at multiple sites that causes the release of acrosomal contents at the site of sperm-egg adhesion. The hydrolytic action of the acrosomal enzymes released, along with the hyperactivated beat pattern of the bound spermatozoon, is important factor that directs the sperm to penetrate the egg coat and fertilize the egg. The sperm capacitation and the induction of the acrosomal reaction are Ca(2+)-dependent signaling events that have been of wide interest to reproductive biologists for over half a century. In this paper, we intend to discuss data from this and other laboratories that highlight the biological processes which prepare spermatozoa to interact with an egg and fertilize it.
Collapse
Affiliation(s)
- Daulat R. P. Tulsiani
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Aïda Abou-Haila
- UFR Biomédicale, Université Paris Descartes, 75270 Paris Cedex 06, France
| |
Collapse
|