1
|
Xiong T, Xie H, Li L, Liang S, Huang M, Yu C, Zhuang T, Liang X, Liu D, Chen R. Prevalence, Genotype Diversity, and Distinct Pathogenicity of 205 Gammacoronavirus Infectious Bronchitis Virus Isolates in China during 2019-2023. Viruses 2024; 16:930. [PMID: 38932222 PMCID: PMC11209364 DOI: 10.3390/v16060930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious disease in chickens and seriously endangers the poultry industry. The emergence and co-circulation of diverse IBV serotypes and genotypes with distinct pathogenicity worldwide pose a serious challenge to the development of effective intervention measures. In this study, we report the epidemic trends of IBV in China from 2019 to 2023 and a comparative analysis on the antigenic characteristics and pathogenicity of isolates among major prevalent lineages. Phylogenetic and recombination analyses based on the nucleotide sequences of the spike (S) 1 gene clustered a total of 205 isolates into twelve distinct lineages, with GI-19 as a predominant lineage (61.77 ± 4.56%) exhibiting an overall increasing trend over the past five years, and demonstrated that a majority of the variants were derived from gene recombination events. Further characterization of the growth and pathogenic properties of six representative isolates from different lineages classified four out of the six isolates as nephropathogenic types with mortality rates in one-day-old SPF chickens varying from 20-60%, one as a respiratory type with weak virulence, and one as a naturally occurring avirulent strain. Taken together, our findings illuminate the epidemic trends, prevalence, recombination, and pathogenicity of current IBV strains in China, providing key information for further strengthening the surveillance and pathogenicity studies of IBV.
Collapse
Affiliation(s)
- Ting Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Lin Li
- Key Laboratory of Manufacture Technology of Veterinary Bioproducts, Ministry of Agriculture and Rural Affairs, Zhaoqing 526238, China
| | - Shijin Liang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Meizhen Huang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Chuanzhao Yu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Tingting Zhuang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Xuejing Liang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Dingxiang Liu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| |
Collapse
|
2
|
Martinez TE, Mayilsamy K, Mohapatra SS, Mohapatra S. Modulation of Paracellular Permeability in SARS-CoV-2 Blood-to-Brain Transcytosis. Viruses 2024; 16:785. [PMID: 38793666 PMCID: PMC11126142 DOI: 10.3390/v16050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
SARS-CoV-2 primarily infects the lungs via the ACE2 receptor but also other organs including the kidneys, the gastrointestinal tract, the heart, and the skin. SARS-CoV-2 also infects the brain, but the hematogenous route of viral entry to the brain is still not fully characterized. Understanding how SARS-CoV-2 traverses the blood-brain barrier (BBB) as well as how it affects the molecular functions of the BBB are unclear. In this study, we investigated the roles of the receptors ACE2 and DPP4 in the SARS-CoV-2 infection of the discrete cellular components of a transwell BBB model comprising HUVECs, astrocytes, and pericytes. Our results demonstrate that direct infection on the BBB model does not modulate paracellular permeability. Also, our results show that SARS-CoV-2 utilizes clathrin and caveolin-mediated endocytosis to traverse the BBB, resulting in the direct infection of the brain side of the BBB model with a minimal endothelial infection. In conclusion, the BBB is susceptible to SARS-CoV-2 infection in multiple ways, including the direct infection of endothelium, astrocytes, and pericytes involving ACE2 and/or DPP4 and the blood-to-brain transcytosis, which is an event that does not require the presence of host receptors.
Collapse
Affiliation(s)
- Taylor E Martinez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A Haley VA Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Bellocchio L, Dipalma G, Inchingolo AM, Inchingolo AD, Ferrante L, Del Vecchio G, Malcangi G, Palermo A, Qendro A, Inchingolo F. COVID-19 on Oral Health: A New Bilateral Connection for the Pandemic. Biomedicines 2023; 12:60. [PMID: 38255167 PMCID: PMC10813615 DOI: 10.3390/biomedicines12010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission are generally known to be produced by respiratory droplets and aerosols from the oral cavity (O.C.) of infected subjects, as stated by the World Health Organization. Saliva also retains the viral particles and aids in the spread of COVID-19. Angiotensin-converting enzyme Type 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are two of the numerous factors that promote SARS-CoV-2 infection, expressed by O.C. structures, various mucosa types, and the epithelia of salivary glands. A systemic SARS-CoV-2 infection might result from viral replication in O.C. cells. On the other hand, cellular damage of different subtypes in the O.C. might be associated with various clinical signs and symptoms. Factors interfering with SARS-CoV-2 infection potential might represent fertile ground for possible local pharmacotherapeutic interventions, which may confine SARS-CoV-2 virus entry and transmission in the O.C., finally representing a way to reduce COVID-19 incidence and severity.
Collapse
Affiliation(s)
- Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, University of Bordeaux, 33063 Bordeaux, France;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Gaetano Del Vecchio
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Andis Qendro
- Faculty of Dental Medicine, University of Medicine, 1005 Tirana, Albania;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| |
Collapse
|
4
|
Tie HC, Mahajan D, Lu L. Visualizing intra-Golgi localization and transport by side-averaging Golgi ministacks. J Biophys Biochem Cytol 2022; 221:213180. [PMID: 35467701 DOI: 10.1083/jcb.202109114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/03/2021] [Accepted: 04/05/2022] [Indexed: 01/09/2023] Open
Abstract
The mammalian Golgi comprises tightly adjacent and flattened membrane sacs called cisternae. We still do not understand the molecular organization of the Golgi and intra-Golgi transport of cargos. One of the most significant challenges to studying the Golgi is resolving Golgi proteins at the cisternal level under light microscopy. We have developed a side-averaging approach to visualize the cisternal organization and intra-Golgi transport in nocodazole-induced Golgi ministacks. Side-view images of ministacks acquired from Airyscan microscopy are transformed and aligned before intensity normalization and averaging. From side-average images of >30 Golgi proteins, we uncovered the organization of the pre-Golgi, cis, medial, trans, and trans-Golgi network membrane with an unprecedented spatial resolution. We observed the progressive transition of a synchronized cargo wave from the cis to the trans-side of the Golgi. Our data support our previous finding, in which constitutive cargos exit at the trans-Golgi while the secretory targeting to the trans-Golgi network is signal dependent.
