1
|
Tanaka M, Fujimoto K, Yumura S. Regulation of the Total Cell Surface Area in Dividing Dictyostelium Cells. Front Cell Dev Biol 2020; 8:238. [PMID: 32322581 PMCID: PMC7156592 DOI: 10.3389/fcell.2020.00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/20/2020] [Indexed: 01/08/2023] Open
Abstract
When a cell divides into two daughter cells, the total cell surface area should increase. There are two models for membrane supply to support cell division: (1) unfolding of small surface membrane reservoirs such as microvilli or wrinkles and (2) exocytosis of intracellular vesicles. Here, we precisely measured the total cell surface area in dividing Dictyostelium cells, flattened by the agar overlay that eliminated the complexity of unfolding surface membrane reservoirs. Because the cells divided normally under the agar overlay, unfolding of surface membrane reservoirs was not required for cell division. Under the agar overlay, the total cell surface area slightly decreased from the interphase to the metaphase and then increased about 20% during cytokinesis. Both endocytosis and exocytosis were suppressed in the early mitotic phase but recovered during cytokinesis. The imbalance of endocytosis and exocytosis could contribute to the changes observed in the cell surface area. Clathrin-dependent endocytosis was also substantially suppressed during cytokinesis, but contrary to previous reports in cultured animal cells, it did not significantly contribute to the regulation of the cell surface area. Furrowing during cytokinesis was indispensable for the cell membrane increase, and vice versa.
Collapse
Affiliation(s)
- Masahito Tanaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Koushiro Fujimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Kuang C, Wang F, Zhou Y, Cao J, Zhang H, Gong H, Zhou R, Zhou J. Molecular characterization of clathrin heavy chain (Chc) in Rhipicephalus haemaphysaloides and its effect on vitellogenin (Vg) expression via the clathrin-mediated endocytic pathway. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:71-89. [PMID: 31828557 DOI: 10.1007/s10493-019-00438-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Clathrin plays an important role in arthropods, but its function in ticks has not been explored. Here, we describe the molecular characteristics of the clathrin heavy chain of the tick Rhipicephalus haemaphysaloides and its effects on yolk development. The open reading frame of the clathrin heavy chain (Chc) (Rh-Chc) gene consists of 5103 nucleotides encoding 670 amino acids, which is most closely related to that of Ixodes scapularis and relatively close to Homo sapiens and Drosophila melanogaster. Real-time qPCR revealed that Rh-Chc was expressed at all developmental stages and organs. After Rh-Chc is silenced, ticks did not feed and mortality rate was 100%. Moreover, Rh-Chc co-localized with Vitellogenin receptor (VgR) on oocyte membrane. Immunofluorescence showed that the expression of Vitellogenin (Vg) (Rh-Vg) was also closely related to Rh-Chc. Immunofluorescence showed that the expression of Vg was also closely related to Rh-Chc, Rh-Chc silencing slowed the development of oocytes in tick, and culture of ovary in vitro silenced Rh-Chc, the development of oocytes in ticks also slowed down. Overall, the results of this study indicated that Rh-Chc is a vital gene in the tick R. haemaphysaloides that plays an important role in its growth, development, and reproduction.
Collapse
Affiliation(s)
- Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Rongqiong Zhou
- College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
3
|
Fang X, Zhang Y, Wang M, Li P, Zhang Q, Si J, Wei B, Miao Y, Tian L, Cai X. Lysosome and proteasome pathways are distributed in laticifers of Euphorbia helioscopia L. PHYSIOLOGIA PLANTARUM 2019; 166:1026-1038. [PMID: 30414186 DOI: 10.1111/ppl.12869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 06/08/2023]
Abstract
At present, the lysosome pathway (LP) and proteasome pathway (PP) are known as major clearance systems in eukaryotic cells. The laticifer, a secretory tissue, degrades some cytoplasm during development. In this study, we investigated the distribution of LP and PP in non-articulated laticifers of Euphorbia helioscopia L. Electron microscopy revealed that, plastids, mitochondria and some cyotsol were degraded in the late development laticifers, where there were numerous vesicles originated from dicytosomes. Accordingly, some key proteins in LP and PP were detected in E. helioscopia latex using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. Further immunohistochemistry analysis revealed that the clathrin heavy chain (CHC) belonging to LP and the ubiquitin-mediated proteasome degradation increases gradually as the laticifer develops. Immuno-electron microscopy revealed that the cysteine protease, CHC and AP-2 complex subunit beta-1 belonging to LP were mainly distributed in vesicles deriving from dicytosomes, which we called lysosome-like vesicles. Ubiquitin was widely distributed in the cytosol, and proteasome activity was significantly reduced when various concentrations of the inhibitor MG132 were added to the latex total protein. We hypothesize that LP and PP are distributed in E. helioscopia laticifers; and it was speculated that LP and PP might be involved in the degradation of organelles and some cytoplasmic matrix in E. helioscopia laticifers.
Collapse
Affiliation(s)
- Xiaoai Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Yue Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Peng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Qing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Jingjing Si
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Bofei Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Yan Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Lanting Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| |
Collapse
|
4
|
Zhu X, Yin J, Liang S, Liang R, Zhou X, Chen Z, Zhao W, Wang J, Li W, He M, Yuan C, Miyamoto K, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Wu X, Yamane H, Zhu L, Li S, Chen X. The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice. PLoS Genet 2016; 12:e1006311. [PMID: 27618555 PMCID: PMC5019419 DOI: 10.1371/journal.pgen.1006311] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice. Plants have evolved sophistical immunity system in fighting against pathogenic micro-organisms including bacteria, fungi and oomycetes. Upon perception of pathogens, the immune system activates rapid cell death, characterized as a form of hypersensitive response typically in and around the infection sites to restrict pathogen invasion and prevent disease development. Recent studies have suggested that MVBs-mediated vesicular trafficking might play key roles in plant immunity and cell death. However, the molecular regulation is poorly known. By using the lesion resembling disease (lrd) mutant, lrd6-6, which exhibits autoimmunity and spontaneous cell death, we characterized LRD6-6 as a MVBs-localized AAA ATPase. We found that the ATPase LRD6-6 was required for MVBs-mediated vesicular trafficking and inhibited the biosynthesis of antimicrobial compounds for immune response in rice. Both the ATPase activity and homo-dimerization of LRD6-6 were essential for its inhibition on immunity and cell death. The catalytically inactive ATPase, LRD6-6E315Q, played dominant-negative effect on inhibition of immunity in plants. In addition, the LRD6-6 protein co-localized with the MVBs-spread marker protein RabF1/ARA6 and also interacted with ESCRT-III components OsSNF7 and OsVPS2. In summary, our study has shown that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Sihui Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Ruihong Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xiaogang Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Zhixiong Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wen Zhao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Can Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Bingtian Ma
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Jichun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Weilan Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wenming Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xianjun Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Hisakazu Yamane
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shigui Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
5
|
Robinson MS. Forty Years of Clathrin-coated Vesicles. Traffic 2015; 16:1210-38. [PMID: 26403691 DOI: 10.1111/tra.12335] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved.
Collapse
Affiliation(s)
- Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Mettlen M, Danuser G. Imaging and modeling the dynamics of clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 2014; 6:a017038. [PMID: 25167858 DOI: 10.1101/cshperspect.a017038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clathrin-mediated endocytosis (CME) plays a central role in cellular homeostasis and is mediated by clathrin-coated pits (CCPs). Live-cell imaging has revealed a remarkable heterogeneity in CCP assembly kinetics, which can be used as an intrinsic source of mechanistic information on CCP regulation but also poses several major problems for unbiased analysis of CME dynamics. The backbone of unveiling the molecular control of CME is an imaging-based inventory of the full diversity of individual CCP behaviors, which requires detection and tracking of structural fiduciaries and regulatory proteins with an accuracy of >99.9%, despite very low signals. This level of confidence can only be achieved by combining appropriate imaging modalities with self-diagnostic computational algorithms for image analysis and data mining.
Collapse
Affiliation(s)
- Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039
| | - Gaudenz Danuser
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
7
|
de León N, Sharifmoghadam MR, Hoya M, Curto MÁ, Doncel C, Valdivieso MH. Regulation of cell wall synthesis by the clathrin light chain is essential for viability in Schizosaccharomyces pombe. PLoS One 2013; 8:e71510. [PMID: 23977061 PMCID: PMC3747244 DOI: 10.1371/journal.pone.0071510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
The regulation of cell wall synthesis by the clathrin light chain has been addressed. Schizosaccharomyces pombe clc1Δ mutant was inviable in the absence of osmotic stabilization; when grown in sorbitol-supplemented medium clc1Δ cells grew slowly, formed aggregates, and had strong defects in morphology. Additionally, clc1Δ cells exhibited an altered cell wall composition. A mutant that allowed modulating the amount of Clc1p was created to analyze in more detail the dependence of cell wall synthesis on clathrin. A 40% reduction in the amount of Clc1p did not affect acid phosphatase secretion and bulk lipid internalization. Under these conditions, β(1,3)glucan synthase activity and cell wall synthesis were reduced. Also, the delivery of glucan synthases to the cell surface, and the secretion of the Eng1p glucanase were defective. These results suggest that the defects in the cell wall observed in the conditional mutant were due to a defective secretion of enzymes involved in the synthesis/remodelling of this structure, rather than to their endocytosis. Our results show that a reduction in the amount of clathrin that has minor effects on general vesicle trafficking has a strong impact on cell wall synthesis, and suggest that this is the reason for the lethality of clc1Δ cells in the absence of osmotic stabilization.
