1
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
2
|
Calmodulin Bidirectionally Regulates Evoked and Spontaneous Neurotransmitter Release at Retinal Ribbon Synapses. eNeuro 2021; 8:ENEURO.0257-20.2020. [PMID: 33293457 PMCID: PMC7808332 DOI: 10.1523/eneuro.0257-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 11/21/2022] Open
Abstract
For decades, a role for the Ca2+-binding protein calmodulin (CaM) in Ca2+-dependent presynaptic modulation of synaptic transmission has been recognized. Here, we investigated the influence of CaM on evoked and spontaneous neurotransmission at rod bipolar (RB) cell→AII amacrine cell synapses in the mouse retina. Our work was motivated by the observations that expression of CaM in RB axon terminals is extremely high and that [Ca2+] in RB terminals normally rises sufficiently to saturate endogenous buffers, making tonic CaM activation likely. Taking advantage of a model in which RBs can be stimulated by expressed channelrhodopsin-2 (ChR2) to avoid dialysis of the presynaptic terminal, we found that inhibition of CaM dramatically decreased evoked release by inhibition of presynaptic Ca channels while at the same time potentiating both Ca2+-dependent and Ca2+-independent spontaneous release. Remarkably, inhibition of myosin light chain kinase (MLCK), but not other CaM-dependent targets, mimicked the effects of CaM inhibition on evoked and spontaneous release. Importantly, initial antagonism of CaM occluded the effect of subsequent inhibition of MLCK on spontaneous release. We conclude that CaM, by acting through MLCK, bidirectionally regulates evoked and spontaneous release at retinal ribbon synapses.
Collapse
|
3
|
Lalle M, Fiorillo A. The protein 14-3-3: A functionally versatile molecule in Giardia duodenalis. ADVANCES IN PARASITOLOGY 2019; 106:51-103. [PMID: 31630760 DOI: 10.1016/bs.apar.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Giardia duodenalis is a cosmopolitan zoonotic protozoan parasite causing giardiasis, one of the most common diarrhoeal diseases in human and animals. Beyond its public health relevance, Giardia represents a valuable and fascinating model microorganism. The deep-branching phylogenetic position of Giardia, its simple life cycle and its minimalistic genomic and cellular organization provide a unique opportunity to define basal and "ancestral" eukaryotic functions. The eukaryotic 14-3-3 protein family represents a distinct example of phosphoserine/phosphothreonine-binding proteins. The extended network of protein-protein interactions established by 14-3-3 proteins place them at the crossroad of multiple signalling pathways that regulate physiological and pathological cellular processes. Despite the remarkable insight on 14-3-3 protein in different organisms, from yeast to humans, so far little attention was given to the study of this protein in protozoan parasites. However, in the last years, research efforts have provided evidences on unique properties of the single 14-3-3 protein of Giardia and on its association in key aspects of Giardia life cycle. In the first part of this chapter, a general overview of the features commonly shared among 14-3-3 proteins in different organisms (i.e. structure, target recognition, mode of action and regulatory mechanisms) is included. The second part focus on the current knowledge on the biochemistry and biology of the Giardia 14-3-3 protein and on the possibility to use this protein as target to propose new strategies for developing innovative antigiardial therapy.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy.
| | - Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat Commun 2016; 7:12961. [PMID: 27666821 PMCID: PMC5052689 DOI: 10.1038/ncomms12961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis. The binding of tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to nicotinic acetylcholine receptors (nAChRs) induces calcium signalling. Here the authors show that NKK-induced calcium influx in airway epithelial cells triggers IGF2 secretion and tumourigenesis.
Collapse
|
5
|
Hartl D, Nebrich G, Klein O, Stephanowitz H, Krause E, Rohe M. SORLA regulates calpain-dependent degradation of synapsin. Alzheimers Dement 2016; 12:952-963. [PMID: 27021222 DOI: 10.1016/j.jalz.2016.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/06/2016] [Accepted: 02/18/2016] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor in neurons and a major risk factor for Alzheimer disease. METHODS Here, we performed global proteome analyses in the brain of SORLA-deficient mice followed by biochemical and histopathologic studies to identify novel neuronal pathways affected by receptor dysfunction. RESULTS We demonstrate that the lack of SORLA results in accumulation of phosphorylated synapsins in cortex and hippocampus. We propose an underlying molecular mechanism by demonstrating that SORLA interacts with phosphorylated synapsins through 14-3-3 adaptor proteins to deliver synapsins to calpain-mediated proteolytic degradation. DISCUSSION Our results suggest a novel function for SORLA which is in control of synapsin degradation, potentially impacting on synaptic vesicle endocytosis and/or exocytosis.
Collapse
Affiliation(s)
- Daniela Hartl
- Institute for Medical Genetics and Human Genetics, Charité-University Medicine, Berlin, Germany; Department of Psychiatry and Psychotherapy, Saarland University Hospital, Saarland University, Homburg, Germany.
| | - Grit Nebrich
- Institute for Medical Genetics and Human Genetics, Charité-University Medicine, Berlin, Germany
| | - Oliver Klein
- Institute for Medical Genetics and Human Genetics, Charité-University Medicine, Berlin, Germany
| | | | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Michael Rohe
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
6
|
Armant DR. Intracellular Ca2+ signaling and preimplantation development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:151-71. [PMID: 25956298 PMCID: PMC10412982 DOI: 10.1007/978-1-4939-2480-6_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The key, versatile role of intracellular Ca2+ signaling during egg activation after fertilization has been appreciated for several decades. More recently, evidence has accumulated supporting the concept that cytoplasmic Ca2+ is also a major signaling nexus during subsequent development of the fertilized ovum. This chapter will review the molecular reactions that regulate intracellular Ca2+ levels and cell function, the role of Ca2+ signaling during egg activation and specific examples of repetitive Ca2+ signaling found throughout pre- and peri-implantation development. Many of the upstream and downstream pathways utilized during egg activation are also critical for specific processes that take place during embryonic development. Much remains to be done to elucidate the full complexity of Ca2+ signaling mechanisms in preimplantation embryos to the level of detail accomplished for egg activation. However, an emerging concept is that because this second messenger can be modulated downstream of numerous receptors and is able to bind and activate multiple cytoplasmic signaling proteins, it can help the coordination of development through up- and downstream pathways that change with each embryonic stage.
Collapse
Affiliation(s)
- D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University C.S. Mott Center for Human Growth and Development, 275 E. Hancock Street, 48201-1405, Detroit, MI, USA,
| |
Collapse
|
7
|
Ando K, Kudo Y, Aoyagi K, Ishikawa R, Igarashi M, Takahashi M. Calmodulin-dependent regulation of neurotransmitter release differs in subsets of neuronal cells. Brain Res 2013; 1535:1-13. [DOI: 10.1016/j.brainres.2013.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/25/2013] [Accepted: 08/08/2013] [Indexed: 02/05/2023]
|
8
|
Afshar K, Dube FF, Najafabadi HS, Bonneil E, Thibault P, Salavati R, Bede JC. Insights into the insect salivary gland proteome: diet-associated changes in caterpillar labial salivary proteins. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:351-366. [PMID: 23353727 DOI: 10.1016/j.jinsphys.2013.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
The primary function of salivary glands is fluid and protein secretion during feeding. Compared to mammalian systems, little is known about salivary protein secretion processes and the effect of diet on the salivary proteome in insect models. Therefore, the effect of diet nutritional quality on caterpillar labial salivary gland proteins was investigated using an unbiased global proteomic approach by nanoLC/ESI/tandem MS. Caterpillars of the beet armyworm, Spodoptera exigua Hübner, were fed one of three diets: an artificial diet containing their self-selected protein to carbohydrate (p:c) ratio (22p:20c), an artificial diet containing a higher nutritional content but the same p:c ratio (33p:30c) or the plant Medicago truncatula Gaertn. As expected, most identified proteins were associated with secretory processes and not influenced by diet. However, some diet-specific differences were observed. Nutrient stress-associated proteins, such as peptidyl-propyl cis-trans isomerase and glucose-regulated protein94/endoplasmin, and glyceraldehyde 3-phosphate dehydrogenase were identified in the labial salivary glands of caterpillars fed nutritionally poor diets, suggesting a link between nutritional status and vesicular exocytosis. Heat shock proteins and proteins involved in endoplasmic reticulum-associated protein degradation were also abundant in the labial salivary glands of these caterpillars. In comparison, proteins associated with development, such as arylphorin, were found in labial salivary glands of caterpillars fed 33p:30c. These results suggest that caterpillars fed balanced or nutritionally-poor diets have accelerated secretion pathways compared to those fed a protein-rich diet.
