1
|
Sun Y, Yeam A, Kuo J, Iwamoto Y, Hu G, Drubin DG. The conserved protein adaptors CALM/AP180 and FCHo1/2 cooperatively recruit Eps15 to promote the initiation of clathrin-mediated endocytosis in yeast. PLoS Biol 2024; 22:e3002833. [PMID: 39316607 PMCID: PMC11451990 DOI: 10.1371/journal.pbio.3002833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/04/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Clathrin-mediated endocytosis (CME) is a critical trafficking process that begins when an elaborate endocytic protein network is established at the plasma membrane. Interaction of early endocytic proteins with anionic phospholipids and/or cargo has been suggested to trigger CME initiation. However, the exact mechanism by which CME sites are initiated has not been fully elucidated. In the budding yeast Saccharomyces cerevisiae, higher levels of anionic phospholipids and cargo molecules exist in the newly formed daughter cell compared to the levels in the mother cell during polarized growth. Taking advantage of this asymmetry, we quantitatively compared CME proteins in S. cerevisiae mother versus daughter cells, observing differences in the dynamics and composition of key endocytic proteins. Our results show that CME site initiation occurs preferentially on regions of the plasma membrane with a relatively higher density of endocytic cargo and/or acidic phospholipids. Furthermore, our combined live cell-imaging and yeast genetics analysis provided evidence for a molecular mechanism in which CME sites are initiated when Yap1801 and Yap1802 (yeast CALM/AP180) and Syp1 (yeast FCHo1/2) coordinate with anionic phospholipids and cargo molecules to trigger Ede1 (yeast Eps15)-centric CME initiation complex assembly at the plasma membrane.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Albert Yeam
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Jonathan Kuo
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Gean Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
2
|
Rossio V, Paulo JA. Comparison of the Proteomes and Phosphoproteomes of S. cerevisiae Cells Harvested with Different Strategies. Proteomes 2023; 11:28. [PMID: 37873870 PMCID: PMC10594529 DOI: 10.3390/proteomes11040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a powerful model system that is widely used to investigate many cellular processes. The harvesting of yeast cells is the first step in almost every experimental procedure. Here, yeast cells are isolated from their growth medium, collected, and used for successive experiments or analysis. The two most common methods to harvest S. cerevisiae are centrifugation and filtration. Understanding if and how centrifugation and filtration affect yeast physiology is essential with respect to downstream data interpretation. Here, we profile and compare the proteomes and the phosphoproteomes, using isobaric label-based quantitative mass spectrometry, of three common methods used to harvest S. cerevisiae cells: low-speed centrifugation, high-speed centrifugation, and filtration. Our data suggest that, while the proteome was stable across the tested conditions, hundreds of phosphorylation events were different between centrifugation and filtration. Our analysis shows that, under our experimental conditions, filtration may cause both cell wall and osmotic stress at higher levels compared to centrifugation, implying harvesting-method-specific stresses. Thus, considering that the basal activation levels of specific stresses may differ under certain harvesting conditions is an important, but often overlooked, aspect of experimental design.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
A continuous-time stochastic Boolean model provides a quantitative description of the budding yeast cell cycle. Sci Rep 2022; 12:20302. [PMID: 36434030 PMCID: PMC9700812 DOI: 10.1038/s41598-022-24302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
The cell division cycle is regulated by a complex network of interacting genes and proteins. The control system has been modeled in many ways, from qualitative Boolean switching-networks to quantitative differential equations and highly detailed stochastic simulations. Here we develop a continuous-time stochastic model using seven Boolean variables to represent the activities of major regulators of the budding yeast cell cycle plus one continuous variable representing cell growth. The Boolean variables are updated asynchronously by logical rules based on known biochemistry of the cell-cycle control system using Gillespie's stochastic simulation algorithm. Time and cell size are updated continuously. By simulating a population of yeast cells, we calculate statistical properties of cell cycle progression that can be compared directly to experimental measurements. Perturbations of the normal sequence of events indicate that the cell cycle is 91% robust to random 'flips' of the Boolean variables, but 9% of the perturbations induce lethal mistakes in cell cycle progression. This simple, hybrid Boolean model gives a good account of the growth and division of budding yeast cells, suggesting that this modeling approach may be as accurate as detailed reaction-kinetic modeling with considerably less demands on estimating rate constants.
Collapse
|
4
|
Woods BL, Cannon KS, Vogt EJD, Crutchley JM, Gladfelter AS. Interplay of septin amphipathic helices in sensing membrane-curvature and filament bundling. Mol Biol Cell 2021; 32:br5. [PMID: 34319771 PMCID: PMC8684760 DOI: 10.1091/mbc.e20-05-0303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The curvature of the membrane defines cell shape. Septins are GTP-binding proteins that assemble into heteromeric complexes and polymerize into filaments at areas of micron-scale membrane curvature. An amphipathic helix (AH) domain within the septin complex is necessary and sufficient for septins to preferentially assemble onto micron-scale curvature. Here we report that the nonessential fungal septin, Shs1, also has an AH domain capable of recognizing membrane curvature. In a septin mutant strain lacking a fully functional Cdc12 AH domain (cdc12-6), the C-terminal extension of Shs1, containing an AH domain, becomes essential. Additionally, we find that the Cdc12 AH domain is important for regulating septin filament bundling, suggesting septin AH domains have multiple, distinct functions and that bundling and membrane binding may be coordinately controlled.
Collapse
Affiliation(s)
- Benjamin L Woods
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Kevin S Cannon
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Ellysa J D Vogt
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John M Crutchley
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Amy S Gladfelter
- Biology Department, University of North Carolina, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
5
|
Stress-induced growth rate reduction restricts metabolic resource utilization to modulate osmo-adaptation time. Cell Rep 2021; 34:108854. [PMID: 33730573 DOI: 10.1016/j.celrep.2021.108854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 01/15/2023] Open
Abstract
A near-constant feature of stress responses is a downregulation or arrest of the cell cycle, resulting in transient growth slowdown. To investigate the role of growth slowdown in the hyperosmotic shock response of S. cerevisiae, we perturbed the G1/S checkpoint protein Sic1 to enable osmo-stress response activation with diminished growth slowdown. We document that in this mutant, adaptation to stress is accelerated rather than delayed. This accelerated recovery of the mutant proceeds by liquidation of internal glycogen stores, which are then shunted into the osmo-shock response. Therefore, osmo-adaptation in wild-type cells is delayed because growth slowdown prevents full accessibility to cellular glycogen stores. However, faster adaptation comes at the cost of acute sensitivity to subsequent osmo-stresses. We suggest that stress-induced growth slowdown acts as an arbiter to regulate the resources devoted to osmo-shock, balancing short-term adaptation with long-term robustness.
Collapse
|
6
|
Galli M, Diani L, Quadri R, Nespoli A, Galati E, Panigada D, Plevani P, Muzi-Falconi M. Haspin Modulates the G2/M Transition Delay in Response to Polarization Failures in Budding Yeast. Front Cell Dev Biol 2021; 8:625717. [PMID: 33585466 PMCID: PMC7876276 DOI: 10.3389/fcell.2020.625717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023] Open
Abstract
Symmetry breaking by cellular polarization is an exquisite requirement for the cell-cycle of Saccharomyces cerevisiae cells, as it allows bud emergence and growth. This process is based on the formation of polarity clusters at the incipient bud site, first, and the bud tip later in the cell-cycle, that overall promote bud emission and growth. Given the extreme relevance of this process, a surveillance mechanism, known as the morphogenesis checkpoint, has evolved to coordinate the formation of the bud and cell cycle progression, delaying mitosis in the presence of morphogenetic problems. The atypical protein kinase haspin is responsible for histone H3-T3 phosphorylation and, in yeast, for resolution of polarity clusters in mitosis. Here, we report a novel role for haspin in the regulation of the morphogenesis checkpoint in response to polarity insults. Particularly, we show that cells lacking the haspin ortholog Alk1 fail to achieve sustained checkpoint activation and enter mitosis even in the absence of a bud. In alk1Δ cells, we report a reduced phosphorylation of Cdc28-Y19, which stems from a premature activation of the Mih1 phosphatase. Overall, the data presented in this work define yeast haspin as a novel regulator of the morphogenesis checkpoint in Saccharomyces cerevisiae, where it monitors polarity establishment and it couples bud emergence to the G2/M cell cycle transition.
