1
|
Zhou MY, Liu BQ, Gao X, Zhang SJ, Jiang Y, Yang T, Sun JB, Zhang X, Liao Y. Sagittaria sagittifolia polysaccharide extract regulates Nrf2 to improve endoplasmic reticulum stress-mediated apoptosis in rat cataracts and HLEB3 cells. Int J Biol Macromol 2025; 300:140270. [PMID: 39863224 DOI: 10.1016/j.ijbiomac.2025.140270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC. This study aimed to explore the therapeutic potential of SSP in ARC and the underlying mechanisms. In sodium selenite-induced cataracts in rats and hydrogen peroxide (H2O2)-induced human lens epithelial B3 (HLEB3) cells, SSP significantly improved lens opacity and pathological changes and alleviated apoptosis and endoplasmic reticulum stress (ERS)-related injury indicators (by inhibiting the intracellular Ca2+ and protein expression of Bcl-2-associated X, cleaved caspase-3, binding immunoglobulin heavy chain protein, protein kinase RNA-like kinase, inositol-requiring enzyme 1α, activating transcription factor 6, C/EBP homology protein, c-Jun N terminal kinase, caspase-12, and calpain-2). In addition, SSP increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, sarco/endoplasmic reticulum-type calcium transport ATPase 2, and B-cell lymphoma-2. After applying Nrf2 knockdown technology by transferring short interfering RNA in HLEB3 cells, SSP demonstrated its protective role by activating Nrf2 and inhibiting ERS-mediated apoptosis. These findings indicate that SSP may protect against ARC by regulating Nrf2/ERS-mediated apoptosis, providing potential evidence for its use in preventing or delaying ARC.
Collapse
Affiliation(s)
- Man-Yu Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Bing-Qing Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Xin Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Shu-Jing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Tao Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Jian-Bin Sun
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Xi Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China.
| |
Collapse
|
2
|
Qin Y, Liu H, Wu H. Cellular Senescence in Health, Disease, and Lens Aging. Pharmaceuticals (Basel) 2025; 18:244. [PMID: 40006057 PMCID: PMC11859104 DOI: 10.3390/ph18020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cellular senescence is a state of irreversible cell cycle arrest that serves as a critical regulator of tissue homeostasis, aging, and disease. While transient senescence contributes to development, wound healing, and tumor suppression, chronic senescence drives inflammation, tissue dysfunction, and age-related pathologies, including cataracts. Lens epithelial cells (LECs), essential for maintaining lens transparency, are particularly vulnerable to oxidative stress-induced senescence, which accelerates lens aging and cataract formation. This review examines the dual role of senescence in LEC function and its implications for age-related cataractogenesis, alongside emerging senotherapeutic interventions. Methods: This review synthesizes findings on the molecular mechanisms of senescence, focusing on oxidative stress, mitochondrial dysfunction, and the senescence-associated secretory phenotype (SASP). It explores evidence linking LEC senescence to cataract formation, highlighting key studies on stress responses, DNA damage, and antioxidant defense. Recent advances in senotherapeutics, including senolytics and senomorphics, are analyzed for their potential to mitigate LEC senescence and delay cataract progression. Conclusions: LEC senescence is driven by oxidative damage, mitochondrial dysfunction, and impaired redox homeostasis. These factors activate senescence path-ways, including p53/p21 and p16/Rb, resulting in cell cycle arrest and SASP-mediated inflammation. The accumulation of senescent LECs reduces regenerative capacity, disrupts lens homeostasis, and contributes to cataractogenesis. Emerging senotherapeutics, such as dasatinib, quercetin, and metformin, show promise in reducing the senescent cell burden and modulating the SASP to preserve lens transparency.
Collapse
Affiliation(s)
- Ying Qin
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
| | - Haoxin Liu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Vetsa S, Zhang S, Kay W, Kelkar N, Ghosh A, Alam S, Hoopes PC, Moshirfar M. Ocular toxicities of FDA-approved antibody drug conjugates. Cutan Ocul Toxicol 2024; 43:316-327. [PMID: 39422141 DOI: 10.1080/15569527.2024.2408677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Antibody-drug conjugates (ADCs) are an emerging field of cancer treatments that are becoming more widespread in their use. However, there are potential ocular toxicities associated with these drugs that ophthalmologists need to be aware of to better maintain ocular health as patients undergo rigorous medical treatment for their conditions. While many ADCs have been approved by the Food and Drug Administration (FDA), many subsequent reports have been published regarding additional ocular side effects these drugs may cause. This review provides ophthalmologists with a practical guide on how to treat ocular toxicities associated with all FDA-approved ADCs to date. The potential pathophysiology of side effects is also discussed.
Collapse
Affiliation(s)
- Shaurey Vetsa
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Stephanie Zhang
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Walker Kay
- Noorda College of Osteopathic Medicine, Provo, UT, USA
| | - Neil Kelkar
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Hoopes Vision Research Center, Draper, UT, USA
| | - Arko Ghosh
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - Suhail Alam
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Barnet Dulaney Perkins Eye Center, Sun City, AZ, USA
| | | | - Majid Moshirfar
- Hoopes Vision Research Center, Draper, UT, USA
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
- Utah Lions Eye Bank, Murray, UT, USA
| |
Collapse
|
4
|
Li X, Gu C, Hu Q, Wang L, Zhang Y, Yu L. Protective effect of apelin-13 in lens epithelial cells via inhibiting oxidative stress-induced apoptosis. BMC Ophthalmol 2024; 24:479. [PMID: 39497115 PMCID: PMC11533313 DOI: 10.1186/s12886-024-03746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND It is widely accepted that glaucoma-induced oxidative stress expedites cataracts' process. Therefore, we examined the effects of apelin-13 against oxidative stress-induced damage in human lens epithelial cells (HLECs) and investigated the potential pathogenic mechanism of acute primary angle-closure glaucoma. METHODS This experiment included five groups: control, H2O2, apelin-13 + H2O2, ML221 + H2O2, and apelin-13 + ML221 + H2O2. ML221 was employed in rescue experiments as an APJ antagonist. HLECs were pretreated with or without apelin-13 and subsequently exposed to H2O2. HLECs' viability was assessed by CCK8. Cell apoptosis was determined using Annexin V-FITC/PI staining. The mitochondrial membrane potential was assessed by fluorescent probe JC-1. Intracellular G6PD activity, NADPH/NADP+, and GSH/GSSG ratios were detected to assess the cells' oxidative damage. RESULT Apelin-13 reversed the H2O2-induced decrease in cell viability. The increased expression of G6PD and GLTU1, the G6PD, GSH/GSSG and NADPH/NADP + levels showed that apelin-13 can mitigate the H2O2-induced inhibition of the pentose phosphate pathway and dysregulation of cell redox status in the apelin-13 + H2O2 group compared with the H2O2 group. In H2O2-treated HLECs, apelin-13 can mitigate cell apoptosis, promote Bcl-2 expression, and suppress the Bax and Caspase-3 expression. In addition, H2O2 substantially reduced the mitochondrial membrane potential in HLECs, which was reversed by apelin-13. Notably, the inhibition of APJ intensified oxidative damage in H2O2-induced HLECs, demonstrating that the effects of apelin-13 were hindered by ML221. CONCLUTIONS Apelin-13 reduced oxidative damage and apoptosis in HLECs through APJ. These results demonstrate that apelin-13 can be employed as a potential drug for glaucoma with cataracts to delay the progression of cataracts.
Collapse
Affiliation(s)
- Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Chao Gu
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Liqin Wang
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Ya Zhang
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Ling Yu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China.
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
5
|
Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants (Basel) 2024; 13:1249. [PMID: 39456502 PMCID: PMC11505147 DOI: 10.3390/antiox13101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| |
Collapse
|
6
|
Kondengadan SM, Wang B. Quantitative Factors Introduced in the Feasibility Analysis of Reactive Oxygen Species (ROS)-Sensitive Triggers. Angew Chem Int Ed Engl 2024; 63:e202403880. [PMID: 38630918 PMCID: PMC11192588 DOI: 10.1002/anie.202403880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Reactive oxygen species (ROS) are critical for cellular signaling. Various pathophysiological conditions are also associated with elevated levels of ROS. Hence, ROS-sensitive triggers have been extensively used for selective payload delivery. Such applications are predicated on two key functions: (1) a sufficient magnitude of concentration difference for the interested ROS between normal tissue/cells and intended sites and (2) appropriate reaction kinetics to ensure a sufficient level of selectivity for payload release. Further, ROS refers to a group of species with varying reactivity, which should not be viewed as a uniform group. In this review, we critically analyze data on the concentrations of different ROS species under various pathophysiological conditions and examine how reaction kinetics affect the success of ROS-sensitive linker chemistry. Further, we discuss different ROS linker chemistry in the context of their applications in drug delivery and imaging. This review brings new insights into research in ROS-triggered delivery, highlights factors to consider in maximizing the chance for success and discusses pitfalls to avoid.
Collapse
Affiliation(s)
- Shameer M. Kondengadan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
7
|
Deering MJ, Paradis H, Ahmad R, Al-Mehiawi AS, Gendron RL. The role of dietary vitamin A in mechanisms of cataract development in the teleost lumpfish (Cyclopterus lumpus L). JOURNAL OF FISH DISEASES 2024; 47:e13899. [PMID: 38041393 DOI: 10.1111/jfd.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Lumpfish (Cyclopterus lumpus L) are highly prone to cataract development in the wild and in culture. There is evidence that cataract in farmed fish is related to nutrition. However, both the nutrients and the mechanisms involved in cataract development in lumpfish are not clear. Here we investigated the mechanisms involved and the role of dietary vitamin A in cataract development in a cultured lumpfish population. Cultured lumpfish were fed three diets differing only in vitamin A supplementation level (5000, 15,000 and 120,000 IU/kg) over an 18-month period, and fish weight, cataract frequencies and severities were determined. Western blotting and immunohistochemistry were performed on lens tissue to measure the levels of oxidative stress, and apoptosis. The lowest levels of vitamin A significantly reduced cataract frequencies in adult lumpfish and resulted in less severe cataract and increased weight in males. Oxidative stress levels in the lens were positively correlated with vitamin A intake. Apoptosis was observed at high levels in lenses with severe cataract. Oxidative stress and apoptosis levels were the highest in regions of the lens with severe, advanced cataract pathology when compared to regions with no visible pathology. These results suggest that higher vitamin A intake contributes to cataract development through an oxidative stress pathway, and that both oxidative stress and apoptosis are involved in advanced stages of cataract in lumpfish.
Collapse
Affiliation(s)
- Margret J Deering
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Hélène Paradis
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Raahyma Ahmad
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Adil S Al-Mehiawi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Robert L Gendron
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
8
|
Kurt GA, Ertekin T, Atay E, Bilir A, Koca HB, Aslan E, Sarıtaş A. Investigation of the antioxidant effect of Chrysin in an experimental cataract model created in chick embryos. Mol Vis 2023; 29:245-255. [PMID: 38222446 PMCID: PMC10784222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/01/2023] [Indexed: 01/16/2024] Open
Abstract
PURPOSE Cataract, which occurs as a result of lens opacification, is one of the most common causes of vision loss. In the literature, deterioration of the antioxidant system due to the increase in reactive oxygen species and oxidant levels is shown among the causes of cataract formation. The aim of this study was to investigate the antioxidant effect of chrysin on steroid-induced cataract development in an experimental chick embryo model using morphological, histological and biochemical parameters. METHODS Within the scope of the study, 150 specific pathogen free (SPF) fertilized eggs were used. Eggs were divided into 6 groups as control (group 1), corn oil (group 2), hydrocortisone hemisuccinate sodium (HC) (group 3), low dose chrysin (group 4), medium dose chrysin (group 5) and high dose chrysin (group 6). On the 15th day of incubation, Chrysin and HC were applicated to the air sac of the eggs with Hamilton and/or insulin injector. On day 17, the chick embryos were removed from the eggs and the bulbus oculi of the embryos were dissected. Lenses of 9 embryos were used for morpholigical cataract grading in each group, lens of 8 embryos for biochemical analysis and intact eyes of 7 embryos for histological evaluation (TUNEL method). RESULTS No opacity was observed in any of the lenses in Group 1 and 2. Cataract was observed in all lenses in Group 3. The mean opacity grades in group 3 were statistically significantly higher when compared to group 1 and 2 (p<0.05). The difference between group 6 and group 3 was statistically significant (p<0.05). GSH and TAS levels in the lenses were statistically significantly decreased compared to the control group due to HC application (p<0.05). It was determined that the decreased GSH and TAS levels in the lenses increased in relation to the Chrysin application doses. The increased levels of MDA, TOS, caspase 3 and caspase 9 in the HC group decreased significantly depending to the chrysin doses (p<0.05). In addition, while the rate of apoptotic cells determined by the TUNEL method was statistically significantly higher in the HC administered group than in the control group (p<0.05), it was statistically significantly decreased in the chrysin-administered groups, in relation to the dose of chrysin (p<0.05). CONCLUSIONS We think that anti-cataract effect of crhysin may be due to the antioxidant and antiapoptotic properties of chrysin. However, more research is needed to clarify the anti-cataract effects of chrysin.