Collapse
Affiliation(s)
- Nagore de León
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | | | - Marta Hoya
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - M.-Ángeles Curto
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Cristina Doncel
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
- * E-mail:
| |
Collapse
|
8
|
Agarwal S, Rastogi R, Gupta D, Patel N, Raje M, Mukhopadhyay A. Clathrin-mediated hemoglobin endocytosis is essential for survival of Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1065-77. [DOI: 10.1016/j.bbamcr.2013.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
|
9
|
Macro L, Jaiswal JK, Simon SM. Dynamics of clathrin-mediated endocytosis and its requirement for organelle biogenesis in Dictyostelium. J Cell Sci 2012; 125:5721-32. [PMID: 22992464 DOI: 10.1242/jcs.108837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. In single-cell eukaryotes, such as Saccharomyces cerevisiae, the gene encoding clathrin is not an essential gene, raising the question of whether clathrin conveys specific advantages for multicellularity. Furthermore, in contrast to mammalian cells, endocytosis in S. cerevisiae is not dependent on either clathrin or adaptor protein 2 (AP2), an endocytic adaptor molecule. In this study, we investigated the requirement for components of clathrin-mediated endocytosis (CME) in another unicellular organism, the amoeba Dictyostelium. We identified a heterotetrameric AP2 complex in Dictyostelium that is similar to that which is found in higher eukaryotes. By simultaneously imaging fluorescently tagged clathrin and AP2, we found that, similar to higher eukaryotes, these proteins colocalized to membrane puncta that move into the cell together. In addition, the contractile vacuole marker protein, dajumin-green fluorescent protein (GFP), is trafficked via the cell membrane and internalized by CME in a clathrin-dependent, AP2-independent mechanism. This pathway is distinct from other endocytic mechanisms in Dictyostelium. Our finding that CME is required for the internalization of contractile vacuole proteins from the cell membrane explains the contractile vacuole biogenesis defect in Dictyostelium cells lacking clathrin. Our results also suggest that the machinery for CME and its role in organelle maintenance appeared early during eukaryotic evolution. We hypothesize that dependence of endocytosis on specific components of the CME pathway evolved later, as demonstrated by internalization independent of AP2 function.
Collapse
Affiliation(s)
- Laura Macro
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
10
|
Kriebel PW, Barr VA, Rericha EC, Zhang G, Parent CA. Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge. ACTA ACUST UNITED AC 2008; 183:949-61. [PMID: 19047467 PMCID: PMC2592838 DOI: 10.1083/jcb.200808105] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemoattractant signaling induces the polarization and directed movement of cells secondary to the activation of multiple effector pathways. In addition, chemotactic signals can be amplified and relayed to proximal cells via the synthesis and secretion of additional chemoattractant. The mechanisms underlying such remarkable features remain ill defined. We show that the asymmetrical distribution of adenylyl cyclase (ACA) at the back of Dictyostelium discoideum cells, an essential determinant of their ability to migrate in a head-to-tail fashion, requires vesicular trafficking. This trafficking results in a local accumulation of ACA-containing intracellular vesicles and involves intact actin, microtubule networks, and de novo protein synthesis. We also show that migrating cells leave behind ACA-containing vesicles, likely secreted as multivesicular bodies and presumably involved in the formation of head-to-tail arrays of migrating cells. We propose that similar compartmentalization and shedding mechanisms exist in mammalian cells during embryogenesis, wound healing, neuron growth, and metastasis.
Collapse
Affiliation(s)
- Paul W Kriebel
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
11
|
Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R, Hilbi H. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 2008; 10:76-87. [PMID: 18980612 DOI: 10.1111/j.1600-0854.2008.00851.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates in macrophages and amoebae within 'Legionella-containing vacuoles' (LCVs), which communicate with the early secretory pathway and the endoplasmic reticulum. Formation of LCVs requires the bacterial Icm/Dot type IV secretion system. The Icm/Dot-translocated effector protein SidC selectively anchors to LCVs by binding the host lipid phosphatidylinositol-4-phosphate (PtdIns(4)P). Here, we describe a novel and simple approach to purify intact vacuoles formed by L. pneumophila within Dictyostelium discoideum by using magnetic immunoseparation with an antibody against SidC, followed by density gradient centrifugation. To monitor LCV purification by fluorescence microscopy, we used Dictyostelium producing the LCV marker calnexin-GFP and L. pneumophila labeled with the red fluorescent protein DsRed. A proteome analysis of purified LCVs by liquid chromatography coupled to tandem mass spectrometry revealed 566 host proteins, including known LCV components, such as the small GTPases Arf1, Rab1 and Rab7. Rab8, an endosomal regulator of the late secretory pathway originating from the trans Golgi network, and the endosomal GTPase Rab14 were identified as novel LCV components, which were found to be present on vacuoles harboring wild-type but not Icm/Dot-deficient L. pneumophila. Thus, LCVs also communicate with the late secretory and endosomal pathways. Depletion of Rab8 or Arf1 by RNA interference reduced the amount of SidC on LCVs, indicating that the GTPases promote the recruitment of Legionella effectors by regulating the level of PtdIns(4)P.
Collapse
Affiliation(s)
- Simon Urwyler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Kasprowicz J, Kuenen S, Miskiewicz K, Habets RLP, Smitz L, Verstreken P. Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. ACTA ACUST UNITED AC 2008; 182:1007-16. [PMID: 18762582 PMCID: PMC2528586 DOI: 10.1083/jcb.200804162] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptic vesicle reformation depends on clathrin, an abundant protein that polymerizes around newly forming vesicles. However, how clathrin is involved in synaptic recycling in vivo remains unresolved. We test clathrin function during synaptic endocytosis using clathrin heavy chain (chc) mutants combined with chc photoinactivation to circumvent early embryonic lethality associated with chc mutations in multicellular organisms. Acute inactivation of chc at stimulated synapses leads to substantial membrane internalization visualized by live dye uptake and electron microscopy. However, chc-inactivated membrane cannot recycle and participate in vesicle release, resulting in a dramatic defect in neurotransmission maintenance during intense synaptic activity. Furthermore, inactivation of chc in the context of other endocytic mutations results in membrane uptake. Our data not only indicate that chc is critical for synaptic vesicle recycling but they also show that in the absence of the protein, bulk retrieval mediates massive synaptic membrane internalization.
Collapse
Affiliation(s)
- Jaroslaw Kasprowicz
- Department of Molecular and Developmental Genetics, VIB Flemish Institute for Biotechnology, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Venken KJT, Kasprowicz J, Kuenen S, Yan J, Hassan BA, Verstreken P. Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation. Nucleic Acids Res 2008; 36:e114. [PMID: 18676454 PMCID: PMC2566861 DOI: 10.1093/nar/gkn486] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Studying gene function in the post-genome era requires methods to localize and inactivate proteins in a standardized fashion in model organisms. While genome-wide gene disruption and over-expression efforts are well on their way to vastly expand the repertoire of Drosophila tools, a complementary method to efficiently and quickly tag proteins expressed under endogenous control does not exist for fruit flies. Here, we describe the development of an efficient procedure to generate protein fusions at either terminus in an endogenous genomic context using recombineering. We demonstrate that the fluorescent protein tagged constructs, expressed under the proper control of regulatory elements, can rescue the respective mutations and enable the detection of proteins in vivo. Furthermore, we also adapted our method for use of the tetracysteine tag that tightly binds the fluorescent membrane-permeable FlAsH ligand. This technology allows us to acutely inactivate any tagged protein expressed under native control using fluorescein-assisted light inactivation and we provide proof of concept by demonstrating that acute loss of clathrin heavy chain function in the fly eye leads to synaptic transmission defects in photoreceptors. Our tagging technology is efficient and versatile, adaptable to any tag desired and paves the way to genome-wide gene tagging in Drosophila.
Collapse
Affiliation(s)
- Koen J T Venken
- Program in Developmental Biology, Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
14
|
Repass SL, Brady RJ, O'Halloran TJ. Dictyostelium Hip1r contributes to spore shape and requires epsin for phosphorylation and localization. J Cell Sci 2007; 120:3977-88. [PMID: 17971415 DOI: 10.1242/jcs.011213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clathrin-coated pits assemble on the plasma membrane to select and sequester proteins within coated vesicles for delivery to intracellular compartments. Although a host of clathrin-associated proteins have been identified, much less is known regarding the interactions between clathrin-associated proteins or how individual proteins influence the function of other proteins. In this study, we present evidence of a functional relationship between two clathrin-associated proteins in Dictyostelium, Hip1r and epsin. Hip1r-null cells form fruiting bodies that yield defective spores that lack the organized fibrils typical of wild-type spores. This spore coat defect leads to formation of round, rather than ovoid, spores in Hip1r-null cells that exhibit decreased viability. Like Hip1r-null cells, epsin-null cells also construct fruiting bodies with round spores, but these spores are more environmentally robust. Double-null cells that harbor deletions in both epsin and Hip1r form fruiting bodies, with spores identical in shape and viability to Hip1r single-null cells. In the growing amoeba, Hip1r is phosphorylated and localizes to puncta on the plasma membrane that also contain epsin. Both the phosphorylation state and localization of Hip1r into membrane puncta require epsin. Moreover, expression of the N-terminal ENTH domain of epsin is sufficient to restore both the phosphorylation and the restricted localization of Hip1r within plasma membrane puncta. The results from this study reveal a novel interaction between two clathrin-associated proteins during cellular events in both growing and developing Dictyostelium cells.