Collapse
Affiliation(s)
- Martina Galli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Laura Diani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Nespoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Elena Galati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Davide Panigada
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
7
|
Zhu F, Rui L. PRMT5 in gene regulation and hematologic malignancies. Genes Dis 2019; 6:247-257. [PMID: 32042864 PMCID: PMC6997592 DOI: 10.1016/j.gendis.2019.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022] Open
Abstract
Arginine methylation is a common posttranslational modification that governs important cellular processes and impacts development, cell growth, proliferation, and differentiation. Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs), which are classified as type I and type II enzymes responsible for the formation of asymmetric and symmetric dimethylarginine, respectively. PRMT5 is the main type II enzyme that catalyzes symmetric dimethylarginine of histone proteins to induce gene silencing by generating repressive histone marks, including H2AR3me2s, H3R8me2s, and H4R3me2s. PRMT5 can also methylate nonhistone proteins such as the transcription factors p53, E2F1 and p65. Modifications of these proteins by PRMT5 are involved in diverse cellular processes, including transcription, translation, DNA repair, RNA processing, and metabolism. A growing literature demonstrates that PRMT5 expression is upregulated in hematologic malignancies, including leukemia and lymphoma, where PRMT5 regulates gene expression to promote cancer cell proliferation. Targeting PRMT5 by specific inhibitors has emerged as a potential therapeutic strategy to treat these diseases.
Collapse
Affiliation(s)
| | - Lixin Rui
- Department of Medicine and Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| |
Collapse
|
8
|
Mms21: A Putative SUMO E3 Ligase in Candida albicans That Negatively Regulates Invasiveness and Filamentation, and Is Required for the Genotoxic and Cellular Stress Response. Genetics 2018; 211:579-595. [PMID: 30530734 DOI: 10.1534/genetics.118.301769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
In the life cycle of the fungal pathogen Candida albicans, the formation of filamentous cells is a differentiation process that is critically involved in host tissue invasion, and in adaptation to host cell and environmental stresses. Here, we have used the Gene Replacement And Conditional Expression library to identify genes controlling invasiveness and filamentation; conditional repression of the library revealed 69 mutants that triggered these processes. Intriguingly, the genes encoding the small ubiquitin-like modifier (SUMO) E3 ligase Mms21, and all other tested members of the sumoylation pathway, were both nonessential and capable of triggering filamentation upon repression, suggesting an important role for sumoylation in controlling filamentation in C. albicans We have investigated Mms21 in detail. Both Mms21 nulls (mms21Δ/Δ) and SP [Siz/Pias (protein inhibitor of activated signal transducer and activator of transcription)] domain (SUMO E3 ligase domain)-deleted mutants displayed invasiveness, filamentation, and abnormal nuclear segregation; filament formation occurred even in the absence of the hyphal transcription factor Efg1. Transcriptional analysis of mms21Δ/Δ showed an increase in expression from two- to eightfold above that of the wild-type for hyphal-specific genes, including ECE1, PGA13, PGA26, HWP1, ALS1, ALS3, SOD4, SOD5, UME6, and HGC1 The Mms21-deleted mutants were unable to recover from DNA-damaging agents like methyl methane sulfonate, hydroxyurea, hydrogen peroxide, and UV radiation, suggesting that the protein is important for genotoxic stress responses. In addition, the mms21Δ/Δ mutant displayed sensitivity to cell wall and thermal stresses, and to different antifungal drugs. All these findings suggest that Mms21 plays important roles in cellular differentiation, DNA damage and cellular stress responses, and in response to antifungal drugs.
Collapse
|
9
|
Gihana GM, Musser TR, Thompson O, Lacefield S. Prolonged cyclin-dependent kinase inhibition results in septin perturbations during return to growth and mitosis. J Cell Biol 2018; 217:2429-2443. [PMID: 29743192 PMCID: PMC6028541 DOI: 10.1083/jcb.201708153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/01/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022] Open
Abstract
By investigating how yeast cells coordinate polarity and division in a special type of cell division called return to growth, Gihana et al. discover that although checkpoints are normally beneficial, prolonged activation of the morphogenesis checkpoint is instead detrimental to the cell. We investigated how Saccharomyces cerevisiae coordinate polarization, budding, and anaphase during a unique developmental program called return to growth (RTG) in which cells in meiosis return to mitosis upon nutrient shift. Cells reentering mitosis from prophase I deviate from the normal cell cycle by budding in G2 instead of G1. We found that cells do not maintain the bipolar budding pattern, a characteristic of diploid cells. Furthermore, strict temporal regulation of M-phase cyclin-dependent kinase (CDK; M-CDK) is important for polarity establishment and morphogenesis. Cells with premature M-CDK activity caused by loss of checkpoint kinase Swe1 failed to polarize and underwent anaphase without budding. Mutants with increased Swe1-dependent M-CDK inhibition showed additional or more penetrant phenotypes in RTG than mitosis, including elongated buds, multiple buds, spindle mispositioning, and septin perturbation. Surprisingly, the enhanced and additional phenotypes were not exclusive to RTG but also occurred with prolonged Swe1-dependent CDK inhibition in mitosis. Our analysis reveals that prolonged activation of the Swe1-dependent checkpoint can be detrimental instead of beneficial.
Collapse
Affiliation(s)
| | | | - Oscar Thompson
- Department of Biology, Indiana University, Bloomington, IN
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
10
|
Lai H, Chiou JG, Zhurikhina A, Zyla TR, Tsygankov D, Lew DJ. Temporal regulation of morphogenetic events in Saccharomyces cerevisiae. Mol Biol Cell 2018; 29:2069-2083. [PMID: 29927361 PMCID: PMC6232962 DOI: 10.1091/mbc.e18-03-0188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tip growth in fungi involves highly polarized secretion and modification of the cell wall at the growing tip. The genetic requirements for initiating polarized growth are perhaps best understood for the model budding yeast Saccharomyces cerevisiae. Once the cell is committed to enter the cell cycle by activation of G1 cyclin/cyclin-dependent kinase (CDK) complexes, the polarity regulator Cdc42 becomes concentrated at the presumptive bud site, actin cables are oriented toward that site, and septin filaments assemble into a ring around the polarity site. Several minutes later, the bud emerges. Here, we investigated the mechanisms that regulate the timing of these events at the single-cell level. Septin recruitment was delayed relative to polarity establishment, and our findings suggest that a CDK-dependent septin “priming” facilitates septin recruitment by Cdc42. Bud emergence was delayed relative to the initiation of polarized secretion, and our findings suggest that the delay reflects the time needed to weaken the cell wall sufficiently for the cell to bud. Rho1 activation by Rom2 occurred at around the time of bud emergence, perhaps in response to local cell-wall weakening. This report reveals regulatory mechanisms underlying the morphogenetic events in the budding yeast.
