1
|
Anitua E, Prado R, Guadilla J, Alkhraisat MH, Laiz P, Padilla S, García-Balletbó M, Cugat R. The Dual-Responsive Interaction of Particulated Hyaline Cartilage and Plasma Rich in Growth Factors (PRGF) in the Repair of Cartilage Defects: An In Vitro Study. Int J Mol Sci 2023; 24:11581. [PMID: 37511339 PMCID: PMC10380225 DOI: 10.3390/ijms241411581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment of chondral and osteochondral defects is challenging. These types of lesions are painful and progress to osteoarthritis over time. Tissue engineering offers tools to address this unmet medical need. The use of an autologous cartilage construct consisting of hyaline cartilage chips embedded in plasma rich in growth factors (PRGF) has been proposed as a therapeutic alternative. The purpose of this study was to dig into the potential mechanisms behind the in vitro remodelling process that might explain the clinical success of this technique and facilitate its optimisation. Chondrocyte viability and cellular behaviour over eight weeks of in vitro culture, type II collagen synthesis, the dual delivery of growth factors by hyaline cartilage and PRGF matrix, and the ultrastructure of the construct and its remodelling were characterised. The main finding of this research is that the cartilage fragments embedded in the three-dimensional PRGF scaffold contain viable chondrocytes that are able to migrate into the fibrin network, proliferate and synthesise extracellular matrix after the second week of in vitro culture. The characterization of this three-dimensional matrix is key to unravelling the molecular kinetics responsible for its efficacy.
Collapse
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute IMASD, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute IMASD, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Jorge Guadilla
- Osakidetza Basque Health Service, Araba University Hospital, 01009 Vitoria, Spain
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria, Spain
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
| | - Mohammad H Alkhraisat
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute IMASD, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Patricia Laiz
- Fundación García Cugat para Investigación Biomédica, 08023 Barcelona, Spain
- Instituto Cugat, Hospital Quirónsalud, 08023 Barcelona, Spain
| | - Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute IMASD, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Montserrat García-Balletbó
- Fundación García Cugat para Investigación Biomédica, 08023 Barcelona, Spain
- Instituto Cugat, Hospital Quirónsalud, 08023 Barcelona, Spain
| | - Ramón Cugat
- Fundación García Cugat para Investigación Biomédica, 08023 Barcelona, Spain
- Instituto Cugat, Hospital Quirónsalud, 08023 Barcelona, Spain
- Mutualidad de Futbolistas Españoles, Delegación Catalana, 08010 Barcelona, Spain
| |
Collapse
|
2
|
Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2015; 16:26035-54. [PMID: 26528972 PMCID: PMC4661802 DOI: 10.3390/ijms161125943] [Citation(s) in RCA: 586] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is a highly-regulated, active process of cell death involved in development, homeostasis and aging. Dysregulation of apoptosis leads to pathological states, such as cancer, developmental anomalies and degenerative diseases. Osteoarthritis (OA), the most common chronic joint disease in the elderly population, is characterized by progressive destruction of articular cartilage, resulting in significant disability. Because articular cartilage depends solely on its resident cells, the chondrocytes, for the maintenance of extracellular matrix, the compromising of chondrocyte function and survival would lead to the failure of the articular cartilage. The role of subchondral bone in the maintenance of proper cartilage matrix has been suggested as well, and it has been proposed that both articular cartilage and subchondral bone interact with each other in the maintenance of articular integrity and physiology. Some investigators include both articular cartilage and subchondral bone as targets for repairing joint degeneration. In late-stage OA, the cartilage becomes hypocellular, often accompanied by lacunar emptying, which has been considered as evidence that chondrocyte death is a central feature in OA progression. Apoptosis clearly occurs in osteoarthritic cartilage; however, the relative contribution of chondrocyte apoptosis in the pathogenesis of OA is difficult to evaluate, and contradictory reports exist on the rate of apoptotic chondrocytes in osteoarthritic cartilage. It is not clear whether chondrocyte apoptosis is the inducer of cartilage degeneration or a byproduct of cartilage destruction. Chondrocyte death and matrix loss may form a vicious cycle, with the progression of one aggravating the other, and the literature reveals that there is a definite correlation between the degree of cartilage damage and chondrocyte apoptosis. Because current treatments for OA act only on symptoms and do not prevent or cure OA, chondrocyte apoptosis would be a valid target to modulate cartilage degeneration.
Collapse
|
3
|
Hopper N, Henson F, Brooks R, Ali E, Rushton N, Wardale J. Peripheral blood derived mononuclear cells enhance osteoarthritic human chondrocyte migration. Arthritis Res Ther 2015; 17:199. [PMID: 26249339 PMCID: PMC4528856 DOI: 10.1186/s13075-015-0709-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction A major problem in cartilage repair is the lack of chondrogenic cells migrating from healthy tissue into defects. Cartilage is essentially avascular and therefore its healing is not considered to involve mononuclear cells. Peripheral blood derived mononuclear cells (PBMC) offer a readily available autologous cell source for clinical use and therefore this study was designed to evaluate the effects of PBMCs on chondrocytes and cartilage. Methods Human primary chondrocytes and cartilage tissue explants were taken from patients undergoing total knee replacement (n = 17). Peripheral blood samples were obtained from healthy volunteers (n = 12) and mononuclear cells were isolated by density-gradient centrifugation. Cell migration and chemokinetic potential were measured using a scratch assay, xCELLigence and CyQuant assay. PCR array and quantitative PCR was used to evaluate mRNA expression of 87 cell motility and/or chondrogenic genes. Results The chondrocyte migration rate was 2.6 times higher at 3 hour time point (p < 0.0001) and total number of migrating chondrocytes was 9.7 times higher (p < 0.0001) after three day indirect PBMC stimulus and 8.2 times higher (p < 0.0001) after three day direct co-culture with PBMCs. A cartilage explant model confirmed that PBMCs also exert a chemokinetic role on ex vivo tissue. PBMC stimulation was found to significantly upregulate the mRNA levels of 2 chondrogenic genes; collagen type II (COL2A1 600–fold, p < 0.0001) and SRY box 9 (SOX9 30–fold, p < 0.0001) and the mRNA levels of 7 genes central in cell motility and migration were differentially regulated by 24h PBMC stimulation. Conclusion The results support the concept that PBMC treatment enhances chondrocyte migration without suppressing the chondrogenic phenotype possibly via mechanistic pathways involving MMP9 and IGF1. In the future, peripheral blood mononuclear cells could be used as an autologous point-ofcare treatment to attract native chondrocytes from the diseased tissue to aid in cartilage repair.
Collapse
Affiliation(s)
- Niina Hopper
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, BC2 0QQ, Cambridge, UK.
| | - Frances Henson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK.
| | - Roger Brooks
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, BC2 0QQ, Cambridge, UK.
| | - Erden Ali
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, BC2 0QQ, Cambridge, UK.
| | - Neil Rushton
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, BC2 0QQ, Cambridge, UK.
| | - John Wardale
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, BC2 0QQ, Cambridge, UK.
| |
Collapse
|
4
|
Hayami JWS, Waldman SD, Amsden BG. Injectable, High Modulus, And Fatigue Resistant Composite Scaffold for Load-Bearing Soft Tissue Regeneration. Biomacromolecules 2013; 14:4236-47. [DOI: 10.1021/bm4010595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James W. S. Hayami
- Department of Chemical Engineering and ‡Department of Mechanical
and Materials
Engineering, Queen’s University, Kingston, K7L 3N6, Canada
| | - Stephen D. Waldman
- Department of Chemical Engineering and ‡Department of Mechanical
and Materials
Engineering, Queen’s University, Kingston, K7L 3N6, Canada
| | - Brian G. Amsden
- Department of Chemical Engineering and ‡Department of Mechanical
and Materials
Engineering, Queen’s University, Kingston, K7L 3N6, Canada
| |
Collapse
|
5
|
Yamada H, Akahoshi N, Kamata S, Hagiya Y, Hishiki T, Nagahata Y, Matsuura T, Takano N, Mori M, Ishizaki Y, Izumi T, Kumagai Y, Kasahara T, Suematsu M, Ishii I. Methionine excess in diet induces acute lethal hepatitis in mice lacking cystathionine γ-lyase, an animal model of cystathioninuria. Free Radic Biol Med 2012; 52:1716-26. [PMID: 22387178 DOI: 10.1016/j.freeradbiomed.2012.02.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 02/15/2012] [Accepted: 02/22/2012] [Indexed: 01/08/2023]
Abstract
Physiological roles of the transsulfuration pathway have been recognized by its contribution to the synthesis of cytoprotective cysteine metabolites, such as glutathione, taurine/hypotaurine, and hydrogen sulfide (H(2)S), whereas its roles in protecting against methionine toxicity remained to be clarified. This study aimed at revealing these roles by analyzing high-methionine diet-fed transsulfuration-defective cystathionine γ-lyase-deficient (Cth(-/-)) mice. Wild-type and Cth(-/-) mice were fed a standard diet (1 × Met: 0.44%) or a high-methionine diet (3 × Met or 6 × Met), and hepatic conditions were monitored by serum biochemistry and histology. Metabolome analysis was performed for methionine derivatives using capillary electrophoresis- or liquid chromatography-mass spectrometry and sulfur-detecting gas chromatography. The 6 × Met-fed Cth(-/-) (not 1 × Met-fed Cth(-/-) or 6 × Met-fed wild type) mice displayed acute hepatitis, which was characterized by markedly elevated levels of serum alanine/aspartate aminotransferases and serum/hepatic lipid peroxidation, inflammatory cell infiltration, and hepatocyte ballooning; thereafter, they died of gastrointestinal bleeding due to coagulation factor deficiency. After 1 week on 6 × Met, blood levels of ammonia/homocysteine and hepatic levels of methanethiol/3-methylthiopropionate (a methionine transamination product/methanethiol precursor) became significantly higher in Cth(-/-) mice than in wild-type mice. Although hepatic levels of methionine sulfoxide became higher in 6 × Met-fed wild-type mice and Cth(-/-) mice, those of glutathione, taurine/hypotaurine, and H(2)S became lower and serum levels of homocysteine became much higher in 6 × Met-fed Cth(-/-) mice than in wild-type mice. Thus, transsulfuration plays a critical role in the detoxification of excessive methionine by circumventing aberrant accumulation of its toxic transamination metabolites, including ammonia, methanethiol, and 3-methylthiopropionate, in addition to synthesizing cysteine-derived antioxidants to counteract accumulated pro-oxidants such as methionine sulfoxide and homocysteine.