Collapse
Affiliation(s)
- Gülan Albaş Kurt
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Anatomy, Afyonkarahisar, Turkey
| | - Tolga Ertekin
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Anatomy, Afyonkarahisar, Turkey
| | - Emre Atay
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Anatomy, Afyonkarahisar, Turkey
| | - Abdülkadir Bilir
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Anatomy, Afyonkarahisar, Turkey
| | - Halit Buğra Koca
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Medical Biochemistry, Afyonkarahisar, Turkey
| | - Esra Aslan
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Histology and Embryology, Afyonkarahisar, Turkey
| | - Alperen Sarıtaş
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Anatomy, Afyonkarahisar, Turkey
| |
Collapse
|
9
|
Sun M, Li K, Li X, Wang H, Li L, Zheng G. lncRNA TUG1 regulates Smac/DIABLO expression by competitively inhibiting miR-29b and modulates the apoptosis of lens epithelial cells in age-related cataracts. Chin Med J (Engl) 2023; 136:2340-2350. [PMID: 37185343 PMCID: PMC10538928 DOI: 10.1097/cm9.0000000000002530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND As one of the early discovered long non-coding RNAs (lncRNA), taurine upregulation gene 1 ( TUG1 ) has been widely expressed in a variety of tumors. Moreover, it promotes cell proliferation, differentiation, apoptosis, and migration. However, our understanding of its importance in the pathogenesis of cataracts remains limited. This study aimed to explore the mechanism by which lncRNA TUG1 mediates lens epithelial cell apoptosis in age-related cataracts (ARC) by regulating the microRNAs (miR-29b)/second mitochondria-derived activator of caspases axis, and to identify more non-surgical strategies for cataract treatment. METHODS The messenger RNA expression levels of TUG1 , miR-29b, and Smac were detected using quantitative real-time polymerase chain reaction in vivo and in vitro . The expression of the Smac protein was analyzed by Western blotting and immunofluorescence. Flow cytometry and cell counting kit-8 assays were used to detect the cell apoptosis and proliferation rates, respectively. The targeted regulatory relationship between lncRNA TUG1 , miR-29b, and Smac was verified by viral vector construction, co-transfection, nuclear and cytoplasmic separation, luciferase reporter assays, and RNA immunoprecipitation. RESULTS TUG1 and Smac were expressed at high levels in ARC and HLE-B3 cells treated with 200 μmol/L H 2 O 2 , whereas miR-29b expression was decreased. In vitro cell experiments confirmed that down-regulation of TUG1 could inhibit the apoptosis of lens epithelial cells. Mechanistically, Smac expression was negatively regulated by miR-29b. TUG1 competitively inhibited miR-29b expression and caused greater release of Smac. In addition, miR-29b partially reversed the effects of TUG1 on human lens epithelial cell line cells. CONCLUSIONS lncRNA TUG1 increases Smac expression and promotes apoptosis of lens epithelial cells in ARC by competitively inhibiting miR-29b. This mechanism is the cytological basis for ARC formation. Based on these results, the lncRNA TUG1/miR29b/Smac axis may be a new molecular pathway that regulates ARC development.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Department of Ophthalmology, Luohe City Central Hospital, Luohe, Henan 462000, China
| | - Ke Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Huajun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|
10
|
Fang R, Li JH, Li HL, Yue PL, Ding XF, Jia YX, Liu ZC, Zhou HG, Yang C, Song XD. CircRNA 06209 inhibits cataract development by sponging miR-6848-5p and regulating ALOX15 expression. Exp Eye Res 2023; 235:109640. [PMID: 37673368 DOI: 10.1016/j.exer.2023.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Cataract is the leading cause of blindness in the world, and there is a lack of effective treatment drugs. CircRNA plays an important part in a variety of diseases, however, the role of circRNA in cataracts remains largely unknown. In this study, we constructed a cataract model of rats and obtained the circRNAs related to cataracts by whole transcriptome sequencing and circRNA-mRNA co-expression network. To investigate the effect and mechanism of circRNA 06209 on cataracts, we performed several in vivo and in vitro experiments, including CCK8 assay, flow cytometry, dual luciferase reporter assay, RIP assay, actinomycin D assay, and Western blot analysis. We identify that a necroptosis-related circRNA, circRNA 06209, is down-regulated in cataracts. Vitro experiments showed that up-regulation of circRNA 06209 could promote cell proliferation and inhibit cell apoptosis. Vivo experiments revealed that circRNA 06209 overexpression could inhibit the development of cataracts. Mechanistically, circRNA 06209 acts as a miRNA sponge and competitively binds to miR-6848-5p to curb the inhibitory effect of miR-6848-5p on ALOX15, thereby affecting cell viability and apoptosis. This study found that circRNA 06209 plays a critical part in inhibiting cataracts through the miR-6848-5p/ALOX15 pathway, suggesting that circRNA 06209 may be a promising therapeutic target for cataracts.
Collapse
Affiliation(s)
- Rui Fang
- Beijing Tongren Hospital, China; Capital Medical University, Beijing, 100730, China
| | - Jin-He Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, China
| | - Hai-Long Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, China
| | - Pei-Lin Yue
- Beijing Tongren Hospital, China; Capital Medical University, Beijing, 100730, China
| | - Xue-Fei Ding
- Beijing Tongren Hospital, China; Capital Medical University, Beijing, 100730, China
| | - Yu-Xuan Jia
- Beijing Tongren Hospital, China; Capital Medical University, Beijing, 100730, China
| | - Zhao-Chuan Liu
- Beijing Tongren Eye Center, China; Beijing Ophthalmology&Visual Sciences Key Lab, China; Beijing Tongren Hospital, China; Capital Medical University, Beijing, 100730, China
| | - Hong-Gang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, China.
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, China
| | - Xu-Dong Song
- Beijing Tongren Eye Center, China; Beijing Ophthalmology&Visual Sciences Key Lab, China; Beijing Tongren Hospital, China; Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
11
|
Zhao W, Chen S, Lu B, Wu D, Gu Y, Hao S, Sheng F, Xu Y, Han Y, Chen R, Zhou L, Fu Q, Yao K. Upregulation of EphA2 is associated with apoptosis in response to H 2O 2 and UV radiation-induced cataracts. Arch Biochem Biophys 2023; 747:109756. [PMID: 37714253 DOI: 10.1016/j.abb.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
In this article, we examine the role of erythropoietin-producing hepatocellular receptor A2 (EphA2) in the apoptosis of lens epithelial cells (LECs) in H2O2 and UV radiation-induced cataracts. We treated SRA01/04 cells with H2O2 or ultraviolet (UV) radiation to create a cataract cell model. We constructed a cataract lens model by exposing mice to UV radiation. We used CCK8 assays, Annexin V-FITC analysis, and immunohistochemical staining to explore proliferation and apoptosis of the cataract model. Thereafter, we used quantitative real-time PCR (qPCR) analysis, Western blot assays, and immunofluorescence to determine gene and protein expression levels. We also employed Crispr/Cas9 gene editing to create an EphA2 knockout in SRA01/04 cells. Results: H2O2 or UV radiation induced SRA01/04 cells showed EphA2 gene upregulation. CCK8 and apoptosis assays showed that EphA2 over-expression (OE) reduced epithelial cell apoptosis, but knockout of EphA2 induced it in response to H2O2 and UV radiation, respectively. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on cell apoptosis. In vivo, the EphA2 protein level increased in the lenses of UV-treated mice. Our results showed that EphA2 was upregulated in SRA01/04 cells in response to H2O2 and UV radiation. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on H2O2 and UV radiation-induced cell apoptosis. We confirmed this change with an experiment on UV-treated mice. The present study established a novel association between EphA2 and LEC apoptosis.
Collapse
Affiliation(s)
- Wei Zhao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Shuying Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Bing Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Di Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yuzhou Gu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Shengjie Hao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Feiyin Sheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yili Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yu Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Rongrong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Qiuli Fu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Wang Y, Wang JM, Xiao Y, Hu XB, Zheng SY, Fu JL, Zhang L, Gan YW, Liang XM, Li DWC. SUMO1-regulated DBC1 promotes p53-dependent stress-induced apoptosis of lens epithelial cells. Aging (Albany NY) 2023; 15:8812-8832. [PMID: 37683133 PMCID: PMC10522365 DOI: 10.18632/aging.205001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
Deleted in breast cancer 1 (DBC1) was initially identified from a homozygously deleted region in human chromosome 8p21. It has been well established that DBC1 plays a dual role during cancer development. Depending on the physiological context, it can promote or inhibit tumorigenesis. Whether it plays a role in lens pathogenesis remains elusive. In the present study, we demonstrated that DBC1 is highly expressed in lens epithelial cells from different vertebrates and in retina pigment epithelial cells as well. Moreover, DBC1 is SUMOylated through SUMO1 conjugation at K591 residue in human and mouse lens epithelial cells. The SUMOylated DBC1 is localized in the nucleus and plays an essential role in promoting stress-induced apoptosis. Silence of DBC1 attenuates oxidative stress-induced apoptosis. In contrast, overexpression of DBC1 enhances oxidative stress-induced apoptosis, and this process depends on p53. Mechanistically, DBC1 interacts with p53 to regulate its phosphorylation status at multiple sites and the SUMOylation of DBC1 enhances its interaction with p53. Together, our results identify that DBC1 is an important regulator mediating stress-induced apoptosis in lens, and thus participates in control of lens cataractogenesis.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Jing-Miao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Xue-Bin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Shu-Yu Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Jia-Ling Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Yu-Wen Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Xing-Miao Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
13
|
Banasaz B, Zamzam R, Aghadoost D, Golabchi K, Morshedi M, Bayat M, Sadri Nahand J, Sheida A, Eshraghi R, Rahimzadeh Z, Mosavi SG, Goleij P, Rezaee A, Mirzaei H. Evaluation of expression pattern of cellular miRNAs (let-7b, miR-29a, miR-126, miR-34a, miR-181a-5p) and IL-6, TNF-α, and TGF-β in patients with pseudoexfoliation syndrome. Pathol Res Pract 2023; 249:154721. [PMID: 37591069 DOI: 10.1016/j.prp.2023.154721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Pseudoexfoliation syndrome (PEX) is a critical clinical and biological extracellular matrix systemic disorder. Despite the unknown nature of PEX etiopathogenesis, it is proven to be associated with various genes and factors. The present research focused on analyzing the expression of miR and inflammatory cytokines in PEX. Serum and aqueous humor (AH) were collected prior to cataract surgery or trabeculectomy from 99 participants (64 with PEX glaucoma, and 35 controls). Real-time PCR was used for assessing the expression pattern of some miRNAs namely let-7b, miR-29a, miR-126, miR-34a, and miR-181a-5p. ELISA was carried out to explore the transcription of some inflammatory cytokines such as TGF-β, TNF-α, and IL-6. The indication of our results was a significant enhancement in the expression of let-7, miR-34a, and miR-181a-5p in PEX in contrast to the control group. Notwithstanding a significant suppression in miR-29a, and miR-126 expression levels in PEX in contrast to the control group. Analysis of ROC curve revealed that miR-29a and miR-34a are able to act as useful markers in order to discriminate the PEX group from the PEX negative subjects which were determined as the control group. According to the results obtained, the mean levels of TGF-β, TNF-α, and IL-6 upregulated among PEX subjects in contrast to control samples. In conclusion, our findings indicated that the selected cytokines alongside the selected miRNAs could be introduced as a biomarker panel in the diagnosis of PEX.