Collapse
Affiliation(s)
- Helen Lai
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Anastasia Zhurikhina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332
| | - Trevin R Zyla
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
11
|
Gopalakrishnan V, Tan CR, Li S. Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication. Cell Cycle 2017. [PMID: 28650257 DOI: 10.1080/15384101.2017.1312235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomere homeostasis is central to maintaining genomic integrity. In budding yeast, Cdk1 phosphorylates the telomere-specific binding protein, Cdc13, promoting the recruitment of telomerase to telomere and thereby telomere elongation. Cdc13 is also an integral part of the CST (Cdc13-Stn1-Ten1) complex that is essential for telomere capping and counteracting telomerase-dependent telomere elongation. Therefore, telomere length homeostasis is a balance between telomerase-extendable and CST-unextendable states. In our earlier work, we showed that Cdk1 also phosphorylates Stn1 which occurs sequentially following Cdc13 phosphorylation during cell cycle progression. This stabilizes the CST complex at the telomere and results in telomerase inhibition. Hence Cdk1-dependent phosphorylations of Stn1 acts like a molecular switch that drives Cdc13 to complex with Stn1-Ten1 rather than with telomerase. However, the underlying mechanism of how a single cyclin-dependent kinase phosphorylates Cdc13 and Stn1 in temporally distinct windows is largely unclear. Here, we show that S phase cyclins are necessary for telomere maintenance. The S phase and mitotic cyclins facilitate Cdc13 and Stn1 phosphorylation respectively, to exert opposing outcomes at the telomere. Thus, our results highlight a previously unappreciated role for cyclins in telomere replication.
Collapse
Affiliation(s)
| | - Cherylin Ruiling Tan
- b Department of Biological Sciences , National University of Singapore , Singapore
| | - Shang Li
- a Program in Cancer and Stem Cell Biology , Duke-NUS Medical School , Singapore.,c Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
12
|
Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response. G3-GENES GENOMES GENETICS 2016; 6:3869-3881. [PMID: 27678521 PMCID: PMC5144958 DOI: 10.1534/g3.116.033910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.
Collapse
|
13
|
Abstract
In the early 1970s, studies in Leland Hartwell’s laboratory at the University of Washington launched the genetic analysis of the eukaryotic cell cycle and set the path that has led to our modern understanding of this centrally important process. This 45th-anniversary Retrospective reviews the steps by which the project took shape, the atmosphere in which this happened, and the possible morals for modern times. It also provides an up-to-date look at the 35 original CDC genes and their human homologues.
Collapse
Affiliation(s)
- Brian J Reid
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109 Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA 98195
| | - Joseph G Culotti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Robert S Nash
- Saccharomyces Genome Database, Stanford University School of Medicine, Stanford, CA 94305 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
14
|
Ondracka A, Robbins JA, Cross FR. An APC/C-Cdh1 Biosensor Reveals the Dynamics of Cdh1 Inactivation at the G1/S Transition. PLoS One 2016; 11:e0159166. [PMID: 27410035 PMCID: PMC4943722 DOI: 10.1371/journal.pone.0159166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/28/2016] [Indexed: 12/31/2022] Open
Abstract
B-type cyclin-dependent kinase activity must be turned off for mitotic exit and G1 stabilization. B-type cyclin degradation is mediated by the anaphase-promoting complex/cyclosome (APC/C); during and after mitotic exit, APC/C is dependent on Cdh1. Cdh1 is in turn phosphorylated and inactivated by cyclin-CDK at the Start transition of the new cell cycle. We developed a biosensor to assess the cell cycle dynamics of APC/C-Cdh1. Nuclear exit of the G1 transcriptional repressor Whi5 is a known marker of Start; APC/C-Cdh1 is inactivated 12 min after Whi5 nuclear exit with little measurable cell-to-cell timing variability. Multiple phosphorylation sites on Cdh1 act in a redundant manner to repress its activity. Reducing the number of phosphorylation sites on Cdh1 can to some extent be tolerated for cell viability, but it increases variability in timing of APC/C-Cdh1 inactivation. Mutants with minimal subsets of phosphorylation sites required for viability exhibit striking stochasticity in multiple responses including budding, nuclear division, and APC/C-Cdh1 activity itself. Multiple cyclin-CDK complexes, as well as the stoichiometric inhibitor Acm1, contribute to APC/C-Cdh1 inactivation; this redundant control is likely to promote rapid and reliable APC/C-Cdh1 inactivation immediately following the Start transition.
Collapse
Affiliation(s)
- Andrej Ondracka
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10065, United States of America
| | - Jonathan A. Robbins
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10065, United States of America
| | - Frederick R. Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10065, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kang H, Lew DJ. How do cells know what shape they are? Curr Genet 2016; 63:75-77. [PMID: 27313005 DOI: 10.1007/s00294-016-0623-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Studies on a yeast cell cycle checkpoint that can delay mitosis depending on whether cells have built a bud have identified a "sensor" that seems to recognize the organization of filament-forming septin proteins. Innovative work applying correlative light and platinum replica electron microscopy suggests that the informative septin organization involves parallel alignment of septin filaments, and another striking study shows that septin filaments prefer to populate membranes that have positive micron-scale curvature. Together, these findings suggest a model for how cells may monitor aspects of their own shape to influence cell behavior.
Collapse
Affiliation(s)
- Hui Kang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Abstract
Polarized growth is critical for the development and maintenance of diverse organisms and tissues but particularly so in fungi, where nutrient uptake, communication, and reproduction all rely on cell asymmetries. To achieve polarized growth, fungi spatially organize both their cytosol and cortical membranes. Septins, a family of GTP-binding proteins, are key regulators of spatial compartmentalization in fungi and other eukaryotes. Septins form higher-order structures on fungal plasma membranes and are thought to contribute to the generation of cell asymmetries by acting as molecular scaffolds and forming diffusional barriers. Here we discuss the links between septins and polarized growth and consider molecular models for how septins contribute to cellular asymmetry in fungi.
Collapse
Affiliation(s)
- Anum Khan
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Molly McQuilken
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| |
Collapse
|
17
|
Kang H, Tsygankov D, Lew DJ. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. Mol Biol Cell 2016; 27:1764-75. [PMID: 27053666 PMCID: PMC4884067 DOI: 10.1091/mbc.e16-01-0014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
Yeast cells know whether or not they have a bud. The kinase Elm1 and the septin cytoskeleton are key transducers of cell shape information. Bud formation by Saccharomyces cerevisiae must be coordinated with the nuclear cycle to enable successful proliferation. Many environmental stresses temporarily disrupt bud formation, and in such circumstances, the morphogenesis checkpoint halts nuclear division until bud formation can resume. Bud emergence is essential for degradation of the mitotic inhibitor, Swe1. Swe1 is localized to the septin cytoskeleton at the bud neck by the Swe1-binding protein Hsl7. Neck localization of Swe1 is required for Swe1 degradation. Although septins form a ring at the presumptive bud site before bud emergence, Hsl7 is not recruited to the septins until after bud emergence, suggesting that septins and/or Hsl7 respond to a “bud sensor.” Here we show that recruitment of Hsl7 to the septin ring depends on a combination of two septin-binding kinases: Hsl1 and Elm1. We elucidate which domains of these kinases are needed and show that artificial targeting of those domains suffices to recruit Hsl7 to septin rings even in unbudded cells. Moreover, recruitment of Elm1 is responsive to bud emergence. Our findings suggest that Elm1 plays a key role in sensing bud emergence.
Collapse
Affiliation(s)
- Hui Kang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
18
|
Redundant Regulation of Cdk1 Tyrosine Dephosphorylation in Saccharomyces cerevisiae. Genetics 2015; 202:903-10. [PMID: 26715668 DOI: 10.1534/genetics.115.182469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2A(Rts1) either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase.
Collapse
|
19
|
Abstract
In 1990, John Pringle and colleagues identified the small GTPase and demonstrated its role in yeast cell polarization.