Collapse
Affiliation(s)
- Khashayar Afshar
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Qc, Canada H9X 3V9.
| | | | | | | | | | | | | |
Collapse
|
9
|
Volknandt W, Karas M. Proteomic analysis of the presynaptic active zone. Exp Brain Res 2012; 217:449-61. [DOI: 10.1007/s00221-012-3031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
|
10
|
Zeng LG, Wang JH, Li YJ, Sheng JQ, Gu Q, Hong YJ. Molecular characteristics and expression of calmodulin cDNA from the freshwater pearl mussel, Hyriopsis schlegelii. GENETICS AND MOLECULAR RESEARCH 2012; 11:42-52. [DOI: 10.4238/2012.january.9.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL, Paulo JA, Stapels MD, Borenstein NS, Belliveau RA, Haas EA, Stanley C, Krous HF, Steen H, Kinney HC. Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome. Mol Cell Proteomics 2011; 11:M111.009530. [PMID: 21976671 DOI: 10.1074/mcp.m111.009530] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Impaired brainstem responses to homeostatic challenges during sleep may result in the sudden infant death syndrome (SIDS). Previously we reported a deficiency of serotonin (5-HT) and its key biosynthetic enzyme, tryptophan hydroxylase (TPH2), in SIDS infants in the medullary 5-HT system that modulates homeostatic responses during sleep. Yet, the underlying basis of the TPH2 and 5-HT deficiency is unknown. In this study, we tested the hypothesis that proteomics would uncover previously unrecognized abnormal levels of proteins related to TPH2 and 5-HT regulation in SIDS cases compared with controls, which could provide novel insight into the basis of their deficiency. We first performed a discovery proteomic analysis of the gigantocellularis of the medullary 5-HT system in the same data set with deficiencies of TPH2 and 5-HT levels. Analysis in 6 SIDS cases and 4 controls revealed a 42-75% reduction in abundance in 5 of the 6 isoforms identified of the 14-3-3 signal transduction family, which is known to influence TPH2 activity (p < 0.07). These findings were corroborated in an additional SIDS and control sample using an orthogonal MS(E)-based quantitative proteomic strategy. To confirm these proteomics results in a larger data set (38 SIDS, 11 controls), we applied Western blot analysis in the gigantocellularis and found that 4/7 14-3-3 isoforms identified were significantly reduced in SIDS cases (p ≤ 0.02), with a 43% reduction in all 14-3-3 isoforms combined (p < 0.001). Abnormalities in 5-HT and TPH2 levels and 5-HT(1A) receptor binding were associated with the 14-3-3 deficits in the same SIDS cases. These data suggest a potential molecular defect in SIDS related to TPH2 regulation, as 14-3-3 is critical in this process.
Collapse
Affiliation(s)
- Kevin G Broadbelt
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts; Proteomics Center, Children's Hospital Boston, Boston, Massachusetts.
| | - Keith D Rivera
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - David S Paterson
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - Jhodie R Duncan
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | | | - Joao A Paulo
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts; Proteomics Center, Children's Hospital Boston, Boston, Massachusetts
| | | | - Natalia S Borenstein
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - Richard A Belliveau
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - Elisabeth A Haas
- Rady Children's Hospital San Diego and University of California, San Diego School of Medicine, La Jolla, California
| | | | - Henry F Krous
- Rady Children's Hospital San Diego and University of California, San Diego School of Medicine, La Jolla, California
| | - Hanno Steen
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts; Proteomics Center, Children's Hospital Boston, Boston, Massachusetts
| | - Hannah C Kinney
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Di Giovanni J, Iborra C, Maulet Y, Lévêque C, El Far O, Seagar M. Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin. J Biol Chem 2010; 285:23665-75. [PMID: 20519509 DOI: 10.1074/jbc.m109.096073] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca(2+) sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca(2+)-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca(2+)/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (K(D) = 500 nm) and syntaxin 1 (K(D) = 2 microm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca(2+) sensors act antagonistically in SNARE-mediated fusion.
Collapse
|
13
|
Calmodulin controls synaptic strength via presynaptic activation of calmodulin kinase II. J Neurosci 2010; 30:4132-42. [PMID: 20237283 DOI: 10.1523/jneurosci.3129-09.2010] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calmodulin regulates multifarious cellular processes via a panoply of target interactions. However, the central role, multiple isoforms, and complex target interactions of calmodulin make it difficult to examine its precise functions. Here, we analyzed calmodulin function in neurons using lentivirally delivered short-hairpin RNAs that suppressed expression of all calmodulin isoforms by approximately 70%. Calmodulin knockdown did not significantly alter neuronal survival or synapse formation but depressed spontaneous neuronal network activity. Strikingly, calmodulin knockdown decreased the presynaptic release probability almost twofold, without altering the presynaptic readily-releasable vesicle pool or postsynaptic neurotransmitter reception. In calmodulin knockdown neurons, presynaptic release was restored to wild-type levels by expression of constitutively active calmodulin-dependent kinase-IIalpha (CaMKIIalpha); in contrast, in control neurons, expression of constitutively active CaMKIIalpha had no effect on presynaptic release. Viewed together, these data suggest that calmodulin performs a major function in boosting synaptic strength via direct activation of presynaptic calmodulin-dependent kinase II.
Collapse
|
14
|
Wanna W, Rexroad CE, Yao J. Identification of a functional splice variant of 14-3-3E1 in rainbow trout. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:70-80. [PMID: 19590924 DOI: 10.1007/s10126-009-9201-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/02/2009] [Indexed: 05/28/2023]
Abstract
The 14-3-3 protein family is a family of regulatory proteins involved in diverse cellular processes. The presence of 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 isoforms suggest functional specificity of the isoforms. In this study, we report the identification and characterization of a new isoform of the rainbow trout 14-3-3E1 gene generated by alternative splicing. The new isoform contains an insertion of 48 nucleotides (from intron 5) in the coding region of 14-3-3E1 which results in the introduction of a premature stop codon between exon 5 and exon 6. Thus, the alternatively spliced form of 14-3-3E1 (14-3-3E1DeltaC17) lacks 17 amino acid residues at the C terminus encoded by the last exon (exon 6). Reverse-transcription polymerase chain reaction analysis revealed that the wild-type 14-3-3E1 (14-3-3E1wt) is ubiquitously expressed, while 14-3-3E1DeltaC17 shows tissue-specific as well as stage-specific expression during ovarian development and early embryogenesis. Analysis by yeast two-hybrid system demonstrated that 14-3-3E1Delta17 interacts with a number of proteins including ATP synthase, ankyrin repeat domain 13b, cytochrome c subunit VIa, cytochrome c subunit VIb, 60S ribosomal protein L34, solute carrier family 17 member 6 (SLC17A6), troponin I, and an unknown protein. Although all of these proteins except for SLC17A6 also interact with 14-3-3E1wt, 14-3-3E1Delta17 appears to have higher binding affinity with these proteins than 14-3-3E1wt. These findings suggest that alternative splicing affects the function and tissue-specific expression of 14-3-3E1.
Collapse
Affiliation(s)
- Warapond Wanna
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
15
|
Russo LC, Goñi CN, Castro LM, Asega AF, Camargo ACM, Trujillo CA, Ulrich H, Glucksman MJ, Scavone C, Ferro ES. Interaction with calmodulin is important for the secretion of thimet oligopeptidase following stimulation. FEBS J 2009; 276:4358-71. [PMID: 19614740 DOI: 10.1111/j.1742-4658.2009.07144.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) was originally described as a neuropeptide-metabolizing enzyme, highly expressed in the brain, kidneys and neuroendocrine tissue. EP24.15 lacks a typical signal peptide sequence for entry into the secretory pathway and is secreted by cells via an unconventional and unknown mechanism. In this study, we identified a novel calcium-dependent interaction between EP24.15 and calmodulin, which is important for the stimulated, but not constitutive, secretion of EP24.15. We demonstrated that, in vitro, EP24.15 and calmodulin physically interact only in the presence of Ca2+, with an estimated Kd value of 0.52 mum. Confocal microscopy confirmed that EP24.15 colocalizes with calmodulin in the cytosol of resting HEK293 cells. This colocalization markedly increases when cells are treated with either the calcium ionophore A23187 or the protein kinase A activator forskolin. Overexpression of calmodulin in HEK293 cells is sufficient to greatly increase the A23187-stimulated secretion of EP24.15, which can be inhibited by the calmodulin inhibitor calmidazolium. The specific inhibition of protein kinase A with KT5720 reduces the A23187-stimulated secretion of EP24.15 and inhibits the synergistic effects of forskolin with A23187. Treatment with calmidazolium and KT5720 nearly abolishes the stimulatory effects of A23187 on EP24.15 secretion. Together, these data suggest that the interaction between EP24.15 and calmodulin is regulated within cells and is important for the stimulated secretion of EP24.15 from HEK293 cells.