Collapse
Affiliation(s)
- Bahar Banasaz
- Internal Medicine Department, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Razieh Zamzam
- School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Davood Aghadoost
- Department of Ophthalmology, General Ophthalmologist, Matini Hospital, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Khodayar Golabchi
- Department of Ophthalmology, General Ophthalmologist, Matini Hospital, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mohammadamin Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zoha Rahimzadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Seyed Gholamabbas Mosavi
- Biostatistics Group, Health Faculty, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Islamic Republic of Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Islamic Republic of Iran.
| |
Collapse
|
14
|
Sorkou KN, Theotokis P, Deftereou TE, Maria L, Meditskou S, Manthou ME. Detecting Apoptotic Human Lens Epithelial Cells With Transmission Electron Microscopy. Cureus 2023; 15:e45916. [PMID: 37885524 PMCID: PMC10599265 DOI: 10.7759/cureus.45916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Cataract formation is a prevalent issue worldwide, and understanding the cellular processes involved is crucial to advancing treatment options. The scope of the study was to explore the presence of apoptotic cells in the lens epithelium of Greek patients with senile cataracts using transmission electron microscopy (TEM). Methods Twenty-one patients with senile cataracts were included in this cross-sectional study, and their anterior lens capsules were thoroughly examined. The presence of apoptosis was ultrastructurally investigated, and its association with age, gender, biomicroscopic type of cataract, the coexistence of exfoliation syndrome (XFS), diabetes mellitus, and glaucoma was statistically correlated. Results We detected apoptotic cells in nine of the 21 patients. Morphological features indicative of apoptosis in the nuclei included degradation, nuclear membrane irregularity, reduction of nuclear volume, condensation, and margination of chromatin. The cytoplasm either appeared denser or contained vacuoles. Budding with membrane blebbing and pinopode-like projections were frequently observed. Apoptotic cells appeared smaller, exhibiting loose connections with neighboring cells and the basement membrane (BM). Interestingly, apoptotic bodies were also detected. Conclusions None of the examined risk factors showed a connection to apoptosis, whereas neighboring lens epithelial cells (LECs) phagocytose apoptotic bodies, seemingly assumed the role of macrophages. Comparing apoptosis rates between populations with different sun exposure levels could help reveal the relationship between ultraviolet B radiation exposure, apoptosis, and cataract formation.
Collapse
Affiliation(s)
- Konstantina N Sorkou
- Department of Ophthalmology, Frimley Park Hospital, National Health Service (NHS), Camberley, GBR
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Paschalis Theotokis
- Laboratory of Histology and Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Thessaloniki, GRC
| | | | - Lambropoulou Maria
- Laboratory of Histology and Embryology, Democritus University of Thrace, Alexandroupolis, GRC
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
15
|
Fu JL, Zheng SY, Wang Y, Hu XB, Xiao Y, Wang JM, Zhang L, Wang L, Nie Q, Hou M, Bai YY, Gan YW, Liang XM, Xie LL, Li DWC. HSP90β prevents aging-related cataract formation through regulation of the charged multivesicular body protein (CHMP4B) and p53. Proc Natl Acad Sci U S A 2023; 120:e2221522120. [PMID: 37487085 PMCID: PMC10400967 DOI: 10.1073/pnas.2221522120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Cataract is a leading ocular disease causing global blindness. The mechanism of cataractogenesis has not been well defined. Here, we demonstrate that the heat shock protein 90β (HSP90β) plays a fundamental role in suppressing cataractogenesis. HSP90β is the most dominant HSP in normal lens, and its constitutive high level of expression is largely derived from regulation by Sp1 family transcription factors. More importantly, HSP90β is significantly down-regulated in human cataract patients and in aging mouse lenses, whereas HSP90β silencing in zebrafish causes cataractogenesis, which can only be rescued by itself but not other HSP90 genes. Mechanistically, HSP90β can directly interact with CHMP4B, a newly-found client protein involved in control of cytokinesis. HSP90β silencing causes upregulation of CHMP4B and another client protein, the tumor suppressor p53. CHMP4B upregulation or overexpression induces excessive division of lens epithelial cells without proper differentiation. As a result, these cells were triggered to undergo apoptosis due to activation of the p53/Bak-Bim pathway, leading to cataractogenesis and microphthalmia. Silence of both HSP90β and CHMP4B restored normal phenotype of zebrafish eye. Together, our results reveal that HSP90β is a critical inhibitor of cataractogenesis through negative regulation of CHMP4B and the p53-Bak/Bim pathway.
Collapse
Affiliation(s)
- Jia-Ling Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Shu-Yu Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Xue-Bin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Jing-Miao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Ling Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Qian Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Min Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Yue-Yue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Yu-Wen Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Xing-Miao Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Liu-Liu Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| |
Collapse
|
16
|
Guo M, Su F, Chen Y, Su B. Ectopic circSTK39 Expression Ameliorates Hydrogen Peroxide-Induced Human Lens Epithelial Cell Apoptosis and Oxidative Stress through the miR-125a-5p/ERCC6 Pathway. Curr Eye Res 2023; 48:278-288. [PMID: 36322706 DOI: 10.1080/02713683.2022.2143529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE More and more studies suggest that circular RNA (circRNA) is involved in the pathogenesis of age-related cataract (ARC). CircSTK39, a circular RNA, has inhibitory effects on cancer progression. However, there is no data regarding the role of circSTK39 in ARC occurrence and the underlying mechanism. METHODS ARC cell model was established by inducing lens epithelial cells (SRA01/04) using hydrogen peroxide (H2O2). CircSTK39, microRNA-125a-5p (miR-125a-5p), and ERCC excision repair 6, chromatin remodeling factor (ERCC6) expression were detected by quantitative real-time polymerase chain reaction. Western blot was conducted to assess protein expression. Cell viability, proliferation, and apoptosis were investigated by cell counting kit-8 assay, 5-Ethynyl-29-deoxyuridine assay, and flow cytometry analysis, respectively. Oxidative stress was evaluated using commercial kits. Dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay were used to identify the relationship between miR-125a-5p and circSTK39 or ERCC6. RESULTS CircSTK39 and ERCC6 expression were significantly downregulated, but miR-125a-5p expression was upregulated in the lens tissues of ARC patients and H2O2-treated SRA01/04 cells. H2O2 treatment led to decreased cell proliferation and increased cell apoptosis and oxidative stress, accompanied by the increases of C-caspase3 and Bax expression and the decrease of Bcl-2 expression; however, these effects were reversed after circSTK39 overexpression. MiR-125a-5p was found to participate in H2O2-triggered cell damage by interacting with circSTK39. Additionally, ERCC6 silencing inhibited circSTK39 overexpression-mediated action. Importantly, circSTK39 regulated ERCC6 expression by interaction with miR-125a-5p in H2O2-treated SRA01/04 cells. CONCLUSION The increased expression of circSTK39 ameliorated H2O2-induced SRA01/04 cell injury through the miR-125a-5p/ERCC6 pathway.
Collapse
Affiliation(s)
- Ming Guo
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Fanfan Su
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Yao Chen
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Bo Su
- Department of Pathology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
17
|
Chhunchha B, Kubo E, Krueger RR, Singh DP. Hydralazine Revives Cellular and Ocular Lens Health-Span by Ameliorating the Aging and Oxidative-Dependent Loss of the Nrf2-Activated Cellular Stress Response. Antioxidants (Basel) 2023; 12:140. [PMID: 36671002 PMCID: PMC9854670 DOI: 10.3390/antiox12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
A major hallmark of aging-associated diseases is the inability to evoke cellular defense responses. Transcriptional protein Nrf2 (nuclear factor erythroid-derived 2-related factor) plays a pivotal role in the oxidative stress response, cellular homeostasis, and health span. Nrf2's activation has been identified as a therapeutic target to restore antioxidant defense in aging. Here, we demonstrated that FDA-approved drug, hydralazine (Hyd), was a reactivator of the Nrf2/ARE (antioxidant response element) pathway in various ages and types of mouse (m) or human (h) lens epithelial cells (LECs) and mice lenses in-vitro/in-vivo. This led to Hyd-driven abatement of carbonyls, reduced reactive oxygen species (ROS), and reduced 4-HNE/MDA-adducts with cytoprotection, and extended lens healthspan by delaying/preventing lens opacity against aging/oxidative stress. We elucidated that Hyd activated the protective signaling by inducing Nrf2 to traverse from the cytoplasm to the nucleus and potentiated the ARE response by direct interaction of Nrf2 and ARE sequences of the promoter. Loss-of-function study and cotreatment of Hyd and antioxidant, N-acetyl cysteine (NAC) or Peroxiredoxin (Prdx)6, specified that Nrf2/ARE-driven increase in the promoter activity was Hyd-dependent. Our study provides proof-of concept evidence and, thereby, paves the way to repurposing Hyd as a therapeutic agent to delay/prevent aging and oxidative-related disorders.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan
| | - Ronald R. Krueger
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
19
|
Liao S, Huang M, Liao Y, Yuan C. HMOX1 Promotes Ferroptosis Induced by Erastin in Lens Epithelial Cell through Modulates Fe 2+ Production. Curr Eye Res 2023; 48:25-33. [PMID: 36300537 DOI: 10.1080/02713683.2022.2138450] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Ferroptosis is defined by the iron-dependent cell death caused by the accumulation of lipid peroxidation. As a major intracellular Fe pools, heme could be metabolized into ferrous iron, carbon monoxide, and biliverdin by Heme oxygenase-1 (HMOX1). Aged human lens epithelium was reported to highly susceptible to ferroptosis, the functional molecular involved in this progress is not explored. Here, we have demonstrated the function of HMOX1 in human lens epithelium during ferroptotic cell death. METHODS HMOX1 stably expressed cell line was constructed by lentivirus transfection. HMOX1 knock-out cell line was constructed by Crispr-cas9 technology. Protein expression was detected by western blot. Inverted microscope was applied to record the morphological changes among different treatments. CCK8 assay and colony formation assay were applied to detect the cell proliferation rate. Cell death was detected by PI staining. Lipid Peroxidation was detected by Cell malondialdehyde (MDA) assay. Intracellular Ferrous and Ferric ions were determined using an iron assay kit. RESULTS HMOX1 expression was induced significantly in HLECs under erastin treatment in a time-dependent and dosage-dependent manner. Forced expression of HMOX1 increase the sensitivity of HLECs to erastin treatment. However, knock-out or knock-down of HMOX1 improved the cell viability of HLECs significantly under erastin treatment. Iron liberated from heme by HMOX1 might play pivotal role to improve the sensitivity of HLECs in response to erastin. CONCLUSION HMOX1 is an essential pro-ferroptosis enzyme which increase the susceptibility of human lens epithelium to erastin. Ferrous iron, a byproduct of heme, might accelerate erastin triggered ferrotosis cell death in human lens epithelium cells.