Collapse
|
20
|
Silva RC, Dautel M, Di Genova BM, Amberg DC, Castilho BA, Sattlegger E. The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast. PLoS One 2015; 10:e0131070. [PMID: 26176233 PMCID: PMC4503747 DOI: 10.1371/journal.pone.0131070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 05/28/2015] [Indexed: 12/01/2022] Open
Abstract
The Saccharomyces cerevisiae protein Yih1, when overexpressed, inhibits the eIF2 alpha kinase Gcn2 by competing for Gcn1 binding. However, deletion of YIH1 has no detectable effect on Gcn2 activity, suggesting that Yih1 is not a general inhibitor of Gcn2, and has no phenotypic defect identified so far. Thus, its physiological role is largely unknown. Here, we show that Yih1 is involved in the cell cycle. Yeast lacking Yih1 displays morphological patterns and DNA content indicative of a delay in the G2/M phases of the cell cycle, and this phenotype is independent of Gcn1 and Gcn2. Accordingly, the levels of phosphorylated eIF2α, which show a cell cycle-dependent fluctuation, are not altered in cells devoid of Yih1. We present several lines of evidence indicating that Yih1 is in a complex with Cdc28. Yih1 pulls down endogenous Cdc28 in vivo and this interaction is enhanced when Cdc28 is active, suggesting that Yih1 modulates the function of Cdc28 in specific stages of the cell cycle. We also demonstrate, by Bimolecular Fluorescence Complementation, that endogenous Yih1 and Cdc28 interact with each other, confirming Yih1 as a bona fide Cdc28 binding partner. Amino acid substitutions within helix H2 of the RWD domain of Yih1 enhance Yih1-Cdc28 association. Overexpression of this mutant, but not of wild type Yih1, leads to a phenotype similar to that of YIH1 deletion, supporting the view that Yih1 is involved through Cdc28 in the regulation of the cell cycle. We further show that IMPACT, the mammalian homologue of Yih1, interacts with CDK1, the mammalian counterpart of Cdc28, indicating that the involvement with the cell cycle is conserved. Together, these data provide insights into the cellular function of Yih1/IMPACT, and provide the basis for future studies on the role of this protein in the cell cycle.
Collapse
Affiliation(s)
- Richard C. Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Martina Dautel
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Bruno M. Di Genova
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - David C. Amberg
- Department of Biochemistry and Molecular Biology, Upstate Medical University, State University of New York, Syracuse, New York, United States of America
| | - Beatriz A. Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Evelyn Sattlegger
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
21
|
Abstract
In this article, we will discuss the biochemistry of mitosis in eukaryotic cells. We will focus on conserved principles that, importantly, are adapted to the biology of the organism. It is vital to bear in mind that the structural requirements for division in a rapidly dividing syncytial Drosophila embryo, for example, are markedly different from those in a unicellular yeast cell. Nevertheless, division in both systems is driven by conserved modules of antagonistic protein kinases and phosphatases, underpinned by ubiquitin-mediated proteolysis, which create molecular switches to drive each stage of division forward. These conserved control modules combine with the self-organizing properties of the subcellular architecture to meet the specific needs of the cell. Our discussion will draw on discoveries in several model systems that have been important in the long history of research on mitosis, and we will try to point out those principles that appear to apply to all cells, compared with those in which the biochemistry has been specifically adapted in a particular organism.
Collapse
Affiliation(s)
- Samuel Wieser
- The Gurdon Institute, Cambridge CB2 1QN, United Kingdom
| | | |
Collapse
|
22
|
Miyakawa T, Mizunuma M. Physiological Roles of Calcineurin inSaccharomyces cerevisiaewith Special Emphasis on Its Roles in G2/M Cell-Cycle Regulation. Biosci Biotechnol Biochem 2014; 71:633-45. [PMID: 17341827 DOI: 10.1271/bbb.60495] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calcineurin, a highly conserved Ca(2+)/CaM-dependent protein phosphatase, plays key regulatory roles in diverse biological processes from yeast to humans. Genetic and molecular analyses of the yeast model system have proved successful in dissecting complex regulatory pathways mediated by calcineurin. Saccharomyces cerevisiae calcineurin is not essential for growth under laboratory conditions, but becomes essential for survival under certain stress conditions, and is required for stress-induced expression of the genes for ion transporters and cell-wall synthesis. Yeast calcineurin, in collaboration with a Mpk1 MAP kinase cascade, is also important in G(2) cell-cycle regulation due to its action in a checkpoint-like mechanism. Genetic and molecular analysis of the Ca(2+)-dependent cell-cycle regulation has revealed an elaborate mechanism for the calcineurin-dependent regulation of the G(2)/M transition, in which calcineurin multilaterally activates Swe1, a negative regulator of the Cdc28/Clb complex, at the transcriptional, posttranslational, and degradation levels.
Collapse
Affiliation(s)
- Tokichi Miyakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan.
| | | |
Collapse
|
23
|
Genotoxic stress prevents Ndd1-dependent transcriptional activation of G2/M-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 2013; 34:711-24. [PMID: 24324010 DOI: 10.1128/mcb.01090-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Downregulation of specific transcripts is one of the mechanisms utilized by eukaryotic checkpoint systems to prevent cell cycle progression. Here we identified and explored such a mechanism in the yeast Saccharomyces cerevisiae. It involves the Mec1-Rad53 kinase cascade, which attenuates G(2)/M-specific gene transcription upon genotoxic stress. This inhibition is achieved via multiple Rad53-dependent inhibitory phosphorylations on the transcriptional activator Ndd1 that prevent its chromatin recruitment via interactions with the forkhead factor Fkh2. Relevant modification sites on Ndd1 were identified by mass spectrometry, and corresponding alanine substitutions were able to suppress a methyl methanesulfonate-induced block in Ndd1 chromatin recruitment. Whereas effective suppression by these Ndd1 mutants is achieved for DNA damage, this is not the case under replication stress conditions, suggesting that additional mechanisms must operate under such conditions. We propose that budding yeast cells prevent the normal transcription of G(2)/M-specific genes upon genotoxic stress to precisely coordinate the timing of mitotic and postmitotic events with respect to S phase.
Collapse
|
24
|
Lianga N, Williams EC, Kennedy EK, Doré C, Pilon S, Girard SL, Deneault JS, Rudner AD. A Wee1 checkpoint inhibits anaphase onset. ACTA ACUST UNITED AC 2013; 201:843-62. [PMID: 23751495 PMCID: PMC3678162 DOI: 10.1083/jcb.201212038] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The budding yeast Wee1 kinase Swe1 restrains the metaphase-to-anaphase transition by preventing the Cdk1-dependent phosphorylation and activation of APCCdc20. Cdk1 drives both mitotic entry and the metaphase-to-anaphase transition. Past work has shown that Wee1 inhibition of Cdk1 blocks mitotic entry. Here we show that the budding yeast Wee1 kinase, Swe1, also restrains the metaphase-to-anaphase transition by preventing Cdk1 phosphorylation and activation of the mitotic form of the anaphase-promoting complex/cyclosome (APCCdc20). Deletion of SWE1 or its opposing phosphatase MIH1 (the budding yeast cdc25+) altered the timing of anaphase onset, and activation of the Swe1-dependent morphogenesis checkpoint or overexpression of Swe1 blocked cells in metaphase with reduced APC activity in vivo and in vitro. The morphogenesis checkpoint also depended on Cdc55, a regulatory subunit of protein phosphatase 2A (PP2A). cdc55Δ checkpoint defects were rescued by mutating 12 Cdk1 phosphorylation sites on the APC, demonstrating that the APC is a target of this checkpoint. These data suggest a model in which stepwise activation of Cdk1 and inhibition of PP2ACdc55 triggers anaphase onset.