Collapse
Affiliation(s)
- Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Sheybani Z, Heydari Dokoohaki M, Negahdaripour M, Dehdashti M, Zolghadr H, Moghadami M, Masoompour SM, Zolghadr AR. The interactions of folate with the enzyme furin: a computational study. RSC Adv 2021; 11:23815-23824. [PMID: 35479793 PMCID: PMC9036578 DOI: 10.1039/d1ra03299b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Entrance of coronavirus into cells happens through the spike proteins on the virus surface, for which the spike protein should be cleaved into S1 and S2 domains. This cleavage is mediated by furin, a member of the proprotein convertases family, which can specifically cleave Arg-X-X-Arg↓ sites of the substrates. Here, folate (folic acid), a water-soluble B vitamin, is introduced for the inhibition of furin activity. Therefore, molecular insight into the prevention of furin activity in the presence of folic acid derivatives is presented. To this aim, molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations were performed to clarify the inhibitory mechanism of these compounds. In this regard, molecular docking studies were conducted to probe the furin binding sites of folic acid derivatives. The MD simulation results indicated that these drugs can efficiently bind to the furin active site. While the folic acid molecule tended to be positioned slightly towards the Glu271, Tyr313, Ala532, Gln488, and Asp530 amino acids of furin at short and long ranges, the folinic acid molecule interacted with Glu271, Ser311, Arg490, Gln488, and Lys499 amino acids. Consequently, binding free energy calculations illustrated that folic acid (−27.90 kcal mol−1) has better binding in comparison with folinic acid (−12.84 kcal mol−1). The present study introduces the ability of folic acid to interact and inhibit furin proprotein.![]()
Collapse
Affiliation(s)
- Zahra Sheybani
- Department of Internal Medicine, Aliasghar Hospital, Shiraz University of Medical Sciences Shiraz Iran
| | - Maryam Heydari Dokoohaki
- Department of Chemistry, Shiraz University Shiraz 71946-84795 Iran +98 713 646 0788 +98 713 613 7100
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran
| | | | - Hassan Zolghadr
- Medical School, Shiraz University of Medical Sciences Shiraz Iran
| | - Mohsen Moghadami
- Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences Shiraz Iran
| | - Seyed Masoom Masoompour
- Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences Shiraz Iran
| | - Amin Reza Zolghadr
- Department of Chemistry, Shiraz University Shiraz 71946-84795 Iran +98 713 646 0788 +98 713 613 7100.,Fars Science and Technology Park Shiraz Iran
| |
Collapse
|
6
|
Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 2021; 6:233. [PMID: 34117216 PMCID: PMC8193598 DOI: 10.1038/s41392-021-00653-w] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in an unprecedented setback for global economy and health. SARS-CoV-2 has an exceptionally high level of transmissibility and extremely broad tissue tropism. However, the underlying molecular mechanism responsible for sustaining this degree of virulence remains largely unexplored. In this article, we review the current knowledge and crucial information about how SARS-CoV-2 attaches on the surface of host cells through a variety of receptors, such as ACE2, neuropilin-1, AXL, and antibody-FcγR complexes. We further explain how its spike (S) protein undergoes conformational transition from prefusion to postfusion with the help of proteases like furin, TMPRSS2, and cathepsins. We then review the ongoing experimental studies and clinical trials of antibodies, peptides, or small-molecule compounds with anti-SARS-CoV-2 activity, and discuss how these antiviral therapies targeting host-pathogen interaction could potentially suppress viral attachment, reduce the exposure of fusion peptide to curtail membrane fusion and block the formation of six-helix bundle (6-HB) fusion core. Finally, the specter of rapidly emerging SARS-CoV-2 variants deserves a serious review of broad-spectrum drugs or vaccines for long-term prevention and control of COVID-19 in the future.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Rong Xiang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yunjiao Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
7
|
Brun J, Vasiljevic S, Gangadharan B, Hensen M, V. Chandran A, Hill ML, Kiappes J, Dwek RA, Alonzi DS, Struwe WB, Zitzmann N. Assessing Antigen Structural Integrity through Glycosylation Analysis of the SARS-CoV-2 Viral Spike. ACS CENTRAL SCIENCE 2021; 7:586-593. [PMID: 34056088 PMCID: PMC8029450 DOI: 10.1021/acscentsci.1c00058] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 is the causative pathogen of the COVID-19 pandemic which as of March 29, 2021, has claimed 2 776 175 lives worldwide. Vaccine development efforts focus on the viral trimeric spike glycoprotein as the main target of the humoral immune response. Viral spikes carry glycans that facilitate immune evasion by shielding specific protein epitopes from antibody neutralization, and antigen efficacy is influenced by spike glycoprotein production in vivo. Therefore, immunogen integrity is important for glycoprotein-based vaccine candidates. Here, we show how site-specific glycosylation differs between virus-derived spikes, wild-type, non-stabilized spikes expressed from a plasmid with a CMV promoter and tPA signal sequence, and commonly used recombinant, engineered spike glycoproteins. Furthermore, we show that their distinctive cellular secretion pathways result in different protein glycosylation and secretion patterns, including shedding of spike monomeric subunits for the non-stabilized wild-type spike tested, which may have implications for the resulting immune response and vaccine design.
Collapse
Affiliation(s)
- Juliane Brun
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Snežana Vasiljevic
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Bevin Gangadharan
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Mario Hensen
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anu V. Chandran
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Michelle L. Hill
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - J.L. Kiappes
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Raymond A. Dwek
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Dominic S. Alonzi
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Weston B. Struwe
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Nicole Zitzmann
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
8
|
Miller LM, Barnes LF, Raab SA, Draper BE, El-Baba TJ, Lutomski CA, Robinson CV, Clemmer DE, Jarrold MF. Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry. J Am Chem Soc 2021; 143:3959-3966. [PMID: 33657316 PMCID: PMC8543487 DOI: 10.1021/jacs.1c00353] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The heterogeneity associated with glycosylation of the 66 N-glycan sites on the protein trimer making up the spike (S) region of the SARS-CoV-2 virus has been assessed by charge detection mass spectrometry (CDMS). CDMS allows simultaneous measurement of the mass-to-charge ratio and charge of individual ions, so that mass distributions can be determined for highly heterogeneous proteins such as the heavily glycosylated S protein trimer. The CDMS results are compared to recent glycoproteomics studies of the structure and abundance of glycans at specific sites. Interestingly, average glycan masses determined by "top-down" CDMS measurements are 35-47% larger than those obtained from the "bottom-up" glycoproteomics studies, suggesting that the glycoproteomic measurements underestimated the abundances of larger, more-complex glycans. Moreover, the distribution of glycan masses determined by CDMS is much broader than the distribution expected from the glycoproteomics studies, assuming that glycan processing on each trimer is not correlated. The breadth of the glycan mass distribution therefore indicates heterogeneity in the extent of glycan processing of the S protein trimers, with some trimers being much more heavily processed than others. This heterogeneity may have evolved as a way of further confounding the host's immune system.
Collapse
Affiliation(s)
- Lohra M Miller
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington Indiana 47405, United States
| | - Lauren F Barnes
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington Indiana 47405, United States
| | - Shannon A Raab
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington Indiana 47405, United States
| | - Benjamin E Draper
- Megadalton Solutions, 3520 E Bluebird Ln, Bloomington Indiana 47401, United States
| | - Tarick J El-Baba
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OXI 3QZ, U.K
| | - Corinne A Lutomski
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OXI 3QZ, U.K
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OXI 3QZ, U.K
| | - David E Clemmer
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington Indiana 47405, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington Indiana 47405, United States
| |
Collapse
|
9
|
Li K, Hu XX, Liu HW, Xu S, Huan SY, Li JB, Deng TG, Zhang XB. In Situ Imaging of Furin Activity with a Highly Stable Probe by Releasing of Precipitating Fluorochrome. Anal Chem 2018; 90:11680-11687. [DOI: 10.1021/acs.analchem.8b03335] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ke Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Shuang-Yan Huan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Jun-Bin Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Tang-Gang Deng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Watanabe-Takahashi M, Yamasaki S, Murata M, Kano F, Motoyama J, Yamate J, Omi J, Sato W, Ukai H, Shimasaki K, Ikegawa M, Tamura-Nakano M, Yanoshita R, Nishino Y, Miyazawa A, Natori Y, Toyama-Sorimachi N, Nishikawa K. Exosome-associated Shiga toxin 2 is released from cells and causes severe toxicity in mice. Sci Rep 2018; 8:10776. [PMID: 30018364 PMCID: PMC6050230 DOI: 10.1038/s41598-018-29128-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), is classified into two subgroups, Stx1 and Stx2. Clinical data clearly indicate that Stx2 is associated with more severe toxicity than Stx1, but the molecular mechanism underlying this difference is not fully understood. Here, we found that after being incorporated into target cells, Stx2, can be transported by recycling endosomes, as well as via the regular retrograde transport pathway. However, transport via recycling endosome did not occur with Stx1. We also found that Stx2 is actively released from cells in a receptor-recognizing B-subunit dependent manner. Part of the released Stx2 is associated with microvesicles, including exosome markers (referred to as exo-Stx2), whose origin is in the multivesicular bodies that formed from late/recycling endosomes. Finally, intravenous administration of exo-Stx2 to mice causes more lethality and tissue damage, especially severe renal dysfunction and tubular epithelial cell damage, compared to a free form of Stx2. Thus, the formation of exo-Stx2 might contribute to the severity of Stx2 in vivo, suggesting new therapeutic strategies against EHEC infections.