Collapse
Affiliation(s)
- Shengjie Liao
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, China
| | - Mi Huang
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, China
| | - Yanli Liao
- Department of Public Health, Zhaoqing Medical College, Zhaoqing, China
| | - Chao Yuan
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, China
| |
Collapse
|
20
|
Li H, Gao L, Du J, Ma T, Ye Z, Li Z. Differentially expressed gene profiles and associated ceRNA network in ATG7-Deficient lens epithelial cells under oxidative stress. Front Genet 2022; 13:1088943. [PMID: 36568386 PMCID: PMC9768497 DOI: 10.3389/fgene.2022.1088943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidation is an essential factor during cataract development. Autophagy, usually a cytoprotective process, is always found elevated in lens epithelial cells under oxidation, yet its roles and associated molecular mechanisms under such circumstances are rarely elucidated. Herein, we extracted and re-analyzed the RNA sequencing data of the GSE161701 dataset from the Gene Expression Omnibus database to identify the differentially expressed mRNAs and lncRNAs by using the R package "DESeq2". Further analyses of gene ontology and KEGG enrichment were implemented via the packages "clusterProfiler" and "enrichplot". We found that after the knockout of ATG7, differentially expressed genes were more associated with hemopoiesis, vasculature development, axonogenesis, and hypoxia regulation. When stimulated with H2O2, LECs displayed a gene expression profile correlating with apoptotic and proliferative pathways, such as the MAPK signaling pathway and FoxO signaling pathway. The differentially expressed gene profiles of the two types of LECs (wild type and ATG7 deficient) under oxidation were distinct to a large extent. Furthermore, 1,341 up-regulated and 1912 down-regulated differential mRNAs and 263 up-regulated and 336 down-regulated differential lncRNAs between these two types of LECs subjected to H2O2 were detected, among which 292 mRNAs and 24 lncRNAs possibly interacted with ten cataract-related miRNAs. A competing endogenous lncRNA-miRNA-mRNA network based on such interactions was finally constructed.
Collapse
Affiliation(s)
- Hongyu Li
- Medical School of Chinese PLA, Beijing, China,Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Jinlin Du
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Zi Ye, ; Zhaohui Li,
| | - Zhaohui Li
- Medical School of Chinese PLA, Beijing, China,Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Zi Ye, ; Zhaohui Li,
| |
Collapse
|
21
|
Wu B, Sun Y, Hou J. CircMED12L Protects Against Hydrogen Peroxide-induced Apoptotic and Oxidative Injury in Human Lens Epithelial Cells by miR-34a-5p/ALCAM axis. Curr Eye Res 2022; 47:1631-1640. [PMID: 36218352 DOI: 10.1080/02713683.2022.2134427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Cataract is the leading cause of visual impairment and reversible blindness. Despite advances in surgical removal of cataracts, cataract continues to be a leading public-health issue due to the complications after surgery. Circular RNAs (circRNAs) have been showed to be implicated in the pathophysiology of age-related cataract (ARC). Herein, this work elucidated the role and mechanism of circMED12L in the process of ARC. METHODS Human lens epithelial cells (HLECs) were exposed to hydrogen peroxide (H2O2) in experimental groups. Levels of genes and proteins were measured by qRT-PCR and western blotting. Cell growth was evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The oxidative stress was assessed by detecting the activity of malondialdehyde, catalase, and superoxide dismutase. The interaction between miR-34a-5p and circMED12L or ALCAM (activated leukocyte cell adhesion molecule) was validated using dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS CircMED12L expression was lower in the lens epithelium of ARC patients and H2O2-induced HLECs compared with the normal individuals and untreated cells. Functionally, forced expression of circMED12L could alleviate H2O2-induced viability inhibition, as well as apoptotic and oxidative injury in HLECs. Mechanistically, circMED12L/miR-34a-5p/ALCAM constituted a feedback loop in HLECs. MiR-34a-5p was increased, while ALCAM was decreased in ARC patients and H2O2-induced HLECs. High expression of miR-34a-5p reversed the protective effects of circMED12L on HLECs under H2O2 treatment. Besides, inhibition of miR-34a-5p could repress H2O2-induced apoptotic and oxidative injury in HLECs, which were abolished by subsequent ALCAM knockdown. CONCLUSION Overexpression of circMED12L could protect against H2O2-induced apoptosis and oxidative stress in HLECs by miR-34a-5p/ALCAM axis.
Collapse
Affiliation(s)
- Baohua Wu
- Department of Ophthalmology, Lanzhou Purui Ophthalmology Hospital, Lanzhou, China
| | - Yan Sun
- Department of Ophthalmology, Lanzhou Purui Ophthalmology Hospital, Lanzhou, China.,Department of Ophthalmology, Gansu Rehabilitation Center Hospital, Lanzhou, China.,Clinical School of Traditional Chinese, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingmei Hou
- Department of Ophthalmology, Lanzhou Purui Ophthalmology Hospital, Lanzhou, China.,Department of Ophthalmology, Gansu Rehabilitation Center Hospital, Lanzhou, China
| |
Collapse
|
22
|
Askari S, Azizi F, Javadpour P, Karimi N, Ghasemi R. Endoplasmic reticulum stress as an underlying factor in leading causes of blindness and potential therapeutic effects of 4-phenylbutyric acid: from bench to bedside. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2145945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sahar Askari
- Neuroscience Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Karimi
- Eye and Skull Base Research Centers, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran5Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Chen S, Zhang C, Shen L, Hu J, Chen X, Yu Y. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream. Pharmacol Res 2022; 184:106417. [PMID: 36038044 DOI: 10.1016/j.phrs.2022.106417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
For decades, research on the pathological mechanism of cataracts has usually focused on the abnormal protein changes caused by a series of risk factors. However, an entire class of molecules, termed non-coding RNA (ncRNA), was discovered in recent years and proven to be heavily involved in cataract formation. Recent studies have recognized the key regulatory roles of ncRNAs in cataracts by shaping cellular activities such as proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). This review summarizes our current insight into the biogenesis, properties and functions of ncRNAs and then discusses the development of research on ncRNAs in cataracts. Considering the significant role of ncRNA in cataract formation, research on novel associated regulatory mechanisms is urgently needed, and the development of therapeutic alternatives for the treatment of cataracts seems promising.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Lifang Shen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
24
|
Xiao Y, Xiang JW, Gao Q, Bai YY, Huang ZX, Hu XH, Wang L, Li DWC. MAB21L1 promotes survival of lens epithelial cells through control of αB-crystallin and ATR/CHK1/p53 pathway. Aging (Albany NY) 2022; 14:6128-6148. [PMID: 35951367 PMCID: PMC9417230 DOI: 10.18632/aging.204203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
The male abnormal gene family 21 (mab21), was initially identified in C. elegans. Since its identification, studies from different groups have shown that it regulates development of ocular tissues, brain, heart and liver. However, its functional mechanism remains largely unknown. Here, we demonstrate that Mab21L1 promotes survival of lens epithelial cells. Mechanistically, Mab21L1 upregulates expression of αB-crystallin. Moreover, our results show that αB-crystallin prevents stress-induced phosphorylation of p53 at S-20 and S-37 through abrogating the activation of the upstream kinases, ATR and CHK1. As a result of suppressing p53 activity by αB-crystallin, Mab21L1 downregulates expression of Bak but upregulates Mcl-1 during stress insult. Taken together, our results demonstrate that Mab21L1 promotes survival of lens epithelial cells through upregulation of αB-crystallin to suppress ATR/CHK1/p53 pathway.
Collapse
Affiliation(s)
- Yuan Xiao
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Qian Gao
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Yue-Yue Bai
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Zhao-Xia Huang
- Department of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 121212, Guizhou, China
| | - Xiao-Hui Hu
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China
| | - Ling Wang
- The Academician Work Station, Changsha Medical University, Changsha 410219, Hunan, China
| | - David Wan-Cheng Li
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| |
Collapse
|
25
|
Asl AR, Ashrafi M, Aminlari M, Taghavi S, Karimi B, Naini AT. The protective effect of pomegranate peel aqueous extract on selenite-induced cataract in rats. J Food Biochem 2022; 46:e14356. [PMID: 35894450 DOI: 10.1111/jfbc.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
Abstract
The present study was performed to evaluate the preventive effect of pomegranate peel extract on sodium-induced cataract in rats. Sprague-Dawley suckling male rats were divided into four groups: group C: rats received no treatment, group P: rats received pomegranate peel aqueous extract (PPE) orally, group Se: rats received an injection of sodium selenite, group Se + P: rats received PPE and sodium selenite concomitantly. After 4 weeks, rats were sacrificed, and their lenses were homogenized and evaluated for biochemical parameters and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the Se group, developed cataract with significant lens opacity was observed. Other changes in enzymatic and non-enzymatic antioxidants, oxidative parameters, solubility of proteins, in NO and Ca levels and the electrophoresis pattern of proteins were observed in lenses of the Se group compared to control groups. After the preventive administration of PPE, most of these parameters were normalized due to antioxidant and anti-inflammatory activities of the extract. PRACTICAL APPLICATIONS: Cataract is one of the leading causes of vision impairment among the elderly, and surgery is the major therapeutic step taken to cure it. However, surgery has its limitations and complications. Therefore, prevention of cataract development, especially in high-risk individuals, can be better than cure. Pomegranate peel extract has a high potential to prevent cataract in these people.
Collapse
Affiliation(s)
- Arash Rakhshi Asl
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahboobeh Ashrafi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahmoud Aminlari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saba Taghavi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Behnaz Karimi
- Department of Basic Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | | |
Collapse
|
26
|
Liu T, Zhao L, Yan D, Wang N. Circ_0060,144 inhibits the occurrence and development of age-related cataract via the miR-23b-3p/HIPK3 axis. Exp Eye Res 2022; 222:109179. [PMID: 35810770 DOI: 10.1016/j.exer.2022.109179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/01/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022]
Abstract
Age-related cataract (ARC) is a common eye disease that occurs mostly in the elderly. Emerging evidence suggests that circular RNA (circRNA) plays an important role in disease development. However, there are few reports about the role of circRNA in cataract. Here, we investigated the function of circ_0060,144 in ARC. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to measure the expression of circ_0060,144, miR-23b-3p, and homeodomain interacting protein kinase 3 (HIPK3) mRNA. CCK-8 and flow cytometry analysis of cell proliferation and apoptosis. Western blot was performed to measure protein-associated proliferation and apoptosis. ELISA was used to detect cellular MDA and GSH-Px levels. Dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were used to investigate the association between miR-23b-3p and circ_0060,144 or HIPK3. Circ_0060,144 and HIPK3 mRNA expression were decreased in ARC tissues, and miR-23b-3p was increased. Circ_0060,144 overexpression promoted proliferation and inhibited apoptosis of SRA01/04 cells. And proliferation-related and apoptosis-related proteins also confirmed this conclusion. In addition, circ_0060,144 overexpression reduced MDA level and increased GSH-Px level. In terms of mechanism, circ_0060,144 inhibited HIPK3 expression via sponging miR-23b-3p. Circ_0060,144 promoted ARC development via regulation of miR-23b-3p/HIPK3 axis.
Collapse
Affiliation(s)
- Tao Liu
- Ophthalmology Department, Baoji Central Hospital, Baoji, Shaanxi, China
| | - Liping Zhao
- Ophthalmology Department, Baoji Central Hospital, Baoji, Shaanxi, China
| | - Dan Yan
- Ophthalmology Department, Baoji Central Hospital, Baoji, Shaanxi, China
| | - Na Wang
- Ophthalmology Department, Baoji Central Hospital, Baoji, Shaanxi, China.
| |
Collapse
|
27
|
Xie Q, Xue L, Cao X, Huang L, Song Y. Apoptosis of Lens Epithelial Cells and Expression of NLRP3-related Proteins in Patients with Diabetes and Cataract. Ocul Immunol Inflamm 2022:1-8. [PMID: 35708312 DOI: 10.1080/09273948.2022.2079537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM To compare the expression of apoptosis-related factors and Nlrp3-related proteins in the lens epithelial cells (LECs) of patients with diabetes and cataract and patients with age-related cataract (ARC) alone. METHODS All patients were divided into four groups according to the presence or absence of diabetes mellitus (DM) and the degree of diabetic retinopathy (DR). LECs were obtained during cataract surgery. The expression levels of cleaved caspase-3, caspase-7, ASC, caspase-1and Nlrp3 in LECs were determined. And analyzed by age, course of DM, and HbA1c levels. RESULTS The incidence of LEC apoptosis and positive rates of cleaved caspase-3 and caspase-7 expression were significantly higher in the groups with DM (P<0.05).The positive expression rates of ASC, caspase-1, and Nlrp3 increased with longer duration of DM, increased HbA1c level, or advanced DR (P<0.05). CONCLUSION In cataract patients with DM, the expression of apoptosis-related factors in LECs increased. Nlrp3-related protein expression levels, diabetes duration, HbA1c levels, and extent of DR may be potential risk factors for diabetic cataract formation.