Collapse
Affiliation(s)
- Lilian C Russo
- Department of Cell Biology and Development, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nicolau J, de Souza DN, Carrilho M. Increased glycated calmodulin in the submandibular salivary glands of streptozotocin-induced diabetic rats. Cell Biochem Funct 2009; 27:193-8. [DOI: 10.1002/cbf.1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
ANLAUF E, DEROUICHE A. A practical calibration procedure for fluorescence colocalization at the single organelle level. J Microsc 2009; 233:225-33. [DOI: 10.1111/j.1365-2818.2009.03112.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Prescott GR, Jenkins RE, Walsh CM, Morgan A. Phosphorylation of cysteine string protein on Serine 10 triggers 14-3-3 protein binding. Biochem Biophys Res Commun 2008; 377:809-14. [DOI: 10.1016/j.bbrc.2008.10.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 10/11/2008] [Indexed: 10/21/2022]
|
19
|
Calábria LK, Garcia Hernandez L, Teixeira RR, Valle de Sousa M, Espindola FS. Identification of calmodulin-binding proteins in brain of worker honeybees. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:41-5. [DOI: 10.1016/j.cbpb.2008.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/08/2008] [Accepted: 05/15/2008] [Indexed: 11/28/2022]
|
20
|
Vesicle priming and recruitment by ubMunc13-2 are differentially regulated by calcium and calmodulin. J Neurosci 2008; 28:1949-60. [PMID: 18287511 DOI: 10.1523/jneurosci.5096-07.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ca2+ regulates multiple processes in nerve terminals, including synaptic vesicle recruitment, priming, and fusion. Munc13s, the mammalian homologs of Caenorhabditis elegans Unc13, are essential vesicle-priming proteins and contain multiple regulatory domains that bind second messengers such as diacylglycerol and Ca2+/calmodulin (Ca2+/CaM). Binding of Ca2+/CaM is necessary for the regulatory effect that allows Munc13-1 and ubMunc13-2 to promote short-term synaptic plasticity. However, the relative contributions of Ca2+ and Ca2+/CaM to vesicle priming and recruitment by Munc13 are not known. Here, we investigated the effect of Ca2+/CaM binding on ubMunc13-2 activity in chromaffin cells via membrane-capacitance measurements and a detailed simulation of the exocytotic machinery. Stimulating secretion under various basal Ca2+ concentrations from cells overexpressing either ubMunc13-2 or a ubMunc13-2 mutant deficient in CaM binding enabled a distinction between the effects of Ca2+ and Ca2+/CaM. We show that vesicle priming by ubMunc13-2 is Ca2+ dependent but independent of CaM binding to ubMunc13-2. However, Ca2+/CaM binding to ubMunc13-2 specifically promotes vesicle recruitment during ongoing stimulation. Based on the experimental data and our simulation, we propose that ubMunc13-2 is activated by two Ca2+-dependent processes: a slow activation mode operating at low Ca2+ concentrations, in which ubMunc13-2 acts as a priming switch, and a fast mode at high Ca2+ concentrations, in which ubMunc13-2 is activated in a Ca2+/CaM-dependent manner and accelerates vesicle recruitment and maturation during stimulation. These different Ca2+ activation steps determine the kinetic properties of exocytosis and vesicle recruitment and can thus alter plasticity and efficacy of transmitter release.
Collapse
|
21
|
Cai F, Chen B, Zhou W, Zis O, Liu S, Holt RA, Honer WG, Song W. SP1 regulates a human SNAP-25 gene expression. J Neurochem 2008; 105:512-23. [PMID: 18194215 DOI: 10.1111/j.1471-4159.2007.05167.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synaptosomal-associated protein of 25 kDa (SNAP-25) is a pre-synaptic plasma membrane protein. SNAP-25 plays an important role in synaptic vesicle membrane docking and fusion, which is involved in the regulation of neurotransmitter release. SNAP-25 has been implicated in the pathogenesis of neuropsychiatric disorders including Schizophrenia, attention-deficit hyperactivity disorder and Alzheimer's disease. We cloned a 1584 bp segment of the 5' flanking region of the human SNAP-25 gene. A series of nested deletions of the 5' flanking region fragment were subcloned into the pGL3-basic luciferase reporter plasmid. N2A cells were transfected with the SNAP-25 promoter constructs and luciferase activity was measured as an indication of promoter activity. We identified a 188 bp fragment containing the transcription initiation site as the minimal region necessary for promoter activity. Several putative cis-acting elements including SP1, hypoxia inducible factor (HIF), cAMP-response element binding protein, T-cell factor/lymphocyte enhancer factor 1 (TCF/LEF1), AP1 and the signal transducer and activator of transcription-6 (STAT6) are found in the 5' flanking region of SNAP-25 gene. Transcriptional activation and gel shift assays showed that the human SNAP-25 gene promoter contains functional SP1 response elements. Over-expression of SP1 increased SNAP-25 gene expression and inhibition of SP1-mediated transcriptional activation reduced SNAP-25 gene expression. These results suggest that SP1 plays an important role in regulation of the human SNAP-25 gene expression.
Collapse
Affiliation(s)
- Fang Cai
- Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Origins of the regulated secretory pathway. THE GOLGI APPARATUS 2008. [PMCID: PMC7121582 DOI: 10.1007/978-3-211-76310-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modes of transport of soluble (or luminal) secretory proteins synthesized in the endoplasmic reticulum (ER) could be divided into two groups. The socalled constitutive secretory pathway (CSP) is common to all eukaryotic cells, constantly delivering constitutive soluble secretory proteins (CSSPs) linked to the rate of protein synthesis but largely independent of external stimuli. In regulated secretion, protein is sorted from the Golgi into storage/secretory granules (SGs) whose contents are released when stimuli trigger their final fusion with the plasma membrane (Hannah et al. 1999).
Collapse
|
23
|
Akita Y, Kawasaki H, Imajoh-Ohmi S, Fukuda H, Ohno S, Hirano H, Ono Y, Yonekawa H. Protein kinase C ε phosphorylates keratin 8 at Ser8 and Ser23 in GH4C1 cells stimulated by thyrotropin-releasing hormone. FEBS J 2007; 274:3270-85. [PMID: 17553064 DOI: 10.1111/j.1742-4658.2007.05853.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein kinase C epsilon (PKCepsilon) is activated by thyrotropin-releasing hormone (TRH), a regulator of pituitary function in rat pituitary GH(4)C(1) cells. We analyzed the downstream mechanism after PKCepsilon activation. Exposure of GH(4)C(1) cells to TRH or a phorbol ester increased the phosphorylation of three p52 proteins (p52a, p52b and p52c) and decreased the phosphorylation of destrin and cofilin. GF109203X, an inhibitor of protein kinases including PKC, inhibited phosphorylation of the p52 proteins by TRH stimulation. Peptide mapping, amino-acid sequencing, and immunochemical studies indicated that p52a, p52b, and p52c are the differentially phosphorylated isoforms of keratin 8 (K8), an intermediate filament protein. The unphosphorylated K8 (p52n) localized exclusively to the cytoskeleton, whereas the phosphorylated forms (especially p52c), which are increased in TRH-stimulated cells, localized mainly to the cytosol. K8 phosphorylation was enhanced in PKCepsilon-overexpressing clones, and purified recombinant PKCepsilon directly phosphorylated K8 with a profile similar to that observed in TRH-stimulated cells. PKCepsilon and K8 colocalized near the nucleus under basal conditions and were concentrated in the cell periphery and cell-cell contact area after TRH stimulation. MS analyses of phospho-K8 and K8-synthesized peptide (amino acids 1-53) showed that PKCepsilon phosphorylates Ser8 and Ser23 of K8. Phosphorylation of these sites is enhanced in TRH-stimulated cells and PKCepsilon-overexpressing cells, as assessed by immunoblotting using antibodies to phospho-K8. These results suggest that K8 is a physiological substrate for PKCepsilon, and the phosphorylation at Ser8 and Ser23 transduces, at least in part, TRH-PKCepsilon signaling in pituitary cells.