Collapse
Affiliation(s)
- Shannon Lea Repass
- Department of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX 78712, USA
| | | | | |
Collapse
|
15
|
Inoue T, Hayashi T, Takechi K, Agata K. Clathrin-mediated endocytic signals are required for the regeneration of,as well as homeostasis in, the planarian CNS. Development 2007; 134:1679-89. [PMID: 17376807 DOI: 10.1242/dev.02835] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Planarians have a well-organized central nervous system (CNS), including a brain, and can regenerate the CNS from almost any portion of the body using pluripotent stem cells. In this study, to identify genes required for CNS regeneration, genes expressed in the regenerating CNS were systematically cloned and subjected to functional analysis. RNA interference (RNAi) of the planarian clathrin heavy chain (DjCHC) gene prevented CNS regeneration in the intermediate stage of regeneration prior to neural circuit formation. To analyze DjCHC gene function at the cellular level, we developed a functional analysis method using primary cultures of planarian neurons purified by fluorescence-activated cell sorting (FACS) after RNAi treatment. Using this method, we showed that the DjCHC gene was not essential for neural differentiation, but was required for neurite extension and maintenance, and that DjCHC-RNAi-treated neurons entered a TUNEL-positive apoptotic state. DjCHC-RNAi-treated uncut planarians showed brain atrophy, and the DjCHC-RNAi planarian phenotype was mimicked by RNAi-treated planarians of the mu-2 (μ2)gene, which is involved in endocytosis, but not the mu-1(μ1) gene, which is involved in exocytosis. Thus,clathrin-mediated endocytic signals may be required for not only maintenance of neurons after synaptic formation, but also axonal extension at the early stage of neural differentiation.
Collapse
Affiliation(s)
- Takeshi Inoue
- Group for Evolutionary Regeneration Biology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Kobe, Japan
| | | | | | | |
Collapse
|
16
|
Stavrou I, O'Halloran TJ. The monomeric clathrin assembly protein, AP180, regulates contractile vacuole size in Dictyostelium discoideum. Mol Biol Cell 2006; 17:5381-9. [PMID: 17050736 PMCID: PMC1679698 DOI: 10.1091/mbc.e06-06-0531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AP180, one of many assembly proteins and adaptors for clathrin, stimulates the assembly of clathrin lattices on membranes, but its unique contribution to clathrin function remains elusive. In this study we identified the Dictyostelium discoideum ortholog of the adaptor protein AP180 and characterized a mutant strain carrying a deletion in this gene. Imaging GFP-labeled AP180 showed that it localized to punctae at the plasma membrane, the contractile vacuole, and the cytoplasm and associated with clathrin. AP180 null cells did not display defects characteristic of clathrin mutants and continued to localize clathrin punctae on their plasma membrane and within the cytoplasm. However, like clathrin mutants, AP180 mutants, were osmosensitive. When immersed in water, AP180 null cells formed abnormally large contractile vacuoles. Furthermore, the cycle of expansion and contraction for contractile vacuoles in AP80 null cells was twice as long as that of wild-type cells. Taken together, our results suggest that AP180 plays a unique role as a regulator of contractile vacuole morphology and activity in Dictyostelium.
Collapse
Affiliation(s)
- Irene Stavrou
- Department of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Theresa J. O'Halloran
- Department of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
17
|
Abstract
Clathrin assembles into a dynamic two-dimensional lattice on the plasma membrane where it plays a critical role in endocytosis. To probe the regulation of this process, we used siRNA against clathrin, in combination with single cell assays for transferrin uptake as well as total internal reflection microscopy, to examine how endocytic rates and membrane dynamics depend upon cellular clathrin concentration ([Clathrin]). We find that endocytosis is tightly controlled by [Clathrin] over a very narrow dynamic range such that small changes in [Clathrin] can lead to large changes in endocytic rates, indicative of a highly cooperative process (apparent Hill coefficient, n > 6). The number of clathrin assemblies at the cell surface was invariant over a wide range of [Clathrin]; however, both the amount of clathrin in each assembly and the subsequent membrane dynamics were steeply dependent on [Clathrin]. Thus clathrin controls the structural dynamics of membrane internalization via a strongly cooperative process. We used this analysis to show that one important regulator of endocytosis, the actin cytoskeleton, acts noncompetitively as a modulator of clathrin function.
Collapse
Affiliation(s)
- Howard S Moskowitz
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
18
|
Wang J, Virta VC, Riddelle-Spencer K, O'Halloran TJ. Compromise of clathrin function and membrane association by clathrin light chain deletion. Traffic 2004; 4:891-901. [PMID: 14617352 DOI: 10.1046/j.1600-0854.2003.00144.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While clathrin heavy chains from different species are highly conserved in amino acid sequence, clathrin light chains are much more divergent. Thus clathrin light chain may have different functions in different organisms. To investigate clathrin light chain function, we cloned the clathrin light chain, clcA, from Dictyostelium and examined clathrin function in clcA-mutants. Phenotypic deficiencies in development, cytokinesis, and osmoregulation showed that light chain was critical for clathrin function in Dictyostelium. In contrast with budding yeast, we found the light chain did not influence steady-state levels of clathrin, triskelion formation, or contribute to clathrin over-assembly on intracellular membranes. Imaging GFP-CHC in clcA- mutants showed that the heavy chain formed dynamic punctate structures that were remarkably similar to those found in wild-type cells. However, clathrin light chain knockouts showed a decreased association of clathrin with intracellular membranes. Unlike wild-type cells, half of the clathrin in clcA- mutants was cytosolic, suggesting that the absence of light chain compromised the assembly of triskelions onto intracellular membranes. Taken together, these results suggest a role for the Dictyostelium clathrin light chain in regulating the self-assembly of triskelions onto intracellular membranes, and demonstrate a crucial contribution of the light chain to clathrin function in vivo.
Collapse
Affiliation(s)
- Jingshan Wang
- Section of Molecular Cell & Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
19
|
Gerisch G, Benjak A, Köhler J, Weber I, Schneider N. GFP-golvesin constructs to study Golgi tubulation and post-Golgi vesicle dynamics in phagocytosis. Eur J Cell Biol 2004; 83:297-303. [PMID: 15511087 DOI: 10.1078/0171-9335-00393] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dictyostelium cells are professional phagocytes that are optimally suited for the imaging of phagosome processing from particle uptake to exocytosis. In order to design fluorescent probes for monitoring membrane trafficking in the endocytic pathway, we have dissected a membrane protein, golvesin, and have linked fragments of its sequence to GFP. Endogenous golvesin is partitioned between the ER, the Golgi apparatus, endosomes, and the contractile vacuole complex. We have localized signals that are required for exit from the Golgi to post-Golgi compartments to the C-terminal region of the golvesin sequence. One GFP-tagged fragment turned out to be a highly specific Golgi marker and was used to demonstrate the interaction of Golgi tubules with phagosomes. Signals essential for the retrieval of golvesin at the end of phagosome processing were localized to the N-terminal region. A truncated golvesin construct escaping retrieval was employed in recording the delivery of a phagosomal protein to the plasma membrane. Applying this construct to a phagosome filled with multiple particles, we observed that the phagosome is segmented during exocytosis, meaning that sequential release of particles alternates with membrane fusion.
Collapse
|
20
|
Lefkir Y, Malbouyres M, Gotthardt D, Ozinsky A, Cornillon S, Bruckert F, Aderem AA, Soldati T, Cosson P, Letourneur F. Involvement of the AP-1 adaptor complex in early steps of phagocytosis and macropinocytosis. Mol Biol Cell 2003; 15:861-9. [PMID: 14617812 PMCID: PMC329399 DOI: 10.1091/mbc.e03-06-0365] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The best described function of the adaptor complex-1 (AP-1) is to participate in the budding of clathrin-coated vesicles from the trans-Golgi network and endosomes. Here, we show that AP-1 is also localized to phagocytic cups in murine macrophages as well as in Dictyostelium amoebae. AP-1 is recruited to phagosomal membranes at this early stage of phagosome formation and rapidly dissociates from maturing phagosomes. To establish the role of AP-1 in phagocytosis, we made used of Dictyostelium mutant cells (apm1(-) cells) disrupted for AP-1 medium chain. In this mutant, phagocytosis drops by 60%, indicating that AP-1 is necessary for efficient phagocytosis. Furthermore, phagocytosis in apm1(-) cells is more affected for large rather than small particles, and cells exhibiting incomplete engulfment are then often observed. This suggests that AP-1 could participate in the extension of the phagocytic cup. Interestingly, macropinocytosis, a process dedicated to fluid-phase endocytosis and related to phagocytosis, is also impaired in apm1(-) cells. In summary, our data suggest a new role of AP-1 at an early stage of phagosome and macropinosome formation.