Collapse
Affiliation(s)
- Qing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Lidan Xue
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Lili Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Song
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
28
|
Guo G, Dong J. Diosmetin attenuates oxidative stress-induced damage to lens epithelial cells via the mitogen-activated protein kinase (MAPK) pathway. Bioengineered 2022; 13:11072-11081. [PMID: 35481411 PMCID: PMC9208454 DOI: 10.1080/21655979.2022.2068755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cataract is a global ophthalmic disease that blinds the eye, and oxidative stress is one of its primary causes. Apoptosis of lens epithelial cells (LECs) is considered the major cytological basis of many cataracts except congenital cataracts. The purpose of this study was to investigate whether diosmetin could reduce oxidative stress-induced damage to LECs, and explore its regulatory pathway. Lens epithelial cell line SRA01/04 was used as the object of study. Using ultraviolet B (UVB) and hydrogen peroxide (H2O2) as sources of oxidative stress, the protective effects of diosmetin at different concentrations on cells were investigated, including inhibition of proliferation, apoptosis, and oxidative stress. Molecular docking was then used to predict the target proteins and validation was performed at the cellular and protein levels. The oxidative stress of SRA01/04 was induced by UVB and H2O2, and inhibition of proliferation and apoptosis were observed. Here, diosmetin has a dose-dependent cell-protecting effect. This effect is achieved by targeting the MEK2 protein and inhibiting the MAPK signaling. In conclusion, diosmetin reduces H2O2- and UVB-induced inhibition of SRA01/04 proliferation and apoptosis by reducing oxidative stress-induced activation of the MAPK pathway.
Collapse
Affiliation(s)
- Guanghai Guo
- Department of Ophthalmology, Feicheng Hospital of Shandong Yiyang Health Group, Shandong, Feicheng, P.R. China
| | - Jin Dong
- Department of Clinical Laboratory, Feicheng Hospital of Shandong Yiyang Health Group, Shandong, Feicheng, P.R. China
| |
Collapse
|
29
|
Liu S, Su D, Sun Z, Guan L, Wang Z, Zhang G, Zheng G, Cui T, Ma X, Hu S. High MST2 expression regulates lens epithelial cell apoptosis in age-related cataracts through YAP1 targeting GLUT1. Arch Biochem Biophys 2022; 723:109255. [PMID: 35452623 DOI: 10.1016/j.abb.2022.109255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/01/2022] [Accepted: 04/15/2022] [Indexed: 11/02/2022]
Abstract
Age-related cataract (ARC) is a severe visual impairment disease and its pathogenesis remains unclear. This study investigated the relevance of MST2/YAP1/GLUT1 in ARC development in vivo and in vitro, and explored the role and possible mechanisms of this pathway in oxidative damage-mediated apoptosis of lens epithelial cells (LECs). Western blot analysis and immunohistochemistry showed that MST2 and phosphorylated (p)-YAP (Ser127) protein levels were increased, and YAP1 and GLUT1 protein levels were decreased in LECs of ARC patients and aged mice. Additionally, differential expression of MST2 and YAP1 was associated with H2O2-induced apoptosis of human lens epithelial B3 (HLE-B3) cells. CCK-8 and Hoechst 33,342 apoptosis assays showed that MST2 and YAP1 were involved in H2O2-induced apoptosis of LECs. Subsequent experiments showed that, during MST2-mediated H2O2-induced apoptosis, p-YAP (Ser127) levels were elevated and immunofluorescence revealed nucleoplasmic translocation and inhibition of YAP1 protein expression. Furthermore, GLUT1 was in turn synergistically transcriptionally regulated by YAP1-TEAD1 in dual luciferase reporter assays. In conclusion, our study indicates that the MST2/YAP1/GLUT1 pathway plays a major role in the pathogenesis of ARC and LECs apoptosis, providing a new direction for future development of targeted inhibitors that block this signaling pathway to prevent, delay, or even cure ARC.
Collapse
Affiliation(s)
- Shanhe Liu
- Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Dongmei Su
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China; Graduate School, Peking Union Medical College, Beijing, 100081, China
| | - Zhaoyi Sun
- Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Lina Guan
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China
| | - Zhongying Wang
- Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Gaobo Zhang
- Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Guiqian Zheng
- Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Tingsong Cui
- Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China; Graduate School, Peking Union Medical College, Beijing, 100081, China.
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China.
| |
Collapse
|
30
|
Qi T, Jing R, Ma B, Hu C, Wen C, Shao Y, Pei C. The E3 Ligase RNF157 Inhibits Lens Epithelial Cell Apoptosis by Negatively Regulating p53 in Age-Related Cataracts. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 35435923 PMCID: PMC9034709 DOI: 10.1167/iovs.63.4.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose Age-related cataract (ARC) is a major cause of vision impairment worldwide. The E3 ubiquitin ligase RING finger protein 157 (RNF157) is involved in regulating cell survival and downregulated in human cataractous lens samples. However, the function of RNF157 in cataracts remains unclear. This study aimed to determine the role of RNF157 in ARC. Methods Real-time polymerase chain reaction (PCR) and Western blotting were used to analyze the expression of RNF157 in clinical lens capsules, rat cataract models, and oxidative stress cell models. Western blot analysis and flow cytometry were used to evaluate cell apoptosis. Co-IP assay, protein stability assay, and ubiquitination assay were used to detect the interaction between RNF157 and its substrate p53. Results The expression of RNF157 was downregulated in human cataract samples, UVB-induced rat cataract model, and H2O2-treated human lens epithelial cells (LECs). Ectopic expression of RNF157 protected LECs from H2O2-induced apoptosis. In contrast, knockdown of RNF157 enhanced oxidative stress-induced apoptotic cell death. Moreover, silence of RNF157 in the rat ex vivo lens model exacerbated lens opacity. Mechanistically, RNF157 causes ubiquitination and degradation of the tumor antigen p53. Overexpression of p53 eliminated the antiapoptotic effects of RNF157, whereas p53 knockdown rescued RNF157 silencing-induced cell death. Conclusions Our findings revealed that reduced RNF157 expression promoted LEC apoptosis by upregulating p53 in cataracts, suggesting that the regulation of RNF157 expression may serve as a potential therapeutic strategy for cataracts.
Collapse
Affiliation(s)
- Tiantian Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruihua Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Conghui Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chan Wen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongping Shao
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Pfaff A, Chernatynskaya A, Vineyard H, Ercal N. Thiol antioxidants protect human lens epithelial (HLE B-3) cells against tert-butyl hydroperoxide-induced oxidative damage and cytotoxicity. Biochem Biophys Rep 2022; 29:101213. [PMID: 35128081 PMCID: PMC8808075 DOI: 10.1016/j.bbrep.2022.101213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative damage to lens epithelial cells plays an important role in the development of age-related cataract, and the health of the lens has important implications for overall ocular health. As a result, there is a need for effective therapeutic agents that prevent oxidative damage to the lens. Thiol antioxidants such as tiopronin or N-(2-mercaptopropionyl)glycine (MPG), N-acetylcysteine amide (NACA), N-acetylcysteine (NAC), and exogenous glutathione (GSH) may be promising candidates for this purpose, but their ability to protect lens epithelial cells is not well understood. The effectiveness of these compounds was compared by exposing human lens epithelial cells (HLE B-3) to the chemical oxidant tert-butyl hydroperoxide (tBHP) and treating the cells with each of the antioxidant compounds. MTT cell viability, apoptosis, reactive oxygen species (ROS), and levels of intracellular GSH, the most important antioxidant in the lens, were measured after treatment. All four compounds provided some degree of protection against tBHP-induced oxidative stress and cytotoxicity. Cells treated with NACA exhibited the highest viability after exposure to tBHP, as well as decreased ROS and increased intracellular GSH. Exogenous GSH also preserved viability and increased intracellular GSH levels. MPG scavenged significant amounts of ROS, and NAC increased intracellular GSH levels. Our results suggest that both scavenging ROS and increasing GSH may be necessary for effective protection of lens epithelial cells. Further, the compounds tested may be useful for the development of therapeutic strategies that aim to prevent oxidative damage to the lens.
Collapse
Key Words
- 7-AAD, 7-aminoactinomycin D
- ATCC, American Type Culture Collection
- Antioxidant
- Carboxy-H2DCFDA, 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate
- Cataract
- EMEM, Eagle's minimum essential medium
- FBS, fetal bovine serum
- FDA, United States Food and Drug Administration
- GSH, glutathione
- GSSG, glutathione disulfide
- Glutathione
- H2O2, hydrogen peroxide
- HLE B-3, human (eye) lens epithelial cell line B-3
- Lens
- MPG, N-(2-mercaptopropionyl)glycine
- MTT, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
- NAC, N-acetylcysteine
- NACA, N-acetylcysteine amide
- OH•, hydroxyl radical
- Oxidative stress
- PBS, phosphate-buffered saline
- ROS, reactive oxygen species
- Thiol
- tBHP, tert-butyl hydroperoxide
Collapse
Affiliation(s)
| | | | - Hannah Vineyard
- Department of Chemistry, Missouri University of Science & Technology, 104 Schrenk Hall, 400 W. 11th Street, Rolla, MO, 65409, USA
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science & Technology, 104 Schrenk Hall, 400 W. 11th Street, Rolla, MO, 65409, USA
| |
Collapse
|
32
|
Jiang S, Jia Y, Gao Z. LncRNA KCNQ1OT1 promotes apoptosis and oxidative stress of human lens epithelial cells through epigenetic regulation of WRN. Curr Eye Res 2022; 47:I-X. [PMID: 35179402 DOI: 10.1080/02713683.2022.2026975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Long non-coding RNA KCNQ1OT1 is fundamental to age-related cataract (ARC), whereas the underlying mechanism is still unknown. Here, we explored the possible mechanism of KCNQ1OT1 in ARC. METHODS The expression of KCNQ1OT1 in ARC patients and H2O2-treated human lens epithelial cell line SRA01/04 was detected. Gene and protein expression were examined by quantitative real-time PCR and western blot. Cell viability and apoptosis were detected by CCK-8 assay and flow cytometry. The content of reactive oxygen species (ROS) was assessed by fluorescent probe DCFH-DA. The relationship among KCNQ1OT1, G9a, H3K9me1/2 and WRN was verified by RNA pull down and Chromatin immunoprecipitation. RESULTS KCNQ1OT1 was up-regulated in the anterior lens capsule tissues of ARC patients and H2O2-treated SRA01/04 cells. KCNQ1OT1 overexpression suppressed cell viability and facilitated apoptosis in H2O2-treated SRA01/04 cells. KCNQ1OT1 up-regulation enhanced the levels of ROS and malondialdehyde (MDA), and reduced the levels of superoxide dismutase (SOD) and catalase (CAT) in H2O2-treated SRA01/04 cells. WRN up-regulation led to a result opposite to KCNQ1OT1 overexpression. The influence of WRN up-regulation on cell viability, apoptosis and oxidative stress of SRA01/04 cells was rescued by KCNQ1OT1 overexpression. Additionally, KCNQ1OT1 interacted with G9a. Both G9a and H3K9me1/2 interacted with WRN promoter. G9a deficiency significantly enhanced WRN expression and repressed H3K9me1/2 expression in SRA01/04 cells, which was abrogated by KCNQ1OT1 up-regulation. CONCLUSION This study demonstrated that KCNQ1OT1 promoted apoptosis and oxidative stress of human LECs through G9a-driven epigenetic regulation of WRN. This work highlights a novel lncRNA involving key regulators of ARC.