Collapse
Affiliation(s)
- Noel Lianga
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ballou ER, Kozubowski L, Nichols CB, Alspaugh JA. Ras1 acts through duplicated Cdc42 and Rac proteins to regulate morphogenesis and pathogenesis in the human fungal pathogen Cryptococcus neoformans. PLoS Genet 2013; 9:e1003687. [PMID: 23950731 PMCID: PMC3738472 DOI: 10.1371/journal.pgen.1003687] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/17/2013] [Indexed: 02/07/2023] Open
Abstract
Proliferation and morphogenesis in eukaryotic cells depend on the concerted activity of Rho-type GTPases, including Ras, Cdc42, and Rac. The sexually dimorphic fungus Cryptococcus neoformans, which encodes paralogous, non-essential copies of all three, provides a unique model in which to examine the interactions of these conserved proteins. Previously, we demonstrated that RAS1 mediates C. neoformans virulence by acting as a central regulator of both thermotolerance and mating. We report here that ras1Δ mutants accumulate defects in polarized growth, cytokinesis, and cell cycle progression. We demonstrate that the ras1Δ defects in thermotolerance and mating can be largely explained by the compromised activity of four downstream Rho-GTPases: the Cdc42 paralogs, Cdc42 and Cdc420; and the Rac paralogs, Rac1 and Rac2. Further, we demonstrate that the separate GTPase classes play distinct Ras-dependent roles in C. neoformans morphogenesis and pathogenesis. Cdc42 paralogs primarily control septin localization and cytokinesis, while Rac paralogs play a primary role in polarized cell growth. Together, these duplicate, related signaling proteins provide a robust system to allow microbial proliferation in the presence of host-derived cell stresses.
Collapse
Affiliation(s)
- Elizabeth Ripley Ballou
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lukasz Kozubowski
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Connie B. Nichols
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
26
|
Cdk1 modulation ensures the coordination of cell-cycle events during the switch from meiotic prophase to mitosis. Curr Biol 2013; 23:1505-13. [PMID: 23871241 DOI: 10.1016/j.cub.2013.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/20/2013] [Accepted: 06/12/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Budding yeast cells that enter the developmental path of meiosis do not commit to finishing meiosis until after prophase I and the realization of such meiosis-specific events as pairing of homologous chromosomes and initiation of recombination. If the meiosis-inducing signal is withdrawn prior to commitment, cells exit meiosis and return to mitosis. The timing of this transition poses a singular problem for maintaining genome integrity. Cells in meiotic prophase have already replicated their DNA, but they have not undergone the morphological changes intrinsic to mitosis, including budding. Successful re-entry into mitosis requires that these cells bud but not rereplicate their DNA, reversing the normal order of mitosis. This study focuses on the cellular mechanisms that permit this dramatically altered order of cell-cycle events. RESULTS By developing a microfluidics assay to monitor individual cells, we show that the successful transition from meiotic prophase to mitosis requires the modulation of Cdk1 activity to coordinate cell-cycle events. The S. cerevisiae Wee1 homolog Swe1 prevents the formation of multinucleate cells by restraining M phase CDK activity to allow bud formation prior to nuclear division. The remaining S phase CDK activity promotes bud formation and prevents origin licensing so that DNA cannot rereplicate between bud formation and nuclear division. Once a bud has formed, M phase CDK drives cells through a normal mitotic division. CONCLUSIONS Our study uncovers the essential requirement of Swe1 to modulate CDK activity to coordinate cell-cycle events and maintain genome integrity during the transition from meiotic prophase to mitosis.
Collapse
|
27
|
Yasutis KM, Kozminski KG. Cell cycle checkpoint regulators reach a zillion. Cell Cycle 2013; 12:1501-9. [PMID: 23598718 DOI: 10.4161/cc.24637] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered.
Collapse
|
28
|
Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 2013; 23:345-56. [PMID: 23566594 DOI: 10.1016/j.tcb.2013.03.002] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 11/25/2022]
Abstract
Almost two billion years of evolution have generated a vast and amazing variety of eukaryotic life with approximately 8.7 million extant species. Growth and reproduction of all of these organisms depend on faithful duplication and distribution of their chromosomes to the newly forming daughter cells in a process called the cell cycle. However, most of what is known today about cell cycle control comes from a few model species that belong to the unikonts; that is, to only one of five 'supergroups' that comprise the eukaryotic kingdom. Recently, analyzing species from distantly related clades is providing insights into general principles of cell cycle regulation and shedding light on its evolution. Here, referring to animal and fungal as opposed to non-unikont systems, especially flowering plants from the archaeplastid supergroup, we compare the conservation of central cell cycle regulator functions, the structure of network topologies, and the evolutionary dynamics of substrates of core cell cycle kinases.
Collapse
Affiliation(s)
- Hirofumi Harashima
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | | | | |
Collapse
|
29
|
King K, Kang H, Jin M, Lew DJ. Feedback control of Swe1p degradation in the yeast morphogenesis checkpoint. Mol Biol Cell 2013; 24:914-22. [PMID: 23389636 PMCID: PMC3608501 DOI: 10.1091/mbc.e12-11-0812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The morphogenesis checkpoint stabilizes the mitotic inhibitor Swe1p and prevents mitosis following stresses that affect bud formation. It is shown that, following some stresses, Swe1p stabilization is an indirect effect of cyclin-dependent kinase inhibition. Saccharomyces cerevisiae cells exposed to a variety of physiological stresses transiently delay bud emergence or bud growth. To maintain coordination between bud formation and the cell cycle in such circumstances, the morphogenesis checkpoint delays nuclear division via the mitosis-inhibitory Wee1-family kinase, Swe1p. Swe1p is degraded during G2 in unstressed cells but is stabilized and accumulates following stress. Degradation of Swe1p is preceded by its recruitment to the septin scaffold at the mother-bud neck, mediated by the Swe1p-binding protein Hsl7p. Following osmotic shock or actin depolymerization, Swe1p is stabilized, and previous studies suggested that this was because Hsl7p was no longer recruited to the septin scaffold following stress. However, we now show that Hsl7p is in fact recruited to the septin scaffold in stressed cells. Using a cyclin-dependent kinase (CDK) mutant that is immune to checkpoint-mediated inhibition, we show that Swe1p stabilization following stress is an indirect effect of CDK inhibition. These findings demonstrate the physiological importance of a positive-feedback loop in which Swe1p activity inhibits the CDK, which then ceases to target Swe1p for degradation. They also highlight the difficulty in disentangling direct checkpoint pathways from the effects of positive-feedback loops active at the G2/M transition.
Collapse
Affiliation(s)
- Kindra King
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
30
|
Spiesser TW, Müller C, Schreiber G, Krantz M, Klipp E. Size homeostasis can be intrinsic to growing cell populations and explained without size sensing or signalling. FEBS J 2012; 279:4213-30. [PMID: 23013467 DOI: 10.1111/febs.12014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/12/2012] [Accepted: 09/20/2012] [Indexed: 12/19/2022]
Abstract
The cell division cycle orchestrates cellular growth and division. The machinery underpinning the cell division cycle is well characterized, but the actual cue(s) driving the cell division cycle remains unknown. In rapidly growing and dividing yeast cells, this cue has been proposed to be cell size. Presumably, a mechanism communicating cell size acts as gatekeeper for the cell division cycle via the G(1) network, which triggers G(1) exit only when a critical size has been reached. Here, we evaluate this hypothesis with a minimal core model linking metabolism, growth and the cell division cycle. Using this model, we (a) present support for coordinated regulation of G(1)/S and G(2)/M transition in Saccharomyces cerevisiae in response to altered growth conditions, (b) illustrate the intrinsic antagonism between G(1) progression and cell size and (c) provide evidence that the coupling of growth and division is sufficient to allow for size homeostasis without directly communicating or measuring cell size. We show that even with a rudimentary version of the G(1) network consisting of a single unregulated cyclin, size homeostasis is maintained in populations during autocatalytic growth when the geometric constraint on nutrient supply is considered. Taken together, our results support the notion that cell size is a consequence rather than a regulator of growth and division.