Collapse
Affiliation(s)
- Yoshiko Akita
- Department of Laboratory Animal Science, The Tokyo Metropolitan Institute of Medical Science, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu J, Guo T, Wu J, Bai X, Zhou Q, Sui SF. Overexpression of complexin in PC12 cells inhibits exocytosis by preventing SNARE complex recycling. BIOCHEMISTRY (MOSCOW) 2007; 72:439-44. [PMID: 17511609 DOI: 10.1134/s0006297907040116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complexin is an important protein that functions during Ca2+-dependent neurotransmitter release. Substantial evidence supports that complexin performs its role through rapid interaction with SNARE complex with high affinity. However, alpha-SNAP/NSF, which can disassemble the cis-SNARE complex in the presence of MgATP, competes with complexin to bind to SNARE complex. In addition, injection of alpha-SNAP into chromaffin cells enhances the size of the readily releasable pool, and mutation disrupting the ATPase activity of NSF results in the accumulation of SNARE complex. Thus, whether high concentrations of complexin could result in a reverse result is unclear. In this paper, we demonstrate that when stably overexpressed in PC12 cells, high levels of complexin result in the accumulation of SNARE complex. This in turn leads to a reduction in the size of the readily releasable pool of large dense core vesicles. These results suggest that high levels of complexin seem to prevent SNARE complex recycling, presumably by displacing NSF and alpha-SNAP from SNARE complex.
Collapse
Affiliation(s)
- Jingguo Liu
- Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
25
|
Chaithirayanon K, Grams R, Vichasri-Grams S, Hofmann A, Korge G, Viyanant V, Upatham ES, Sobhon P. Molecular and immunological characterization of encoding gene and 14-3-3 protein 1 in Fasciola gigantica. Parasitology 2006; 133:763-75. [PMID: 16938151 DOI: 10.1017/s0031182006001119] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 06/15/2006] [Accepted: 06/15/2006] [Indexed: 11/06/2022]
Abstract
A cDNA encoding Fg14-3-3 protein 1 was cloned by immunoscreening of an adult-stage Fasciola gigantica cDNA library using a rabbit antiserum against tegumental antigens of the parasite. The protein has a deduced amino acid sequence of 252 residues and a calculated molecular weight of 28.7 kDa. It shows sequence identity values between 57.6 and 58.1% to the human 14-3-3 beta, zeta, theta, and eta proteins and is in a phylogenetic cluster with the 14-3-3 protein 1 of Schistosoma spp. Nucleic acid analyses indicate that the Fg14-3-3 protein 1 is encoded by a single copy gene and that this gene is expressed as a transcript of 1250 nucleotides. In adult and 4-week-old parasites the gene's transcriptional and translational products were localized in the gut epithelium, parenchyma, tegument cells, and in the reproductive organs. An antiserum against recombinant Fg14-3-3 protein 1 detected a slightly smaller 14-3-3 protein in the parasite's excretion/secretion material and showed cross-reactivity with 14-3-3 proteins in extracts of other trematodes and mouse. Antibodies against Fg14-3-3 protein were detected in the sera of rabbits as early as 2 weeks after infection with metacercariae of F. gigantica and the antibody titre increased continuously over a 10-week observation period.
Collapse
MESH Headings
- 14-3-3 Proteins/chemistry
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Helminth/blood
- Antibodies, Helminth/immunology
- Antigens, Helminth/chemistry
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Cloning, Molecular
- Fasciola/genetics
- Fasciola/growth & development
- Fasciola/immunology
- Fasciola/metabolism
- Fascioliasis/immunology
- Female
- Gene Library
- Male
- Mice
- Molecular Sequence Data
- Organ Specificity
- RNA, Helminth/genetics
- RNA, Helminth/isolation & purification
- RNA, Helminth/metabolism
- Rabbits
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- K Chaithirayanon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lacoste C, Barthaux V, Iborra C, Seagar M, Erard-Garcia M. MAU-8 is a Phosducin-like Protein required for G protein signaling in C. elegans. Dev Biol 2006; 294:181-91. [PMID: 16580661 DOI: 10.1016/j.ydbio.2006.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/01/2006] [Accepted: 02/22/2006] [Indexed: 11/28/2022]
Abstract
The mau-8(qm57) mutation inhibits the function of GPB-2, a heterotrimeric G protein beta subunit, and profoundly affects behavior through the Galphaq/Galphao signaling network in C. elegans. mau-8 encodes a nematode Phosducin-like Protein (PhLP), and the qm57 mutation leads to the loss of a predicted phosphorylation site in the C-terminal domain of PhLP that binds the Gbetagamma surface implicated in membrane interactions. In developing embryos, MAU-8/PhLP localizes to the cortical region, concentrates at the centrosomes of mitotic cells and remains associated with the germline blastomere. In adult animals, MAU-8/PhLP is ubiquitously expressed in somatic tissues and germline cells. MAU-8/PhLP interacts with the PAR-5/14.3.3 protein and with the Gbeta subunit GPB-1. In mau-8 mutants, the disruption of MAU-8/PhLP stabilizes the association of GPB-1 with the microtubules of centrosomes. Our results indicate that MAU-8/PhLP modulates G protein signaling, stability and subcellular location to regulate various physiological functions, and they suggest that MAU-8 might not be limited to the Galphaq/Galphao network.
Collapse
Affiliation(s)
- Caroline Lacoste
- INSERM UMR 641, Université de la Méditerranée, Faculté de Médecine Secteur Nord, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
27
|
Hilfiker S, Benfenati F, Doussau F, Nairn AC, Czernik AJ, Augustine GJ, Greengard P. Structural domains involved in the regulation of transmitter release by synapsins. J Neurosci 2006; 25:2658-69. [PMID: 15758176 PMCID: PMC6725186 DOI: 10.1523/jneurosci.4278-04.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapsins are a family of neuron-specific phosphoproteins that regulate neurotransmitter release by associating with synaptic vesicles. Synapsins consist of a series of conserved and variable structural domains of unknown function. We performed a systematic structure-function analysis of the various domains of synapsin by assessing the actions of synapsin fragments on neurotransmitter release, presynaptic ultrastructure, and the biochemical interactions of synapsin. Injecting a peptide derived from domain A into the squid giant presynaptic terminal inhibited neurotransmitter release in a phosphorylation-dependent manner. This peptide had no effect on vesicle pool size, synaptic depression, or transmitter release kinetics. In contrast, a peptide fragment from domain C reduced the number of synaptic vesicles in the periphery of the active zone and increased the rate and extent of synaptic depression. This peptide also slowed the kinetics of neurotransmitter release without affecting the number of docked vesicles. The domain C peptide, as well as another peptide from domain E that is known to have identical effects on vesicle pool size and release kinetics, both specifically interfered with the binding of synapsins to actin but not with the binding of synapsins to synaptic vesicles. This suggests that both peptides interfere with release by preventing interactions of synapsins with actin. Thus, interactions of domains C and E with the actin cytoskeleton may allow synapsins to perform two roles in regulating release, whereas domain A has an actin-independent function that regulates transmitter release in a phosphorylation-sensitive manner.
Collapse
Affiliation(s)
- Sabine Hilfiker
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
14-3-3 proteins affect the cell surface expression of several unrelated cargo membrane proteins, e.g., MHC II invariant chain, the two-pore potassium channels KCNK3 and KCNK9, and a number of different reporter proteins exposing Arg-based endoplasmic reticulum localization signals in mammalian and yeast cells. These multimeric membrane proteins have a common feature in that they all expose coatomer protein complex I (COPI)- and 14-3-3-binding motifs. 14-3-3 binding depends on phosphorylation of the membrane protein in some and on multimerization of the membrane protein in other cases. Evidence from mutant proteins that are unable to interact with either COPI or 14-3-3 and from yeast cells with an altered 14-3-3 content suggests that 14-3-3 proteins affect forward transport in the secretory pathway. Mechanistically, this could be explained by clamping, masking, or scaffolding. In the clamping mechanism, 14-3-3 binding alters the conformation of the signal-exposing tail of the membrane protein, whereas masking or scaffolding would abolish or allow the interaction of the membrane protein with other proteins or complexes. Interaction partners identified as putative 14-3-3 binding partners in affinity purification approaches constitute a pool of candidate proteins for downstream effectors, such as coat components, coat recruitment GTPases, Rab GTPases, GTPase-activating proteins (GAPs), guanine-nucleotide exchange factors (GEFs) and motor proteins.