Collapse
Affiliation(s)
- Shengqun Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, No.287 Changhuai Road, Bengbu 233004, Anhui Province, China
| | - Yanwen Jia
- Eye Institute, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No 29 Xianglong Lane, Changzhou 211166, Jiangsu Province, China
| | - Ziqing Gao
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, No.287 Changhuai Road, Bengbu 233004, Anhui Province, China
| |
Collapse
|
33
|
Liu S, Jin Z, Xia R, Zheng Z, Zha Y, Wang Q, Wan X, Yang H, Cai J. Protection of Human Lens Epithelial Cells from Oxidative Stress Damage and Cell Apoptosis by KGF-2 through the Akt/Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6933812. [PMID: 35222803 PMCID: PMC8872674 DOI: 10.1155/2022/6933812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022]
Abstract
Oxidative stress exerts a significant influence on the pathogenesis of various cataracts by inducing degradation and aggregation of lens proteins and apoptosis of lens epithelial cells. Keratinocyte growth factor-2 (KGF-2) exerts a favorable cytoprotective effect against oxidative stress in vivo and in vitro. In this work, we investigated the molecular mechanisms of KGF-2 against hydrogen peroxide- (H2O2-) induced oxidative stress and apoptosis in human lens epithelial cells (HLECs) and rat lenses. KGF-2 pretreatment could reduce H2O2-induced cytotoxicity as well as reactive oxygen species (ROS) accumulation. KGF-2 also increases B-cell lymphoma-2 (Bcl-2), quinine oxidoreductase-1 (NQO-1), superoxide dismutase (SOD2), and catalase (CAT) levels while decreasing the expression level of Bcl2-associated X (Bax) and cleaved caspase-3 in H2O2-stimulated HLECs. LY294002, the phosphatidylinositol-3-kinase (PI3K)/Akt inhibitor, abolished KGF-2's effect to some extent, demonstrating that KGF-2 protected HLECs via the PI3K/Akt pathway. On the other hand, KGF-2 activated the Nrf2/HO-1 pathway by regulating the PI3K/Akt pathway. Silencing nuclear factor erythroid 2-related factor 2 (Nrf2) by targeted-siRNA and inhibiting heme oxygenase-1 (HO-1) through zinc protoporphyrin IX (ZnPP) significantly decreased cytoprotection of KGF-2. Furthermore, as revealed by lens organ culture assays, KGF-2 treatment decreased H2O2-induced lens opacity in a concentration-dependent manner. As demonstrated by these data, KGF-2 resisted H2O2-mediated apoptosis and oxidative stress in HLECs through Nrf2/HO-1 and PI3K/Akt pathways, suggesting a potential protective effect against the formation of cataracts.
Collapse
Affiliation(s)
- Shuyu Liu
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zi Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Ruyue Xia
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuoni Zheng
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yi Zha
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiang Wang
- Department of Ophthalmology, Ruian People's Hospital, Wenzhou 325000, China
| | - Xinbei Wan
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada H3A 1G1
| | - Hui Yang
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianqiu Cai
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
34
|
Amirahmadi M, Salesi M, Yousefi R, Daryanosh F, Nemati J, Kurganov BI. The impact of concurrent training and antioxidant supplementation on the factors associated with the ocular lens opacity in diabetic rats. Arch Physiol Biochem 2022; 128:126-140. [PMID: 31573372 DOI: 10.1080/13813455.2019.1668019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The current study was aimed to investigate the protective effect of vitamins C and E (VCE) supplementation, exercise, and their concurrent application against cataract incidence in the diabetic rats. The obtained results indicated that different supplementation and training treatments were capable to preserve the lens transparency in the diabetic rats. Also, upon applying different supplementation and training treatments, the level of glutathione (GSH) and activity of antioxidant enzymes in the diabetic rats was preserved approximately close to their control levels. In addition, different treatments were capable to maintain the structural integrity of the lens proteins in diabetic rats. Moreover, VCE supplementation, exercise and their simultaneous application prevented lens crystallins of diabetic rats against fibrillation and formation of the increased oligomeric sizes. The results of this study signify the importance of antioxidant supplementation and exercise in reducing the detrimental effects of hyperglycemia on the eye lenses.
Collapse
Affiliation(s)
- Mousa Amirahmadi
- Department of Sport Sciences, College of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Mohsen Salesi
- Department of Sport Sciences, College of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Farhad Daryanosh
- Department of Sport Sciences, College of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Javad Nemati
- Department of Sport Sciences, College of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Boris I Kurganov
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
35
|
Autophagy facilitates age-related cell apoptosis-a new insight from senile cataract. Cell Death Dis 2022; 13:37. [PMID: 35013122 PMCID: PMC8748728 DOI: 10.1038/s41419-021-04489-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
Age-related cell loss underpins many senescence-associated diseases. Apoptosis of lens epithelial cells (LECs) is the important cellular basis of senile cataract resulted from prolonged exposure to oxidative stress, although the specific mechanisms remain elusive. Our data indicated the concomitance of high autophagy activity, low SQSTM1/p62 protein level and apoptosis in the same LEC from senile cataract patients. Meanwhile, in primary cultured LECs model, more durable autophagy activation and more obvious p62 degradation under oxidative stress were observed in LECs from elder healthy donors, compared with that from young healthy donors. Using autophagy-deficiency HLE-B3 cell line, autophagy adaptor p62 was identified as the critical scaffold protein sustaining the pro-survival signaling PKCι-IKK-NF-κB cascades, which antagonized the pro-apoptotic signaling. Moreover, the pharmacological inhibitor of autophagy, 3-MA, significantly inhibited p62 degradation and rescued oxidative stress-induced apoptosis in elder LECs. Collectively, this study demonstrated that durable activation of autophagy promoted age-related cell death in LECs. Our work contributes to better understanding the pathogenesis of senescence-associated diseases.
Collapse
|
36
|
The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. Exp Eye Res 2022; 217:108910. [PMID: 34998788 DOI: 10.1016/j.exer.2021.108910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Mouse double minute 2 (MDM2), an E3 ubiquitin ligase and the primary negative regulator of the tumor suppressor p53, cooperates with its structural homolog MDM4/MDMX to control intracellular p53 level. In turn, overexpression of p53 upregulates and forms an autoregulatory feedback loop with MDM2. The MDM2-p53 axis plays a pivotal role in modulating cell cycle control and apoptosis. MDM2 itself is regulated by the PI3K-AKT and RB-E2F-ARF pathways. While amplification of the MDM2 gene or overexpression of MDM2 (due to MDM2 SNP T309G, for instance) is associated with various malignancies, numerous studies have shown that MDM2/p53 alterations may also play a part in the pathogenetic process of certain ocular disorders (Fig. 1). These include cancers (retinoblastoma, uveal melanoma), fibrocellular proliferative diseases (proliferative vitreoretinopathy, pterygium), neovascular diseases, degenerative diseases (cataract, primary open-angle glaucoma, age-related macular degeneration) and infectious/inflammatory diseases (trachoma, uveitis). In addition, MDM2 is implicated in retinogenesis and regeneration after optic nerve injury. Anti-MDM2 therapy has shown potential as a novel approach to treating these diseases. Despite major safety concerns, there are high expectations for the clinical value of reformative MDM2 inhibitors. This review summarizes important findings about the role of MDM2 in ocular pathologies and provides an overview of recent advances in treating these diseases with anti-MDM2 therapies.
Collapse
|
37
|
Wu J, Xu W, Wu W, Xu J, Zheng S, Shentu X, Chen X. Cataract-causing mutation R48C increases γA-crystallin susceptibility to oxidative stress and ultraviolet radiation. Int J Biol Macromol 2022; 194:688-694. [PMID: 34826455 DOI: 10.1016/j.ijbiomac.2021.11.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Among all congenital cataracts caused by genetic mutations, approximately half are caused by a mutation in crystallin genes, and accounts the leading cause of blindness in children globally. In this study, we investigated the underlying molecular mechanism of R48C mutation (c.142C > T; p.[Arg48Cys]) of γA-crystallin in a Mexican-Mestizo descent family causing congenital cataracts. We purified γA-crystallin wild-type (WT) and R48C mutant and compared their structural characteristics and biophysical properties by Spectroscopic experiments and environmental stress (oxidative stress, ultraviolet irradiation, pH disorders, thermal shock, or chemical denaturation). The R48C mutant did not affect the secondary and tertiary structure of monomer γA-crystallin, nor did it affect its stability to heat shock and chemicals. However, the R48C mutant destroys the oxidative stability of γA-crystallin, which makes the protein more prone to aggregation and precipitation under oxidative conditions. These might be the pathogenesis of γA-crystallin R48C mutant related to congenital cataract and help to develop anti-cataract strategies from the perspective of γA-crystallin.
Collapse
Affiliation(s)
- Jing Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, 88 Jiefang Road, Hangzhou, Zhejiang, China; Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Wanyue Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, Zhejiang, China
| | - Wei Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Jingjie Xu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Sifan Zheng
- GKT School of Medical Education, King's College London, London SE1 1UL, United Kingdom
| | - Xingchao Shentu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, 88 Jiefang Road, Hangzhou, Zhejiang, China.
| | - Xiangjun Chen
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, 88 Jiefang Road, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
38
|
Andjelic S, Drašlar K, Hvala A, Hawlina M. Structural Characteristics of the Lens in Presenile Cataract. Front Med (Lausanne) 2021; 8:802275. [PMID: 35004779 PMCID: PMC8727346 DOI: 10.3389/fmed.2021.802275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this work is to examine the structure of the anterior lens epithelial cells (aLECs) of presenile idiopathic cortical cataract to investigate the possible structural reasons for its development. The anterior lens capsules (aLCs: basement membrane and associated lens epithelial cells) were obtained from routine uneventful cataract surgery of 5 presenile cataract patients (16 and 41 years old women and 29, 39, and 45 years old men). None of the patients had family history of cataract, medication, or trauma and they were otherwise healthy. In addition, the patients did not have any other abnormal features in the ocular status except cataract. The aLCs were prepared for scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The most prominent abnormal features observed by SEM for all 5 studied presenile cataract patients were the changes of the aLECs structure with the dents, the selective concavity of some LECs, at their apical side centrally toward the nucleus. In addition, TEM showed the thinning of the lens epithelium with the segmentally concave cells and the compressed and elongated nuclei. Abnormal and distinguishable structural features were observed in the anterior lens epithelium aLECs in all 5 patients with presenile cataract. Disturbed structure of aLECs, regularly present in presenile cataract type is shown that might be associated with water accumulation in the presenile idiopathic cortical cataract lens.