Collapse
Affiliation(s)
- Yaya Lefkir
- Institut de Biologie et Chimie des Protéines, UMR5086-CNRS/Université Lyon I, IFR 128 BioSciences Lyon-Gerland, 69367 Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moskowitz HS, Heuser J, McGraw TE, Ryan TA. Targeted chemical disruption of clathrin function in living cells. Mol Biol Cell 2003; 14:4437-47. [PMID: 14551251 PMCID: PMC266763 DOI: 10.1091/mbc.e03-04-0230] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The accurate assignment of molecular roles in membrane traffic is frequently complicated by the lack of specific inhibitors that can work on rapid time scales. Such inhibition schemes would potentially avoid the complications arising from either compensatory gene expression or the complex downstream consequences of inhibition of an important protein over long periods (>12 h). Here, we developed a novel chemical tool to disrupt clathrin function in living cells. We engineered a cross-linkable form of clathrin by using an FK506-binding protein 12 (FKBP)-clathrin fusion protein that is specifically oligomerized upon addition of the cell-permeant cross-linker FK1012-A. This approach interrupts the normal assembly-disassembly cycle of clathrin lattices and results in a specific, rapid, and reversible approximately 70% inhibition of clathrin function. This approach should be applicable to a number of proteins that must go through an assembly-disassembly cycle for normal function.
Collapse
Affiliation(s)
- Howard S Moskowitz
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Endocytosis in protozoa is often regarded as largely different from the pathways operating in mammalian cells. Experiments in the amoeba Dictyostelium, one of the genetically tractable single-celled organisms, have allowed us to manipulate the flow through endocytic compartments and to study the dynamic distribution of molecules by means of green fluorescent protein fusions. This review attempts to compile the molecular data available from Dictyostelium and assign them to specific steps of internalization by phagocytosis or macropinocytosis and to subsequent stages of the endocytic pathway. Parallels to phagocytes of the mammalian immune system are emphasized. The major distinctive feature between mammalian phagocytes and free-living cells is the need for osmoregulation. Therefore Dictyostelium cells possess a contractile vacuole that has occasionally obscured analysis of endocytosis but is now found to be entirely separate from endocytic organelles. In conclusion, the potential of Dictyostelium amoebas to provide a model system of mammalian phagocytes is ever increasing.
Collapse
Affiliation(s)
- Markus Maniak
- Department of Cell Biology, Universitaet Kassel, 34109 Kassel, Germany
| |
Collapse
|
23
|
Lefkir Y, de Chassey B, Dubois A, Bogdanovic A, Brady RJ, Destaing O, Bruckert F, O'Halloran TJ, Cosson P, Letourneur F. The AP-1 clathrin-adaptor is required for lysosomal enzymes sorting and biogenesis of the contractile vacuole complex in Dictyostelium cells. Mol Biol Cell 2003; 14:1835-51. [PMID: 12802059 PMCID: PMC165081 DOI: 10.1091/mbc.e02-10-0627] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Revised: 11/20/2002] [Accepted: 12/27/2002] [Indexed: 01/04/2023] Open
Abstract
Adaptor protein complexes (AP) are major components of the cytoplasmic coat found on clathrin-coated vesicles. Here, we report the molecular and functional characterization of Dictyostelium clathrin-associated AP-1 complex, which in mammalian cells, participates mainly in budding of clathrin-coated vesicles from the trans-Golgi network (TGN). The gamma-adaptin AP-1 subunit was cloned and shown to belong to a Golgi-localized 300-kDa protein complex. Time-lapse analysis of cells expressing gamma-adaptin tagged with the green-fluorescent protein demonstrates the dynamics of AP-1-coated structures leaving the Golgi apparatus and rarely moving toward the TGN. Targeted disruption of the AP-1 medium chain results in viable cells displaying a severe growth defect and a delayed developmental cycle compared with parental cells. Lysosomal enzymes are constitutively secreted as precursors, suggesting that protein transport between the TGN and lysosomes is defective. Although endocytic protein markers are correctly localized to endosomal compartments, morphological and ultrastructural studies reveal the absence of large endosomal vacuoles and an increased number of small vacuoles. In addition, the function of the contractile vacuole complex (CV), an osmoregulatory organelle is impaired and some CV components are not correctly targeted.
Collapse
Affiliation(s)
- Yaya Lefkir
- Institut de Biologie et Chimie des Protéines, UMR5086, CNRS/Université Lyon I, IFR 128 BioSciences Lyon-Gerland, 7, Passage du Vercors, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The BEACH family of proteins is a novel group of proteins with diverse roles in eukaryotic cells. The identifying feature of these proteins is the BEACH domain named after the founding members of this family, the mouse beige and the human Chediak-Higashi syndrome proteins. Although all BEACH proteins share a similar structural organization, they appear to have very distinct cellular roles, ranging from lysosomal traffic to apoptosis and cytokinesis. Very little is currently known about the function of most of these proteins, few binding-partner proteins have been identified, and no molecular mechanism for any of these proteins has been discovered. Thus, it is important to establish good model systems for the study of these novel proteins. Dictyostelium contains six BEACH proteins that can be classified into four subclasses. Two of them, LvsA and LvsB, have clearly distinct roles in the cell. LvsA is localized on the contractile vacuole membrane and is essential for cytokinesis and osmoregulation. LvsB is most similar in sequence to the mammalian beige/Chediak-Higashi syndrome proteins and shares with them a common function in lysosomal trafficking. Structural and functional analysis of these proteins in Dictyostelium will help elucidate the function of this enigmatic novel family of proteins.
Collapse
Affiliation(s)
- Arturo De Lozanne
- Section of Molecular Cell & Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
25
|
Wettey FR, Hawkins SFC, Stewart A, Luzio JP, Howard JC, Jackson AP. Controlled elimination of clathrin heavy-chain expression in DT40 lymphocytes. Science 2002; 297:1521-5. [PMID: 12202821 DOI: 10.1126/science.1074222] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We exploited the high rate of homologous recombination shown by the chicken B cell line DT40 to inactivate the endogenous alleles for clathrin heavy chain and replace them with human clathrin complementary DNA under the control of a tetracycline-regulatable promoter. Clathrin repression perturbed the activities of Akt-mediated and mitogen-activated protein kinase-mediated signaling pathways and induced apoptosis; this finding suggests that in DT40 cells clathrin helps to maintain the integrity of antiapoptotic survival pathways. We also describe a variant cell line in which these signaling pathways were unaffected by clathrin down-regulation. This variant cell line did not undergo apoptosis in the absence of clathrin and was used to examine the effects of clathrin depletion on membrane-trafficking pathways. Receptor-mediated and fluid-phase endocytosis were both substantially inhibited, and transferrin-receptor recycling was modestly inhibited. Surprisingly, clathrin removal did not affect the morphology or biochemical composition of lysosomes.
Collapse
Affiliation(s)
- Frank R Wettey
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | | | | | | | |
Collapse
|
26
|
Clarke M, Köhler J, Arana Q, Liu T, Heuser J, Gerisch G. Dynamics of the vacuolar H+-ATPase in the contractile vacuole complex and the endosomal pathway ofDictyosteliumcells. J Cell Sci 2002; 115:2893-905. [PMID: 12082150 DOI: 10.1242/jcs.115.14.2893] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is a multi-subunit enzyme that plays important roles in eukaryotic cells. In Dictyostelium, it is found primarily in membranes of the contractile vacuole complex, where it energizes fluid accumulation by this osmoregulatory organelle and also in membranes of endolysosomes, where it serves to acidify the endosomal lumen. In the present study, a fusion was created between vatM, the gene encoding the 100 kDa transmembrane subunit of the V-ATPase, and the gene encoding Green Fluorescent Protein (GFP). When expressed in Dictyostelium cells, this fusion protein, VatM-GFP, was correctly targeted to contractile vacuole and endolysosomal membranes and was competent to direct assembly of the V-ATPase enzyme complex. Protease treatment of isolated endosomes indicated that the GFP moiety, located on the C-terminus of VatM, was exposed to the cytoplasmic side of the endosomal membrane rather than to the lumenal side. VatM-GFP labeling of the contractile vacuole complex revealed clearly the dynamics of this pleiomorphic vesiculotubular organelle. VatM-GFP labeling of endosomes allowed direct visualization of the trafficking of vacuolar proton pumps in this pathway, which appeared to be entirely independent from the contractile vacuole membrane system. In cells whose endosomes were pre-labeled with TRITC-dextran and then fed yeast particles,VatM-GFP was delivered to newly formed yeast phagosomes with the same time course as TRITC-dextran, consistent with transfer via a direct fusion of endosomes with phagosomes. Several minutes were required before the intensity of the VatM-GFP labeling of new phagosomes reached the level observed in older phagosomes, suggesting that this fusion process was progressive and continuous. VatM-GFP was retrieved from the phagosome membrane prior to exocytosis of the indigestible remnants of the yeast particle. These data suggest that vacuolar proton pumps are recycled by fusion of advanced with newly formed endosomes.