Collapse
Affiliation(s)
- Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Shinji Yamasaki
- International Prevention of Epidemics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Sciences, Doshisha University, Kyoto, Japan
| | - Jyoji Yamate
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Jumpei Omi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Waka Sato
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hirofumi Ukai
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Kentaro Shimasaki
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Masaya Ikegawa
- Genomics, Proteomics and Biomedical Functions, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryohei Yanoshita
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Yuri Nishino
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Atsuo Miyazawa
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Yasuhiro Natori
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Noriko Toyama-Sorimachi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| |
Collapse
|
11
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
12
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122371 DOI: 10.1007/978-3-319-75474-1_4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coronaviruses are enveloped RNA viruses that infect mammals and birds. Infection of humans with globally circulating human coronaviruses is associated with the common cold. In contrast, transmission of animal coronaviruses to humans can result in severe disease: The severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) are responsible for hundreds of deaths in Asia and the Middle East, respectively, and are both caused by members of the genus Betacoronavirus, SARS-CoV, and MERS-CoV that were zoonotically transmitted from an animal host to humans. At present, neither vaccines nor specific treatment is available to combat coronavirus infection in humans, and novel antiviral strategies are urgently sought. The viral spike protein (S) mediates the first essential step in coronavirus infection, viral entry into target cells. For this, the S protein critically depends on priming by host cell proteases, and the responsible enzymes are potential targets for antiviral intervention. Recent studies revealed that the endosomal cysteine protease cathepsin L and the serine proteases furin and TMPRSS2 prime the S proteins of SARS-CoV and MERS-CoV and provided evidence that successive S protein cleavage at two sites is required for S protein priming. Moreover, mechanisms that control protease choice were unraveled, and insights were obtained into which enzyme promotes viral spread in the host. Here, we will provide basic information on S protein function and proteolytic priming, and we will then discuss recent progress in our understanding of the priming of the S proteins of SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
13
|
Hussain H, Fisher DI, Abbott WM, Roth RG, Dickson AJ. Use of a protein engineering strategy to overcome limitations in the production of “Difficult to Express” recombinant proteins. Biotechnol Bioeng 2017. [DOI: 10.1002/bit.26358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hirra Hussain
- Manchester Institute of Biotechnology; Faculty of Science and Engineering; University of Manchester; M1 7DN Manchester United Kingdom
| | - David I. Fisher
- AstraZeneca, Cambridge Science Park; Milton Cambridge United Kingdom
| | - W. Mark Abbott
- AstraZeneca, Cambridge Science Park; Milton Cambridge United Kingdom
| | | | - Alan J. Dickson
- Manchester Institute of Biotechnology; Faculty of Science and Engineering; University of Manchester; M1 7DN Manchester United Kingdom
| |
Collapse
|
14
|
Kroeger JK, Hofmann SC, Leppert J, Has C, Franzke CW. Amino acid duplication in the coiled-coil structure of collagen XVII alters its maturation and trimerization causing mild junctional epidermolysis bullosa. Hum Mol Genet 2017; 26:479-488. [PMID: 28365758 DOI: 10.1093/hmg/ddw404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2023] Open
Abstract
The function and stability of collagens depend on the accurate triple helix formation of three distinct polypeptide chains. Disruption of this triple-helical structure can result in connective-tissue disorders. Triple helix formation is thought to depend on three-stranded coiled-coil oligomerization sites within non-collagenous domains. However, only little is known about the physiological relevance of these coiled-coil structures. Transmembrane collagen XVII, also known as 180 kDa bullous pemphigoid antigen provides mechanical stability through the anchorage of epithelial cells to the basement membrane. Mutations in the collagen XVII gene, COL17A1, cause junctional epidermolysis bullosa (JEB), characterized by chronic trauma-induced skin blistering. Here we exploited a novel naturally occurring COL17A1 mutation, leading to an in-frame lysine duplication within the coiled-coil structure of the juxtamembranous NC16A domain of collagen XVII, which resulted in a mild phenotype of JEB due to reduced membrane-anchored collagen XVII molecules. This mutation causes structural changes in the mutant molecule and interferes with its maturation. The destabilized coiled-coil structure of the mutant collagen XVII unmasks a furin cleavage site that results in excessive and non-physiological ectodomain shedding during its maturation. Furthermore, it decreases its triple-helical stability due to defective coiled-coil oligomerization, which makes it highly susceptible to proteolytic degradation. As a consequence of altered maturation and decreased stability of collagen XVII trimers, reduced collagen XVII is incorporated into the cell membrane, resulting in compromised dermal-epidermal adhesion. Taken together, using this genetic model, we provide the first proof that alteration of the coiled-coil structure destabilizes oligomerization and impairs physiological shedding of collagen XVII in vivo.
Collapse
Affiliation(s)
- Jasmin K Kroeger
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Silke C Hofmann
- Center for Dermatology, Allergy and Dermatosurgery, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Germany
| | - Juna Leppert
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Bhowmick S, Chakravarty C, Sellathamby S, Lal SK. The influenza A virus matrix protein 2 undergoes retrograde transport from the endoplasmic reticulum into the cytoplasm and bypasses cytoplasmic proteasomal degradation. Arch Virol 2016; 162:919-929. [PMID: 27942972 DOI: 10.1007/s00705-016-3153-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022]
Abstract
The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.
Collapse
Affiliation(s)
- Sanchari Bhowmick
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chandrani Chakravarty
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Department of Biomedical Science, Bharathidasan University, Trichy, India
| | | | - Sunil K Lal
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India. .,School of Science, Monash University, 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
16
|
Spiesschaert B, Stephanowitz H, Krause E, Osterrieder N, Azab W. Glycoprotein B of equine herpesvirus type 1 has two recognition sites for subtilisin-like proteases that are cleaved by furin. J Gen Virol 2016; 97:1218-1228. [PMID: 26843465 DOI: 10.1099/jgv.0.000418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glycoprotein B (gB) of equine herpesvirus type 1 (EHV-1) is predicted to be cleaved by furin in a fashion similar to that of related herpesviruses. To investigate the contribution of furin-mediated gB cleavage to EHV-1 growth, canonical furin cleavage sites were mutated. Western blot analysis of mutated EHV-1 gB showed that it was cleaved at two positions, 518RRRR521 and 544RLHK547, and that the 28 aa between the two sites were removed after cleavage. Treating infected cells with either convertase or furin inhibitors reduced gB cleavage efficiency. Further, removal of the first furin recognition motif did not affect in vitro growth of EHV-1, while mutation of the second motif greatly affected virus growth. In addition, a second possible signal peptide cleavage site was identified for EHV-1 gB between residues 98 and 99, which was 13 aa downstream of that previously identified.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin,Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin,Germany
| | - Heike Stephanowitz
- Leibniz-Institut für Molekulare Pharmakologie,Robert-Rössle-Strasse 10, D-13125 Berlin,Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie,Robert-Rössle-Strasse 10, D-13125 Berlin,Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin,Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin,Germany
| | - Walid Azab
- Department of Virology, Faculty of Veterinary Medicine,Zagazig University,Egypt.,Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin,Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin,Germany
| |
Collapse
|
17
|
Bessonnard S, Mesnard D, Constam DB. PC7 and the related proteases Furin and Pace4 regulate E-cadherin function during blastocyst formation. J Cell Biol 2015; 210:1185-97. [PMID: 26416966 PMCID: PMC4586756 DOI: 10.1083/jcb.201503042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Targeted deletion of PC7 and the related proprotein convertases Furin and Pace4, combined with live imaging of their activities, unmasks their overlapping and complementary functions in morula compaction and ICM formation in mouse blastocysts and in E-cadherin precursor processing. The first cell differentiation in mammalian embryos segregates polarized trophectoderm cells from an apolar inner cell mass (ICM). This lineage decision is specified in compacted morulae by cell polarization and adhesion acting on the Yes-associated protein in the Hippo signaling pathway, but the regulatory mechanisms are unclear. We show that morula compaction and ICM formation depend on PC7 and the related proprotein convertases (PCs) Furin and Pace4 and that these proteases jointly regulate cell–cell adhesion mediated by E-cadherin processing. We also mapped the spatiotemporal activity profiles of these proteases by live imaging of a transgenic reporter substrate in wild-type and PC mutant embryos. Differential inhibition by a common inhibitor revealed that all three PCs are active in inner and outer cells, but in partially nonoverlapping compartments. E-cadherin processing by multiple PCs emerges as a novel mechanism to modulate cell–cell adhesion and fate allocation.
Collapse
Affiliation(s)
- Sylvain Bessonnard
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| | - Daniel Mesnard
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
El Najjar F, Lampe L, Baker ML, Wang LF, Dutch RE. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host. PLoS One 2015; 10:e0115736. [PMID: 25706132 PMCID: PMC4338073 DOI: 10.1371/journal.pone.0115736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/18/2014] [Indexed: 12/12/2022] Open
Abstract
Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.
Collapse
Affiliation(s)
- Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Levi Lampe
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Michelle L. Baker
- CSIRO Australian Animal Health Laboratory, East Geelong, Victoria, Australia
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, East Geelong, Victoria, Australia
- Program in Emerging Infectious Diseases, Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
19
|
Modi S, Halder S, Nizak C, Krishnan Y. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways. NANOSCALE 2014; 6:1144-1152. [PMID: 24297098 DOI: 10.1039/c3nr03769j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a 'handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the 'handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.