Collapse
|
31
|
Roles of Hsl1p and Hsl7p in Swe1p degradation: beyond septin tethering. EUKARYOTIC CELL 2012; 11:1496-502. [PMID: 23042131 DOI: 10.1128/ec.00196-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The morphogenesis checkpoint in Saccharomyces cerevisiae couples bud formation to the cell division cycle by delaying nuclear division until cells have successfully constructed a bud. The cell cycle delay is due to the mitosis-inhibitory kinase Swe1p, which phosphorylates the cyclin-dependent kinase Cdc28p. In unperturbed cells, Swe1p is degraded via a mechanism thought to involve its tethering to a cortical scaffold of septin proteins at the mother-bud neck. In cells that experience stresses that delay bud formation, Swe1p is stabilized, accumulates, and promotes a G(2) delay. The tethering of Swe1p to the neck requires two regulators, called Hsl1p and Hsl7p. Hsl1p interacts with septins, and Hsl7p interacts with Swe1p; tethering occurs when Hsl1p interacts with Hsl7p. Here we created a version of Swe1p that is artificially tethered to the neck by fusion to a septin so that Swe1p no longer requires Hsl1p or Hsl7p for its localization to the neck. We show that the interaction between Hsl1p and Hsl7p, required for normal Swe1p degradation, is no longer needed for septin-Swe1p degradation, supporting the idea that the Hsl1p-Hsl7p interaction serves mainly to tether Swe1p to the neck. However, both Hsl1p and Hsl7p are still required for Swe1p degradation, implying that these proteins play additional roles beyond localizing Swe1p to the neck.
Collapse
|
32
|
Abstract
Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host-cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways-rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)-also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior.
Collapse
|
33
|
García-Rodríguez N, Díaz de la Loza MDC, Andreson B, Monje-Casas F, Rothstein R, Wellinger RE. Impaired manganese metabolism causes mitotic misregulation. J Biol Chem 2012; 287:18717-29. [PMID: 22493290 DOI: 10.1074/jbc.m112.358309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Manganese is an essential trace element, whose intracellular levels need to be carefully regulated. Mn(2+) acts as a cofactor for many enzymes and excess of Mn(2+) is toxic. Alterations in Mn(2+) homeostasis affect metabolic functions and mutations in the human Mn(2+)/Ca(2+) transporter ATP2C1 have been linked to Hailey-Hailey disease. By deletion of the yeast orthologue PMR1 we have studied the impact of Mn(2+) on cell cycle progression and show that an excess of cytosolic Mn(2+) alters S-phase transit, induces transcriptional up-regulation of cell cycle regulators, bypasses the need for S-phase cell cycle checkpoints and predisposes to genomic instability. On the other hand, we find that depletion of the Golgi Mn(2+) pool requires a functional morphology checkpoint to avoid the formation of polyploid cells.
Collapse
Affiliation(s)
- Néstor García-Rodríguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Anastasia SD, Nguyen DL, Thai V, Meloy M, MacDonough T, Kellogg DR. A link between mitotic entry and membrane growth suggests a novel model for cell size control. ACTA ACUST UNITED AC 2012; 197:89-104. [PMID: 22451696 PMCID: PMC3317797 DOI: 10.1083/jcb.201108108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2A(Cdc55)). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function.
Collapse
Affiliation(s)
- Steph D Anastasia
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Studies of the processes leading to the construction of a bud and its separation from the mother cell in Saccharomyces cerevisiae have provided foundational paradigms for the mechanisms of polarity establishment, cytoskeletal organization, and cytokinesis. Here we review our current understanding of how these morphogenetic events occur and how they are controlled by the cell-cycle-regulatory cyclin-CDK system. In addition, defects in morphogenesis provide signals that feed back on the cyclin-CDK system, and we review what is known regarding regulation of cell-cycle progression in response to such defects, primarily acting through the kinase Swe1p. The bidirectional communication between morphogenesis and the cell cycle is crucial for successful proliferation, and its study has illuminated many elegant and often unexpected regulatory mechanisms. Despite considerable progress, however, many of the most puzzling mysteries in this field remain to be resolved.
Collapse
Affiliation(s)
- Audrey S. Howell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
36
|
Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins. Biotechnol Adv 2012; 30:108-30. [DOI: 10.1016/j.biotechadv.2011.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 08/18/2011] [Accepted: 09/12/2011] [Indexed: 12/23/2022]
|
37
|
Acosta I, Ontoso D, San-Segundo PA. The budding yeast polo-like kinase Cdc5 regulates the Ndt80 branch of the meiotic recombination checkpoint pathway. Mol Biol Cell 2011; 22:3478-90. [PMID: 21795394 PMCID: PMC3172271 DOI: 10.1091/mbc.e11-06-0482] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes. Accurate distribution of genetic information to the meiotic progeny is ensured by the action of the meiotic recombination checkpoint. The function of the evolutionarily conserved polo-like kinase in this meiotic surveillance mechanism is described. Defects in chromosome synapsis and/or meiotic recombination activate a surveillance mechanism that blocks meiotic cell cycle progression to prevent anomalous chromosome segregation and formation of aberrant gametes. In the budding yeast zip1 mutant, which lacks a synaptonemal complex component, the meiotic recombination checkpoint is triggered, resulting in extremely delayed meiotic progression. We report that overproduction of the polo-like kinase Cdc5 partially alleviates the meiotic prophase arrest of zip1, leading to the formation of inviable meiotic products. Unlike vegetative cells, we demonstrate that Cdc5 overproduction does not stimulate meiotic checkpoint adaptation because the Mek1 kinase remains activated in zip1 2μ-CDC5 cells. Inappropriate meiotic divisions in zip1 promoted by high levels of active Cdc5 do not result from altered function of the cyclin-dependent kinase (CDK) inhibitor Swe1. In contrast, CDC5 overexpression leads to premature induction of the Ndt80 transcription factor, which drives the expression of genes required for meiotic divisions, including CLB1. We also show that depletion of Cdc5 during meiotic prophase prevents the production of Ndt80 and that CDK activity contributes to the induction of Ndt80 in zip1 cells overexpressing CDC5. Our results reveal a role for Cdc5 in meiotic checkpoint control by regulating Ndt80 function.
Collapse
Affiliation(s)
- Isabel Acosta
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
38
|
Yasutis K, Vignali M, Ryder M, Tameire F, Dighe SA, Fields S, Kozminski KG. Zds2p regulates Swe1p-dependent polarized cell growth in Saccharomyces cerevisiae via a novel Cdc55p interaction domain. Mol Biol Cell 2010; 21:4373-86. [PMID: 20980617 PMCID: PMC3002390 DOI: 10.1091/mbc.e10-04-0326] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/20/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022] Open
Abstract
Deletion of the paralogs ZDS1 and ZDS2 in the budding yeast Saccharomyces cerevisiae causes a mis-regulation of polarized cell growth. Here we show a function for these genes as regulators of the Swe1p (Wee1p) kinase-dependent G2/M checkpoint. We identified a conserved domain in the C-terminus of Zds2p consisting of amino acids 813-912 (hereafter referred to as ZH4 for Zds homology 4) that is required for regulation of Swe1p-dependent polarized bud growth. ZH4 is shown by protein affinity assays to be necessary and sufficient for interaction with Cdc55p, a regulatory subunit of protein phosphatase 2A (PP2A). We hypothesized that the Zds proteins are in a pathway that negatively regulates the Swe1p-dependent G2/M checkpoint via Cdc55p. Supporting this model, deletion of CDC55 rescues the aberrant bud morphology of a zds1Δzds2Δ strain. We also show that expression of ZDS1 or ZDS2 from a strong galactose-inducible promoter can induce mitosis even when the Swe1p-dependent G2/M checkpoint is activated by mis-organization of the actin cytoskeleton. This negative regulation requires the CDC55 gene. Together these data indicate that the Cdc55p/Zds2p module has a function in the regulation of the Swe1p-dependent G2/M checkpoint.