Collapse
Affiliation(s)
- Hidenori Yamada
- Department of Biochemistry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cai N, Kurachi M, Shibasaki K, Okano-Uchida T, Ishizaki Y. CD44-Positive Cells Are Candidates for Astrocyte Precursor Cells in Developing Mouse Cerebellum. THE CEREBELLUM 2011; 11:181-93. [DOI: 10.1007/s12311-011-0294-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Abstract
In this Perspective, I review my scientific career, which began after I trained in medicine in Montreal and in neurology in Boston. I started in immunology in London with Avrion Mitchison, using antibodies against cell-surface antigens to study the development and functions of mouse T and B cells. The finding that antibody binding causes immunoglobulin on B cells to redistribute rapidly on the cell surface and be endocytosed transformed me from an immunologist into a cell biologist. I moved with Mitchison to University College London, where my colleagues and I used the antibody approach to study cells of the rodent nervous system, focusing on the intrinsic and extrinsic molecular mechanisms that control the development and behavior of myelinating glial cells-Schwann cells and oligodendrocytes. I retired from active research in 2002 and now spend much of my time on scientific advisory boards and thinking about autism.
Collapse
Affiliation(s)
- Martin Raff
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
8
|
Chaim IA, Sabino MA, Mendt M, Müller AJ, Ajami D. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering. J Tissue Eng Regen Med 2011; 6:272-9. [DOI: 10.1002/term.430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 03/15/2011] [Indexed: 11/10/2022]
|
9
|
Solmesky LJ, Abekasis M, Bulvik S, Weil M. Bone Morphogenetic Protein Signaling Is Involved in Human Mesenchymal Stem Cell Survival in Serum-Free Medium. Stem Cells Dev 2009; 18:1283-92. [DOI: 10.1089/scd.2009.0020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Leonardo J. Solmesky
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Abekasis
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomo Bulvik
- Hematology Department, Laniado Hospital, Netanya, Israel
| | - Miguel Weil
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Zhou S, Cui Z, Urban JP. Nutrient gradients in engineered cartilage: Metabolic kinetics measurement and mass transfer modeling. Biotechnol Bioeng 2008; 101:408-21. [DOI: 10.1002/bit.21887] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Abstract
To date, most studies examining cell death during the development of osteoarthritis (OA) have focused on death of chondrocytes and have primarily examined advanced stages of the disease. Very good evidence suggests that chondrocyte death does occur at some point in the pathogenesis of OA and that it can be due to apoptosis, necrosis, or some combination of the two. Chondrocyte death can be induced by mechanical injury, loss of extracellular matrix, loss of growth factors, or excessive levels of reactive oxygen species. Although therapy specifically targeting cell death in human OA has not been reported, preclinical studies in animal models have provided early evidence that inhibition of caspases might slow OA-like changes in articular cartilage. Because of potential unwanted side effects from agents systemically inhibiting cell death, treatments specifically targeting cell death in OA will likely need to be delivered locally and in a manner that prevents systemic absorption. Inhibition of cell death in OA likely will not be a sole therapeutic target but rather a desired effect of interventions designed to reverse the catabolic-anabolic imbalance occurring in OA joint tissues.
Collapse
|
12
|
Irie Y, Mizumoto H, Fujino S, Kajiwara T. Reconstruction of cartilage tissue using scaffold-free organoid culture technique. J Biosci Bioeng 2008; 105:450-3. [DOI: 10.1263/jbb.105.450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
|
13
|
Furuta N, Yoshioka I, Fukuizumi T, Tominaga K, Nishihara T, Fukuda J. Morphological features of cartilage observed during mandibular distraction in rabbits. Int J Oral Maxillofac Surg 2007; 36:243-9. [PMID: 17142010 DOI: 10.1016/j.ijom.2006.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 08/25/2006] [Accepted: 09/21/2006] [Indexed: 11/29/2022]
Abstract
Ossification during distraction osteogenesis can be classified as intramembranous or endochondral. It is not known whether cartilage in the distraction gap is transformed into new bone. The aim of this study was to investigate the morphological features of ossification in the transition of cartilage to bone during mandibular distraction osteogenesis in a rabbit model. A cortical osteotomy was performed and custom-made devices were applied. Immediately after surgery, the devices were lengthened by 0.25 mm every 12h for up 10 days, during which time four rabbits were killed at 0, 5 and 10 days and examined using histological staining and immunohistochemical methods. Apoptotic cells were identified by an in-situ detection assay for nuclear DNA fragmentation using a modified TUNEL procedure, with several sections analyzed using software for histomorphometric analysis. The results showed that the amount of cartilage in the distraction gap was significantly decreased. The cartilage had ossified in two ways, termed endochondral ossification and transchondroid bone formation.
Collapse
Affiliation(s)
- N Furuta
- First Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kitakyushu 803-8580, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Jallali N, Ridha H, Thrasivoulou C, Butler P, Cowen T. Modulation of intracellular reactive oxygen species level in chondrocytes by IGF-1, FGF, and TGF-beta1. Connect Tissue Res 2007; 48:149-58. [PMID: 17522998 DOI: 10.1080/03008200701331516] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Growth factors are important in the development, maintenance and repair of cartilage. The principal aim of this study was to test the capacity of three growth factors with established roles in cartilage, namely insulin-like growth factor (IGF)-1, fibroblast growth factor (FGF) and transforming growth factor (TGF)-beta 1, to alter intracellular reactive oxygen species (ROS) levels. Explants of articular cartilage from young, mature, and aged rats were pretreated with IGF-1, FGF, or TGF-beta 1 and intracellular ROS levels were quantified using the free radical sensing probe dihydrorhodamine 123 (DHR 123), confocal microscopy, and densitometric image analysis. Viability of chondrocytes following ROS stress and growth factor treatment was assessed using the live/dead cytotoxicity assay, and the activities of the antioxidant enzymes--catalase (CAT), total superoxide dismutase (SOD), and glutathione peroxidase (GPX)--were measured spectrophotometrically by decay of the substrate from the reaction mixture. The effect of IGF-1 on ROS levels in cultured human chondrocytes also was examined. In rat cartilage, FGF did not significantly affect ROS levels or antioxidant enzyme activity in any age group. TGF-beta1 significantly increased cellular ROS levels in mature and old cartilage whereas in marked contrast, IGF-1 significantly and age-dependently reduced ROS levels. IGF-1 also had a potent antioxidant effect on cultured human chondrocytes. Pretreatment of rat cartilage with IGF-1 significantly enhanced the activity of GPX, without altering the activity of SOD or CAT, and protected chondrocytes against ROS-induced cell death. TGF-beta 1 had no significant effect on the activity of the antioxidant enzymes. Despite promoting ROS production, TGF-beta 1 was not cytotoxic. We concluded that TGF-beta 1 exhibits an acute pro-oxidant effect in cartilage that is not cytotoxic, suggesting a role in physiological cell signalling. In marked contrast, IGF-1 is a potent antioxidant in mature and aged rat and human chondrocytes, protecting cells against ROS-induced cell death probably through the enhancement of the activity of the antioxidant enzyme GPX.
Collapse
Affiliation(s)
- Navid Jallali
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Hendriks J, Riesle J, Vanblitterswijk CA. Effect of Stratified Culture Compared to Confluent Culture in Monolayer on Proliferation and Differentiation of Human Articular Chondrocytes. ACTA ACUST UNITED AC 2006; 12:2397-405. [PMID: 16995774 DOI: 10.1089/ten.2006.12.2397] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With conventional tissue culture of cells, it is generally assumed that when the available 2D substrate is fully occupied, growth ceases or is greatly reduced.However, in nature wound repair mostly involves proliferation of cells that are attracted to the defect site in a 3D environment.Hence, proliferation continues in 3D until the defect site is filled with cells contributing to repair tissue. With this in mind,we examined the growth behavior of human articular chondrocytes during stratified culture as opposed to routine culture to confluency. Additionally, we studied the influence of growth factors on proliferation during stratified culture and differentiation thereafter. Chondrocytes were cultured in monolayer on tissue culture plastic to confluency or stratified for an additional 7 days. Culture medium was based on DMEM with 10% serum and either supplemented with high concentrations of nonessential amino acids (NEAA) and ascorbic acid (AsAP), or instead with basic fibroblastic growth factor (bFGF), platelet-derived growth factor (PDBF-BB), and/or transforming growth factor beta1 (TGF-beta). After expansion, cells were harvested, counted, and their differentiation capacity was examined in pellet culture assay. It was shown that chondrocytes, cultured stratified proliferate exponentially for up to an additional 4 days and that cell yield increased 5-fold. Furthermore, during stratified culture the number of cells increased further in the presence of bFGF, PDBF-BB, and TGFbeta1 or high concentrations of NEAA and AsAP. Depending on donor variation and factors supplemented the cell yield ranged from 0.06 up to 1.1 million cells/cm2 at the second passage. During stratified culture in the presence of either bFGF and PDGF or high concentrations of NEAA and AsAP, exponential growth continued for up to 7 days. Finally, cells maintained their differentiation capacity when cultured stratified with or without growth factors (bFGF, TGF-beta, and PDGF), but not when cultured with high levels of AsAP and NEAA. In contrast to other 3D culture techniques like microcarrier or suspension culture, nutrient consumption remained the same as with conventional expansion. Because this allows culturing of clinically relevant amounts of chondrocytes without increasing the amount of serum, chondrocytes can be fully expanded in the presence autologous serum, avoiding the risk of viral and/or prion disease transmission associated with the use of animal-derived serum or serum replacers with animal-derived constituents.