Collapse
Affiliation(s)
- Souvik Modi
- National Centre for Biological Sciences, TIFR, GKVK, Bellary Road, Bangalore 560 065, India.
| | | | | | | |
Collapse
|
20
|
Leifer CA, Rose WA, Botelho F. Traditional biochemical assays for studying toll-like receptor 9. J Immunoassay Immunochem 2013; 34:1-15. [PMID: 23323977 DOI: 10.1080/15321819.2012.666222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the mechanistic basis of receptor activation and regulation can offer therapeutic targets for disease treatment. Evidence is emerging for a role of the normally foreign responsive Toll-like receptors (TLRs) in the development of autoimmunity through response to self-patterns. Regulatory mechanisms governing this class of receptors are poorly understood, and failures within this system likely contribute to development of autoimmunity. In this article, we review biochemical assays used to study one of the self-pattern responsive TLRs, TLR9, and suggest that these studies are critical for development of new targets for autoimmune therapies.
Collapse
Affiliation(s)
- Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
21
|
Watt B, van Niel G, Raposo G, Marks MS. PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res 2013; 26:300-15. [PMID: 23350640 DOI: 10.1111/pcmr.12067] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022]
Abstract
PMEL is a pigment cell-specific protein responsible for the formation of fibrillar sheets within the pigment organelle, the melanosome. The fibrillar sheets serve as a template upon which melanins polymerize as they are synthesized. The PMEL fibrils are required for optimal pigment cell function, as animals that either lack PMEL expression or express mutant PMEL variants show varying degrees of hypopigmentation and pigment cell inviability. The PMEL fibrils have biophysical properties of amyloid, a protein fold that is frequently associated with neurodegenerative and other diseases. However, PMEL is one of a growing number of non-pathogenic amyloid proteins that contribute to the function of the cell and/or organism that produces them. Understanding how PMEL generates amyloid in a non-pathogenic manner might provide insights into how to avoid toxicity due to pathological amyloid formation. In this review, we summarize and reconcile data concerning the fate of PMEL from its site of synthesis in the endoplasmic reticulum to newly formed melanosomes and the role of distinct PMEL subdomains in trafficking and amyloid fibril formation. We then discuss how its progression through the secretory pathway into the endosomal system might allow for the regulated and non-toxic conversion of PMEL into an ordered amyloid polymer.
Collapse
Affiliation(s)
- Brenda Watt
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
22
|
Studies in mice reveal a role for anthrax toxin receptors in matrix metalloproteinase function and extracellular matrix homeostasis. Toxins (Basel) 2013; 5:315-26. [PMID: 23389402 PMCID: PMC3640537 DOI: 10.3390/toxins5020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/31/2013] [Indexed: 02/07/2023] Open
Abstract
The genes encoding Anthrax Toxin Receptors (ANTXRs) were originally identified based on expression in endothelial cells suggesting a role in angiogenesis. The focus of this review is to discuss what has been learned about the physiological roles of these receptors through evaluation of the Antxr knockout mouse phenotypes. Mice mutant in Antxr genes have defects in extracellular matrix homeostasis. We discuss how knowledge of physiological ANTXR function relates to what is already known about anthrax intoxication.
Collapse
|
23
|
Tortorella LL, Pipalia NH, Mukherjee S, Pastan I, Fitzgerald D, Maxfield FR. Efficiency of immunotoxin cytotoxicity is modulated by the intracellular itinerary. PLoS One 2012; 7:e47320. [PMID: 23056628 PMCID: PMC3467225 DOI: 10.1371/journal.pone.0047320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 09/14/2012] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas exotoxin-based immunotoxins, including LMB-2 (antiTac(F(v))-PE38), are proposed to traffic to the trans-Golgi network (TGN) and move by a retrograde pathway to the endoplasmic reticulum, where they undergo translocation to the cytoplasm, a step that is essential for cytotoxicity. The retrograde transport pathways used by LMB-2 are not completely understood, so it is unclear if transit through specific organelles is critical for maximal cytotoxic activity. In this study, we used Chinese hamster ovary (CHO) cell lines that express chimeric constructs of CD25, the Tac antigen, attached to the cytoplasmic domain of the TGN-targeted transmembrane proteins, TGN38 and furin. These chimeras are both targeted to the TGN, but the itineraries they follow are quite different. LMB-2 was incubated with the two cell lines, and the efficiency of cell killing was determined using cell viability and cytotoxicity assays. LMB-2 that is targeted through the endocytic recycling compartment to the TGN via Tac-TGN38 kills the cells more efficiently than immunotoxins delivered through the late endosomes by Tac-furin. Although the processing to the 37 kDa active fragment was more efficient in Tac-furin cells than in Tac-TGN38 cells, this was not associated with enhanced cytotoxicity - presumably because the toxin was also degraded more rapidly in these cells. These data indicate that trafficking through specific organelles is an important factor modulating toxicity by LMB-2.
Collapse
Affiliation(s)
- Lori L. Tortorella
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Nina H. Pipalia
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Sushmita Mukherjee
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Ira Pastan
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David Fitzgerald
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tay FPL, Huang M, Wang L, Yamada Y, Liu DX. Characterization of cellular furin content as a potential factor determining the susceptibility of cultured human and animal cells to coronavirus infectious bronchitis virus infection. Virology 2012; 433:421-30. [PMID: 22995191 PMCID: PMC7111921 DOI: 10.1016/j.virol.2012.08.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/25/2012] [Accepted: 08/27/2012] [Indexed: 11/21/2022]
Abstract
In previous studies, the Beaudette strain of coronavirus infectious bronchitis virus (IBV) was adapted from chicken embryo to Vero, a monkey kidney cell line, by serial propagation for 65 passages. To characterize the susceptibility of other human and animal cells to IBV, 15 human and animal cell lines were infected with the Vero-adapted IBV and productive infection was observed in four human cell lines: H1299, HepG2, Hep3B and Huh7. In other cell lines, the virus cannot be propagated beyond passage 5. Interestingly, cellular furin abundance in five human cell lines was shown to be strongly correlated with productive IBV infection. Cleavage of IBV spike protein by furin may contribute to the productive IBV infection in these cells. The findings that IBV could productively infect multiple human and animal cells of diverse tissue and organ origins would provide a useful system for studying the pathogenesis of coronavirus.
Collapse
Affiliation(s)
- Felicia P L Tay
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
25
|
Nishie W, Jackow J, Hofmann SC, Franzke CW, Bruckner-Tuderman L. Coiled coils ensure the physiological ectodomain shedding of collagen XVII. J Biol Chem 2012; 287:29940-8. [PMID: 22761443 PMCID: PMC3436177 DOI: 10.1074/jbc.m112.345454] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/12/2012] [Indexed: 11/06/2022] Open
Abstract
α-Helical coiled coils, frequent protein oligomerization motifs, are commonly observed in vital proteins. Here, using collagen XVII as an example, we provide evidence for a novel function of coiled coils in the regulation of ectodomain shedding. Transmembrane collagen XVII, an epithelial cell surface receptor, mediates dermal-epidermal adhesion in the skin, and its dysfunction is linked to human skin blistering diseases. The ectodomain of this collagen is constitutively shed from the cell surface by proteinases of a disintegrin and metalloprotease family; however, the mechanisms regulating shedding remain elusive. Here, we used site-specific mutagenesis to target the coiled-coil heptad repeats within the juxtamembranous, extracellular noncollagenous 16th A (NC16A) domain of collagen XVII. This resulted in a substantial increase of ectodomain shedding, which was not mediated by disintegrin and metalloproteases. Instead, conformational changes induced by the mutation(s) unmasked a furin recognition sequence that was used for cleavage. This study shows that apart from their functions in protein oligomerization, coiled coils can also act as regulators of ectodomain shedding depending on the biological context.