Collapse
Affiliation(s)
- Sofija Andjelic
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Kazimir Drašlar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anastazija Hvala
- Department of Pathology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| |
Collapse
|
39
|
Zhou C, Huang X, Li X, Xiong Y. Circular RNA erythrocyte membrane protein band 4.1 assuages ultraviolet irradiation-induced apoptosis of lens epithelial cells by stimulating 5'-bisphosphate nucleotidase 1 in a miR-24-3p-dependent manner. Bioengineered 2021; 12:8953-8964. [PMID: 34652259 PMCID: PMC8806953 DOI: 10.1080/21655979.2021.1990196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Apoptosis of lens epithelial cells contributed to the formation of age-related cataract (ARC), and previous data revealed that circular RNA (circRNA) was responsible for the underneath mechanism. The study was organized to explore the role of circular RNA erythrocyte membrane protein band 4.1 (circ_EPB41) in ultraviolet (UV) irradiation-induced apoptosis of lens epithelial cells. SRA01/04 cells were irradiated with UV to mimic the ARC cell model. The RNA levels of circ_EPB41, microRNA-24-3p (miR-24-3p), and 3ʹ(2ʹ), 5ʹ-bisphosphate nucleotidase 1 (BPNT1) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. 5-Ethynyl-29-deoxyuridine, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide and DNA content quantitation assays were performed to investigate cell proliferation. Flow cytometry was conducted to analyze cell apoptosis. Dual-luciferase reporter assay was implemented to confirm the interaction among circ_EPB41, miR-24-3p, and BPNT1. Our data showed that circ_EPB41 and BPNT1 expression were downregulated in ARC tissues and UV-irradiated SRA01/04 cells as compared with normal anterior lens capsules and untreated SRA01/04 cells. Circ_EPB41 overexpression ameliorated the effects of UV irradiation on the proliferation and apoptosis of SRA01/04 cells. Besides, miR-24-3p, a target miRNA of circ_EPB41, attenuated circ_EPB41 introduction-mediated proliferation, and apoptosis of UV-irradiated SRA01/04 cells. MiR-24-3p regulated UV irradiation-induced effects by targeting BPNT1. Importantly, it was found that circ_EPB41 stimulated BPNT1 production by miR-24-3p. Taken together, the enforced expression of circ_EPB41 ameliorated UV irradiation-induced apoptosis of lens epithelial cells by miR-24-3p/BPNT1 pathway, providing us with a potential target for the therapy of UV-caused ARC.
Collapse
Affiliation(s)
- Cuiyun Zhou
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| | - Xiaoqiong Huang
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| | - Xia Li
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| | - Yan Xiong
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| |
Collapse
|
40
|
Quan Y, Du Y, Wu C, Gu S, Jiang JX. Connexin hemichannels regulate redox potential via metabolite exchange and protect lens against cellular oxidative damage. Redox Biol 2021; 46:102102. [PMID: 34474393 PMCID: PMC8408634 DOI: 10.1016/j.redox.2021.102102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Increased oxidative stress contributes to cataract formation during aging. Anterior epithelial cells are a frontline antioxidant defense system with powerful capacities to maintain redox homeostasis and lens transparency. In this study, we report a new molecular mechanism of connexin (Cx) hemichannels (HCs) in lens epithelial cells to protect lens against oxidative stress. Our results showed haploinsufficiency of Cx43 elevated oxidative stress and susceptibility to cataracts in the mouse lens. Cx43 HCs opened in response to hydrogen peroxide (H2O2) or ultraviolet radiation (UVR) in human lens epithelium HLE-B3 cells, and this activation contributed to a cellular protective mechanism against oxidative stress-induced apoptotic cell death. Furthermore, we found that Cx43 HCs mediated the exchange of oxidants and antioxidants in lens epithelial cells undergoing oxidative stress. These transporting activities facilitated a reduction of intracellular reactive oxygen species (ROS) accumulation and maintained the intracellular glutathione (GSH) level through the exchange of redox metabolites and change of anti-oxidative gene expression. In addition, we show that Cx43 HCs can be regulated by the intracellular redox state and this regulation is mediated by residue Cys260 located at the Cx43 C-terminus. Together, our results demonstrate that Cx43 HCs activated by oxidative stress in the lens epithelial cells play a key role in maintaining redox homeostasis in lens under oxidative stress. Our findings contribute to advancing our understanding of oxidative stress induced lens disorders, such as age-related non-congenital cataracts.
Collapse
Affiliation(s)
- Yumeng Quan
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yu Du
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Changrui Wu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
41
|
Wang L, Zhang L, Gong X, Fu J, Gan Y, Hou M, Nie Q, Xiang J, Xiao Y, Wang Y, Zheng S, Yang L, Chen H, Xiang M, Liu Y, Li DW. PP-1β and PP-2Aα modulate cAMP response element-binding protein (CREB) functions in aging control and stress response through de-regulation of αB-crystallin gene and p300-p53 signaling axis. Aging Cell 2021; 20:e13458. [PMID: 34425033 PMCID: PMC8441381 DOI: 10.1111/acel.13458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
The function of the transcription factor, cAMP response element‐binding protein (CREB), is activated through S133 phosphorylation by PKA and others. Regarding its inactivation, it is not well defined. cAMP response element‐binding protein plays an essential role in promoting cell proliferation, neuronal survival and the synaptic plasticity associated with long‐term memory. Our recent studies have shown that CREB is an important player in mediating stress response. Here, we have demonstrated that CREB regulates aging process through suppression of αB‐crystallin and activation of the p300‐p53‐Bak/Bax signaling axis. First, we determined that two specific protein phosphatases, PP‐1β and PP‐2Aα, can inactivate CREB through S133 dephosphorylation. Subsequently, we demonstrated that cells expressing the S133A‐CREB, a mutant mimicking constant dephosphorylation at S133, suppress CREB functions in aging control and stress response. Mechanistically, S133A‐CREB not only significantly suppresses CREB control of αB‐crystallin gene, but also represses CREB‐mediated activation of p53 acetylation and downstream Bak/Bax genes. cAMP response element‐binding protein suppression of αB‐crystallin and its activation of p53 acetylation are major molecular events observed in human cataractous lenses of different age groups. Together, our results demonstrate that PP‐1β and PP‐2Aα modulate CREB functions in aging control and stress response through de‐regulation of αB‐crystallin gene and p300‐p53‐Bax/Bak signaling axis, which regulates human cataractogenesis in the aging lens.
Collapse
Affiliation(s)
- Ling Wang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Lan Zhang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Xiao‐Dong Gong
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Jia‐Ling Fu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yu‐Wen Gan
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Min Hou
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Jia‐Wen Xiang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Shu‐Yu Zheng
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Huimin Chen
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Meng‐Qing Xiang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - David Wan‐Cheng Li
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| |
Collapse
|
42
|
Wishart TFL, Flokis M, Shu DY, Das SJ, Lovicu FJ. Hallmarks of lens aging and cataractogenesis. Exp Eye Res 2021; 210:108709. [PMID: 34339681 DOI: 10.1016/j.exer.2021.108709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Lens homeostasis and transparency are dependent on the function and intercellular communication of its epithelia. While the lens epithelium is uniquely equipped with functional repair systems to withstand reactive oxygen species (ROS)-mediated oxidative insult, ROS are not necessarily detrimental to lens cells. Lens aging, and the onset of pathogenesis leading to cataract share an underlying theme; a progressive breakdown of oxidative stress repair systems driving a pro-oxidant shift in the intracellular environment, with cumulative ROS-induced damage to lens cell biomolecules leading to cellular dysfunction and pathology. Here we provide an overview of our current understanding of the sources and essential functions of lens ROS, antioxidative defenses, and changes in the major regulatory systems that serve to maintain the finely tuned balance of oxidative signaling vs. oxidative stress in lens cells. Age-related breakdown of these redox homeostasis systems in the lens leads to the onset of cataractogenesis. We propose eight candidate hallmarks that represent common denominators of aging and cataractogenesis in the mammalian lens: oxidative stress, altered cell signaling, loss of proteostasis, mitochondrial dysfunction, dysregulated ion homeostasis, cell senescence, genomic instability and intrinsic apoptotic cell death.
Collapse
Affiliation(s)
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia; Schepens Eye Research Institute of Mass Eye and Ear. Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shannon J Das
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
43
|
Gong XD, Wang Y, Hu XB, Zheng SY, Fu JL, Nie Q, Wang L, Hou M, Xiang JW, Xiao Y, Gao Q, Bai YY, Liu YZ, Li DWC. Aging-dependent loss of GAP junction proteins Cx46 and Cx50 in the fiber cells of human and mouse lenses accounts for the diminished coupling conductance. Aging (Albany NY) 2021; 13:17568-17591. [PMID: 34226295 PMCID: PMC8312418 DOI: 10.18632/aging.203247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The homeostasis of the ocular lens is maintained by a microcirculation system propagated through gap junction channels. It is well established that the intercellular communications of the lens become deteriorative during aging. However, the molecular basis for this change in human lenses has not been well defined. Here, we present evidence to show that over 90% of Cx46 and Cx50 are lost in the fiber cells of normal human lenses aged 50 and above. From transparent to cataractous lenses, while Cx43 was upregulated, both Cx46 and Cx50 were significantly down-regulated in the lens epithelia. During aging of mouse lenses, Cx43 remained unchanged, but both Cx46 and Cx50 were significantly downregulated. Under oxidative stress treatment, mouse lenses develop in vitro cataractogenesis. Associated with this process, Cx43 was significantly upregulated, in contrast, Cx46 and Cx50 were sharply downregulated. Together, our results for the first time reveal that downregulation in Cx46 and Cx50 levels appears to be the major reason for the diminished coupling conductance, and the aging-dependent loss of Cx46 and Cx50 promotes senile cataractogenesis.
Collapse
Affiliation(s)
- Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Xue-Bin Hu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Shu-Yu Zheng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Min Hou
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Qian Gao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yue-Yue Bai
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yi-Zhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| |
Collapse
|
44
|
Nie Q, Chen H, Zou M, Wang L, Hou M, Xiang JW, Luo Z, Gong XD, Fu JL, Wang Y, Zheng SY, Xiao Y, Gan YW, Gao Q, Bai YY, Wang JM, Zhang L, Tang XC, Hu X, Gong L, Liu Y, Li DWC. The E3 Ligase PIAS1 Regulates p53 Sumoylation to Control Stress-Induced Apoptosis of Lens Epithelial Cells Through the Proapoptotic Regulator Bax. Front Cell Dev Biol 2021; 9:660494. [PMID: 34195189 PMCID: PMC8237824 DOI: 10.3389/fcell.2021.660494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/20/2021] [Indexed: 01/31/2023] Open
Abstract
Protein sumoylation is one of the most important post-translational modifications regulating many biological processes (Flotho A & Melchior F. 2013. Ann Rev. Biochem. 82:357–85). Our previous studies have shown that sumoylation plays a fundamental role in regulating lens differentiation (Yan et al., 2010. PNAS, 107(49):21034-9.; Gong et al., 2014. PNAS. 111(15):5574–9). Whether sumoylation is implicated in lens pathogenesis remains elusive. Here, we present evidence to show that the protein inhibitor of activated STAT-1 (PIAS1), a E3 ligase for sumoylation, is implicated in regulating stress-induced lens pathogenesis. During oxidative stress-induced cataractogenesis, expression of PIAS1 is significantly altered at both mRNA and protein levels. Upregulation and overexpression of exogenous PIAS1 significantly enhances stress-induced apoptosis. In contrast, silence of PIAS1 with CRISPR/Cas9 technology attenuates stress-induced apoptosis. Mechanistically, different from other cells, PIAS1 has little effect to activate JNK but upregulates Bax, a major proapoptotic regulator. Moreover, Bax upregulation is derived from the enhanced transcription activity of the upstream transcription factor, p53. As revealed previously in other cells by different laboratories, our data also demonstrate that PIAS1 promotes SUMO1 conjugation of p53 at K386 residue in lens epithelial cells and thus enhances p53 transcription activity to promote Bax upregulation. Silence of Bax expression largely abrogates PIAS1-mediated enhancement of stress-induced apoptosis. Thus, our results demonstrated that PIAS1 promotes oxidative stress-induced apoptosis through positive control of p53, which specifically upregulates expression of the downstream proapoptotic regulator Bax. As a result, PIAS1-promoted apoptosis induced by oxidative stress is implicated in lens pathogenesis.