Collapse
Affiliation(s)
- Jeanine Hendriks
- Institute of Biomedical Technology, Twente University, Bilthoven, the Netherlands.
| | | | | |
Collapse
|
16
|
Shapiro IM, Adams CS, Freeman T, Srinivas V. Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate. ACTA ACUST UNITED AC 2006; 75:330-9. [PMID: 16425255 DOI: 10.1002/bdrc.20057] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The goal of this review is to examine the fate of the hypertrophic chondrocyte in the epiphyseal growth plate and consider the impact of the cartilage microenvironment on cell survival and apoptosis. Early investigations pointed to a direct role of the hypertrophic chondrocyte in osteogenesis. The terminally differentiated cells were considered to undergo a dramatic change in shape, size, and phenotype, and assume the characteristics of an osteoblast. While some studies have supported the notion of transdifferentiation, much of the evidence in favor of reprogramming epiphyseal chondrocytes is circumstantial and based on microscopic evaluation of cells that are present at the chondro-osseous junction. Although these investigations provided a novel perspective on endochondral bone formation, they were flawed by the failure to consider the importance of stem cells in osseous tissue formation. Subsequent studies indicated that many, if not all, of the cells of the cartilage plate die through the induction of apoptosis. With respect to agents that mediate apoptosis, at the chondro-osseous junction, solubilization of mineral and hydrolysis of organic matrix constituents by septoclasts generates high local concentrations of ions, peptides, and glycans, and secreted matrix metalloproteins. Individually, and in combination, a number of these agents serve as potent chondrocyte apoptogens. We present a new concept: hypertrophic cells die through the induction of autophagy. In the cartilage microenvironment, combinations of local factors cause chondrocytes to express an initial survival phenotype and oxidize their own structural macromolecules to generate ATP. While delaying death, autophagy leads to a state in which cells are further sensitized to changes in the local microenvironment. One such change is similar to ischemia reperfusion injury, a condition that leads to tissue damage and cell death. In the growth cartilage, an immediate effect of this type of injury is sensitization to local apoptogens. These two concepts (type II programmed cell death and ischemia reperfusion injury) emphasize the importance of the local microenvironment, in particular pO(2), in directing chondrocyte survival and apoptosis.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
17
|
DelCarlo M, Loeser RF. Chondrocyte cell death mediated by reactive oxygen species-dependent activation of PKC-betaI. Am J Physiol Cell Physiol 2006; 290:C802-11. [PMID: 16236825 PMCID: PMC1482466 DOI: 10.1152/ajpcell.00214.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signals generated by the extracellular matrix (ECM) promote cell survival. We have shown that chondrocytes detached from their native ECM and plated without serum at low density on poly-l-lysine undergo significant cell death that is associated with the production of reactive oxygen species (ROS). No cell death or ROS production was observed when cells were plated on fibronectin under the same conditions. Cell death on poly-l-lysine could be completely inhibited with the addition of either antioxidants or inhibitors of specific protein kinase C (PKC) isoforms including PKC-betaI. PKC-betaI was noted to translocate from the cytosol to the particulate membrane after plating on poly-l-lysine, and this translocation was inhibited by the addition of an antioxidant. Time-course analyses implicated endogenous ROS production as a secondary messenger leading to PKC-betaI activation and subsequent chondrocyte cell death. Cell survival on poly-l-lysine was significantly improved in the presence of oligomycin or DIDS, suggesting that ROS production occurred via complex V of the electron transport chain of the mitochondria and that ROS were released to the cytosol via voltage-dependent anion channels. Together, these results represent a novel mechanism by which ROS can initiate cell death through the activation of PKC-betaI.
Collapse
Affiliation(s)
| | - Richard F. Loeser
- Address for reprint requests and other correspondence: R. F. Loeser, Jr., Molecular Medicine, Wake Forest Univ. School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 (e-mail: )
| |
Collapse
|
18
|
Rotter N, Haisch A, Bücheler M. Cartilage and bone tissue engineering for reconstructive head and neck surgery. Eur Arch Otorhinolaryngol 2004; 262:539-45. [PMID: 16091977 DOI: 10.1007/s00405-004-0866-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 08/26/2004] [Indexed: 01/27/2023]
Abstract
The loss of cartilage and bone because of congential defects, trauma and after tumor resection is a major clinical problem in head and neck surgery. The most prevalent methods of tissue repair are through autologous grafting or using implants. Tissue engineering applies the principles of engineering and life sciences in order to create bioartificial cartilage and bone. Most strategies for cartilage tissue engineering are based on resorbable biomaterials as temporary scaffolds for chondrocytes or precursor cells. Clinical application of tissue-engineered cartilage for reconstructive head and neck surgery as opposed to orthopedic applications has not been well established. While in orthopedic and trauma surgery engineered constructs or autologous chondrocytes are placed in the immunoprivileged region of joints, the subcutaneous transplant site in the head and neck can lead to strong inflammatory reactions and resorption of the bioartificial cartilage. Encapsulation of the engineered cartilage and modulation of the local immune response are potential strategies to overcome these limitations. In bone tissue engineering the combination of osteoconductive matrices, osteoinductive proteins such as bone morphogenetic proteins and osteogenic progenitor cells from the bone marrow or osteoblasts from bone biopsies offer a variety of tools for bone reconstruction in the craniofacial area. The utility of each technique is site dependent. Osteoconductive approaches are limited in that they merely create a favorable environment for bone formation, but do not play an active role in the recruitment of cells to the defect. Delivery of inductive signals from a scaffold can incite cells to migrate into a defect and control the progression of bone formation. Rapid osteoid matrix production in the defect site is best accomplished by using osteoblasts or progenitor cells.
Collapse
Affiliation(s)
- Nicole Rotter
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein Lübeck Campus, Lübeck, Germany
| | | | | |
Collapse
|
19
|
Abstract
Many studies have shown that apoptotic cell death occurs at an increased rate in osteoarthritic cartilage. Whichever type of cell death takes places in articular cartilage, it is important to prevent, because it is detrimental to articular cartilage maintenance. Thus, it is important to characterize events going on during cellular degeneration in more detail. Overall, physicians have reached a reasonable level of understanding of the extent of cell death occurring in the disease process, but they are still at an early stage in the understanding of the mechanisms underlying this process and the means of intervening in this facet of cartilage destruction.
Collapse
Affiliation(s)
- Thomas Aigner
- Osteoarticular and Arthritis Research, Department of Pathology, University of Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany.
| | | | | |
Collapse
|
20
|
Yoon HS, Kim HA. Prologation of c-Jun N-terminal kinase is associated with cell death induced by tumor necrosis factor alpha in human chondrocytes. J Korean Med Sci 2004; 19:567-73. [PMID: 15308849 PMCID: PMC2816892 DOI: 10.3346/jkms.2004.19.4.567] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to elucidate the role of JNK signaling pathway involved in tumor necrosis factor-alpha (TNF-alpha)-induced death of chondrocytes. Primary chondrocyte cultures were obtained from human knee osteoarthritis cartilages. First passage chondrocytes were treated with TNF-alpha and various potentiators, and cell death was measured with MTT assay. C-Jun N terminal kinase (JNK) activation was investigated with the solid phase kinase assay. Expression of apoptosis-related molecule was assayed with Western blot. Chondrocytes were resistant to TNF-alpha-induced cell death. In contrast, pretreatment with actinomycin D, the phosphatase inhibitor vanadate or MAP kinase phosphatase-1 (MKP-1) inhibitor Ro318220 invariably led to chondrocyte death. While TNF-alpha alone stimulated a single, brief JNK activity, a second JNK peak was observed when the cells were pretreated with actinomycin D. When the cells were pretreated with vanadate or Ro318220, TNF-alpha-induced JNK activation was greatly prolonged, which was associated with the induction of cell death. The expression of Bcl-2 and Mcl-1 decreased significantly in conditions of cell death. In conclusions, our data suggest that chondrocyte death induced by TNF-alpha is associated with sustained JNK activation. This effect may be due to downregulation of TNF-alpha induced phosphatase that inactivates JNK and of Bcl-2 family proteins.