Collapse
Affiliation(s)
- Wataru Nishie
- From the Department of Dermatology, Freiburg University Medical Center, University of Freiburg, 79104 Freiburg, Germany
- the Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 003-0835, Japan
| | - Joanna Jackow
- From the Department of Dermatology, Freiburg University Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Silke C. Hofmann
- From the Department of Dermatology, Freiburg University Medical Center, University of Freiburg, 79104 Freiburg, Germany
- the Department of Dermatology and Allergy, University of Witten/Herdecke, Helios-Klinikum, 47805 Wuppertal, Germany
| | - Claus-Werner Franzke
- From the Department of Dermatology, Freiburg University Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Leena Bruckner-Tuderman
- From the Department of Dermatology, Freiburg University Medical Center, University of Freiburg, 79104 Freiburg, Germany
- the Freiburg Institute for Advanced Studies, School of Life Sciences, LifeNet, University of Freiburg, 79104 Freiburg, Germany, and
| |
Collapse
|
26
|
Setoh YX, Prow NA, Hobson-Peters J, Lobigs M, Young PR, Khromykh AA, Hall RA. Identification of residues in West Nile virus pre-membrane protein that influence viral particle secretion and virulence. J Gen Virol 2012; 93:1965-1975. [PMID: 22764317 DOI: 10.1099/vir.0.044453-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pre-membrane protein (prM) of West Nile virus (WNV) functions as a chaperone for correct folding of the envelope (E) protein, and prevents premature fusion during virus egress. However, little is known about its role in virulence. To investigate this, we compared the amino acid sequences of prM between a highly virulent North American strain (WNV(NY99)) and a weakly virulent Australian subtype (WNV(KUN)). Five amino acid differences occur in WNV(NY99) compared with WNV(KUN) (I22V, H43Y, L72S, S105A and A156V). When expressed in mammalian cells, recombinant WNV(NY99) prM retained native antigenic structure, and was partially exported to the cell surface. In contrast, WNV(KUN) prM (in the absence of the E protein) failed to express a conserved conformational epitope and was mostly retained at the pre-Golgi stage. Substitutions in residues 22 (Ile to Val) and 72 (Leu to Ser) restored the antigenic structure and cell surface expression of WNV(KUN) prM to the same level as that of WNV(NY99), and enhanced the secretion of WNV(KUN) prME particles when expressed in the presence of E. Introduction of the prM substitutions into a WNV(KUN) infectious clone (FLSDX) enhanced the secretion of infectious particles in Vero cells, and enhanced virulence in mice. These findings highlight the role of prM in viral particle secretion and virulence, and suggest the involvement of the L72S and I22V substitutions in modulating these activities.
Collapse
Affiliation(s)
- Y X Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - N A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - J Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - M Lobigs
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - P R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - A A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - R A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| |
Collapse
|
27
|
Thibodeau PH, Butterworth MB. Proteases, cystic fibrosis and the epithelial sodium channel (ENaC). Cell Tissue Res 2012; 351:309-23. [PMID: 22729487 DOI: 10.1007/s00441-012-1439-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023]
Abstract
Proteases perform a diverse array of biological functions. From simple peptide digestion for nutrient absorption to complex signaling cascades, proteases are found in organisms from prokaryotes to humans. In the human airway, proteases are associated with the regulation of the airway surface liquid layer, tissue remodeling, host defense and pathogenic infection and inflammation. A number of proteases are released in the airways under both physiological and pathophysiological states by both the host and invading pathogens. In airway diseases such as cystic fibrosis, proteases have been shown to be associated with increased morbidity and airway disease progression. In this review, we focus on the regulation of proteases and discuss specifically those proteases found in human airways. Attention then shifts to the epithelial sodium channel (ENaC), which is regulated by proteolytic cleavage and that is considered to be an important component of cystic fibrosis disease. Finally, we discuss bacterial proteases, in particular, those of the most prevalent bacterial pathogen found in cystic fibrosis, Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- P H Thibodeau
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S327 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
28
|
Arsenault D, Lucien F, Dubois CM. Hypoxia enhances cancer cell invasion through relocalization of the proprotein convertase furin from the trans-Golgi network to the cell surface. J Cell Physiol 2012; 227:789-800. [PMID: 21503879 DOI: 10.1002/jcp.22792] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tumor hypoxia is strongly associated with malignant progression such as increased cell invasion and metastasis. Although the invasion-related genes affected by hypoxia have been well described, the contribution of post-transcriptional mechanisms such as protein trafficking and proprotein processing associated with the hypoxic response remains poorly understood. The proprotein convertase furin, the major processing enzyme of the secretory pathway, resides in the trans-Golgi network and most studies support a model where endogenous substrates are processed by furin within this compartment. Here, we report that hypoxia triggered an unexpected relocalization of furin from the trans-Golgi network to endosomomal compartments and the cell surface in cancer cells. Exposing these cells back to normoxic conditions reversed furin redistribution, suggesting that the tumor microenvironment modulates furin trafficking in a highly regulated manner. Assessment of the mechanisms involved revealed that both Rab4GTPase-dependent recycling and interaction of furin with the cytoskeletal anchoring protein, filamin-A, are essential for the cell surface relocalization of furin. Interference with the association of furin with filamin-A, prevented cell surface relocalization of furin and abolished the ability of cancer cells to migrate in response to hypoxia. Our observations support the notion that hypoxia promotes the formation of a peripheral processing compartment where furin translocates for enhanced processing of proproteins involved in tumorigenesis.
Collapse
Affiliation(s)
- Dominique Arsenault
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
29
|
Production and characterization of peptide antibodies. Methods 2011; 56:136-44. [PMID: 22178691 DOI: 10.1016/j.ymeth.2011.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 12/18/2022] Open
Abstract
Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody purification, the antibodies are characterized based on their affinity or specificity. An efficient approach for characterization of peptide antibodies is epitope mapping using peptide based assays. This review describes standard solid-phase approaches for generation of peptide antibodies with special emphasis on peptide selection, generation of peptide conjugates for immunization and characterization of the resulting peptide antibodies.
Collapse
|
30
|
Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA, Burton DR, Crispin M, Scanlan CN. The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS One 2011; 6:e23521. [PMID: 21858152 PMCID: PMC3156772 DOI: 10.1371/journal.pone.0023521] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/19/2011] [Indexed: 01/04/2023] Open
Abstract
The N-linked oligomannose glycans of HIV gp120 are a target for both microbicide and vaccine design. The extent of cross-clade conservation of HIV oligomannose glycans is therefore a critical consideration for the development of HIV prophylaxes. We measured the oligomannose content of virion-associated gp120 from primary virus from PBMCs for a range of viral isolates and showed cross-clade elevation (62–79%) of these glycans relative to recombinant, monomeric gp120 (∼30%). We also confirmed that pseudoviral production systems can give rise to notably elevated gp120 oligomannose levels (∼98%), compared to gp120 derived from a single-plasmid viral system using the HIVLAI backbone (56%). This study highlights differences in glycosylation between virion-associated and recombinant gp120.
Collapse
Affiliation(s)
- Camille Bonomelli
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Katie J. Doores
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - D. Cameron Dunlop
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Victoria Thaney
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raymond A. Dwek
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Dennis R. Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Christopher N. Scanlan
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Reales E, Sharma N, Low SH, Fölsch H, Weimbs T. Basolateral sorting of syntaxin 4 is dependent on its N-terminal domain and the AP1B clathrin adaptor, and required for the epithelial cell polarity. PLoS One 2011; 6:e21181. [PMID: 21698262 PMCID: PMC3115984 DOI: 10.1371/journal.pone.0021181] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/22/2011] [Indexed: 12/14/2022] Open
Abstract
Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However, the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney (MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24–29 in the N-terminal domain of syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity.