Collapse
Affiliation(s)
- Thomas Mrowiec
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | |
Collapse
|
29
|
Morciano M, Burré J, Corvey C, Karas M, Zimmermann H, Volknandt W. Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 2005; 95:1732-45. [PMID: 16269012 DOI: 10.1111/j.1471-4159.2005.03506.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The nerve terminal proteome governs neurotransmitter release as well as the structural and functional dynamics of the presynaptic compartment. In order to further define specific presynaptic subproteomes we used subcellular fractionation and a monoclonal antibody against the synaptic vesicle protein SV2 for immunoaffinity purification of two major synaptosome-derived synaptic vesicle-containing fractions: one sedimenting at lower and one sedimenting at higher sucrose density. The less dense fraction contains free synaptic vesicles, the denser fraction synaptic vesicles as well as components of the presynaptic membrane compartment. These immunoisolated fractions were analyzed using the cationic benzyldimethyl-n-hexadecylammonium chloride (BAC) polyacrylamide gel system in the first and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Protein spots were subjected to analysis by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS). We identified 72 proteins in the free vesicle fraction and 81 proteins in the plasma membrane-containing denser fraction. Synaptic vesicles contain a considerably larger number of protein constituents than previously anticipated. The plasma membrane-containing fraction contains synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery and numerous other proteins potentially involved in regulating the functional and structural dynamics of the nerve terminal.
Collapse
Affiliation(s)
- Marco Morciano
- Neurochemistry, J.W. Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Vitale N, Mawet J, Camonis J, Regazzi R, Bader MF, Chasserot-Golaz S. The Small GTPase RalA controls exocytosis of large dense core secretory granules by interacting with ARF6-dependent phospholipase D1. J Biol Chem 2005; 280:29921-8. [PMID: 15980073 DOI: 10.1074/jbc.m413748200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RalA and RalB constitute a family of highly similar Ras-related GTPases widely distributed in different tissues. Recently, active forms of Ral proteins have been shown to bind to the exocyst complex, implicating them in the regulation of cellular secretion. Since RalA is present on the plasma membrane in neuroendocrine chromaffin and PC12 cells, we investigated the potential role of RalA in calcium-regulated exocytotic secretion. We show here that endogenous RalA is activated during exocytosis. Expression of the constitutively active RalA (G23V) mutant enhances secretagogue-evoked secretion from PC12 cells. Conversely, expression of the constitutively inactive GDP-bound RalA (G26A) or silencing of the RalA gene by RNA interference led to a strong impairment of the exocytotic response. RalA was found to co-localize with phospholipase D1 (PLD1) at the plasma membrane in PC12 cells. We demonstrate that cell stimulation triggers a direct interaction between RalA and ARF6-activated PLD1. Moreover, reduction of endogenous RalA expression level interfered with the activation of PLD1 observed in secretagogue-stimulated cells. Finally, using various RalA mutants selectively impaired in their ability to activate downstream effectors, we show that PLD1 activation is essential for the activation of secretion by GTP-loaded RalA. Together, these results provide evidence that RalA is a positive regulator of calcium-evoked exocytosis of large dense core secretory granules and suggest that stimulation of PLD1 and consequent changes in plasma membrane phospholipid composition is the major function RalA undertakes in calcium-regulated exocytosis.
Collapse
Affiliation(s)
- Nicolas Vitale
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 2356 Neurotransmission and Sécrétion Neuroendocrine, Strasbourg France
| | | | | | | | | | | |
Collapse
|
31
|
Butterworth MB, Frizzell RA, Johnson JP, Peters KW, Edinger RS. PKA-dependent ENaC trafficking requires the SNARE-binding protein complexin. Am J Physiol Renal Physiol 2005; 289:F969-77. [PMID: 15972388 DOI: 10.1152/ajprenal.00390.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute regulation of epithelial sodium channel (ENaC) function at the apical surface of polarized kidney cortical collecting duct (CCD) epithelial cells occurs in large part by changes in channel number, mediated by membrane vesicle trafficking. Several soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNARE) have been implicated in this process. A novel SNARE-binding protein, complexin, has been identified in nervous tissue which specifically binds to and stabilizes SNARE complexes at synaptic membranes to promote vesicle fusion. To test whether this protein is present in mouse CCD (mCCD) cells and its possible involvement in acute ENaC regulation, we cloned complexin (isoform II) from a mouse kidney cDNA library. Complexin II mRNA coexpressed with alpha-, beta-, and gamma-ENaC subunits in Xenopus laevis oocytes reduced sodium currents to 16 +/- 3% (n = 19) of control values. Short-circuit current (I(sc)) measurements on mCCD cell lines stably over- or underexpressing complexin produced similar results. Basal I(sc) was reduced from 12.0 +/- 1.0 (n = 15) to 2.0 +/- 0.4 (n = 15) and 1.8 +/- 0.3 (n = 17) microA/cm(2), respectively. Similarly forskolin-stimulated I(sc) was reduced from control values of 20.0 +/- 2 to 2.7 +/- 0.5 and 2.3 +/- 0.4 microA/cm(2) by either increasing or decreasing complexin expression. Surface biotinylation demonstrated that the complexin-induced reduction in basal I(sc)was due to a reduction in apical membrane-resident ENaC and the inhibition in forskolin stimulation was due to the lack of ENaC insertion into the apical membrane to increase surface channel number. Immunofluorescent localization of SNARE proteins in polarized mCCD epithelia detected the presence of syntaxins 1 and 3 and synaptosomal-associated protein of 23 kDa (SNAP-23) at the apical membrane, and vesicle-associated membrane protein (VAMP2) was localized to intracellular compartments. These findings identify SNAREs that may mediate ENaC-containing vesicle insertion in mCCD epithelia and suggest that stabilization of SNARE interactions by complexin is an essential aspect of the regulated trafficking events that increase apical membrane ENaC density either by constitutive or regulated trafficking pathways.
Collapse
Affiliation(s)
- M B Butterworth
- Dept. of Cell Biology and Physiology, University of Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
32
|
Armant DR. Blastocysts don't go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev Biol 2005; 280:260-80. [PMID: 15882572 PMCID: PMC2715296 DOI: 10.1016/j.ydbio.2005.02.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 01/16/2005] [Accepted: 02/08/2005] [Indexed: 01/02/2023]
Abstract
The preimplantation embryo floats freely within the oviduct and is capable of developing into a blastocyst independently of the maternal reproductive tract. While establishment of the trophoblast lineage is dependent on expression of developmental regulatory genes, further differentiation leading to blastocyst implantation in the uterus requires external cues emanating from the microenvironment. Recent studies suggest that trophoblast differentiation requires intracellular signaling initiated by uterine-derived growth factors and integrin-binding components of the extracellular matrix. The progression of trophoblast development from the early blastocyst stage through the onset of implantation appears to be largely independent of new gene expression. Instead, extrinsic signals direct the sequential trafficking of cell surface receptors to orchestrate the developmental program that initiates blastocyst implantation. The dependence on external cues could coordinate embryonic activities with the developing uterine endometrium. Biochemical events that regulate trophoblast adhesion to fibronectin are presented to illustrate a developmental strategy employed by the peri-implantation blastocyst.
Collapse
Affiliation(s)
- D Randall Armant
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201-1415, USA.
| |
Collapse
|
33
|
Carreño FR, Goñi CN, Castro LM, Ferro ES. 14-3-3 epsilon modulates the stimulated secretion of endopeptidase 24.15. J Neurochem 2005; 93:10-25. [PMID: 15773901 DOI: 10.1111/j.1471-4159.2004.02967.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endopeptidase 24.15 (ep24.15: EC3.4.24.15), a secreted protein involved in peptide metabolism, is unusual in that it does not contain a signal peptide sequence. In this work, we describe the physical interaction between ep24.15 and 14-3-3 epsilon, one isoform of a family of ubiquitous phosphoserine/threonine-scaffold proteins that organizes cell signaling and is involved in exocytosis. The interaction between ep24.15 and 14-3-3 epsilon increased following phosphorylation of ep24.15 at Ser(644) by protein kinase A (PKA). The co-localization of ep24.15 and 14-3-3 epsilon was increased by exposure of HEK293 cells (human embryonic kidney cells) to forskolin (10 microm). Overexpression of 14-3-3 epsilon in HEK293 cells almost doubled the secretion of ep24.15 stimulated by A23187 (7.5 microm) from 10%[1.4 +/- 0.24 AFU/(min 10(6) cells)] to 19%[2.54 +/- 0.24 AFU/(min 10(6) cells)] (p < 0.001) of the total intracellular enzyme activity. Treatment with forskolin had a synergistic effect on the A23187-stimulated secretion of ep24.15 that was totally blocked by the PKA inhibitor KT5720. The ep24.15 point mutation S644A reduced the co-localization of ep24.15 and 14-3-3 in stably transfected HEK293 cells. Indeed, secretion of the ep24.15 S644A mutant from these cells was only slightly stimulated by A23187 and insensitive to forskolin, in contrast to that of the wild type enzyme. Together, these data suggest that prior interaction with 14-3-3 is an important step in the unconventional stimulated secretion of ep24.15.