Collapse
Affiliation(s)
- Ho Sung Yoon
- Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Hyun Ah Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
21
|
Li WQ, Qureshi HY, Liacini A, Dehnade F, Zafarullah M. Transforming growth factor Beta1 induction of tissue inhibitor of metalloproteinases 3 in articular chondrocytes is mediated by reactive oxygen species. Free Radic Biol Med 2004; 37:196-207. [PMID: 15203191 DOI: 10.1016/j.freeradbiomed.2004.04.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/20/2004] [Accepted: 04/22/2004] [Indexed: 12/20/2022]
Abstract
Transforming growth factor beta1 (TGF-beta1) stimulates cartilage extracellular matrix synthesis but, in excess, evokes synovial inflammation, hyperplasia, and osteophyte formation in arthritic joints. TGF-beta1 induces tissue inhibitor of metalloproteinases 3 (TIMP-3), an inhibitor of cartilage-damaging matrix metalloproteianases and aggrecanases. We investigated the role of reactive oxygen species (ROS) in TIMP-3 induction by TGF-beta1. In primary human and bovine chondrocytes, ROS scavenger and antioxidant N-acetylcysteine (NAC) inhibited TGF-beta1-induced TIMP-3 mRNA and protein increases. Ebselen and ascorbate also reduced this induction. TGF-beta1 time-dependently induced ROS production that was suppressed by NAC. Hydrogen peroxide, a ROS, induced TIMP-3 RNA. The TIMP-3 increase induced by TGF-beta1 was partly Smad2-dependent. TGF-beta1-stimulated Smad2 phosphorylation was inhibited by NAC. Reduced glutathione and L-cysteine also blocked Smad2 and TIMP-3 induction by TGF-beta1, whereas a nonthiol, N-acetylalanine, did not. Smad2 was not activated by H2O2. Smad2 phosphorylation was independent, and TIMP-3 expression was dependent, on new protein synthesis. TGF-beta-stimulated ERK and JNK phosphorylation was also inhibited by NAC. However, inhibitory actions of NAC were not mediated by ERK activation. Thus, ROS mediate TGF-beta1-induced TIMP-3 gene expression. Blocking TGF-beta1-induced gene expression by modulating cellular redox status with thiols can be potentially beneficial for treating arthritic and other disorders caused by excessive TGF-beta1.
Collapse
Affiliation(s)
- Wen Qing Li
- Department of Medicine, Notre-Dame Hospital, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
22
|
Abstract
Tissue engineering is a field of research with interdisciplinary cooperation between clinicians, cell biologists, and materials research scientists. Many medical specialties apply tissue engineering techniques for the development of artificial replacement tissue. Stages of development extend from basic research and preclinical studies to clinical application. Despite numerous established tissue replacement methods in otorhinolaryngology, head and neck surgery, tissue engineering techniques opens up new ways for cell and tissue repair in this medical field. Autologous cartilage still remains the gold standard in plastic reconstructive surgery of the nose and external ear. The limited amount of patient cartilage obtainable for reconstructive head and neck surgery have rendered cartilage one of the most important targets for tissue engineering in head and neck surgery. Although successful in vitro generation of bioartificial cartilage is possible today, these transplants are affected by resorption after implantation into the patient. Replacement of bone in the facial or cranial region may be necessary after tumor resections, traumas, inflammations or in cases of malformations. Tissue engineering of bone could combine the advantages of autologous bone grafts with a minimal requirement for second interventions. Three different approaches are currently available for treating bone defects with the aid of tissue engineering: (1) matrix-based therapy, (2) factor-based therapy, and (3) cell-based therapy. All three treatment strategies can be used either alone or in combination for reconstruction or regeneration of bone. The use of respiratory epithelium generated in vitro is mainly indicated in reconstructive surgery of the trachea and larynx. Bioartificial respiratory epithelium could be used for functionalizing tracheal prostheses as well as direct epithelial coverage for scar prophylaxis after laser surgery of shorter stenoses. Before clinical application animal experiments have to prove feasability and safety of the different experimental protocols. All diseases accompanied by permanently reduced salivation are possible treatment targets for tissue engineering. Radiogenic xerostomia after radiotherapy of malignant head and neck tumors is of particular importance here due to the high number of affected patients. The number of new diseases is estimated to be over 500,000 cases worldwide. Causal treatment options for radiation-induced salivary gland damage are not yet available; thus, various study groups are currently investigating whether cell therapy concepts can be developed with tissue engineering methods. Tissue engineering opens up new ways to generate vital and functional transplants. Various basic problems have still to be solved before clinically applying in vitro fabricated tissue. Only a fraction of all somatic organ-specific cell types can be grown in sufficient amounts in vitro. The inadequate in vitro oxygen and nutrition supply is another limiting factor for the fabrication of complex tissues or organ systems. Tissue survival is doubtful after implantation, if its supply is not ensured by a capillary network.
Collapse
Affiliation(s)
- M Bücheler
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Bonn, Bonn, Germany.
| | | |
Collapse
|
23
|
Grogan SP, Rieser F, Winkelmann V, Berardi S, Mainil-Varlet P. A static, closed and scaffold-free bioreactor system that permits chondrogenesis in vitro. Osteoarthritis Cartilage 2003; 11:403-11. [PMID: 12801480 DOI: 10.1016/s1063-4584(03)00053-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterise in vitro engineered cartilaginous constructs made employing a novel static, scaffold-free and closed chamber system. DESIGN Chondrocytes derived from slaughter age pigs (3-6 months) were seeded at high density (20 x 10(6)) into cylindrical chambers (1.0 x 0.5cm) and were maintained between an upper and a lower membrane (100 kDa) for 21 days and subsequently cultured in open culture for 7 additional days. RESULTS Viable constructs produced were approximately 10 mmx2mm in size and were stable enough to be handled by surgical pincers. Histology and electron microscopy evaluations revealed a neo-cartilage structure of high cell density with a comprehensive extracellular matrix. Predominately collagen type II and negligible amounts of collagen types I and X were detected using RT-PCR and SDS-PAGE analyses. CONCLUSIONS In this study, we provide evidence of a scaffold-free system that can produce immature hyaline-like cartilaginous constructs suitable for in vivo implantation, or that may be useful for in vitro studies of events related to the process of chondrogenesis.
Collapse
Affiliation(s)
- S P Grogan
- Osteoarticular Research Group, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Adams CS, Shapiro IM. The fate of the terminally differentiated chondrocyte: evidence for microenvironmental regulation of chondrocyte apoptosis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 13:465-73. [PMID: 12499240 DOI: 10.1177/154411130201300604] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chondrocytes contained within the epiphyseal growth plate promote rapid bone growth. To achieve growth, cells activate a maturation program that results in an increase in chondrocyte number and volume and elaboration of a mineralized matrix; subsequently, the matrix is resorbed and the terminally differentiated cells are deleted from the bone. The major objective of this review is to examine the fate of the epiphyseal chondrocytes in the growing bone. Current studies strongly suggest that the terminally differentiated epiphyseal cells are deleted from the cartilage by apoptosis. Indeed, morphological, biochemical, and end-labeling techniques confirm that death is through the apoptotic pathway. Since the induction of apoptosis is spatially and temporally linked to the removal of the cartilage matrix, current studies have examined the apoptogenic activity of Ca(2+)-, Pi-, and RGD-containing peptides of extracellular matrix proteins. It is observed that all of these molecules are powerful apoptogens. With respect to the molecular mechanism of apoptosis, studies of cell death with Pi as an apoptogen indicate that the anion is transported into the cytosol via a Na(+/)Pi transporter. Subsequently, there is activation of caspases, generation of NO, and a decrease in the thiol reserve. Finally, we examine the notion that chondrocytes transdifferentiate into osteoblasts, and briefly review evidence for, and the rationale of, the transdifferentiation process. It is concluded that specific microenvironments exist in cartilage that can serve to direct chondrocyte apoptosis.
Collapse
Affiliation(s)
- Christopher S Adams
- Department of Orthopaedic Surgery, Thomas Jefferson Medical College, 1015 Walnut Street, 501, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
25
|
Muratori M, Maggi M, Spinelli S, Filimberti E, Forti G, Baldi E. Spontaneous DNA fragmentation in swim-up selected human spermatozoa during long term incubation. JOURNAL OF ANDROLOGY 2003; 24:253-62. [PMID: 12634313 DOI: 10.1002/j.1939-4640.2003.tb02670.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The origin and the meaning of DNA fragmentation in ejaculated human spermatozoa are not yet clear, although some hypotheses have been proposed. In the present study, we used investigated sperm DNA fragmentation by terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labeling (TUNEL)-coupled flow cytometry to investigate DNA fragmentation in spermatozoa that were selected by the swim-up procedure and incubated long-term. In addition, using flow cytometry we detected annexin V binding assay and propidium iodide staining, and we also studied membrane phosphatidylserine translocation and the loss of membrane integrity in the same sperm populations that we used in the TUNEL investigation. We found that in vitro sperm DNA fragmentation 1) occurs after ejaculation under experimental conditions without the involvement of any external factor, 2) is not affected by treatment with the nuclease inhibitor aurintricarboxylic acid, 3) is increased by treatment with the glutathione peroxidase inhibitor mercaptosuccinate, 4) correlates with basal values (ie, just after swim-up selection) of DNA fragmentation in teratozoospermic but not in normospermic semen samples, 5) develops in a sharply associated manner with the in vitro occurrence of sperm necrosis, and 6) is predicted by the basal value of annexin V binding in viable spermatozoa. These findings suggest an involvement of endogenously produced reactive oxygen species as the possible cause of in vitro sperm DNA fragmentation.