Collapse
|
27
|
Liu T, Mirschberger C, Chooback L, Arana Q, Dal Sacco Z, MacWilliams H, Clarke M. Altered expression of the 100 kDa subunit of the Dictyosteliumvacuolar proton pump impairs enzyme assembly, endocytic function and cytosolic pH regulation. J Cell Sci 2002; 115:1907-18. [PMID: 11956322 DOI: 10.1242/jcs.115.9.1907] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar proton pump (V-ATPase) appears to be essential for viability of Dictyostelium cells. To investigate the function of VatM, the 100 kDa transmembrane V-ATPase subunit, we altered its level. By means of homologous recombination, the promoter for the chromosomal vatM gene was replaced with the promoter for the act6 gene, yielding the mutant strain VatMpr. The act6 promoter is much more active in cells growing axenically than on bacteria. Thus, transformants were selected under axenic growth conditions, then shifted to bacteria to determine the consequences of reduced vatM expression. When VatMpr cells were grown on bacteria,the level of the 100 kDa V-ATPase subunit dropped, cell growth slowed, and the A subunit, a component of the peripheral catalytic domain of the V-ATPase,became mislocalized. These defects were complemented by transformation of the mutant cells with a plasmid expressing vatM under the control of its own promoter. Although the principal locus of vacuolar proton pumps in Dictyostelium is membranes of the contractile vacuole system, mutant cells did not manifest osmoregulatory defects. However, bacterially grown VatMpr cells did exhibit substantially reduced rates of phagocytosis and a prolonged endosomal transit time. In addition, mutant cells manifested alterations in the dynamic regulation of cytosolic pH that are characteristic of normal cells grown in acid media, which suggested that the V-ATPase also plays a role in cytosolic pH regulation.
Collapse
Affiliation(s)
- Tongyao Liu
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Neuhaus EM, Almers W, Soldati T. Morphology and dynamics of the endocytic pathway in Dictyostelium discoideum. Mol Biol Cell 2002; 13:1390-407. [PMID: 11950947 PMCID: PMC102277 DOI: 10.1091/mbc.01-08-0392] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Revised: 12/27/2001] [Accepted: 01/18/2002] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium discoideum is a genetically and biochemically tractable social amoeba belonging to the crown group of eukaryotes. It performs some of the tasks characteristic of a leukocyte such as chemotactic motility, macropinocytosis, and phagocytosis that are not performed by other model organisms or are difficult to study. D. discoideum is becoming a popular system to study molecular mechanisms of endocytosis, but the morphological characterization of the organelles along this pathway and the comparison with equivalent and/or different organelles in animal cells and yeasts were lagging. Herein, we used a combination of evanescent wave microscopy and electron microscopy of rapidly frozen samples to visualize primary endocytic vesicles, vesicular-tubular structures of the early and late endo-lysosomal system, such as multivesicular bodies, and the specialized secretory lysosomes. In addition, we present biochemical and morphological evidence for the existence of a micropinocytic pathway, which contributes to the uptake of membrane along side macropinocytosis, which is the major fluid phase uptake process. This complex endosomal compartment underwent continuous cycles of tubulation/vesiculation as well as homo- and heterotypic fusions, in a way reminiscent of mechanisms and structures documented in leukocytes. Finally, egestion of fluid phase from the secretory lysosomes was directly observed.
Collapse
Affiliation(s)
- Eva M Neuhaus
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Harris E, Wang N, Wu Wl WL, Weatherford A, De Lozanne A, Cardelli J. Dictyostelium LvsB mutants model the lysosomal defects associated with Chediak-Higashi syndrome. Mol Biol Cell 2002; 13:656-69. [PMID: 11854420 PMCID: PMC65657 DOI: 10.1091/mbc.01-09-0454] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chediak-Higashi syndrome is a genetic disorder caused by mutations in a gene encoding a protein named LYST in humans ("lysosomal trafficking regulator") or Beige in mice. A prominent feature of this disease is the accumulation of enlarged lysosome-related granules in a variety of cells. The genome of Dictyostelium discoideum contains six genes encoding proteins that are related to LYST/Beige in amino acid sequence, and disruption of one of these genes, lvsA (large volume sphere), results in profound defects in cytokinesis. To better understand the function of this family of proteins in membrane trafficking, we have analyzed mutants disrupted in lvsA, lvsB, lvsC, lvsD, lvsE, and lvsF. Of all these, only lvsA and lvsB mutants displayed interesting phenotypes in our assays. lvsA-null cells exhibited defects in phagocytosis and contained abnormal looking contractile vacuole membranes. Loss of LvsB, the Dictyostelium protein most similar to LYST/Beige, resulted in the formation of enlarged vesicles that by multiple criteria appeared to be acidic lysosomes. The rates of endocytosis, phagocytosis, and fluid phase exocytosis were normal in lvsB-null cells. Also, the rates of processing and the efficiency of targeting of lysosomal alpha-mannosidase were normal, although lvsB mutants inefficiently retained alpha-mannosidase, as well as two other lysosomal cysteine proteinases. Finally, results of pulse-chase experiments indicated that an increase in fusion rates accounted for the enlarged lysosomes in lvsB-null cells, suggesting that LvsB acts as a negative regulator of fusion. Our results support the notion that LvsB/LYST/Beige function in a similar manner to regulate lysosome biogenesis.
Collapse
Affiliation(s)
- Edward Harris
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | |
Collapse
|
30
|
Gerald NJ, Siano M, De Lozanne A. The Dictyostelium LvsA protein is localized on the contractile vacuole and is required for osmoregulation. Traffic 2002; 3:50-60. [PMID: 11872142 DOI: 10.1034/j.1600-0854.2002.30107.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
LvsA is a Dictyostelium protein that is essential for cytokinesis and that is related to the mammalian beige/LYST family of proteins. To better understand the function of this novel protein family we tagged LvsA with GFP using recombination techniques. GFP-LvsA is primarily associated with the membranes of the contractile vacuole system and it also has a punctate distribution in the cytoplasm. Two markers of the Dictyostelium contractile vacuole, the vacuolar proton pump and calmodulin, show extensive colocalization with GFP-LvsA on contractile vacuole membranes. Interestingly, the association of LvsA with contractile vacuole membranes occurs only during the discharge phase of the vacuole. In LvsA mutants the contractile vacuole becomes disorganized and calmodulin dissociates from the contractile vacuole membranes. Consequently, the contractile vacuole is unable to function normally, it can swell but seems unable to discharge and the LvsA mutants become osmosensitive. These results demonstrate that LvsA can associate transiently with the contractile vacuole membrane compartment and that this association is necessary for the function of the contractile vacuole during osmoregulation. This transient association with specific membrane compartments may be a general property of other BEACH-domain containing proteins.
Collapse
Affiliation(s)
- Noel J Gerald
- Section of Molecular Cell & Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
31
|
Rupper A, Lee K, Knecht D, Cardelli J. Sequential activities of phosphoinositide 3-kinase, PKB/Aakt, and Rab7 during macropinosome formation in Dictyostelium. Mol Biol Cell 2001; 12:2813-24. [PMID: 11553719 PMCID: PMC59715 DOI: 10.1091/mbc.12.9.2813] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Macropinocytosis plays an important role in the internalization of antigens by dendritic cells and is the route of entry for many bacterial pathogens; however, little is known about the molecular mechanisms that regulate the formation or maturation of macropinosomes. Like dendritic cells, Dictyostelium amoebae are active in macropinocytosis, and various proteins have been identified that contribute to this process. As described here, microscopic analysis of null mutants have revealed that the class I phosphoinositide 3-kinases, PIK1 and PIK2, and the downstream effector protein kinase B (PKB/Akt) are important in regulating completion of macropinocytosis. Although actin-rich membrane protrusions form in these cell lines, they recede without forming macropinosomes. Imaging of cells expressing green fluorescent protein (GFP) fused to the pleckstrin homology domain (PH) of PKB (GFP-PHPKB) indicates that D3 phosphoinositides are enriched in the forming macropinocytic cup and remain associated with newly formed macropinosomes for <1 minute. A fusion protein, consisting of GFP fused to an F-actin binding domain, overlaps with GFP-PHPKB in the timing of association with forming macropinosomes. Although macropinocytosis is reduced in cells expressing dominant negative Rab7, microscopic imaging studies reveal that GFP-Rab7 associates only with formed macropinosomes at approximately the time that F-actin and D3 phosphoinositide levels decrease. These results support a model in which F-actin modulating proteins and vesicle trafficking proteins coordinately regulate the formation and maturation of macropinosomes.
Collapse
Affiliation(s)
- A Rupper
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
32
|
Cardelli J. Phagocytosis and macropinocytosis in Dictyostelium: phosphoinositide-based processes, biochemically distinct. Traffic 2001; 2:311-20. [PMID: 11350627 DOI: 10.1034/j.1600-0854.2001.002005311.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phagocytosis and macropinocytosis are actin-dependent clathrin-independent processes primarily performed by cells like neutrophils and macrophages that result in the internalization of particles or the formation of fluid-filled macropinosomes, respectively. Phagocytosis consists of a number of stages, including attachment of particles to cell surface receptors, engulfment of the particle dependent on actin polymerization and membrane exocytosis, and formation of phago-lysosomes. In contrast, the molecular steps regulating macropinocytosis are only just now being deciphered. Much remains to be learned concerning the signaling pathways that regulate these processes. Dictyostelium is a genetically and biochemically tractable professional phagocyte that has proven to be a powerful system with which to determine the nature of the molecular steps involved in regulating these internalization processes. This review summarizes what is currently understood concerning the molecular mechanisms governing phagocytosis and macropinocytosis in Dictyostelium and describes recent data concerning the common and distinct pathways that regulate these processes.