Collapse
Affiliation(s)
- Flávia R Carreño
- Department of Cell Biology and Development, Cell Biology Program, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
34
|
|
35
|
de Haro L, Ferracci G, Opi S, Iborra C, Quetglas S, Miquelis R, Lévêque C, Seagar M. Ca2+/calmodulin transfers the membrane-proximal lipid-binding domain of the v-SNARE synaptobrevin from cis to trans bilayers. Proc Natl Acad Sci U S A 2004; 101:1578-83. [PMID: 14757830 PMCID: PMC341777 DOI: 10.1073/pnas.0303274101] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) protein interactions at the synaptic vesicle/plasma membrane interface play an essential role in neurotransmitter release. The membrane-proximal region (amino acids 77-90) of the v-SNARE vesicle-associated membrane protein 2 (VAMP 2, synaptobrevin) binds acidic phospholipids or Ca(2+)/calmodulin in a mutually exclusive manner, processes that are required for Ca(2+)-dependent exocytosis. To address the mechanisms involved, we asked whether this region of VAMP can interact with cis (outer vesicle leaflet) and/or trans (inner plasma membrane leaflet) lipids. To evaluate cis lipid binding, recombinant VAMP was reconstituted into liposomes and accessibility to site-directed antibodies was probed by surface plasmon resonance. Data indicated that the membrane-proximal domain of VAMP dips into the cis lipid bilayer, sequestering epitopes between the tetanus toxin cleavage site and the membrane anchor. These epitopes were unmasked by VAMP double mutation W89A, W90A, which abolishes lipid interactions. To evaluate trans lipid binding, VAMP was reconstituted in cis liposomes, which were then immobilized on beads. The ability of VAMP to capture protein-free (3)H-labeled trans liposomes was then measured. When cis lipid interactions were eliminated by omitting negatively charged lipids, trans lipid binding to VAMP was revealed. In contrast, when cis and trans liposomes both contained acidic headgroups (i.e., approximating physiological conditions), cis lipid interactions totally occluded trans lipid binding. In these conditions Ca(2+)/calmodulin displaced cis inhibition, transferring the lipid-binding domain of VAMP from the cis to the trans bilayer. Our results suggest that calmodulin acts as a unidirectional Ca(2+)-activated shuttle that docks the juxtamembrane portion of the v-SNARE in the target membrane to prepare fusion.
Collapse
Affiliation(s)
- Luc de Haro
- Institut National de la Santé et de la Recherche Médicale/Université de la Méditerranée, Unité Mixte de Recherche 464, Faculté de Médecine Secteur Nord, Boulevard Pierre Dramard, 13916 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sun L, Bittner MA, Holz RW. Rim, a component of the presynaptic active zone and modulator of exocytosis, binds 14-3-3 through its N terminus. J Biol Chem 2003; 278:38301-9. [PMID: 12871946 DOI: 10.1074/jbc.m212801200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rim1, a brain-specific Rab3a-binding protein, localizes to the presynaptic cytomatrix and plays an important role in synaptic transmission and synaptic plasticity. Rim2, a homologous protein, is more ubiquitously expressed and is found in neuroendocrine cells as well as in brain. Both Rim1 and Rim2 contain multiple domains, including an N-terminal zinc finger, which in Rim1 strongly enhances secretion in chromaffin and PC12 cells. The yeast two-hybrid technique identified 14-3-3 proteins as ligands of the N-terminal domain. In vitro protein binding experiments confirmed a high-affinity interaction between the N terminus of Rim1 and 14-3-3. The N-terminal domain of Rim2 also bound 14-3-3. The binding domains were localized to a short segment just C-terminal to the zinc finger. 14-3-3 proteins bind to specific phosphoserine residues. Alkaline phosphatase treatment of N-terminal domains of Rim1 and Rim2 almost completely inhibited the binding of 14-3-3. Two serine residues in Rim1 (Ser-241 and Ser-287) and one serine residue in Rim2 (Ser-335) were required for 14-3-3 binding. Incubation with Ca2+/calmodulin-dependent protein kinase II greatly stimulated the interaction of recombinant N-terminal Rim but not the S241/287A mutant with 14-3-3, again indicating the importance of the phosphorylation of these residues for the binding. Rabphilin3, another Rab3a effector, also bound 14-3-3. Serine-to-alanine mutations identified Ser-274 as the likely phosphorylated residue to which 14-3-3 binds. Because the phosphorylation of this residue had been shown to be stimulated upon depolarization in brain slices, the interaction of 14-3-3 with Rabphilin3 may be important in the dynamic function of central nervous system neurons.
Collapse
Affiliation(s)
- Lei Sun
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA
| | | | | |
Collapse
|
37
|
Abstract
Regulated exocytosis was the first intracellular membrane fusion step that was suggested to involve both Ca(2+) and calmodulin. In recent years, it has become clear that calmodulin is not an essential Ca(2+) sensor for exocytosis but that it is likely to have a more regulatory role. A requirement for cytosolic Ca(2+) in other vesicle fusion events within cells has become apparent and in certain cases, such as homotypic fusion of early endosomes and yeast vacuoles, calmodulin may be the primary Ca(2+) sensor. A number of distinct targets for calmodulin have been identified including SNARE proteins and subunits of the vacuolar ATPase. The extent to which calmodulin regulates different intracellular fusion events through conserved SNARE-dependent or other mechanisms remains to be resolved.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | |
Collapse
|
38
|
Lawe DC, Sitouah N, Hayes S, Chawla A, Virbasius JV, Tuft R, Fogarty K, Lifshitz L, Lambright D, Corvera S. Essential role of Ca2+/calmodulin in Early Endosome Antigen-1 localization. Mol Biol Cell 2003; 14:2935-45. [PMID: 12857876 PMCID: PMC165688 DOI: 10.1091/mbc.e02-09-0591] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ca2+ is an essential requirement in membrane fusion, acting through binding proteins such as calmodulin (CaM). Ca2+/CaM is required for early endosome fusion in vitro, however, the molecular basis for this requirement is unknown. An additional requirement for endosome fusion is the protein Early Endosome Antigen 1 (EEA1), and its recruitment to the endosome depends on phosphatidylinositol 3-phosphate [PI(3)P] and the Rab5 GTPase. Herein, we demonstrate that inhibition of Ca2+/CaM, by using either chemical inhibitors or specific antibodies directed to CaM, results in a profound inhibition of EEA1 binding to endosomal membranes both in live cells and in vitro. The concentration of Ca2+/CaM inhibitors required for a full dissociation of EEA1 from endosomal membranes had no effect on the activity of phosphatidylinositol 3-kinases or on endogenous levels of PI(3)P. However, the interaction of EEA1 with liposomes containing PI(3)P was decreased by Ca2+/CaM inhibitors. Thus, Ca2+/CaM seems to be required for the stable interaction of EEA1 with endosomal PI(3)P, perhaps by directly or indirectly stabilizing the quaternary organization of the C-terminal FYVE domain of EEA1. This requirement is likely to underlie at least in part the essential role of Ca2+/CaM in endosome fusion.