Collapse
Affiliation(s)
- Monica Muratori
- Department of Clinical Physiopathology, Andrology Unit, University of Florence, Florence, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Aigner T, Kim HA. Apoptosis and cellular vitality: issues in osteoarthritic cartilage degeneration. ARTHRITIS AND RHEUMATISM 2002; 46:1986-96. [PMID: 12209500 DOI: 10.1002/art.10554] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- T Aigner
- University of Erlangen-Nürnberg, Erlangen, Germany.
| | | |
Collapse
|
27
|
Mobasheri A. Role of chondrocyte death and hypocellularity in ageing human articular cartilage and the pathogenesis of osteoarthritis. Med Hypotheses 2002; 58:193-7. [PMID: 12018969 DOI: 10.1054/mehy.2000.1180] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apoptotic death of articular chondrocytes has been implicated in the pathogenesis of human osteoarthritis. Although nitric oxide and Fas ligand have been shown to be inducers of chondrocyte apoptosis in vitro and in vivo, the contribution of other triggers such as hypoxia, matrix acidosis, abnormal shear stress and catabolic cytokines like interleukin-1beta and tumour necrosis factor alpha has not been examined. It is also not known if growth factors such as insulin like growth factor 1 or anabolic cytokines prevent apoptosis. The intracellular mechanism of effecting apoptotic death depend on whether damage to the mitochondrion or receptor ligation is the primary apoptotic stimulus, since these activate different initiator caspases which then deliver the apoptotic signal to common downstream effector caspases and other proteases. The hypothesis proposed here suggests that by using chondrocytes derived from control and osteoarthritis joints and established human chondrocyte cell lines, it is possible to investigate the relative contributions of major cell death inducing mechanisms and correspondingly which initiating caspase is activated. This understanding is essential for developing appropriately targeted anti-protease therapies for the inhibition of chondrocyte apoptosis in the rational treatment of osteoarthritis.
Collapse
Affiliation(s)
- A Mobasheri
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Science, University of Liverpool, Brownlow Hill and Crown Street, Liverpool, L69 7ZJ UK.
| |
Collapse
|
28
|
Dreier R, Wallace S, Fuchs S, Bruckner P, Grässel S. Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9). J Cell Sci 2001; 114:3813-22. [PMID: 11719548 DOI: 10.1242/jcs.114.21.3813] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of the monocyte/macrophage lineage are involved in the development of inflammatory joint diseases such as rheumatoid arthritis. This disease is characterized by cartilage degradation and synovial membrane inflammation with a progressive loss of joint function. The pathological processes are still not well understood. Therefore it would be interesting to develop a suitable experimental in vitro model system for defined studies of monocyte/macrophage and chondrocyte interactions at the molecular level. For that purpose we cocultured chondrocytes from adult human articular cartilage with human monocytes and macrophages for defined periods of time in agarose without addition of serum. We performed zymographic and western blot analysis of culture medium, completed by quantitative RT-PCR of each chondrocyte, monocyte and macrophage RNA, respectively. The reliability of the newly established coculture systems is confirmed by causing a clear decrease of intact aggrecan in the coculture medium plus concurrent appearance of additional smaller fragments and a reduction of chondrocyte aggrecan and collagen II gene expression in the presence of monocytes. In culture medium from cocultures we detected active forms of the matrix metalloproteinases MMP-1, MMP-3 and MMP-9 accompanied by induction of gene expression of MMP-1, membrane type 1 MMP (MT1-MMP) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in chondrocytes. No gene expression of MMP-9 was detectable in chondrocytes, the enzyme was solely expressed in monocytes and macrophages and was downregulated in the presence of chondrocytes. Our results suggest that MMP-9 protein in coculture medium originated from monocytes and macrophages but activation required chondrocyte-derived factors. Because addition of plasmin, a partial activator of pro-MMP-3 and pro-MMP-1, enhanced the activation of pro-MMP-9 and pro-MMP-1 in cocultures but not in monocultured macrophages, and the presence of MMP-3 inhibitor II prevented pro-MMP-9 activation, we assumed a stepwise activation process of pro-MMP-9 that is dependent on the presence of at least MMP-3 and possibly also MMP-1.
Collapse
Affiliation(s)
- R Dreier
- Institut für Physiologische Chemie & Pathobiochemie, Westfälische Wilhelms-Universität Münster, Germany
| | | | | | | | | |
Collapse
|
29
|
Charrier JB, Lapointe F, Le Douarin NM, Teillet MA. Anti-apoptotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis. Development 2001; 128:4011-20. [PMID: 11641224 DOI: 10.1242/dev.128.20.4011] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vertebrates the neural tube, like most of the embryonic organs, shows discreet areas of programmed cell death at several stages during development. In the chick embryo, cell death is dramatically increased in the developing nervous system and other tissues when the midline cells, notochord and floor plate, are prevented from forming by excision of the axial-paraxial hinge (APH), i.e. caudal Hensen’s node and rostral primitive streak, at the 6-somite stage (Charrier, J. B., Teillet, M.-A., Lapointe, F. and Le Douarin, N. M. (1999). Development126, 4771-4783). In this paper we demonstrate that one day after APH excision, when dramatic apoptosis is already present in the neural tube, the latter can be rescued from death by grafting a notochord or a floor plate fragment in its vicinity. The neural tube can also be recovered by transplanting it into a stage-matched chick embryo having one of these structures. In addition, cells engineered to produce Sonic hedgehog protein (SHH) can mimic the effect of the notochord and floor plate cells in in situ grafts and transplantation experiments. SHH can thus counteract a built-in cell death program and thereby contribute to organ morphogenesis, in particular in the central nervous system.
Collapse
Affiliation(s)
- J B Charrier
- Institut d'Embryologie Cellulaire et Moléculaire, CNRS FRE2160, 49bis Avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, France
| | | | | | | |
Collapse
|
30
|
Kolettas E, Muir HI, Barrett JC, Hardingham TE. Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor. Rheumatology (Oxford) 2001; 40:1146-56. [PMID: 11600745 DOI: 10.1093/rheumatology/40.10.1146] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effects of culture conditions, serum and specific cytokines such as insulin-like growth factor (IGF) 1 and interleukin (IL) 1alpha on phenotype and cell survival in cultures of Syrian hamster embryonic chondrocyte-like cells (DES4(+).2). METHODS Proteins and RNA extracted from subconfluent and confluent early- and late-passage DES4(+).2 cells cultured in the presence or absence of serum and IL-1alpha or IGF-1 or both cytokines together were analysed for the expression of chondrocyte-specific genes and for the chondrogenic transcription factor Sox-9 by Western and Northern blotting. Apoptosis was assessed by agarose gel electrophoresis of labelled low-molecular weight DNA extracted from DES4(+).2 cells and another Syrian hamster embryonic chondrocyte-like cell line, 10W(+).1, cultured under the different conditions and treatments. RESULTS Early passage DES4(+).2 cells expressed chondrocyte-specific molecules such as collagen types alpha1(II) and alpha1(IX), aggrecan, biglycan and link protein and collagen types alpha1(I) and alpha1(X) mRNAs, suggesting a prehypertrophic chondrocyte-like phenotype. The expression of all genes investigated was cell density- and serum-dependent and was low to undetectable in cell populations from later passages. Early-passage DES4(+).2 and 10W(+).1 cells survived when cultured at low cell density, but died by apoptosis when cultured at high cell density in the absence of serum or IGF-1. IGF-1 and IL-1alpha had opposite and antagonistic effects on the chondrocyte phenotype and survival. Whereas IL-1alpha acting alone suppressed cartilage-specific gene expression without significantly affecting cell survival, IGF-1 increased the steady-state mRNA levels and relieved the IL-1alpha-induced suppression of all the chondrocyte-specific genes investigated; it also enhanced chondrocyte survival. Suppression of the chondrocyte phenotype by the inflammatory cytokine IL-1alpha correlated with marked down-regulation of the transcription factor Sox-9, which was relieved by IGF-1. The expression of the Sox9 gene was closely correlated with the expression of the chondrocyte-specific genes under all conditions and treatments. CONCLUSIONS The results suggest that the effects of cartilage anabolic and catabolic cytokines IGF-1 and IL-1alpha on the expression of the chondrocyte phenotype are mediated by Sox-9. As Sox-9 appears to be essential for matrix production, the potent effect of IL-1alpha in suppressing Sox-9 expression may limit the ability of cartilage to repair during inflammatory joint diseases.
Collapse
Affiliation(s)
- E Kolettas
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
31
|
Yatsugi N, Tsukazaki T, Osaki M, Koji T, Yamashita S, Shindo H. Apoptosis of articular chondrocytes in rheumatoid arthritis and osteoarthritis: correlation of apoptosis with degree of cartilage destruction and expression of apoptosis-related proteins of p53 and c-myc. J Orthop Sci 2001; 5:150-6. [PMID: 10982649 DOI: 10.1007/s007760050142] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To investigate the relationship of chondrocyte apoptosis and cartilage destruction, we performed in situ nick end labeling (ISNEL), electron microscopy, and immunohistochemistry against apoptosis-related proteins, p53 and c-myc, in the articular cartilages of patients with rheumatoid arthritis (RA; n = 12) and osteoarthritis (OA; n = 12), and in control articular cartilages from patients with femoral neck fracture (n = 8). The distribution of stained chondrocytes was evaluated semiquantitatively in relation to the degree of cartilage destruction. ISNEL-positive chondrocytes with apoptotic morphological features were identified in a relatively early phase of cartilage destruction, and correlated positively and significantly in a number with the degree of cartilage degeneration. Comparison of RA and OA revealed a significantly greater number of ISNEL-positive chondrocytes in RA cartilage. In contrast, the specimens of normal subjects contained few cells with apoptotic changes. Similarly to the distribution of ISNEL staining, the expression of p53 and c-myc proteins was observed in chondrocytes within the degraded lesions, and showed a positive correlation with the number of ISNEL-stained cells. These results suggest that the degree of chondrocyte apoptosis is closely related to cartilage destruction and that chondrocytes in RA more readily undergo apoptosis than those in OA. The expression of p53 and c-myc proteins in ISNEL-positive areas may reflect the involvement of these proteins in the apoptotic process in articular chondrocytes in inflammatory arthritis.