Collapse
Affiliation(s)
- Elena Reales
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Nikunj Sharma
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Seng Hui Low
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Heike Fölsch
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Xu J, Kieliszewski M. Enhanced accumulation of secreted human growth hormone by transgenic tobacco cells correlates with the introduction of an N-glycosylation site. J Biotechnol 2011; 154:54-9. [PMID: 21507336 DOI: 10.1016/j.jbiotec.2011.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/30/2011] [Accepted: 04/04/2011] [Indexed: 01/23/2023]
Abstract
Extracellular secretion of recombinant proteins from plant cell suspension culture will simplify the protein purification procedure and greatly reduce the production cost. Our early work indicated that presence of hydroxyproline-O-glycosylation at the C- or N-terminus of the target protein boosted the secreted yields in the culture medium. Inspired by early successes, we tested the possibility of introducing an N-glycosylation site to facilitate the secretion of human growth hormone (hGH) from cultured tobacco cells. Three N-glycosylated hGH fusion proteins, designated NAS-EK-hGH, NAS-Kex2-hGH and hGH-NAS, were expressed in tobacco BY-2 cells. Where NAS denotes the "Asn-Ala-Ser" consensus sequence for N-glycosylation; EK denotes an enterokinase cleavage site and Kex2 a sequence to be cleaved by a Golgi-localized Kex2p-like protease. Our results indicated that a single N-glycan attached either at the N-terminus or C-terminus of hGH correlated with enhanced extracellular accumulation of the transgenic proteins; the secreted yield of NAS-EK-hGH and hGH-NAS was 70-90 fold greater than the control targeted, non-glycosylated hGH. NAS-Kex2-hGH was subject to partial cleavage of the N-glycan tag at the Kex2 site in Golgi apparatus, and therefore gave lower yields than the other two constructs.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Chemistry and Biochemistry, Ohio University, Athens, United States.
| | | |
Collapse
|
33
|
Höftberger R, Kunze M, Voigtländer T, Unterberger U, Regelsberger G, Bauer J, Aboul-Enein F, Garzuly F, Forss-Petter S, Bernheimer H, Berger J, Budka H. Peroxisomal localization of the proopiomelanocortin-derived peptides beta-lipotropin and beta-endorphin. Endocrinology 2010; 151:4801-10. [PMID: 20810565 DOI: 10.1210/en.2010-0249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The peptide hormones ACTH, MSHs, β-lipotropin (β-LPH), and β-endorphin are all derived from the precursor molecule proopiomelanocortin (POMC). Using confocal laser microscopy and immunoelectron microscopy in human pituitary gland, we demonstrate a peroxisomal localization of β-endorphin and β-LPH in cells expressing the peroxisomal ATP-binding cassette-transporter adrenoleukodystrophy protein (ALDP). The peroxisomal localization of β-LPH and β-endorphin was not restricted to the pituitary gland but was additionally found in other human tissues that express high levels of ALDP, such as dorsal root ganglia, adrenal cortex, distal tubules of kidney, and skin. In contrast to the peptide hormones β-LPH and β-endorphin, which are derived from the C terminus of POMC, the N-terminal peptides ACTH, α-MSH, and γ-MSH were never detected in peroxisomes. This novel peroxisomal localization of β-endorphin and β-LPH in ALDP-positive cells was confirmed by costaining with ALDP and the peroxisomal marker catalase. Moreover, peroxisomal sorting of β-LPH could be modeled in HeLa cells by ectopic expression of a POMC variant, modified to allow cleavage and release of β-LPH within the secretory pathway. Although β-LPH and β-endorphin were only associated with peroxisomes in cells that normally express ALDP, the transporter activity of ALDP is not necessary for the peroxisomal localization, as demonstrated in tissues of X-linked adrenoleukodystrophy patients lacking functional ALDP. It remains to be elucidated whether and how the peroxisomal localization of POMC-derived hormones has a role in the endocrine dysfunction of peroxisomal disease.
Collapse
Affiliation(s)
- Romana Höftberger
- Institute of Neurology, Center for Brain Research, Medical University of Vienna, and Department of Neurology, SMZ-Ost Danube Hospital, AKH 4J, Währinger Gürtel 18-20, P.O. Box 48, A-1097 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Targeting the proteolytic processing of the viral glycoprotein precursor is a promising novel antiviral strategy against arenaviruses. J Virol 2010; 84:573-84. [PMID: 19846507 DOI: 10.1128/jvi.01697-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A crucial step in the arenavirus life cycle is the biosynthesis of the viral envelope glycoprotein (GP) responsible for virus attachment and entry. Processing of the GP precursor (GPC) by the cellular proprotein convertase site 1 protease (S1P), also known as subtilisin-kexin-isozyme 1 (SKI-1), is crucial for cell-to-cell propagation of infection and production of infectious virus. Here, we sought to evaluate arenavirus GPC processing by S1P as a target for antiviral therapy using a recently developed peptide-based S1P inhibitor, decanoyl (dec)-RRLL-chloromethylketone (CMK), and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). To control for off-target effects of dec-RRLL-CMK, we employed arenavirus reverse genetics to introduce a furin recognition site into the GPC of LCMV. The rescued mutant virus grew to normal titers, and the processing of its GPC critically depended on cellular furin, but not S1P. Treatment with the S1P inhibitor dec-RRLL-CMK resulted in specific blocking of viral spread and virus production of LCMV. Combination of the protease inhibitor with ribavirin, currently used clinically for treatment of human arenavirus infections, resulted in additive drug effects. In cells deficient in S1P, the furin-dependent LCMV variant established persistent infection, whereas wild-type LCMV underwent extinction without the emergence of S1P-independent escape variants. Together, the potent antiviral activity of an inhibitor of S1P-dependent GPC cleavage, the additive antiviral effect with ribavirin, and the low probability of emergence of S1P-independent viral escape variants make S1P-mediated GPC processing by peptide-derived inhibitors a promising strategy for the development of novel antiarenaviral drugs.
Collapse
|
35
|
Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. J Virol 2009; 83:8744-58. [PMID: 19553314 DOI: 10.1128/jvi.00613-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The spike (S) protein of the coronavirus (CoV) infectious bronchitis virus (IBV) is cleaved into S1 and S2 subunits at the furin consensus motif RRFRR(537)/S in virus-infected cells. In this study, we observe that the S2 subunit of the IBV Beaudette strain is additionally cleaved at the second furin site (RRRR(690)/S) in cells expressing S constructs and in virus-infected cells. Detailed time course experiments showed that a peptide furin inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethylketone, blocked both viral entry and syncytium formation. Site-directed mutagenesis studies revealed that the S1/S2 cleavage by furin was not necessary for, but could promote, syncytium formation by and infectivity of IBV in Vero cells. In contrast, the second site is involved in the furin dependence of viral entry and syncytium formation. Mutations of the second site from furin-cleavable RRRR/S to non-furin-cleavable PRRRS and AAARS, respectively, abrogated the furin dependence of IBV entry. Instead, a yet-to-be-identified serine protease(s) was involved, as revealed by protease inhibitor studies. Furthermore, sequence analysis of CoV S proteins by multiple alignments showed conservation of an XXXR/S motif, cleavable by either furin or other trypsin-like proteases, at a position equivalent to the second IBV furin site. Taken together, these results suggest that proteolysis at a novel XXXR/S motif in the S2 subunit might be a common mechanism for the entry of CoV into cells.
Collapse
|
36
|
At the crossroads of homoeostasis and disease: roles of the PACS proteins in membrane traffic and apoptosis. Biochem J 2009; 421:1-15. [PMID: 19505291 DOI: 10.1042/bj20081016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endomembrane system in mammalian cells has evolved over the past two billion years from a simple endocytic pathway in a single-celled primordial ancestor to complex networks supporting multicellular structures that form metazoan tissue and organ systems. The increased organellar complexity of metazoan cells requires additional trafficking machinery absent in yeast or other unicellular organisms to maintain organ homoeostasis and to process the signals that control proliferation, differentiation or the execution of cell death programmes. The PACS (phosphofurin acidic cluster sorting) proteins are one such family of multifunctional membrane traffic regulators that mediate organ homoeostasis and have important roles in diverse pathologies and disease states. This review summarizes our current knowledge of the PACS proteins, including their structure and regulation in cargo binding, their genetics, their roles in secretory and endocytic pathway traffic, interorganellar communication and how cell-death signals reprogramme the PACS proteins to regulate apoptosis. We also summarize our current understanding of how PACS genes are dysregulated in cancer and how viral pathogens ranging from HIV-1 to herpesviruses have evolved to usurp the PACS sorting machinery to promote virus assembly, viral spread and immunoevasion.
Collapse
|
37
|
Barriere H, Lukacs GL. Analysis of endocytic trafficking by single-cell fluorescence ratio imaging. ACTA ACUST UNITED AC 2008; Chapter 15:Unit 15.13. [PMID: 18819089 DOI: 10.1002/0471143030.cb1513s40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The post-endocytic sorting of internalized membrane proteins plays a critical role in numerous physiological processes, including receptor desensitization, degradation of non-native plasma membrane proteins, and cell surface retrieval of receptors from early endosomes upon ligand dissociation. Here, we describe a fluorescence ratiometric image analysis (FRIA) method used to determine the post-endocytic fate and transport kinetics of transmembrane proteins based on the pH measurement of internalized cargo-containing compartments in living cells. The method relies on the notion that the pH of a cargo-containing transport vesicle (vesicular pH, pH(v)) could be taken as an indicator of its identity, considering that endocytic organelles (e.g., sorting endosome, recycling endosome, late endosome/MVB, and lysosome) have characteristic pH(v). The pH-sensitive FITC-conjugated secondary antibody is attached to the cargo via a primary antibody, recognizing the cargo extracellular domain. The pH(v) is determined by single-cell FRIA. Internalized cargo colocalization with organellar markers, as well as pH(v) measurement of recycling endosome, lysosome, and the TGN are discussed to validate the technique and facilitate data interpretation.