Collapse
Affiliation(s)
- J Cardelli
- Department of Microbiology and Immunology, Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
33
|
Pintsch T, Satre M, Klein G, Martin JB, Schuster SC. Cytosolic acidification as a signal mediating hyperosmotic stress responses in Dictyostelium discoideum. BMC Cell Biol 2001; 2:9. [PMID: 11415467 PMCID: PMC33341 DOI: 10.1186/1471-2121-2-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2001] [Accepted: 06/08/2001] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Dictyostelium cells exhibit an unusual response to hyperosmolarity that is distinct from the response in other organisms investigated: instead of accumulating compatible osmolytes as it has been described for a wide range of organisms, Dictyostelium cells rearrange their cytoskeleton and thereby build up a rigid network which is believed to constitute the major osmoprotective mechanism in this organism. To gain more insight into the osmoregulation of this amoeba, we investigated physiological processes affected under hyperosmotic conditions in Dictyostelium. RESULTS We determined pH changes in response to hyperosmotic stress using FACS or 31P-NMR. Hyperosmolarity was found to acidify the cytosol from pH 7.5 to 6.8 within 5 minutes, whereas the pH of the endo-lysosomal compartment remained constant. Fluid-phase endocytosis was identified as a possible target of cytosolic acidification, as the inhibition of endocytosis observed under hypertonic conditions can be fully attributed to cytosolic acidification. In addition, a deceleration of vesicle mobility and a decrease in the NTP pool was observed. CONCLUSION Together, these results indicate that hyperosmotic stress triggers pleiotropic effects, which are partially mediated by a pH signal and which all contribute to the downregulation of cellular activity. The comparison of our results with the effect of hyperosmolarity and intracellular acidification on receptor-mediated endocytosis in mammalian cells reveals striking similarities, suggesting the hypothesis of the same mechanism of inhibition by low internal pH.
Collapse
Affiliation(s)
- Tanja Pintsch
- Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
- SWITCH Biotech AG, Fraunhoferstr. 10, D-82152 Martinsried, Germany
| | - Michel Satre
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092)
| | - Gérard Klein
- Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092)
| | - Jean-Baptiste Martin
- Laboratoire de Résonance Magnétique en Biologie Métabolique, Department of Molecular and Structural Biology, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, France
| | - Stephan C Schuster
- Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
- Max-Planck-Institut fur Entwicklungsbiologie, Spemannstr. 35, D-72076 Tübingen, Germany
| |
Collapse
|
34
|
Rupper A, Cardelli J. Regulation of phagocytosis and endo-phagosomal trafficking pathways in Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:205-16. [PMID: 11257434 DOI: 10.1016/s0304-4165(01)00106-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phagocytosis, a critically important process employed by leukocytes against invading pathogens, is an actin-dependent clathrin-independent process that results in the internalization of particles >0.5 microm in diameter. Phagocytosis consists of a number of stages, including the binding of particles to the cell surface via interaction with a receptor, engulfment of the particle by pseudopod extension, and fission and fusion reactions to form phago-lysosomes. Much remains to be learned concerning the molecular mechanisms that regulate particle internalization and phagosome maturation. Dictyostelium is a genetically tractable professional phagocyte that has proven useful in determining the molecular steps involved in these processes. We will summarize, in this chapter, what we currently understand concerning the molecular mechanisms that regulate the process of phagocytosis in Dictyostelium, and we will compare and contrast this body of information with that available describing phagocytosis in higher organisms. We will also present current information that suggests that macropinocytosis, a process morphologically similar to phagocytosis, utilizes a different signaling pathway than phagocytosis. Finally, we will discuss the process of maturation of phagosomes, which requires membrane trafficking events, and we will summarize data that support the use of Dictyostelium as a model to determine how intracellular pathogens survive.
Collapse
Affiliation(s)
- A Rupper
- Department of Microbiology and Immunology, Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
35
|
Gerald NJ, Damer CK, O'Halloran TJ, De Lozanne A. Cytokinesis failure in clathrin-minus cells is caused by cleavage furrow instability. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:213-23. [PMID: 11223952 DOI: 10.1002/1097-0169(200103)48:3<213::aid-cm1010>3.0.co;2-v] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of membrane traffic during cell division has only recently begun to be investigated. A growing number of trafficking proteins seem to be involved in the successful completion of cytokinesis. Clathrin was the first trafficking protein to be shown to be essential for cytokinesis in Dictyostelium. Here we investigate the nature of the cytokinesis defect of Dictyostelium clathrin null cells. We found that adherent clathrin null cells do form cleavage furrows but cannot maintain a consistent rate of furrow ingression. Clathrin null cells are completely defective in cytokinesis when placed in suspension. In these conditions, the cells develop an abnormal division morphology that consists of two lateral "furrows" on either side of a bulging equatorial region. Cells expressing GFP-myosin II were examined at various stages of cytokinesis. Clathrin null cells show multiple defects in myosin organization and localization that parallel the striking failure in furrow morphology. We postulate that this morphology is the result of contraction at the rear of the presumptive daughter cells in concert with incomplete furrow ingression.
Collapse
Affiliation(s)
- N J Gerald
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
36
|
de Chassey B, Dubois A, Lefkir Y, Letourneur F. Identification of clathrin-adaptor medium chains in Dictyostelium discoideum: differential expression during development. Gene 2001; 262:115-22. [PMID: 11179674 DOI: 10.1016/s0378-1119(00)00545-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clathrin-adaptor complexes (APs) are vesicle coat components that participate in cargo selectivity and transport vesicle formation. Here we cloned and characterized apm1, apm3 and apm4 cDNAs encoding AP medium chains (mu) in D. discoideum. Amino acid comparison suggested that predicted proteins were homologous to known mu1, mu3 and mu4 subunits of mammalian APs as they shared 69, 51, and 26% identity with mouse mu1A, human mu3A and human mu4, respectively. In all chains, amino acid residues predicted to interact with tyrosine based sorting signals were conserved. Southern blot analysis indicated only one copy of each gene in D. discoideum genome. Expression of apm1 and apm3 mRNAs stayed relatively constant during vegetative growth and throughout development. In contrast, apm4 was poorly expressed in amoebae but became well detectable by RT-PCR upon cell differentiation. This regulated expression of coat proteins enlightens the importance of intracellular membrane transport vesicles during development in D. discoideum and strengthens this attractive model organism for studying the function of coat complexes in vivo.
Collapse
Affiliation(s)
- B de Chassey
- Institut de Biologie et Chimie des Protéines, UMR5086, CNRS / Université Lyon I, 7, Passage du Vercors 69367, cedex 07, Lyon, France
| | | | | | | |
Collapse
|
37
|
Pollock N, Koonce MP, de Hostos EL, Vale RD. In vitro microtubule-based organelle transport in wild-type Dictyostelium and cells overexpressing a truncated dynein heavy chain. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:304-14. [PMID: 9678672 DOI: 10.1002/(sici)1097-0169(1998)40:3<304::aid-cm8>3.0.co;2-c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The transport of vesicular organelles along microtubules has been well documented in a variety of systems, but the molecular mechanisms underlying this process are not well understood. We have developed a method for preparing extracts from Dictyostelium discoideum which supports high levels of bidirectional, microtubule-based vesicle transport in vitro. This organelle transport assay was also adapted to observe specifically the motility of vesicles in the endocytic pathway. Vesicle transport can be reconstituted by recombining a high-speed supernatant with KI-washed organelles, which do not move in the absence of supernatant. Furthermore, a microtubule affinity-purified motor fraction supports robust bidirectional movement of the salt-washed organelles. The plus and minus end-directed transport activities can be separated by exploiting differences in their affinities for microtubules in the presence of 0.3 M KCl. We also used our assay to examine organelle transport in a strain of Dictyostelium overexpressing a 380-kDa C-terminal fragment of the cytoplasmic dynein heavy chain, which displays an altered microtubule pattern (380-kDa cells; [Koonce and Samso, Mol. Biol. Cell 7:935-948, 1996]). We have found that the frequency and velocity of minus end-directed membrane organelle movements were significantly reduced in 380-kDa cells relative to wild-type cells, while the frequency and velocity of plus end-directed movements were equivalent in the two cell types. The 380-kDa C-terminal fragment cosedimented with membrane organelles, although its affinity was significantly lower than that of native dynein. An impaired membrane-microtubule interaction may be responsible for the altered microtubule patterns in the 380-kDa cells.