Collapse
Affiliation(s)
- Qian Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huimin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ming Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ling Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Min Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhongwen Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Dong Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-Ling Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shu-Yu Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu-Wen Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qian Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue-Yue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing-Miao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Cheng Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuebin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Kronschläger M, Ruiß M, Dechat T, Findl O. Single high-dose peroral caffeine intake inhibits ultraviolet radiation-induced apoptosis in human lens epithelial cells in vitro. Acta Ophthalmol 2021; 99:e587-e593. [PMID: 33124749 DOI: 10.1111/aos.14641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of the present study was to determine whether caffeine concentrations in human lens epithelial cells (LECs) achieved from acute peroral caffeine intake inhibit ultraviolet radiation-induced apoptosis in vitro. METHODS Patients were planned for cataract surgery of both eyes with a caffeine abstinence of 2 weeks in total, starting 1 week before surgery of the first eye. The second eye was scheduled 1 week after the first eye. At the day of the second eye surgery, patients were given coffee containing 180 mg caffeine shortly before surgery. Lens capsules including LEC, harvested after capsulorhexis, were transferred to a cell culture dish and immediately exposed to close to threshold ultraviolet radiation (UVR). At 24 hr after UVR exposure, apoptotic LECs were analysed by TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining. RESULTS TUNEL-positive cells were detected in UVR-exposed lens capsules both after caffeine intake and in controls. The mean difference in TUNEL-positive cells between caffeine intake and contralateral controls (no caffeine) resulted in a 95% CI 15.3 ± 10.4% (degrees of freedom: 16). CONCLUSION Peroral caffeine consumption significantly decreased UVR-induced apoptosis in LEC supporting epidemiological findings that caffeine delays the onset of cataract.
Collapse
Affiliation(s)
- Martin Kronschläger
- Vienna Institute for Research in Ocular Surgery Hanusch Hospital Vienna Austria
| | - Manuel Ruiß
- Vienna Institute for Research in Ocular Surgery Hanusch Hospital Vienna Austria
| | - Thomas Dechat
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling 1st Medical Department Hanusch Hospital Vienna Austria
| | - Oliver Findl
- Vienna Institute for Research in Ocular Surgery Hanusch Hospital Vienna Austria
| |
Collapse
|
46
|
Zhang K, Yin Y, Pei C, Wu C. MicroRNA-124 regulates lens epithelial cell apoptosis by affecting Fas alternative splicing by targeting polypyrimidine tract-binding protein in age-related cataract. Clin Exp Ophthalmol 2021; 49:591-605. [PMID: 34008270 DOI: 10.1111/ceo.13946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Age-related cataract (ARC) is a primary cause of visual blindness worldwide. Lens epithelial cell (LEC) apoptosis, in which Fas plays an essential role, is a vital cytological basis for cataractogenesis. However, the regulatory mechanism of Fas-dependent LEC apoptosis is not well understood. This study aimed to investigate whether MicroRNA (miRNA)-124 can regulate LEC apoptosis by targeting polypyrimidine tract-binding protein (PTB) and thereby affecting Fas alternative splicing in ARC. METHODS Lens capsule samples from patients with ARC and cornea donors with a transparent lens were collected. HLE-B3 cells were cultured and treated with hydrogen peroxide (H2 O2 ) to establish an apoptosis model in LECs. The expression of miRNA-124, PTB, Fas, and Fas isoforms in tissues and cell lines was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting, polyacrylamide gel electrophoresis, and flow cytometry. The miRNA-124 mimic and inhibitor were transfected into HLE-B3 cells, and the effects of the miRNA-124/PTB/Fas pathway in LECs were assessed by analysis of their related targets. RESULTS High expression of miRNA-124 and membrane Fas (mFas) mRNA and decreased PTB expression were observed in the lens capsule samples. In cells undergoing H2 O2 -induced apoptosis, mFas expression was increased, accompanied by decreased PTB and increased miRNA-124 expression. Subsequently, miRNA-124 upregulation suppressed PTB expression, elevated the mFas level without affecting total Fas expression and promoted apoptosis; miRNA-124 downregulation exerted the opposite effects. CONCLUSION This study revealed that miRNA-124 promotes LEC apoptosis in ARC by upregulating mFas through targeted inhibition of PTB. Moreover, the identification of the miRNA-124/PTB/Fas pathway provides novel insight into Fas-dependent LEC apoptosis.
Collapse
Affiliation(s)
- Kaiyun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Yin
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Changrui Wu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
47
|
UV Effect on Human Anterior Lens Capsule Macro-Molecular Composition Studied by Synchrotron-Based FTIR Micro-Spectroscopy. Int J Mol Sci 2021; 22:ijms22105249. [PMID: 34065666 PMCID: PMC8156142 DOI: 10.3390/ijms22105249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet (UV) irradiation is an important risk factor in cataractogenesis. Lens epithelial cells (LECs), which are a highly metabolically active part of the lens, play an important role in UV-induced cataractogenesis. The purpose of this study was to characterize cell compounds such as nucleic acids, proteins, and lipids in human UV C-irradiated anterior lens capsules (LCs) with LECs, as well as to compare them with the control, non-irradiated LCs of patients without cataract, by using synchrotron radiation-based Fourier transform infrared (SR-FTIR) micro-spectroscopy. In order to understand the effect of the UV C on the LC bio-macromolecules in a context of cataractogenesis, we used the SR-FTIR micro-spectroscopy setup installed on the beamline MIRAS at the Spanish synchrotron light source ALBA, where measurements were set to achieve a single-cell resolution with high spectral stability and high photon flux. UV C irradiation of LCs resulted in a significant effect on protein conformation with protein formation of intramolecular parallel β-sheet structure, lower phosphate and carboxyl bands in fatty acids and amino acids, and oxidative stress markers with significant increase of lipid peroxidation and diminishment of the asymmetric CH3 band.
Collapse
|
48
|
Jing R, Ma B, Qi T, Hu C, Liao C, Wen C, Shao Y, Pei C. Long Noncoding RNA OIP5-AS1 Promotes Cell Apoptosis and Cataract Formation by Blocking POLG Expression Under Oxidative Stress. Invest Ophthalmol Vis Sci 2021; 61:3. [PMID: 33006594 PMCID: PMC7545078 DOI: 10.1167/iovs.61.12.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Cataract, a clouding of the intraocular lens, is the leading cause of blindness. The lens-expressed long noncoding RNA OIP5-AS1 was upregulated in lens epithelial cells from patients with cataracts, suggesting its pathogenic role in cataracts. We investigated the regulatory role of OIP5-AS1 in the development of cataracts as well as potential RNA binding proteins, downstream target genes, and upstream transcription factors. Methods Clinical capsules and ex vivo and in vitro cataract models were used to test OIP5-AS1 expression. Cell apoptosis was detected using Western blots, JC-1 staining, and flow cytometry. Ribonucleoprotein immunoprecipitation-qPCR was performed to confirm the interaction of OIP5-AS1 and POLG. Chromatin immunoprecipitation-qPCR was used to determine the binding of TFAP2A and the OIP5-AS1 promoter region. Results OIP5-AS1 was upregulated in cataract lenses and B3 cells under oxidative stress. OIP5-AS1 knockdown protected B3 cells from H2O2-induced apoptosis and alleviated lens opacity in the ex vivo cataract model. HuR functioned as a scaffold carrying OIP5-AS1 and POLG mRNA and mediated the decay of POLG mRNA. POLG was downregulated in the cataract lens and oxidative-stressed B3 cells, and POLG depletion decreased the mtDNA copy number and MMP, increased reactive oxygen species production, and sensitized B3 cells to oxidative stress-induced apoptosis. POLG overexpression reversed these effects. TFAP2A bound the OIP5-AS1 promoter and contributed to OIP5-AS1 expression. Conclusions We demonstrated that OIP5-AS1, activated by TFAP2A, contributed to cataract formation by inhibiting POLG expression mediated by HuR, thus leading to increased apoptosis of lens epithelial cells and aggravated lens opacity, suggesting that OIP5-AS1 is a potential target for cataract treatment.
Collapse
Affiliation(s)
- Ruihua Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tiantian Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Conghui Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chongbing Liao
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chan Wen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongping Shao
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
49
|
Wei Z, Hao C, Huangfu J, Srinivasagan R, Zhang X, Fan X. Aging lens epithelium is susceptible to ferroptosis. Free Radic Biol Med 2021; 167:94-108. [PMID: 33722625 PMCID: PMC8096685 DOI: 10.1016/j.freeradbiomed.2021.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Age-related cataracts (ARC) are the primary cause of blindness worldwide, and oxidative stress is considered the central pathogenesis of age-related cataractogenesis. Interestingly, ample evidence suggests that there is no remarkable apoptosis present in aged and cataractous human lenses despite the profound disruption of redox homeostasis, raising an essential question regarding the existence of other cell death mechanisms. Here we sought to explore the lens epithelial cell's (LEC) susceptibility to ferroptosis after documentation has concluded that aged and cataractous human lenses manifest with increased reactive oxygen species (ROS) formation, elevated lipid peroxidation, and accumulative intracellular redox-active iron, constituting the three hallmarks of ferroptosis during aging and cataractogenesis. Here we show that very low concentrations of system Xc- inhibitor Erastin (0.5 μM) and glutathione peroxidase 4 (GPX4) inhibitor RSL3 (0.1 μM) can drastically induce human LEC (FHL124) ferroptosis in vitro and mouse lens epithelium ferroptosis ex vivo. Depletion of intracellular glutathione (GSH) in human LECs and mouse lens epithelium significantly sensitizes ferroptosis, particularly under RSL3 challenge. Intriguingly, both human LECs and the mouse lens epithelium demonstrate an age-related sensitization of ferroptosis. Transcriptome analysis indicates that clusters of genes are up-or down-regulated in aged LECs, impacting cellular redox and iron homeostases, such as downregulation of both cystine/glutamate antiporter subunits SLC7A11 and SLC3A2 and iron exporter ferroportin (SLC40A1). Here, for the first time, we are suggesting that LECs are highly susceptible to ferroptosis. Moreover, aged and cataractous human lenses may possess more pro-ferroptotic criteria than any other organ in the human body.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jingru Huangfu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia; Department of Ophthalmology, Chongqing Medical University, Chongqing, China
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| | - Xiang Zhang
- Genomics, Epigenomics and Sequencing Core, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia.
| |
Collapse
|
50
|
Huangfu J, Hao C, Wei Z, Wormstone IM, Yan H, Fan X. Cellular FLICE-like inhibitory protein (cFLIP) critically maintains apoptotic resistance in human lens epithelial cells. Cell Death Dis 2021; 12:386. [PMID: 33837174 PMCID: PMC8035156 DOI: 10.1038/s41419-021-03683-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023]
Abstract
The present study aims to understand the mechanism of the lens epithelial cell's strong anti-apoptotic capacity and survival in the mature human lens that, on the one hand, maintains lens transparency over several decades, while on the other hand, increases the risk of posterior capsule opacification (PCO). Here we compared FHL124 cells and HeLa cells, spontaneously immortalized epithelial cell lines derived from the human lens and cervical cancer cells, respectively, of their resistance to TNFα-mediated cell death. TNFα plus cycloheximide (CHX) triggered almost all of HeLa cell death. FHL124 cells, however, were unaffected and able to block caspase-8 activation as well as prevent caspase-3 and PARP-1 cleavage. Interestingly, despite spontaneous NFκB and AP-1 activation and upregulation of multiple cell survival/anti-apoptotic genes in both cell types, only FHL124 cells were able to survive the TNFα challenge. After screening and comparing the cell survival genes, cFLIP was found to be highly expressed in FHL124 cells and substantially upregulated by TNFα stimulation. FHL124 cells with a mild cFLIP knockdown manifested a profound apoptotic response to TNFα stimulus similar to HeLa cells. Most importantly, we confirmed these findings in an ex vivo lens capsular bag culture system. In conclusion, our results show that cFLIP is a critical gene that is regulating lens epithelial cell survival.
Collapse
Affiliation(s)
- Jingru Huangfu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Chongqing Medical University, Chongqing, China
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Hong Yan
- Department of Ophthalmology, Chongqing Medical University, Chongqing, China
- Xi'an Fourth Hospital, Affiliated Guangren Hospital School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|