Collapse
Affiliation(s)
- Herve Barriere
- McGill University, Department of Physiology, Montreal, Quebec, Canada
| | | |
Collapse
|
38
|
The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex. J Virol 2008; 82:9477-91. [PMID: 18632859 DOI: 10.1128/jvi.00784-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) ORF7b (also called 7b) protein is an integral membrane protein that is translated from a bicistronic open reading frame encoded within subgenomic RNA 7. When expressed independently or during virus infection, ORF7b accumulates in the Golgi compartment, colocalizing with both cis- and trans-Golgi markers. To identify the domains of this protein that are responsible for Golgi localization, we have generated a set of mutant proteins and analyzed their subcellular localizations by indirect immunofluorescence confocal microscopy. The N- and C-terminal sequences are dispensable, but the ORF7b transmembrane domain (TMD) is essential for Golgi compartment localization. When the TMD of human CD4 was replaced with the ORF7b TMD, the resulting chimeric protein localized to the Golgi complex. Scanning alanine mutagenesis identified two regions in the carboxy-terminal portion of the TMD that eliminated the Golgi complex localization of the chimeric CD4 proteins or ORF7b protein. Collectively, these data demonstrate that the Golgi complex retention signal of the ORF7b protein resides solely within the TMD.
Collapse
|
39
|
Han J, Wang Y, Wang S, Chi C. Interaction of Mint3 with Furin regulates the localization of Furin in the trans-Golgi network. J Cell Sci 2008; 121:2217-23. [PMID: 18544638 DOI: 10.1242/jcs.019745] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Furin is a proprotein convertase that cycles between the plasma membrane, endosomes and the trans-Golgi network (TGN), maintaining a predominant distribution in the latter. Mint3, a member of the Mint protein family, is involved in the signaling and trafficking of membrane proteins. Until now, little has been known about the roles of Mint3 in the localization or trafficking of Furin. Here, using co-immunoprecipitation and immunofluorescence assays, we show that Mint3 interacts with Furin in the Golgi compartment of HeLa cells. Knockdown of endogenous Mint3 expression by RNA interference disrupts the TGN-specific localization of Furin and increases its distribution in endosomes. We further demonstrate that the phosphotyrosine-binding (PTB) domain of Mint3 is essential for the binding of Furin and that this binding affects the TGN-specific localization of Furin. Moreover, mutation studies of Furin indicate that Mint3 regulates Furin distribution mainly through interaction with the acidic peptide signal of Furin. Collectively, these data suggest that the interaction between the PTB domain of Mint3 and the acidic peptide signal of Furin regulates the specific localization of Furin in the TGN.
Collapse
Affiliation(s)
- Jinbo Han
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, People's Republic of China
| | | | | | | |
Collapse
|
40
|
Klyachkin YM, Geraghty RJ. Mutagenic analysis of herpes simplex virus type 1 glycoprotein L reveals the importance of an arginine-rich region for function. Virology 2008; 374:23-32. [PMID: 18222518 DOI: 10.1016/j.virol.2007.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 10/31/2007] [Accepted: 11/09/2007] [Indexed: 12/01/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoproteins H and L (gH and gL) are required for virus-induced membrane fusion. Expression of gH at the virion or infected cell surface is mediated by the chaperone-like activity of gL. We have previously shown that a region between amino acids 155 and 161 is critical for gL chaperone-like activity. Here, we conducted Ala substitution mutagenesis of residues in this region and found that substitution of Cys160, Arg156, Arg158, or Arg156/158/159 with Ala resulted in a gL mutant that bound gH but displayed a reduced ability in gH trafficking and membrane fusion. Substitution of Arg156 with another positively charged amino acid, Lys, restored function. Substitution of Arg158 with Lys restored function in gH trafficking and cell fusion but not virus entry. These results indicate that an arginine-rich region of gL is critical for function.
Collapse
Affiliation(s)
- Yuri M Klyachkin
- University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose St., UKMC MS423, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
41
|
Cellular localization of Nicastrin affects amyloid β species production. FEBS Lett 2008; 582:427-33. [DOI: 10.1016/j.febslet.2008.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/20/2007] [Accepted: 01/02/2008] [Indexed: 11/23/2022]
|
42
|
Kurmanova A, Llorente A, Polesskaya A, Garred O, Olsnes S, Kozlov J, Sandvig K. Structural requirements for furin-induced cleavage and activation of Shiga toxin. Biochem Biophys Res Commun 2007; 357:144-9. [PMID: 17407762 DOI: 10.1016/j.bbrc.2007.03.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 03/17/2007] [Indexed: 11/17/2022]
Abstract
Shiga toxin has a protease-sensitive site in the disulfide loop region of the A-chain. Cleavage of this site by furin is essential for rapid intoxication of cells by Shiga toxin. We have here investigated whether in addition to the Arg-X-X-Arg sequence, there are other structural requirements in the disulfide loop region for furin cleavage. A toxin mutant (Shiga-2D toxin) still containing the consensus motif for cleavage by furin, but lacking ten amino acids in the disulfide loop, was generated. Trypsin was able to cleave Shiga-2D toxin in vitro, demonstrating that the protease-sensitive region is intact. However, Shiga-2D toxin was not efficiently cleaved by furin either in vitro or in vivo. Furthermore, unless it was precleaved with trypsin, Shiga-2D toxin was much less toxic than wild type Shiga toxin in LoVo cells expressing functional furin. In contrast, LoVo/neo cells lacking functional furin were unable to activate both wild type Shiga toxin and Shiga-2D toxin. In conclusion, an extended loop structure is required for furin-induced cleavage of Shiga toxin.
Collapse
Affiliation(s)
- Alma Kurmanova
- W.A. Engelhardt Institute for Molecular Biology, The Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
43
|
Limaye A, Koya V, Samsam M, Daniell H. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system. FASEB J 2006; 20:959-61. [PMID: 16603603 PMCID: PMC3481851 DOI: 10.1096/fj.05-5134fje] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins.
Collapse
Affiliation(s)
| | | | - Mohtashem Samsam
- Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Orlando, Florida, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Orlando, Florida, USA
| |
Collapse
|
44
|
Theos AC, Truschel ST, Tenza D, Hurbain I, Harper DC, Berson JF, Thomas PC, Raposo G, Marks MS. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell 2006; 10:343-54. [PMID: 16516837 PMCID: PMC1773005 DOI: 10.1016/j.devcel.2006.01.012] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/19/2005] [Accepted: 01/11/2006] [Indexed: 11/21/2022]
Abstract
Cargo partitioning into intralumenal vesicles (ILVs) of multivesicular endosomes underlies such cellular processes as receptor downregulation, viral budding, and biogenesis of lysosome-related organelles such as melanosomes. We show that the melanosomal protein Pmel17 is sorted into ILVs by a mechanism that is dependent upon lumenal determinants and conserved in non-pigment cells. Pmel17 targeting to ILVs does not require its native cytoplasmic domain or cytoplasmic residues targeted by ubiquitylation and, unlike sorting of ubiquitylated cargo, is insensitive to functional inhibition of Hrs and ESCRT complexes. Chimeric protein and deletion analyses indicate that two N-terminal lumenal subdomains are necessary and sufficient for ILV targeting. Pmel17 fibril formation, which occurs during melanosome maturation in melanocytes, requires a third lumenal subdomain and proteolytic processing that itself requires ILV localization. These results establish an Hrs- and perhaps ESCRT-independent pathway of ILV sorting by lumenal determinants and a requirement for ILV sorting in fibril formation.