Collapse
Affiliation(s)
- N Yatsugi
- Department of Orthopaedic Surgery, Nagasaki University School of Medicine, Nagasaki, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Tallquist MD, Weismann KE, Hellström M, Soriano P. Early myotome specification regulates PDGFA expression and axial skeleton development. Development 2000; 127:5059-70. [PMID: 11060232 DOI: 10.1242/dev.127.23.5059] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reciprocal defects in signaling between the myotome and the sclerotome compartments of the somites in PDGFRalpha and Myf5 mutant embryos lead to alterations in the formation of the vertebrae and the ribs. To investigate the significance of these observations, we have examined the role of PDGF signaling in the developing somite. PDGFA ligand expression was not detected in the myotome of Myf5 null mutant embryos and PDGFA promoter activity was regulated by Myf5 in vitro. PDGFA stimulated chondrogenesis in somite micromass cultures as well as in embryos when PDGFA was knocked into the Myf5 locus, resulting in increased vertebral and rib development. PDGFA expression in the myotome was fully restored in embryos in which MyoD has been introduced at the Myf5 locus but to a lesser extent in similar myogenin knock-in embryos. These results underscore the importance of growth factor signaling within the developing somite and suggest an important role for myogenic determination factors in orchestrating normal development of the axial skeleton.
Collapse
Affiliation(s)
- M D Tallquist
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
33
|
Kokenyesi R, Tan L, Robbins JR, Goldring MB. Proteoglycan production by immortalized human chondrocyte cell lines cultured under conditions that promote expression of the differentiated phenotype. Arch Biochem Biophys 2000; 383:79-90. [PMID: 11097179 DOI: 10.1006/abbi.2000.2044] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Large and small proteoglycans are essential components of articular cartilage. How to induce chondrocytes to repair damaged cartilage with normal ratios of matrix components after their loss due to degenerative joint disease has been a major research focus. We have developed immortalized human chondrocyte cell lines for examining the regulation of cartilage-specific matrix gene expression. However, the decreased synthesis and deposition of cartilage matrix associated with a rapid rate of proliferation has presented difficulties for further examination at the protein level. In these studies, proteoglycan synthesis was characterized in two chondrocyte cell lines, T/C-28a2 and tsT/AC62, derived, respectively, from juvenile costal and adult articular cartilage, under culture conditions that either promoted or decreased cell proliferation. Analysis of proteo[36S]glycans by Sepharose CL-4B chromatography and SDS-PAGE showed that the large proteoglycan aggrecan and the small, leucine-rich proteoglycans, decorin and biglycan, were produced under every culture condition studied. In monolayer cultures, a high initial cell density and conditions that promoted proliferation (presence of serum for T/C-28a2 cells or permissive temperature for the temperature-sensitive tsT/AC62 cells) favored cell survival and ratios of proteoglycans expected for differentiated chondrocytes. However, the tsT/AC62 cells produced more proteoglycans at the nonpermissive temperature. Culture of cells suspended in alginate resulted in a significant decrease in proteoglycan production in all culture conditions. While the tsT/AC62 cells continued to produce a larger amount of aggrecan than small proteoglycans, the T/C-28a2 cells lost the ability to produce significant amounts of aggrecan in alginate culture. In addition, our data indicate that immortalized chondrocytes may alter their ability to retain pericellular matrix under changing culture conditions, although the production of the individual matrix components does not change. These findings provide critical information that will assist in the development of a reproducible chondrocyte culture model for the study of regulation of proteoglycan biosynthesis in cartilage.
Collapse
Affiliation(s)
- R Kokenyesi
- Department of Obstetrics, Gynecology and Women's Health, Saint Louis University, Missouri 63117, USA
| | | | | | | |
Collapse
|
34
|
Robbins JR, Thomas B, Tan L, Choy B, Arbiser JL, Berenbaum F, Goldring MB. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1beta. ARTHRITIS AND RHEUMATISM 2000; 43:2189-201. [PMID: 11037878 DOI: 10.1002/1529-0131(200010)43:10<2189::aid-anr6>3.0.co;2-s] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To develop a reproducible immortalized human chondrocyte culture model for studying the regulation of chondrocyte functions relevant to arthritic diseases in adult humans. METHODS Primary adult articular chondrocytes were immortalized with a retrovirus expressing a temperature-sensitive mutant of SV40-large T antigen (tsTAg). The established tsT/AC62 chondrocyte cell line was examined in monolayer and alginate culture systems. The levels of messenger RNA (mRNA) encoding cartilage matrix proteins and interleukin-1beta (IL-1beta)-inducible mRNA were analyzed by reverse transcriptase-polymerase chain reaction. Matrix protein synthesis was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 35S-sulfate-labeled proteoglycans and Western blotting of type II collagen and aggrecan. Type II collagen (COL2A1)-luciferase reporter gene expression was analyzed by transient transfection. Phosphorylated stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38 mitogen-activated protein kinase (p38 MAPK), and activating transcription factor 2 (ATF-2) were detected by Western blotting. RESULTS The tsT/AC62 cells expressed TAg at the permissive temperature (32degrees C), and the loss of TAg at 37 degrees C and 39 degrees C correlated with decreased cell proliferation. Cells in alginate culture deposited abundant alcian blue-stainable matrix and continued to proliferate at 32 degrees C. Preferential retention of aggrecan was observed in the cell-associated matrix, while biglycan and decorin were secreted into the medium of monolayer and alginate cultures. The levels of COL2A1 and aggrecan mRNA were increased after transfer from monolayer to alginate culture at 32 degrees C. Treatment with IL-1beta decreased COL2A1 and aggrecan mRNA levels and increased the levels of matrix metalloproteinases 1, 3, and 13 mRNA, as well as those of cyclooxygenase 2, type I collagen, and secretory phospholipase A2 type IIA mRNA, but not those of inducible nitric oxide synthase mRNA. IL-1beta also stimulated phosphorylation of p38 MAPK, SAPK/JNK, and ATF-2. The p38 MAPK-selective inhibitor, SB203580, partially reversed IL-1beta-induced inhibition of COL2A1 mRNA levels and COL2A1-luciferase reporter gene expression. CONCLUSION The tsT/AC62 cells provide a reproducible model that mimics the adult articular chondrocyte phenotype, particularly in alginate culture, and demonstrates characteristic responses to IL-1beta. These studies also show, for the first time, that p38 MAPK is one of the signals required for IL-1beta-induced inhibition of COL2A1 gene expression. Availability of this model will permit identification of signals that regulate cytokine responses, and will also provide rational strategies for targeting these pathways.
Collapse
Affiliation(s)
- J R Robbins
- Beth Israel Deaconess Medical Center, and New England Baptist Bone & Joint Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Li WQ, Dehnade F, Zafarullah M. Thiol antioxidant, N-acetylcysteine, activates extracellular signal-regulated kinase signaling pathway in articular chondrocytes. Biochem Biophys Res Commun 2000; 275:789-94. [PMID: 10973800 DOI: 10.1006/bbrc.2000.3385] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) generated during inflammation and aging contribute to the resorption of articular cartilage. Low antioxidant levels are a risk factor for arthritis because they protect cartilage from ROS. N-Acetylcysteine (NAC) is a ROS scavenger and, depending upon the concentration, an anti-inflammatory or prooxidant agent. Mechanisms of action for NAC were studied in primary human and bovine chondrocytes. NAC dose-dependently activated phosphorylation of extracellular signal-regulated kinases-mitogen-acivated protein kinases (ERK-MAPK). ERK activation peaked within 15 min and declined afterward up to 180 min. This activation was inhibited by the MAPKK inhibitor, PD098059. The induction was mimicked by other thiols, l-cysteine, reduced glutathione, and pyrrolidine dithiocarbamate (PDTC) but not by a nonthiol, N-acetylalanine. The total nonphosphorylated ERKs levels remained unaffected by these treatments. Activation of the ERK-MAPK pathway provides a mechanism for the reported promotion of chondrocyte survival by thiol antioxidants.