Collapse
Affiliation(s)
- Deirdre C Lawe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 10615, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Membrane fusion is a fundamental biochemical reaction and the final step in all vesicular trafficking events. It is crucial for the transfer of proteins and lipids between different compartments and for exo- and endocytic traffic of signaling molecules and receptors. It leads to the reconstruction of organelles such as the Golgi or the nuclear envelope, which decay into fragments during mitosis. Hence, controlled membrane fusion reactions are indispensible for the compartmental organization of eukaryotic cells; for their communication with the environment via hormones, neurotransmitters, growth factors, and receptors; and for the integration of cells into multicellular organisms. Intracellular pathogenic bacteria, such as Mycobacteria or Salmonellae, have developed means to control fusion reactions in their host cells. They persist in phagosomes whose fusion with lysosomes they actively suppress-a means to ensure survival inside host cells. The past decade has witnessed rapid progress in the elucidation of parts of the molecular machinery involved in these membrane fusion reactions. Whereas some elements of the fusion apparatus are remarkably similar in several compartments, there is an equally striking divergence of others. The purpose of this review is to highlight common features of different fusion reactions and the concepts that emerged from them but also to stress the differences and challenge parts of the current hypotheses. This review covers only the endoplasmic fusion reactions mentioned above, i.e., reactions initiated by contacts of membranes with their cytoplasmic faces. Ectoplasmic fusion events, which depend on an initial contact of the fusion partners via the membrane surfaces exposed to the surrounding medium are not discussed, nor are topics such as the entry of enveloped viruses, formation of syncytia, gamete fusion, or vesicle scission (a fusion reaction that leads to the fission of, e.g., transport vesicles).
Collapse
Affiliation(s)
- Andreas Mayer
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Spemannstr. 37-39, 72076 Tübingen, Germany.
| |
Collapse
|
40
|
Abstract
Regulated exocytosis of secretory granules or dense-core granules has been examined in many well-characterized cell types including neurons, neuroendocrine, endocrine, exocrine, and hemopoietic cells and also in other less well-studied cell types. Secretory granule exocytosis occurs through mechanisms with many aspects in common with synaptic vesicle exocytosis and most likely uses the same basic protein components. Despite the widespread expression and conservation of a core exocytotic machinery, many variations occur in the control of secretory granule exocytosis that are related to the specialized physiological role of particular cell types. In this review we describe the wide range of cell types in which regulated secretory granule exocytosis occurs and assess the evidence for the expression of the conserved fusion machinery in these cells. The signals that trigger and regulate exocytosis are reviewed. Aspects of the control of exocytosis that are specific for secretory granules compared with synaptic vesicles or for particular cell types are described and compared to define the range of accessory control mechanisms that exert their effects on the core exocytotic machinery.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, University of Liverpool, United Kingdom.
| | | |
Collapse
|
41
|
Abstract
The periodic succession of night and day has influenced life on earth for millions of years. Many organisms have "internalized" this periodic change in the form of the circadian clock. Its main function is to organize the time course of biochemical, physiological and behavioural processes thereby optimizing an organism's performance in anticipating changing environmental conditions. Therefore, it is important to understand the underlying mechanisms that connect the core pacemaker, which is located in the suprachiasmatic nuclei (SCN) of the hypothalamus, with peripheral organs. Several laboratories set out to identify genes that are under the influence of the circadian clock. It appears that the circadian clock coordinates transcription of key metabolic pathways thereby orchestrating the time course of physiological and behavioural processes. We review these investigations and put our experiments, the comparison of gene expression in SCN tissue of Per2 mutant and wild-type mice, in the context of these findings.
Collapse
Affiliation(s)
- D Holzberg
- Max-Planck-Institute for Experimental Endocrinology, Hannover, Germany
| | | |
Collapse
|
42
|
Birkenfeld J, Betz H, Roth D. Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3 zeta. Biochem J 2003; 369:45-54. [PMID: 12323073 PMCID: PMC1223062 DOI: 10.1042/bj20021152] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 09/26/2002] [Indexed: 11/17/2022]
Abstract
Proteins of the 14-3-3 family have been implicated in various physiological processes, and are thought to function as adaptors in various signal transduction pathways. In addition, 14-3-3 proteins may contribute to the reorganization of the actin cytoskeleton by interacting with as yet unidentified actin-binding proteins. Here we show that the 14-3-3 zeta isoform interacts with both the actin-depolymerizing factor cofilin and its regulatory kinase, LIM (Lin-11/Isl-1/Mec-3)-domain-containing protein kinase 1 (LIMK1). In both yeast two-hybrid assays and glutathione S-transferase pull-down experiments, these proteins bound efficiently to 14-3-3 zeta. Deletion analysis revealed consensus 14-3-3 binding sites on both cofilin and LIMK1. Furthermore, the C-terminal region of 14-3-3 zeta inhibited the binding of cofilin to actin in co-sedimentation experiments. Upon co-transfection into COS-7 cells, 14-3-3 zeta-specific immunoreactivity was redistributed into characteristic LIMK1-induced actin aggregations. Our data are consistent with 14-3-3-protein-induced changes to the actin cytoskeleton resulting from interactions with cofilin and/or LIMK1.
Collapse
Affiliation(s)
- Jörg Birkenfeld
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany
| | | | | |
Collapse
|
43
|
Westerink RHS, Klompmakers AA, Westenberg HGM, Vijverberg HPM. Signaling pathways involved in Ca2+- and Pb2+-induced vesicular catecholamine release from rat PC12 cells. Brain Res 2002; 957:25-36. [PMID: 12443976 DOI: 10.1016/s0006-8993(02)03580-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since Pb(2+) substitutes for Ca(2+) in essential steps leading to exocytosis, we have investigated whether Ca(2+) and Pb(2+) induce exocytosis through similar pathways. Vesicular catecholamine release was measured from dexamethasone-differentiated PC12 cells using carbon fiber microelectrode amperometry. Effects of drugs known to modulate PKC (PMA, staurosporine), calcineurin (cyclosporin A), calmodulin (W7), and CaM kinase II (KN-62) activity were investigated in intact and in ionomycin-permeabilized PC12 cells. Activation of PKC and inhibition of calmodulin decrease the frequency of exocytotic events evoked by high K(+) stimulation in intact cells. In addition, inhibition of calmodulin enhances the frequency of basal exocytosis from intact cells. Activation of PKC and inhibition of calcineurin enhance the frequency of basal exocytosis in intact as well as in ionomycin-permeabilized cells. Inhibition of PKC and of CaM kinase II cause no significant effects. None of the treatments has a significant effect on vesicle contents. The combined results indicate that PKC and calcineurin enhance and inhibit exocytosis through direct effects on the exocytotic machinery, whereas calmodulin and CaM kinase II exert indirect effects only. Conversely, Pb(2+)-evoked exocytosis in permeabilized cells is strongly reduced by inhibition of CaM kinase II, but is not sensitive to modulation of PKC and calcineurin activity. Inhibition of calmodulin only reduces the delay to onset of Pb(2+)-evoked exocytosis. Synaptotagmin I- and II-deficient PC12-F7 cells exhibit vesicular catecholamine release following depolarization or superfusion with Pb(2+). However, the frequency of exocytosis and the contents of vesicles released are strongly reduced as compared to PC12 cells. It is concluded that Ca(2+)-evoked exocytosis is modulated mainly by PKC and calcineurin, whereas Pb(2+)-evoked exocytosis is mainly modulated by CaM kinase II.
Collapse
Affiliation(s)
- Remco H S Westerink
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80176, 3508 TD, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Staal RGW, Mosharov E, Sulzer D. Calmodulin inhibitors block quantal catecholamine release and increase acidification of neurosecretory granules in rat adrenal chromaffin cells. Ann N Y Acad Sci 2002; 971:269-72. [PMID: 12438131 DOI: 10.1111/j.1749-6632.2002.tb04475.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R G W Staal
- Department of Neurology, Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
45
|
Way G, Morrice N, Smythe C, O'Sullivan AJ. Purification and identification of secernin, a novel cytosolic protein that regulates exocytosis in mast cells. Mol Biol Cell 2002; 13:3344-54. [PMID: 12221138 PMCID: PMC124164 DOI: 10.1091/mbc.e01-10-0094] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
After permeabilization with the pore-forming toxin streptolysin-O mast cells can be triggered to secrete by addition of both calcium and a GTP analogue. If stimulation is delayed after permeabilization, there is a progressive decrease in the extent of secretion upon stimulation, eventually leading to a complete loss of the secretory response. This loss of secretory response can be retarded by the addition of cytosol from other secretory tissues, demonstrating that the response is dependent on a number of cytosolic proteins. We have used this as the basis of a bioassay to purify Secernin 1, a novel 50-kDa cytosolic protein that appears to be involved in the regulation of exocytosis from peritoneal mast cells. Secernin 1 increases both the extent of secretion and increases the sensitivity of mast cells to stimulation with calcium.