Collapse
Affiliation(s)
- Kimberly Yasutis
- *Departments of Biology and
- Cell and Developmental Biology Program, University of Virginia, Charlottesville, VA 22904; and
| | | | | | | | | | - Stanley Fields
- Departments of Genome Sciences and Medicine and
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - Keith G. Kozminski
- *Departments of Biology and
- Cell Biology and
- Cell and Developmental Biology Program, University of Virginia, Charlottesville, VA 22904; and
| |
Collapse
|
39
|
Wicky S, Tjandra H, Schieltz D, Yates J, Kellogg DR. The Zds proteins control entry into mitosis and target protein phosphatase 2A to the Cdc25 phosphatase. Mol Biol Cell 2010; 22:20-32. [PMID: 21119008 PMCID: PMC3016974 DOI: 10.1091/mbc.e10-06-0487] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Wee1 kinase restrains entry into mitosis by phosphorylating and inhibiting cyclin-dependent kinase 1 (Cdk1). The Cdc25 phosphatase promotes entry into mitosis by removing Cdk1 inhibitory phosphorylation. Experiments in diverse systems have established that Wee1 and Cdc25 are regulated by protein phosphatase 2A (PP2A), but a full understanding of the function and regulation of PP2A in entry into mitosis has remained elusive. In budding yeast, entry into mitosis is controlled by a specific form of PP2A that is associated with the Cdc55 regulatory subunit (PP2A(Cdc55)). We show here that related proteins called Zds1 and Zds2 form a tight stoichiometric complex with PP2A(Cdc55) and target its activity to Cdc25 but not to Wee1. Conditional inactivation of the Zds proteins revealed that their function is required primarily at entry into mitosis. In addition, Zds1 undergoes cell cycle-dependent changes in phosphorylation. Together, these observations define a role for the Zds proteins in controlling specific functions of PP2A(Cdc55) and suggest that upstream signals that regulate PP2A(Cdc55) may play an important role in controlling entry into mitosis.
Collapse
Affiliation(s)
- Sidonie Wicky
- Department of Molecular, Cell, and Developmental Biology, Univ. of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
40
|
Caydasi AK, Kurtulmus B, Orrico MIL, Hofmann A, Ibrahim B, Pereira G. Elm1 kinase activates the spindle position checkpoint kinase Kin4. ACTA ACUST UNITED AC 2010; 190:975-89. [PMID: 20855503 PMCID: PMC3101594 DOI: 10.1083/jcb.201006151] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Elm1 phosphorylates a conserved residue within the Kin4 kinase domain to coordinate spindle position with cell cycle progression. Budding yeast asymmetric cell division relies upon the precise coordination of spindle orientation and cell cycle progression. The spindle position checkpoint (SPOC) is a surveillance mechanism that prevents cells with misoriented spindles from exiting mitosis. The cortical kinase Kin4 acts near the top of this network. How Kin4 kinase activity is regulated and maintained in respect to spindle positional cues remains to be established. Here, we show that the bud neck–associated kinase Elm1 participates in Kin4 activation and SPOC signaling by phosphorylating a conserved residue within the activation loop of Kin4. Blocking Elm1 function abolishes Kin4 kinase activity in vivo and eliminates the SPOC response to spindle misalignment. These findings establish a novel function for Elm1 in the coordination of spindle positioning with cell cycle progression via its control of Kin4.
Collapse
Affiliation(s)
- Ayse Koca Caydasi
- German Cancer Research Center, DKFZ-ZMBH Alliance, Molecular Biology of Centrosomes and Cilia, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Kwok AC, Wong JT. The activity of a wall-bound cellulase is required for and is coupled to cell cycle progression in the dinoflagellate Crypthecodinium cohnii. THE PLANT CELL 2010; 22:1281-98. [PMID: 20407022 PMCID: PMC2879759 DOI: 10.1105/tpc.109.070243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 03/23/2010] [Accepted: 04/03/2010] [Indexed: 05/29/2023]
Abstract
Cellulose synthesis, but not its degradation, is generally thought to be required for plant cell growth. In this work, we cloned a dinoflagellate cellulase gene, dCel1, whose activities increased significantly in G(2)/M phase, in agreement with the significant drop of cellulose content reported previously. Cellulase inhibitors not only caused a delay in cell cycle progression at both the G(1) and G(2)/M phases in the dinoflagellate Crypthecodinium cohnii, but also induced a higher level of dCel1p expression. Immunostaining results revealed that dCel1p was mainly localized at the cell wall. Accordingly, the possible role of cellulase activity in cell cycle progression was tested by treating synchronized cells with exogenous dCelp and purified antibody, in experiments analogous to overexpression and knockdown analyses, respectively. Cell cycle advancement was observed in cells treated with exogenous dCel1p, whereas the addition of purified antibody resulted in a cell cycle delay. Furthermore, delaying the G(2)/M phase independently with antimicrotubule inhibitors caused an abrupt and reversible drop in cellulase protein level. Our results provide a conceptual framework for the coordination of cell wall degradation and reconstruction with cell cycle progression in organisms with cell walls. Since cellulase activity has a direct bearing on the cell size, the coupling between cellulase expression and cell cycle progression can also be considered as a feedback mechanism that regulates cell size.
Collapse
Affiliation(s)
| | - Joseph T.Y. Wong
- Department of Biology, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
42
|
Chen S, Liu D, Finley RL, Greenberg ML. Loss of mitochondrial DNA in the yeast cardiolipin synthase crd1 mutant leads to up-regulation of the protein kinase Swe1p that regulates the G2/M transition. J Biol Chem 2010; 285:10397-407. [PMID: 20086012 DOI: 10.1074/jbc.m110.100784] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The anionic phospholipid cardiolipin and its precursor phosphatidylglycerol are synthesized and localized in the mitochondrial inner membrane of eukaryotes. They are required for structural integrity and optimal activities of a large number of mitochondrial proteins and complexes. Previous studies showed that loss of anionic phospholipids leads to cell inviability in the absence of mitochondrial DNA. However, the mechanism linking loss of anionic phospholipids to petite lethality was unclear. To elucidate the mechanism, we constructed a crd1Deltarho degrees mutant, which is viable and mimics phenotypes of pgs1Delta in the petite background. We found that loss of cardiolipin in rho degrees cells leads to elevated expression of Swe1p, a morphogenesis checkpoint protein. Moreover, the retrograde pathway is activated in crd1Deltarho degrees cells, most likely due to the exacerbation of mitochondrial dysfunction. Interestingly, the expression of SWE1 is dependent on retrograde regulation as elevated expression of SWE1 is suppressed by deletion of RTG2 or RTG3. Taken together, these findings indicate that activation of the retrograde pathway leads to up-regulation of SWE1 in crd1Deltarho degrees cells. These results suggest that anionic phospholipids are required for processes that are essential for normal cell division in rho degrees cells.