Collapse
Affiliation(s)
- N Pollock
- Department of Pharmacology, University of California San Francisco, 94143, USA
| | | | | | | |
Collapse
|
38
|
Temesvari L, Zhang L, Fodera B, Janssen KP, Schleicher M, Cardelli JA. Inactivation of lmpA, encoding a LIMPII-related endosomal protein, suppresses the internalization and endosomal trafficking defects in profilin-null mutants. Mol Biol Cell 2000; 11:2019-31. [PMID: 10848626 PMCID: PMC14900 DOI: 10.1091/mbc.11.6.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Profilin is a key phosphoinositide and actin-binding protein connecting and coordinating changes in signal transduction pathways with alterations in the actin cytoskeleton. Using biochemical assays and microscopic approaches, we demonstrate that profilin-null cells are defective in macropinocytosis, fluid phase efflux, and secretion of lysosomal enzymes but are unexpectedly more efficient in phagocytosis than wild-type cells. Disruption of the lmpA gene encoding a protein (DdLIMP) belonging to the CD36/LIMPII family suppressed, to different degrees, most of the profilin-minus defects, including the increase in F-actin, but did not rescue the secretion defect. Immunofluorescence microscopy indicated that DdLIMP, which is also capable of binding phosphoinositides, was associated with macropinosomes but was not detected in the plasma membrane. Also, inactivation of the lmpA gene in wild-type strains resulted in defects in macropinocytosis and fluid phase efflux but not in phagocytosis. These results suggest an important role for profilin in regulating the internalization of fluid and particles and the movement of material along the endosomal pathway; they also demonstrate a functional interaction between profilin and DdLIMP that may connect phosphoinositide-based signaling through the actin cytoskeleton with endolysosomal membrane trafficking events.
Collapse
Affiliation(s)
- L Temesvari
- Feist-Weiller Cancer Center, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | |
Collapse
|
39
|
Mohrs MR, Janssen KP, Kreis T, Noegel AA, Schleicher M. Cloning and characterization of beta-COP from Dictyostelium discoideum. Eur J Cell Biol 2000; 79:350-7. [PMID: 10887966 DOI: 10.1078/s0171-9335(04)70039-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have isolated a cDNA coding for beta-COP from Dictyostelium discoideum by polymerase chain reaction using degenerate primers derived from rat beta-COP. The complete cDNA clone has a size of 2.8 kb and codes for a protein with a calculated molecular mass of 102 kDa. Dictyostelium beta-COP exhibits highest homology to mammalian beta-COP, but it is considerably smaller due to a shortened variable region that is thought to form a linker between the highly conserved N- and C-terminal domains. Dictyostelium beta-COP is encoded by a single gene, which is transcribed at moderate levels into two RNAs that are present throughout development. To localize the protein, full-length beta-COP was fused to GFP and expressed in Dictyostelium cells. The fusion protein was detected on vesicles distributed all over the cells and was strongly enriched in the perinuclear region. Based on coimmunofluorescence studies with antibodies directed against the Golgi marker comitin, this compartment was identified as the Golgi apparatus. Beta-COP distribution in Dictyostelium was not brefeldin A sensitive being most likely due to the presence of a brefeldin A resistance gene. However, upon DMSO treatment we observed a reversible disassembly of the Golgi apparatus. In mammalian cells DMSO treatment had a similar effect on beta-COP distribution.
Collapse
Affiliation(s)
- M R Mohrs
- Institut für Biochemie I, Medizinische Einrichtungen der Universität zu Köln, Germany
| | | | | | | | | |
Collapse
|
40
|
Kwak E, Gerald N, Larochelle DA, Vithalani KK, Niswonger ML, Maready M, De Lozanne A. LvsA, a protein related to the mouse beige protein, is required for cytokinesis in Dictyostelium. Mol Biol Cell 1999; 10:4429-39. [PMID: 10588668 PMCID: PMC25768 DOI: 10.1091/mbc.10.12.4429] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We isolated a Dictyostelium cytokinesis mutant with a defect in a novel locus called large volume sphere A (lvsA). lvsA mutants exhibit an unusual phenotype when attempting to undergo cytokinesis in suspension culture. Early in cytokinesis, they initiate furrow formation with concomitant myosin II localization at the cleavage furrow. However, the furrow is later disrupted by a bulge that forms in the middle of the cell. This bulge is bounded by furrows on both sides, which are often enriched in myosin II. The bulge can increase and decrease in size multiple times as the cell attempts to divide. Interestingly, this phenotype is similar to the cytokinesis failure of Dictyostelium clathrin heavy-chain mutants. Furthermore, both cell lines cap ConA receptors but form only a C-shaped loose cap. Unlike clathrin mutants, lvsA mutants are not defective in endocytosis or development. The LvsA protein shares several domains in common with the molecules beige and Chediak-Higashi syndrome proteins that are important for lysosomal membrane traffic. Thus, on the basis of the sequence analysis of the LvsA protein and the phenotype of the lvsA mutants, we postulate that LvsA plays an important role in a membrane-processing pathway that is essential for cytokinesis.
Collapse
Affiliation(s)
- E Kwak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
We have developed a fluorimetric assay with the use of the dye FM1-43 to determine the rate at which Dictyostelium amoebae endocytose their surface membrane. Our results show that they do so about once each 4-10 min. A clathrin null mutant takes its surface up only approximately 30% more slowly, showing that this membrane uptake cannot be caused by clathrin-coated vesicles. Surprisingly, Ax2 and its parent, NC4, which differ in their rates of fluid-phase internalization by approximately 60-fold, take up their surfaces at the same rates. These results show that, in axenic cells, the uptake of fluid and of surface area are separate processes. The large activity of this new endocytic cycle in both Ax2 and NC4 amoebae appears capable of delivering sufficient new surface area to advance the cells' fronts during migration.
Collapse
Affiliation(s)
- C Aguado-Velasco
- Medical Research Council Laboratory for Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
42
|
Gabriel D, Hacker U, Köhler J, Müller-Taubenberger A, Schwartz JM, Westphal M, Gerisch G. The contractile vacuole network of Dictyostelium as a distinct organelle: its dynamics visualized by a GFP marker protein. J Cell Sci 1999; 112 ( Pt 22):3995-4005. [PMID: 10547360 DOI: 10.1242/jcs.112.22.3995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contractile vacuole system is an osmoregulatory organelle composed of cisternae and interconnecting ducts. Large cisternae act as bladders that periodically fuse with the plasma membrane, forming pores to expel water. To visualize the entire network in vivo and to identify constituents of the vacuolar complex in cell fractions, we introduced a specific marker into Dictyostelium cells, GFP-tagged dajumin. The C-terminal, GFP-tagged region of this transmembrane protein is responsible for sorting to the contractile vacuole complex. Dajumin-GFP negligibly associates with the plasma membrane, indicating its retention during discharge of the bladder. Fluorescent labeled cell-surface constituents are efficiently internalized by endocytosis, while no significant cycling through the contractile vacuole is observed. Endosomes loaded with yeast particles or a fluid-phase marker indicate sharp separation of the endocytic pathway from the contractile vacuole compartment. Even after dispersion of the contractile vacuole system during mitosis, dajumin-GFP distinguishes the vesicles from endosomes, and visualizes post-mitotic re-organization of the network around the nucleus. Highly discriminative sorting and membrane fusion mechanisms are proposed to account for the sharp separation of the contractile vacuole and endosomal compartments. Evidence for a similar compartment in other eukaryotic cells is discussed.
Collapse
Affiliation(s)
- D Gabriel
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Journet A, Chapel A, Jehan S, Adessi C, Freeze H, Klein G, Garin J. Characterization of Dictyostelium discoideum cathepsin D. J Cell Sci 1999; 112 ( Pt 21):3833-43. [PMID: 10523518 DOI: 10.1242/jcs.112.21.3833] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies using magnetic purification of Dictyostelium discoideum endocytic vesicles led us to the identification of some major vesicle proteins. Using the same purification procedure, we have now focused our interest on a 44 kDa soluble vesicle protein. Microsequencing of internal peptides and subsequent cloning of the corresponding cDNA identified this protein as the Dictyostelium homolog of mammalian cathepsins D. The only glycosylation detected on Dictyostelium cathepsin D (CatD) is common antigen 1, a cluster of mannose 6-sulfate residues on N-linked oligosaccharide chains. CatD intracellular trafficking has been studied, showing the presence of the protein throughout the entire endocytic pathway. During the differentiation process, the catD gene presents a developmental regulation, which is also observed at the protein level. catD gene disruption does not alter significantly the cell behaviour, either in the vegetative form or the differentiation stage. However, modifications in the SDS-PAGE profiles of proteins bearing common antigen 1 were detected, when comparing parental and catD(-) cells. These modifications point to a possible role of CatD in the maturation of a few Dictyostelium lysosomal proteins.