Collapse
Affiliation(s)
- Gemma Way
- Department of Biological and Biomedical Sciences, University of Durham, United Kingdom
| | | | | | | |
Collapse
|
46
|
Quetglas S, Iborra C, Sasakawa N, De Haro L, Kumakura K, Sato K, Leveque C, Seagar M. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J 2002; 21:3970-9. [PMID: 12145198 PMCID: PMC126150 DOI: 10.1093/emboj/cdf404] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter release involves the assembly of a heterotrimeric SNARE complex composed of the vesicle protein synaptobrevin (VAMP 2) and two plasma membrane partners, syntaxin 1 and SNAP-25. Calcium influx is thought to control this process via Ca(2+)-binding proteins that associate with components of the SNARE complex. Ca(2+)/calmodulin or phospholipids bind in a mutually exclusive fashion to a C-terminal domain of VAMP (VAMP(77-90)), and residues involved were identified by plasmon resonance spectroscopy. Microinjection of wild-type VAMP(77-90), but not mutant peptides, inhibited catecholamine release from chromaffin cells monitored by carbon fibre amperometry. Pre-incubation of PC12 pheochromocytoma cells with the irreversible calmodulin antagonist ophiobolin A inhibited Ca(2+)-dependent human growth hormone release in a permeabilized cell assay. Treatment of permeabilized cells with tetanus toxin light chain (TeNT) also suppressed secretion. In the presence of TeNT, exocytosis was restored by transfection of TeNT-resistant (Q(76)V, F(77)W) VAMP, but additional targeted mutations in VAMP(77-90) abolished its ability to rescue release. The calmodulin- and phospholipid-binding domain of VAMP 2 is thus required for Ca(2+)-dependent exocytosis, possibly to regulate SNARE complex assembly.
Collapse
Affiliation(s)
- Stephanie Quetglas
- Institut National de la Santé et de la Recherche Médicale Unité 464, Université de la Méditerranée, 13916 Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shin OH, Rizo J, Südhof TC. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells. Nat Neurosci 2002; 5:649-56. [PMID: 12055633 DOI: 10.1038/nn869] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ca(2+)-triggered dense-core vesicle exocytosis in PC12 cells does not require vesicular synaptotagmins 1 and 2, but may use plasma membrane synaptotagmins 3 and 7 as Ca(2+) sensors. In support of this hypothesis, C(2) domains from the plasma membrane but not vesicular synaptotagmins inhibit PC12 cell exocytosis. Ca(2+) induces binding of both plasma membrane and vesicular synaptotagmins to phospholipids and SNAREs (soluble N-ethylmaleimide-sensitive attachment protein receptors), although with distinct apparent Ca(2+) affinities. Here we used gain-of-function C(2)-domain mutants of synaptotagmin 1 and loss-of-function C(2)-domain mutants of synaptotagmin 7 to examine how synaptotagmins function in dense-core vesicle exocytosis. Our data indicate that phospholipid- but not SNARE-binding by plasma membrane synaptotagmins is the primary determinant of Ca(2+)-triggered dense-core vesicle exocytosis. These results support a general lipid-based mechanism of action of synaptotagmins in exocytosis, with the specificity of various synaptotagmins for different types of fusion governed by their differential localizations and Ca(2+) affinities.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, USA
| | | | | |
Collapse
|
48
|
Abstract
This review examines polarized calcium and calmodulin signaling in exocrine epithelial cells. The calcium ion is a simple, evolutionarily ancient, and universal second messenger. In exocrine epithelial cells, it regulates essential functions such as exocytosis, fluid secretion, and gene expression. Exocrine cells are structurally polarized, with the apical region usually dedicated to secretion. Recent advances in technology, in particular the development of videoimaging and confocal microscopy, have led to the discovery of polarized, subcellular calcium signals in these cell types. The properties of a rich variety of local and global calcium signals have now been described in secretory epithelial cells. Secretagogues stimulate apical-to-basal waves of calcium in many exocrine cell types, but there are some interesting exceptions to this rule. The shapes of intracellular calcium signals are determined by the distribution of calcium-releasing channels and mechanisms that limit calcium elevation. Polarized distribution of calcium-handling mechanisms also leads to transcellular calcium transport in exocrine epithelial cells. This transport can deliver considerable amounts of calcium into secreted fluids. Multicellular polarized calcium signals can coordinate the activity of many individual cells in epithelial secretory tissue. Certain particularly sensitive cells serve as pacemakers for initiation of intercellular calcium waves. Many calcium signaling pathways involve activation of calmodulin. This ubiquitous protein regulates secretion in exocrine cells and also activates interesting feedback interactions with calcium channels and transporters. Very recently it became possible to directly study polarized calcium-calmodulin reactions and to visualize the process of hormone-induced redistribution of calmodulin in live cells. The structural and functional polarity of secretory epithelia alongside the polarity of its calcium and calmodulin signaling present an interesting lesson in tissue organization.
Collapse
Affiliation(s)
- Michael C Ashby
- Medical Research Council Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
49
|
Vasara T, Keränen S, Penttilä M, Saloheimo M. Characterisation of two 14-3-3 genes from Trichoderma reesei: interactions with yeast secretory pathway components. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1590:27-40. [PMID: 12063166 DOI: 10.1016/s0167-4889(02)00197-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 14-3-3 proteins are highly conserved, ubiquitously expressed proteins taking part in numerous cellular processes. Two genes encoding 14-3-3 proteins, ftt1 and ftt2, were isolated and characterised from the filamentous fungus Trichoderma reesei. FTTI showed the highest sequence identity (98% at the amino acid level) to the Trichoderma harzianum protein Th1433. FTTII is relatively distinct from FTTI, showing approximately 75% identity to other fungal 14-3-3 proteins. Despite their sequence divergence, both of the T. reesei ftt genes were equally able to complement the yeast bmh1 bmh2 double disruption. The T. reesei ftt genes were also found to be quite closely linked in the genomic DNA. A C-terminally truncated version of ftt1 (ftt1DeltaC) was first isolated as a multicopy suppressor of the growth defect of the temperature-sensitive yeast secretory mutant sec15-1. Overexpression of ftt1DeltaC also suppressed the growth defect of sec2-41, sec3-101, and sec7-1 strains. Overexpression of ftt1DeltaC in sec2-41 and sec15-1 strains could also rescue the secretion of invertase at the restrictive temperatures, and overexpression of full-length ftt1 enhanced invertase secretion by wild-type yeast cells. These findings strongly suggest that the T. reesei ftt1 has a role in protein secretion.
Collapse
Affiliation(s)
- Tuija Vasara
- VTT Biotechnology, P.O. Box 1500, Tietotie 2, FIN-02044 VTT, Espoo, Finland
| | | | | | | |
Collapse
|
50
|
Wang J, Mayernik L, Armant DR. Integrin signaling regulates blastocyst adhesion to fibronectin at implantation: intracellular calcium transients and vesicle trafficking in primary trophoblast cells. Dev Biol 2002; 245:270-9. [PMID: 11977980 DOI: 10.1006/dbio.2002.0644] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulating evidence indicates that the endometrial extracellular matrix (ECM) modulates trophoblast adhesion during mouse blastocyst implantation. In previous studies of adhesion-competent mouse blastocysts, we have demonstrated that integrin-mediated fibronectin (FN)-binding activity on the apical surface of trophoblast cells is initially low, but becomes strengthened after embryos are exposed to FN. In the present study, we have examined whether the ligand-induced upregulation of trophoblast adhesion to FN is mediated by integrin signaling. The strengthening of adhesion to FN required integrin ligation, which rapidly elevated cytoplasmic-free Ca(2+). Chelation of intracellular Ca(2+) using BAPTA-AM, or inhibition of the Ca(2+)-dependent proteins, protein kinase C or calmodulin, significantly attenuated the effect of FN on binding activity. Furthermore, direct elevation of cytoplasmic Ca(2+) levels with ionomycin upregulated FN-binding activity, demonstrating that Ca(2+) signaling is required and sufficient for strong adhesion to FN. Ca(2+) signaling may induce protein trafficking, a known requirement for ligand-induced upregulation of FN-binding activity. Indeed, intracellular vesicles accumulated in adhesion-competent blastocysts, but were absent after exposure to either FN or ionomycin. These findings suggest that, during implantation, contact between peri-implantation blastocysts and FN elevates intracellular Ca(2+), which strengthens trophoblast adhesion to ECM through protein redistribution.
Collapse
Affiliation(s)
- Jun Wang
- C. S. Mott Center for Human Growth and Development, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|