Collapse
Affiliation(s)
- W Q Li
- Department of Medicine, Orthopaedic Surgery and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Notre-Dame Hospital of CHUM, 1560 Sherbrooke East, Montreal, Quebec, H2L 4M1, Canada
| | | | | |
Collapse
|
36
|
Makino H, Sugiyama H, Kashihara N. Apoptosis and extracellular matrix–cell interactions in kidney disease. Kidney Int 2000. [DOI: 10.1046/j.1523-1755.2000.07711.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Loeser RF, Shanker G. Autocrine stimulation by insulin-like growth factor 1 and insulin-like growth factor 2 mediates chondrocyte survival in vitro. ARTHRITIS AND RHEUMATISM 2000; 43:1552-9. [PMID: 10902760 DOI: 10.1002/1529-0131(200007)43:7<1552::aid-anr20>3.0.co;2-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To determine the role of autocrine stimulation by insulin-like growth factor 1 (IGF-1) and IGF-2 in mediating chondrocyte survival and to determine whether chondrocytes from older individuals are more susceptible to cell death when IGF action is blocked. METHODS Survival was assessed in human and monkey chondrocytes cultured in suspension in alginate under serum-free conditions. The role of IGFs in mediating survival was determined by treating cultures with neutralizing antibodies to IGF-1 and IGF-2, an antibody that blocks the type 1 IGF receptor, and antisense oligonucleotides to inhibit IGF-1 production. Survival was measured in chondrocyte cultures from young and old adult monkeys in the presence and absence of the IGF receptor blocking antibody and ceramide to induce cell death. RESULTS Cell survival of >90% was noted when chondrocytes were cultured for as long as 107 days in alginate in a supplemented serum-free medium. Compared with controls, survival was significantly reduced by treatment with neutralizing antibodies to IGF-1 (25% cell death), neutralizing antibodies to IGF-2 (18% cell death), antibody to the IGF receptor (45% cell death), and IGF-1 antisense oligonucleotides (28% cell death). Cell death from inhibition of the type 1 IGF receptor was associated with an increase in caspase 3 activity and with positive DNA fragmentation, consistent with apoptotic cell death. Chondrocytes from old adult monkeys were more susceptible to cell death than were those from young adult monkeys when the IGF receptor was blocked and cell death was further stimulated by ceramide. CONCLUSION Autocrine production of IGFs helps to maintain chondrocyte survival in vitro and could play a similar role in vivo. With aging, chondrocytes may become more susceptible to factors that induce cell death.
Collapse
Affiliation(s)
- R F Loeser
- Rheumatology, Rush Medical College of Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | |
Collapse
|
38
|
|
39
|
Walker EA, Verner A, Flannery CR, Archer CW. Cellular responses of embryonic hyaline cartilage to experimental wounding in vitro. J Orthop Res 2000; 18:25-34. [PMID: 10716275 DOI: 10.1002/jor.1100180105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is well established that the reparative potential of many tissues is greatest during embryonic development. Despite the extensive literature documenting repair in nonembryonic cartilage models, there is no comparable wealth of experience relating to embryonic cartilage repair. With the embryonic chick sternum as a model of hyaline cartilage, this paper accounts cellular responses and alterations in extracellular matrix composition in response to experimental wounding in vitro. Creation of an experimental lesion induced a rapid (<20 minutes) apoptotic response in chondrocytes adjacent to the lesion edge; the presence of perichondrium delayed this response. Alterations in the extracellular matrix included immediate mechanical damage to type-II collagen fibrils and an increase in the expression of chondroitin-4 sulphate next to the lesion. Creation of the lesion induced an increased proliferative response in chondrocytes behind the zone of apoptosis and the expression of alpha5 and alpha6 integrin subunits.
Collapse
Affiliation(s)
- E A Walker
- Connective Tissue Biology Laboratory, University of Wales, Cardiff
| | | | | | | |
Collapse
|
40
|
Pouliot N, Burgess AW. Multiple autocrine factors including an extracellular matrix protein are required for the proliferation and spreading of human colon carcinoma cells in vitro. Growth Factors 2000; 18:31-49. [PMID: 10831071 DOI: 10.3109/08977190009003232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human colon carcinoma cell line LIM1215 proliferates and changes morphology (spread) in a cell density-dependent manner in response to epidermal growth factor (EGF). At high density, production of autocrine transforming growth factor-alpha enables the cells to proliferate and spread in the absence of exogenous EGF or serum. At low cell density (< 1 x 10(4)/cm2) EGF alone fails to elicit a mitogenic or morphological response and requires the presence of conditioned medium (derived from high cell density serum-free culture of the same cells) to exert its effects. This synergy between EGF and LIM1215 conditioned medium was investigated further. Using a low cell density assay and fractionated LIM1215 conditioned medium, we show that EGF-mediated mitogenic and morphological responses are separable. These responses are dependent on the synergistic action of a low molecular weight autocrine survival factor and an extracellular matrix-like spreading factor(s) secreted into the culture medium respectively. We find that under low cell density, serum-free conditions, EGF alone is insufficient to rescue LIM1215 from rapid apoptotic death. Catalase or LIM1215 autocrine survival factor prevent the death of LIM1215 cells and restore their proliferative (but not morphological) response to EGF, suggesting that cell death under these conditions may be the result of oxidative stress. Combination of EGF, partially purified autocrine survival and spreading factors induced proliferation and spreading of low density LIM1215 cells similar to that observed with EGF and unfractionated conditioned medium. GRGDS peptides strongly inhibited the spreading of LIM1215 cells in the presence of EGF and the partially purified autocrine spreading factor, demonstrating that integrin receptors are involved in the spreading process. Comparison of the spreading response of LIM1215 and Colo 526 cells on ASF and various adhesion proteins indicate that ASF is not collagen-I, collagen-IV, fibronectin or vitronectin. Taken together, these results support the concept that the autonomous growth of colon carcinoma cells in vitro is dependent on the synergistic interaction between several autocrine systems.
Collapse
Affiliation(s)
- N Pouliot
- The Ludwig Institute for Cancer Research, Melbourne Branch, Australia
| | | |
Collapse
|
41
|
Feng L, Balakir R, Precht P, Horton WE. Bcl-2 regulates chondrocyte morphology and aggrecan gene expression independent of caspase activation and full apoptosis. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990915)74:4<576::aid-jcb7>3.0.co;2-n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Abstract
This study addresses the effects of cell density and serum on CD95 (APO-1/Fas) and CD95L (Fas Ligand) expression and on the induction of CD95-dependent apoptosis in human articular chondrocytes from normal knees. Subsets of articular chondrocytes in first passage monolayer culture expressed CD95 and CD95L on the cell surface. The expression of both molecules was influenced by cell density: 22.3% of chondrocytes plated at subconfluent density expressed CD95L while expression in confluent cultures was reduced to 8.2%. CD95 expression was 32.1% under subconfluent and 12.2% under confluent conditions. Induction of specific apoptosis by agonistic antibody to CD95 was 15 times higher in confluent cultures than in subconfluent cultures despite higher levels of CD95 and CD95L expression in subconfluent cells, suggesting that protective antiapoptotic mechanisms were activated in low-density cultures. In subconfluent cultures, serum withdrawal had no effect on the sensitivity of the cells toward CD95 antibody-induced apoptosis. However, in confluent cultures, serum withdrawal led to a significant reduction of CD95-dependent apoptosis. Together, these findings demonstrate that cell density is an important modulator of CD95/CD95L expression and susceptibility to CD95-mediated apoptosis in cultured human chondrocytes.
Collapse
Affiliation(s)
- K Kühn
- Division of Arthritis Research, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
43
|
Fischer DC, Siebertz B, van de Leur E, Schiwy-Bochat KH, Graeve L, Heinrich PC, Haubeck HD. Induction of alpha1-antitrypsin synthesis in human articular chondrocytes by interleukin-6-type cytokines: evidence for a local acute-phase response in the joint. ARTHRITIS AND RHEUMATISM 1999; 42:1936-45. [PMID: 10513810 DOI: 10.1002/1529-0131(199909)42:9<1936::aid-anr20>3.0.co;2-k] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We have previously shown that human articular chondrocytes synthesize large amounts of interleukin-6 (IL-6) upon stimulation with proinflammatory cytokines and that they express the IL-6 receptor. The present study was undertaken to analyze whether different IL-6-type cytokines can induce synthesis of the acute-phase protein alpha1-antitrypsin in human articular chondrocytes. METHODS Chondrocytes from human articular cartilage, cultured in agarose, were stimulated with IL-6-type cytokines. Total RNA was isolated and analyzed by Northern blotting. Levels of alpha1-antitrypsin protein were determined by enzyme immunoassay. RESULTS Stimulation of chondrocytes with oncostatin M (OSM) and IL-6 led to a 5-10-fold increase in alpha1-antitrypsin synthesis. This increase was dose and time dependent. Furthermore, OSM and IL-6 induced IL-6 synthesis in chondrocytes, resulting in an autocrine amplification loop. CONCLUSION Our data strongly suggest the existence of a local acute-phase response in the joint. Synthesis of the acute-phase protein alpha1-antitrypsin, a major inhibitor of serine proteinases, may be an important protective mechanism of articular chondrocytes to prevent cartilage damage in inflammatory joint diseases.
Collapse
Affiliation(s)
- D C Fischer
- Universitätsklinikum der Rheinische-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
OBJECTIVE Recently, chondrocytes were shown to undergo apoptosis by the addition of nitric oxide and by coupling of Fas/Fas ligand in vitro, suggesting the possibility that chondrocytes have an inherent programmed cell death pathway that operates in adult cartilage. Chondrocyte apoptosis was verified in situ in articular cartilage samples from humans with osteoarthritis (OA) and from an animal model of OA. The present study investigates apoptotic chondrocyte death and the expression of Bcl-2 and Fas in rheumatoid arthritis (RA) cartilage. METHODS Cartilage samples were obtained from 13 RA patients at the time of joint replacement surgery and from 8 normal subjects at autopsy. Apoptotic chondrocytes were observed and counted in hematoxylin and eosin-stained cartilage specimens. Apoptosis was verified by TUNEL, electron microscopy, and DNA ladder assay. Bcl-2 and Fas expression were evaluated by immunohistochemistry. RESULTS Apoptotic cells were frequently observed in RA cartilage, whereas normal cartilage rarely showed apoptotic cells (3.01% versus 0.15%, respectively), a finding that was further confirmed by TUNEL staining. On electron microscopy, numerous apoptotic cells with typical chromatin condensation were observed in RA cartilage. DNA from RA cartilage also revealed 180-basepair nucleosome ladders on electrophoresis. Bcl-2 expression was significantly lower in RA cartilage than in normal cartilage (23.3% versus 43.1%, respectively), whereas Fas expression was not statistically different. CONCLUSION Apoptotic chondrocyte death and decreased Bcl-2 expression were verified in RA cartilage. They might provide a novel model system for the research of cartilage breakdown and joint destruction in RA.