Collapse
Affiliation(s)
- Alexander C. Theos
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Steven T. Truschel
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | | | - Ilse Hurbain
- Institut Curie, CNRS-UMR144, Paris, Cedex 75005,
France
| | - Dawn C. Harper
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Joanne F. Berson
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Penelope C. Thomas
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Graça Raposo
- Institut Curie, CNRS-UMR144, Paris, Cedex 75005,
France
| | - Michael S. Marks
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
- ‡To whom correspondence should be addressed: Dept. of
Pathology and Laboratory Medicine, Univ. of Pennsylvania School of Medicine, 513
Stellar Chance Labs/6100, Philadelphia, PA 19104-6100, Phone: 215-898-3204, FAX:
215-573-4345,
| |
Collapse
|
45
|
Zhu H, Liu K, Cerny J, Imoto T, Moudgil KD. Insertion of the dibasic motif in the flanking region of a cryptic self-determinant leads to activation of the epitope-specific T cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:2252-60. [PMID: 16081793 DOI: 10.4049/jimmunol.175.4.2252] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Efficient induction of self tolerance is critical for avoiding autoimmunity. The T cells specific for the well-processed and -presented (dominant) determinants of a native self protein are generally tolerized in the thymus, whereas those potentially directed against the inefficiently processed and presented (cryptic) self epitopes escape tolerance induction. We examined whether the crypticity of certain determinants of mouse lysozyme-M (ML-M) could be attributed to the nonavailability of a proteolytic site, and whether it could be reversed to immunodominance by engraftment of a novel cleavage site in the flanking region of the epitope. Using site-directed mutagenesis, we created the dibasic motif (RR or RK; R = arginine, K = lysine), a target of intracellular proteases, in the region adjoining one of the three cryptic epitopes (46-61, 66-79, or 105-119) of ML-M. Interestingly, the mutated lysozyme proteins, but not unmutated ML-M, were immunogenic in mice. The T cell response to the altered lysozyme was attributable to the efficient processing and presentation of the previously cryptic epitope, and this response was both epitope and MHC haplotype specific. In addition, the anti-self T cell response was associated with the generation of autoantibodies against self lysozyme. However, the results using one of three mutated lysozymes suggested that the naturally processed, dibasic motif-marked epitope may not always correspond precisely to the cryptic determinant within a synthetic peptide. This is the first report describing the circumvention of self tolerance owing to the targeted reversal of crypticity to dominance in vivo of a specific epitope within a native self Ag.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
46
|
Heinzelmann M, Bosshart H. Heparin binds to lipopolysaccharide (LPS)-binding protein, facilitates the transfer of LPS to CD14, and enhances LPS-induced activation of peripheral blood monocytes. THE JOURNAL OF IMMUNOLOGY 2005; 174:2280-7. [PMID: 15699163 DOI: 10.4049/jimmunol.174.4.2280] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heparin is one of the most effective drugs for preventing and treating thromboembolic complications in surgical patients. Recent evidence suggests that heparin enhances the proinflammatory responses of human peripheral blood monocytes to Gram-negative endotoxin (LPS). We have identified LPS-binding protein (LBP) as a novel heparin-binding plasma protein. The affinity of LPB to heparin was KD = 55 +/- 8 nM, as measured by surface plasmon resonance. Using a fluorescence-based assay, we showed that clinically used heparin preparations significantly enhance the ability of LBP to catalytically disaggregate and transfer LPS to CD14, the LPS receptor. The presence of clinically relevant heparin concentrations in human whole blood increased LPS-induced production of the proinflammatory cytokine IL-8. Fondaparinux, which is identical with the antithrombin III-binding pentasaccharide in heparin, did not bind to LBP or alter LBP function. Thus, this novel anticoagulant drug is a potential candidate for safe administration to patients who have endotoxemia and require anticoagulation.
Collapse
|
47
|
Prasanna G, Narayan S, Krishnamoorthy RR, Yorio T. Eyeing endothelins: a cellular perspective. Mol Cell Biochem 2004; 253:71-88. [PMID: 14619958 DOI: 10.1023/a:1026005418874] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelin is an endogenous vasoactive peptide that is considered among the most potent vasoconstrictor substances known. In addition to its vascular effects, endothelins and their receptors have been shown to be present in the eye and to have a number of ocular actions that may be important for ocular homeostasis, but, in excess can be a potential contributor to ocular neuropathy in glaucoma. The current review focuses on the cellular and molecular aspects of endothelins and its receptors in the eye with an emphasis on its relationship to ocular function and its potential role in the etiology of glaucoma pathophysiology.
Collapse
Affiliation(s)
- Ganesh Prasanna
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | | |
Collapse
|
48
|
Natarajan R, Linstedt AD. A cycling cis-Golgi protein mediates endosome-to-Golgi traffic. Mol Biol Cell 2004; 15:4798-806. [PMID: 15331763 PMCID: PMC524728 DOI: 10.1091/mbc.e04-05-0366] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxins can invade cells by using a direct endosome-to-Golgi endocytic pathway that bypasses late endosomes/prelysosomes. This is also a route used by endogenous proteins, including GPP130, which is an integral membrane protein retrieved via the bypass pathway from endosomes to its steady-state location in the cis-Golgi. An RNA interference-based test revealed that GPP130 was required for efficient exit of Shiga toxin B-fragment from endosomes en route to the Golgi apparatus. Furthermore, two proteins whose Golgi targeting depends on endosome-to-Golgi retrieval in the bypass pathway accumulated in early/recycling endosomes in the absence of GPP130. GPP130 activity seemed specific to bypass pathway trafficking because the targeting of other tested proteins, including those retrieved to the Golgi via the more conventional late endosome route, was unaltered. Thus, a distally cycling Golgi protein mediates exit from endosomes and thereby underlies Shiga toxin invasion and retrieval-based targeting of other cycling Golgi proteins.
Collapse
Affiliation(s)
- Rajalaxmi Natarajan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
49
|
Bosshart H, Heinzelmann M. Human neutrophil-derived CAP37 inhibits lipopolysaccharide-induced activation in murine peritoneal macrophages. Immunol Lett 2004; 94:175-82. [PMID: 15275964 DOI: 10.1016/j.imlet.2004.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2004] [Revised: 04/18/2004] [Accepted: 04/21/2004] [Indexed: 11/19/2022]
Abstract
Human cationic antimicrobial protein, CAP37, is released from neutrophil granules during infection. CAP37 attracts monocytes, binds Gram-negative endotoxin (lipopolysaccharide, LPS), is bactericidal for a range of Gram-negative bacteria, and reduces mortality in murine polymicrobial sepsis. Here, we report that recombinant CAP37 specifically targets murine peritoneal macrophages. Under steady-state conditions, the bulk of cell-associated CAP37 was localized at the plasma membrane. However, a fraction of CAP37 gained access to the endocytic system, but did not accumulate in recycling endosomes or in the trans-Golgi network (TGN). Instead, CAP37 was internalized by fluid phase endocytosis and accumulated in a prelysosomal compartment. Macrophages that were preexposed to CAP37 exhibited diminished LPS responsiveness, as determined by analysis of c-Jun phosphorylation. Further examination showed that pretreatment with CAP37 reduced the ability of macrophages to bind LPS. Taken together, these observations demonstrate that prolonged exposure to CAP37 desensitizes macrophages to LPS and suggest that this protein plays a novel anti-inflammatory role in polymicrobial sepsis.
Collapse
Affiliation(s)
- Herbert Bosshart
- Department of Surgery, Zurich University Hospital, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| | | |
Collapse
|
50
|
Mayer G, Boileau G, Bendayan M. Sorting of furin in polarized epithelial and endothelial cells: expression beyond the Golgi apparatus. J Histochem Cytochem 2004; 52:567-79. [PMID: 15100235 DOI: 10.1177/002215540405200502] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The conversion of proteins into their mature forms underlies the functionality of many fundamental cellular pathways. One posttranslational modification leading to maturation of precursor proteins consists of the cleavage of their prodomain at pairs of basic amino acids by enzymes of the subtilisin-like mammalian proprotein convertase family. One of these enzymes, furin, acts in the constitutive secretory pathway of almost every cell type. However, in spite of furin's major roles in many pathophysiological processes, the exact subcellular sites of processing and activation of its substrates remain elusive. In this study, furin antigenic sites were tracked in subcellular compartments of various tissues and corresponding cell lines by high-resolution immunogold electron microscopy, Western blotting, cell transfection, and in vivo gene delivery of the furin cDNA. In addition to the Golgi apparatus, furin was assigned to endosomes and plasma membranes of polarized intestinal and renal epithelial cells and endothelial cells of the continuous, fenestrated, and discontinuous capillaries. Roles of furin in endothelial permeability, basement membrane turnover, and shedding of transmembrane proteins are supported by our data.
Collapse
Affiliation(s)
- Gaétan Mayer
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|