Collapse
Affiliation(s)
- Shuliang Chen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
43
|
Wang Y. CDKs and the yeast-hyphal decision. Curr Opin Microbiol 2009; 12:644-9. [DOI: 10.1016/j.mib.2009.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
|
44
|
Dissmeyer N, Weimer AK, Pusch S, De Schutter K, Alvim Kamei CL, Nowack MK, Novak B, Duan GL, Zhu YG, De Veylder L, Schnittger A. Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. THE PLANT CELL 2009; 21:3641-54. [PMID: 19948791 PMCID: PMC2798325 DOI: 10.1105/tpc.109.070417] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/24/2009] [Accepted: 10/22/2009] [Indexed: 05/18/2023]
Abstract
Entry into mitosis is universally controlled by cyclin-dependent kinases (CDKs). A key regulatory event in metazoans and fission yeast is CDK activation by the removal of inhibitory phosphate groups in the ATP binding pocket catalyzed by Cdc25 phosphatases. In contrast with other multicellular organisms, we show here that in the flowering plant Arabidopsis thaliana, cell cycle control does not depend on sudden changes in the phosphorylation pattern of the PSTAIRE-containing Cdk1 homolog CDKA;1. Consistently, we found that neither mutants in a previously identified CDC25 candidate gene nor plants in which it is overexpressed display cell cycle defects. Inhibitory phosphorylation of CDKs is also the key event in metazoans to arrest cell cycle progression upon DNA damage. However, we show here that the DNA damage checkpoint in Arabidopsis can also operate independently of the phosphorylation of CDKA;1. These observations reveal a surprising degree of divergence in the circuitry of highly conserved core cell cycle regulators in multicellular organisms. Based on biomathematical simulations, we propose a plant-specific model of how progression through the cell cycle could be wired in Arabidopsis.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Unigruppe am Max-Planck-Institut für Züchtungsforschung, Max-Delbrück-Laboratorium, Lehrstuhl für Botanik III, Universität zu Köln, Köln, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gale CA, Leonard MD, Finley KR, Christensen L, McClellan M, Abbey D, Kurischko C, Bensen E, Tzafrir I, Kauffman S, Becker J, Berman J. SLA2 mutations cause SWE1-mediated cell cycle phenotypes in Candida albicans and Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2009; 155:3847-3859. [PMID: 19778960 DOI: 10.1099/mic.0.033233-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The early endocytic patch protein Sla2 is important for morphogenesis and growth rates in Saccharomyces cerevisiae and Candida albicans, but the mechanism that connects these processes is not clear. Here we report that growth defects in cells lacking CaSLA2 or ScSLA2 are associated with a cell cycle delay that is influenced by Swe1, a morphogenesis checkpoint kinase. To establish how Swe1 monitors Sla2 function, we compared actin organization and cell cycle dynamics in strains lacking other components of early endocytic patches (Sla1 and Abp1) with those in strains lacking Sla2. Only sla2 strains had defects in actin cables, a known trigger of the morphogenesis checkpoint, yet all three strains exhibited Swe1-dependent phenotypes. Thus, Swe1 appears to monitor actin patch in addition to actin cable function. Furthermore, Swe1 contributed to virulence in a mouse model of disseminated candidiasis, implying a role for the morphogenesis checkpoint during the pathogenesis of C. albicans infections.
Collapse
Affiliation(s)
- Cheryl A Gale
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis MN 55455, USA
| | - Michelle D Leonard
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kenneth R Finley
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Leah Christensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Darren Abbey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cornelia Kurischko
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Bensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iris Tzafrir
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jeff Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Judith Berman
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
46
|
Crutchley J, King KM, Keaton MA, Szkotnicki L, Orlando DA, Zyla TR, Bardes ESG, Lew DJ. Molecular dissection of the checkpoint kinase Hsl1p. Mol Biol Cell 2009; 20:1926-36. [PMID: 19211841 DOI: 10.1091/mbc.e08-08-0848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell shape can influence cell behavior. In Saccharomyces cerevisiae, bud emergence can influence cell cycle progression via the morphogenesis checkpoint. This surveillance pathway ensures that mitosis always follows bud formation by linking degradation of the mitosis-inhibitory kinase Swe1p (Wee1) to successful bud emergence. A crucial component of this pathway is the checkpoint kinase Hsl1p, which is activated upon bud emergence and promotes Swe1p degradation. We have dissected the large nonkinase domain of Hsl1p by using evolutionary conservation as a guide, identifying regions important for Hsl1p localization, function, and regulation. An autoinhibitory motif restrains Hsl1p activity when it is not properly localized to the mother-bud neck. Hsl1p lacking this motif is active as a kinase regardless of the assembly state of cytoskeletal septin filaments. However, the active but delocalized Hsl1p cannot promote Swe1p down-regulation, indicating that localization is required for Hsl1p function as well as Hsl1p activation. We also show that the septin-mediated Hsl1p regulation via the novel motif operates in parallel to a previously identified Hsl1p activation pathway involving phosphorylation of the Hsl1p kinase domain. We suggest that Hsl1p responds to alterations in septin organization, which themselves occur in response to the local geometry of the cell cortex.
Collapse
Affiliation(s)
- John Crutchley
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Matmati N, Kitagaki H, Montefusco D, Mohanty BK, Hannun YA. Hydroxyurea sensitivity reveals a role for ISC1 in the regulation of G2/M. J Biol Chem 2009; 284:8241-6. [PMID: 19158081 DOI: 10.1074/jbc.m900004200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae cells lacking ISC1 (inositol phosphosphingolipase C) exhibit sensitivity to genotoxic agents such as methyl methanesulfonate and hydroxyurea (HU). Cell cycle analysis by flow cytometry revealed a G(2)/M block in isc1Delta cells when treated with methyl methanesulfonate or HU. Further investigation revealed that the levels of Cdc28 phosphorylated on Tyr-19, which plays an essential role in the regulation of the G(2)/M checkpoint, were higher in synchronized and asynchronous cells lacking ISC1 in response to HU. Use of a Cdc28-Y19F mutant protected isc1Delta from the G(2)/M block. In wild type cells, HU induced a loss of the Swe1p kinase, the enzyme that phosphorylates Cdc28-Tyr-19, correlating with resumption of the cell cycle. In the isc1Delta cells, however, the levels of Swe1p remained at sustained high levels in response to HU. Significantly, deletion of SWE1 in an isc1Delta background overcame the G(2)/M block in response to HU. The double isc1Delta/swe1Delta mutant also overcame the growth defect on HU. Taken together, these findings implicate Isc1p as an upstream regulator of Swe1p levels and stability and Cdc28-Tyr-19 phosphorylation, in effect signaling recovery from the effects of genotoxic stress and allowing G(2)/M progression.
Collapse
Affiliation(s)
- Nabil Matmati
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | |
Collapse
|
48
|
Sekiya M, Nogami S, Ohya Y. Transcription factors of M-phase cyclin CLB2 in the yeast cell wall integrity checkpoint. Genes Genet Syst 2009; 84:269-76. [DOI: 10.1266/ggs.84.269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mizuho Sekiya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Satoru Nogami
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| |
Collapse
|
49
|
Yamamoto A, Nunoshiba T, Umezu K, Enomoto T, Yamamoto K. Phenyl hydroquinone, an Ames test-negative carcinogen, induces Hog1-dependent stress response signaling. FEBS J 2008; 275:5733-44. [DOI: 10.1111/j.1742-4658.2008.06700.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Identification of Clb2 residues required for Swe1 regulation of Clb2-Cdc28 in Saccharomyces cerevisiae. Genetics 2008; 179:863-74. [PMID: 18558651 DOI: 10.1534/genetics.108.086611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wee1 kinases regulate the cell cycle through inhibitory phosphorylation of cyclin-dependent kinases (CDKs). Eukaryotic cells express multiple CDKs, each having a kinase subunit (Cdk) and a regulatory "cyclin" subunit that function at different stages of the cell cycle to regulate distinct processes. The cyclin imparts specificity to CDK-substrate interactions and also determines whether a particular CDK is subject to Wee1 regulation. Saccharomyces Wee1 (Swe1) inhibits Cdc28 (Cdk1) associated with the mitotic cyclin, Clb2, but not with the G(1) (Cln1, -2, and -3) or the S-phase (Clb5 and -6) cyclins. Here, we show that this specificity depends on two amino acids associated with a conserved "hydrophobic patch" (HP) motif on the cyclin surface, which mediates specificity of CDK-substrate interactions. Mutation of Clb2 residues N260 and K270 largely abrogates Clb2-Cdc28 regulation by Swe1, and reciprocal mutation of the corresponding residues in Clb5 can subject Clb5-Cdc28 to regulation by Swe1. Swe1 phosphorylation by Clb2-Cdc28, which is thought to activate Swe1 kinase, depends on N260 and K270, suggesting that specific regulation of Clb2-Cdc28 by Swe1 derives from the specific ability of Clb2 to target Swe1 for activating phosphorylation. The stable association of Swe1 with Clb2-Cdc28 also depends on these residues, suggesting that Swe1 may competitively inhibit Clb2-Cdc28 interactions with substrates, in addition to its well-known function as a regulator of CDK activity through tyrosine phosphorylation.
Collapse
|