Collapse
Affiliation(s)
- H A Kim
- Seoul National University College of Medicine, Korea
| | | |
Collapse
|
45
|
Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. TISSUE ENGINEERING 1999; 4:415-28. [PMID: 9916173 DOI: 10.1089/ten.1998.4.415] [Citation(s) in RCA: 933] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the adult human, mesenchymal stem cells (MSCs) resident in bone marrow retain the capacity to proliferate and differentiate along multiple connective tissue lineages, including cartilage. In this study, culture-expanded human MSCs (hMSCs) of 60 human donors were induced to express the morphology and gene products of chondrocytes. Chondrogenesis was induced by culturing hMSCs in micromass pellets in the presence of a defined medium that included 100 nM dexamethasone and 10 ng/ml transforming growth factor-beta(3) (TGF-beta(3)). Within 14 days, cells secreted an extracellular matrix incorporating type II collagen, aggrecan, and anionic proteoglycans. hMSCs could be further differentiated to the hypertrophic state by the addition of 50 nM thyroxine, the withdrawal of TGF-beta(3), and the reduction of dexamethasone concentration to 1 nM. Increased understanding of the induction of chondrogenic differentiation should lead to further progress in defining the mechanisms responsible for the generation of cartilaginous tissues, their maintenance, and their regeneration.
Collapse
Affiliation(s)
- A M Mackay
- Osiris Therapeutics, Inc., Baltimore, Maryland 21231-2001, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Feng L, Precht P, Balakir R, Horton WE. Evidence of a direct role for Bcl-2 in the regulation of articular chondrocyte apoptosis under the conditions of serum withdrawal and retinoic acid treatment. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19981101)71:2<302::aid-jcb14>3.0.co;2-m] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Gerstenfeld LC, Toma CD, Schaffer JL, Landis WJ. Chondrogenic potential of skeletal cell populations: selective growth of chondrocytes and their morphogenesis and development in vitro. Microsc Res Tech 1998; 43:156-73. [PMID: 9823002 DOI: 10.1002/(sici)1097-0029(19981015)43:2<156::aid-jemt8>3.0.co;2-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Most vertebrate embryonic and post-embryonic skeletal tissue formation occurs through the endochondral process in which cartilage serves a transitory role as the anlage for the bone structure. The differentiation of chondrocytes during this process in vivo is characterized by progressive morphological changes associated with the hypertrophy of these cells and is defined by biochemical changes that result in the mineralization of the extracellular matrix. The mechanisms, which, like those in vivo, promote both chondrogenesis in presumptive skeletal cell populations and endochondral progression of chondrogenic cells, may be examined in vitro. The work presented here describes mechanisms by which cells within presumptive skeletal cell populations become restricted to a chondrogenic lineage as studied within cell populations derived from 12-day-old chicken embryo calvarial tissue. It is found that a major factor associated with selection of chondrogenic cells is the elimination of growth within serum-containing medium. Chondrogenesis within these cell populations appears to be the result of permissive conditions which select for chondrogenic proliferation over osteogenic cell proliferation. Data suggest that chondrocyte cultures produce autocrine factors that promote their own survival or proliferation. The conditions for promoting cell growth, hypertrophy, and extracellular matrix mineralization of embryonic chicken chondrocytes in vitro include ascorbic acid supplementation and the presence of an organic phosphate source. The differentiation of hypertrophic chondrocytes in vitro is associated with a 10-15-fold increase in alkaline phosphatase enzyme activity and deposition of mineral within the extracellular matrix. Temporal studies of the biochemical changes coincident with development of hypertrophy in vitro demonstrate that proteoglycan synthesis decreases 4-fold whereas type X collagen synthesis increases 10-fold within the same period. Ultrastructural examination reveals cellular and extracellular morphology similar to that of hypertrophic cells in vivo with chondrocytes embedded in a well formed extracellular matrix of randomly distributed collagen fibrils and proteoglycan. Mineral deposition is seen in the interterritorial regions of the matrix between the cells and is apatitic in nature. These characteristics of chondrogenic growth and development are very similar in vivo and in vitro and they suggest that studies of chondrogenesis in vitro may provide a valuable model for the process in vivo.
Collapse
Affiliation(s)
- L C Gerstenfeld
- Musculoskeletal Research Laboratory, Boston University Medical Center, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
48
|
Sasaki Y, Fukushima N, Yoshida A, Ueda H. Low-density induced apoptosis of cortical neurons is inhibited by serum factors. Cell Mol Neurobiol 1998; 18:487-96. [PMID: 9777249 DOI: 10.1023/a:1026375225275] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. We investigated the survival of neurons under serum-free conditions without any exogenous signal molecules, using primary cultures of rat cerebral cortex. 2. Survival activity, measured with Alamar Blue, showed a cell density dependency under serum-free conditions. 3. The addition of fetal bovine serum suppressed the apoptotic cell death accompanied by DNA-laddering and fragmentation specific in low-density cultures, resulting in the disappearance of the cell density dependency of survival. 4. These findings suggest that serum factors may substitute for endogenous survival factors from cortical neurons in high-density cultures.
Collapse
Affiliation(s)
- Y Sasaki
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
49
|
Szuts V, Möllers U, Bittner K, Schürmann G, Muratoglu S, Deák F, Kiss I, Bruckner P. Terminal differentiation of chondrocytes is arrested at distinct stages identified by their expression repertoire of marker genes. Matrix Biol 1998; 17:435-48. [PMID: 9840445 DOI: 10.1016/s0945-053x(98)90103-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During endochondral bone formation, cells in the emerging cartilaginous model transit through a cascade of several chondrocyte differentiation stages, each characterized by a specific expression repertoire of matrix macromolecules, until, as a final step, the hypertrophic cartilage is replaced by bone. In many permanent cartilage tissues, however, late differentiation of chondrocytes does not occur, due to negative regulation by the environment of the cells. Here, addressing the reason for the difference between chondrocyte fates in the chicken embryo sternum, cells from the caudal and cranial part were cultured separately in serum-free agarose gels with complements defined earlier that either permit or prevent hypertrophic development. Total RNA was extracted using a novel protocol adapted to agarose cultures, and the temporal changes in developmental stage-specific mRNA expression were monitored by Northern hybridization and phosphor image analysis. Kinetic studies of the mRNA accumulation not only showed significant differences between the expression patterns of cranial and caudal cultures after recovery, but also revealed two checkpoints of chondrocyte differentiation in keeping with cartilage development in vivo. Terminal differentiation of caudal chondrocytes is blocked at the late proliferative stage (stage Ib), while the cranial cells can undergo hypertrophic development spontaneously. The differentiation of cranial chondrocytes is reversible, since they can re-assume an early proliferative (stage Ia) phenotype under the influence of insulin, fibroblast growth factor-2 and transforming growth factor-beta in combination. Thus, the expression pattern in the latter culture resembles that of articular chondrocytes. We also provide evidence that the capacities of caudal and sternal chondrocytes to progress from the late proliferative (stage Ib) to hypertrophic stage (stage II) correlate with their differing abilities to express the Indian hedgehog gene.
Collapse
Affiliation(s)
- V Szuts
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sugiyama H, Kashihara N, Maeshima Y, Okamoto K, Kanao K, Sekikawa T, Makino H. Regulation of survival and death of mesangial cells by extracellular matrix. Kidney Int 1998; 54:1188-96. [PMID: 9767534 DOI: 10.1046/j.1523-1755.1998.00116.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cell-matrix interactions exert major effects on such phenotypic features as cell growth and differentiation. Apoptosis is an active form of cell death that is crucial for maintaining the appropriate number of cells as well as the organization of tissue. Recently, it has been suggested that apoptosis of the mesangial cells (MC) is important in glomerular remodeling after injury. The MC are surrounded by an extracellular matrix (ECM) in vivo. Since in disease conditions the mesangial matrix is altered quantitatively and qualitatively, it is of interest to determine whether cell-matrix interactions may influence apoptosis of the MC. METHODS We first investigated the differences in the susceptibility to apoptotic stimuli of the MC cultured on various ECM components (type I collagen, fibronectin, basement membrane matrix). We then determined whether the inhibition of MC-matrix interactions would affect apoptosis. Finally, interactions between MC and matrix were disrupted by the inhibition of beta1-integrin expression with antisense oligonucleotides (ODN). RESULTS When MC were cultured on type I collagen or fibronectin and deprived of serum for eight hours, the extracted DNA from the MC demonstrated an internucleosomal ladder pattern on gel electrophoresis that constituted the biochemical characteristic of apoptosis. However, no ladder pattern was apparent when MC were cultured on basement membrane matrix. The attachment of cells was completely inhibited when the MC were cultured on agarose-coated dishes for 24 hours. Gel electrophoresis of DNA extracted from these cells showed a ladder pattern. However, the MC attached to the substratum did not show any apoptosis. MC showed an increase in apoptotic cell death after treatment with antisense ODN against beta1-integrin molecule. CONCLUSIONS These results indicate that normal ECM may prevent the MC from undergoing apoptosis and serve as a survival factor for MC. Signals from ECM that prevent apoptosis may be mediated by beta1-integrin molecules.
Collapse
Affiliation(s)
- H Sugiyama
- Department of Medicine III, Okayama University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|