Collapse
Affiliation(s)
- A Journet
- Laboratoire de Chimie des Protéines, CEA-Grenoble, rue des Martyrs, F-38054 Grenoble, Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Seastone DJ, Zhang L, Buczynski G, Rebstein P, Weeks G, Spiegelman G, Cardelli J. The small Mr Ras-like GTPase Rap1 and the phospholipase C pathway act to regulate phagocytosis in Dictyostelium discoideum. Mol Biol Cell 1999; 10:393-406. [PMID: 9950684 PMCID: PMC25176 DOI: 10.1091/mbc.10.2.393] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The function of the small-Mr Ras-like GTPase Rap1 remains largely unknown, but this protein has been demonstrated to regulate cortical actin-based morphologic changes in Dictyostelium and the oxidative burst in mammalian neutrophils. To test whether Rap1 regulates phagocytosis, we biochemically analyzed cell lines that conditionally and modestly overexpressed wild-type [Rap1 WT(+)], constitutively active [Rap1 G12T(+)], and dominant negative [Rap1 S17N(+)] forms of D. discoideum Rap1. The rates of phagocytosis of bacteria and latex beads were significantly higher in Rap1 WT(+) and Rap1 G12T(+) cells and were reduced in Rap1 S17N(+) cells. The addition of inhibitors of protein kinase A, protein kinase G, protein tyrosine kinase, or phosphatidylinositide 3-kinase did not affect phagocytosis rates in wild-type cells. In contrast, the addition of U73122 (a phospholipase C inhibitor), calphostin C (a protein kinase C inhibitor), and BAPTA-AM (an intracellular Ca2+ chelator) reduced phagocytosis rates by 90, 50, and 65%, respectively, suggesting both arms of the phospholipase C signaling pathways played a role in this process. Other protein kinase C-specific inhibitors, such as chelerythrine and bisindolylmaleimide I, did not reduce phagocytosis rates in control cells, suggesting calphostin C was affecting phagocytosis by interfering with a protein containing a diacylglycerol-binding domain. The addition of calphostin C did not reduce phagocytosis rates in Rap1 G12T(+) cells, suggesting that the putative diacylglycerol-binding protein acted upstream in a signaling pathway with Rap1. Surprisingly, macropinocytosis was significantly reduced in Rap1 WT(+) and Rap1 G12T(+) cells compared with control cells. Together our results suggest that Rap1 and Ca2+ may act together to coordinate important early events regulating phagocytosis.
Collapse
Affiliation(s)
- D J Seastone
- Department of Microbiology and Immunology, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Wienke DC, Knetsch ML, Neuhaus EM, Reedy MC, Manstein DJ. Disruption of a dynamin homologue affects endocytosis, organelle morphology, and cytokinesis in Dictyostelium discoideum. Mol Biol Cell 1999; 10:225-43. [PMID: 9880338 PMCID: PMC25165 DOI: 10.1091/mbc.10.1.225] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The identification and functional characterization of Dictyostelium discoideum dynamin A, a protein composed of 853 amino acids that shares up to 44% sequence identity with other dynamin-related proteins, is described. Dynamin A is present during all stages of D. discoideum development and is found predominantly in the cytosolic fraction and in association with endosomal and postlysosomal vacuoles. Overexpression of the protein has no adverse effect on the cells, whereas depletion of dynamin A by gene-targeting techniques leads to multiple and complex phenotypic changes. Cells lacking a functional copy of dymA show alterations of mitochondrial, nuclear, and endosomal morphology and a defect in fluid-phase uptake. They also become multinucleated due to a failure to complete normal cytokinesis. These pleiotropic effects of dynamin A depletion can be rescued by complementation with the cloned gene. Morphological studies using cells producing green fluorescent protein-dynamin A revealed that dynamin A associates with punctate cytoplasmic vesicles. Double labeling with vacuolin, a marker of a postlysosomal compartment in D. discoideum, showed an almost complete colocalization of vacuolin and dynamin A. Our results suggest that that dynamin A is likely to function in membrane trafficking processes along the endo-lysosomal pathway of D. discoideum but not at the plasma membrane.
Collapse
Affiliation(s)
- D C Wienke
- Abteilung Biophysik, Max-Planck-Institut für Medizinische Forschung, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Weidenhaupt M, Bruckert F, Satre M. Identification of the Dictyostelium discoideum homolog of the N-ethylmaleimide-sensitive fusion protein. Gene 1998; 207:53-60. [PMID: 9511743 DOI: 10.1016/s0378-1119(97)00604-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The N-ethylmaleimide-sensitive fusion protein (NSF) is required for vesicular membrane fusion in multiple cellular functions. We have cloned a cDNA encoding the Dictyostelium discoideum homolog of the NSF protein. This cDNA hybridizes with a single fragment in Southern blots suggesting that NSF is encoded by a single gene in the amoeba. It is expressed constitutively during vegetative growth and throughout the differentiation cycle. The encoded gene product comprises 738 aa with a predicted molecular mass of 82 kDa. It shows the characteristic three-domain structure of NSF proteins. A more divergent amino-terminal part is followed by two highly conserved ATP-binding domains featuring Walker A and B signature sequences. The D. discoideum protein presents an overall aa sequence identity of 44% when compared to known NSF homologs. The monoclonal antibody 2E5 directed against Cricetellus griseus NSF recognizes a protein with a molecular weight of approx. 80 000 in a D. discoideum crude extract and the recombinant D. discoideum His6-NSF expressed in Escherichia coli.
Collapse
Affiliation(s)
- M Weidenhaupt
- Laboratoire de Biochimie et Biochimie et Biophysique des Systèmes Intégrés, UMR 314 CEA-CNRS, CEA-Grenoble, France
| | | | | |
Collapse
|
48
|
Riddelle-Spencer KS, O'Halloran TJ. Purification of clathrin heavy and light chain from Dictyostelium discoideum. Protein Expr Purif 1997; 11:250-6. [PMID: 9425628 DOI: 10.1006/prep.1997.0793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Clathrin, a protein important for endocytosis, is a hexamer composed of three heavy chains and three light chains. We report here the purification scheme used to isolate the clathrin protein from the simple eukaryote, Dictyostelium discoideum. Using a combination of differential centrifugation and column chromatography, we isolated approximately 2 mg of clathrin triskelions from 150-200 g of Dictyostelium cells. One additional step purified the 30-kDa clathrin light chain to homogeneity. Glycerol gradient centrifugation was used to determine an S value of 7.9 for purified clathrin. Rotary shadowed images of Dictyostelium clathrin revealed trimeric molecules with extended legs measuring 48 +/- 5 nm, similar in length to the legs of mammalian and yeast clathrin triskelions. The single clathrin light chain proved resistant to heat treatment, a property also similar to light chains from other species. The conservation of these physical properties in Dictyostelium clathrin demonstrates the potential of this model organism for the study of clathrin structure and function.
Collapse
Affiliation(s)
- K S Riddelle-Spencer
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
49
|
Steck TL, Chiaraviglio L, Meredith S. Osmotic homeostasis in Dictyostelium discoideum: excretion of amino acids and ingested solutes. J Eukaryot Microbiol 1997; 44:503-10. [PMID: 9304820 DOI: 10.1111/j.1550-7408.1997.tb05731.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The response to osmotic stress in axenically cultured Dictyostelium discoideum was examined. Hypoosmotic buffers elicited two changes in the large (approximately 50 mM) cytosolic pool of amino acids: a) the total size of the pool diminished, while b) about half of the initial pool was excreted. Hyperosmotic stress had the opposite effect. Among the predominant amino acids in the pool were glycine, alanine and proline. Putrescine, the major diamine, was neither excreted nor modulated. Recently ingested radioactive amino acids were excreted in preference to those in the cytoplasm, suggesting that the endocytic pathway might be involved in water excretion. Furthermore, hypoosmotic stress stimulated the selective excretion of small, membrane-impermeable fluorescent dyes which had been ingested into endocytic vacuoles. Caffeine inhibited the excretion of the fluorophores but not the amino acids. We conclude that the response of Dictyostelium to osmotic stress is complex and includes both modulation of the cytoplasmic amino acid pool and the excretion of amino acids and other small solutes from the endocytic pathway.
Collapse
Affiliation(s)
- T L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
50
|
Sesaki H, Wong EF, Siu CH. The cell adhesion molecule DdCAD-1 in Dictyostelium is targeted to the cell surface by a nonclassical transport pathway involving contractile vacuoles. J Cell Biol 1997; 138:939-51. [PMID: 9265658 PMCID: PMC2138044 DOI: 10.1083/jcb.138.4.939] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/1997] [Revised: 05/14/1997] [Indexed: 02/05/2023] Open
Abstract
DdCAD-1 is a 24-kD Ca2+-dependent cell- cell adhesion molecule that is expressed soon after the initiation of development in Dictyostelium cells. DdCAD-1 is present on the cell surface as well as in the cytosol. However, the deduced amino acid sequence of DdCAD-1 lacks a hydrophobic signal peptide or any predicted transmembrane domain, suggesting that it may be presented on the cell surface via a nonclassical transport mechanism. Here we report that DdCAD-1 is transported to the cell surface via contractile vacuoles, which are normally involved in osmoregulation. Immunofluorescence microscopy and subcellular fractionation revealed a preferential association of DdCAD-1 with contractile vacuoles. Proteolytic treatment of isolated contractile vacuoles degraded vacuole-associated calmodulin but not DdCAD-1, demonstrating that DdCAD-1 was present in the lumen. The use of hyperosmotic conditions that suppress contractile vacuole activity led to a dramatic decrease in DdCAD-1 accumulation on the cell surface and the absence of cell cohesiveness. Shifting cells back to a hypotonic condition after hypertonic treatments induced a rapid increase in DdCAD-1-positive contractile vacuoles, followed by the accumulation of DdCAD-1 on the cell membrane. 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole, a specific inhibitor of vacuolar-type H+-ATPase and thus of the activity of contractile vacuoles, also inhibited the accumulation of DdCAD-1 on the cell surface. Furthermore, an in vitro reconstitution system was established, and isolated contractile vacuoles were shown to import soluble DdCAD-1 into their lumen in an ATP-stimulated manner. Taken together, these data provide the first evidence for a nonclassical protein transport mechanism that uses contractile vacuoles to target a soluble cytosolic protein to the cell surface.
Collapse
Affiliation(s)
- H Sesaki
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|