1
|
Islam A, Shaukat Z, Hussain R, Ricos MG, Dibbens LM, Gregory SL. Aneuploidy is Linked to Neurological Phenotypes Through Oxidative Stress. J Mol Neurosci 2024; 74:50. [PMID: 38693434 PMCID: PMC11062972 DOI: 10.1007/s12031-024-02227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.
Collapse
Affiliation(s)
- Anowarul Islam
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Zeeshan Shaukat
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Rashid Hussain
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Michael G Ricos
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Leanne M Dibbens
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stephen L Gregory
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia.
| |
Collapse
|
2
|
Wu D, Sun JKL, Chow KHM. Neuronal cell cycle reentry events in the aging brain are more prevalent in neurodegeneration and lead to cellular senescence. PLoS Biol 2024; 22:e3002559. [PMID: 38652714 PMCID: PMC11037540 DOI: 10.1371/journal.pbio.3002559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024] Open
Abstract
Increasing evidence indicates that terminally differentiated neurons in the brain may recommit to a cell cycle-like process during neuronal aging and under disease conditions. Because of the rare existence and random localization of these cells in the brain, their molecular profiles and disease-specific heterogeneities remain unclear. Through a bioinformatics approach that allows integrated analyses of multiple single-nucleus transcriptome datasets from human brain samples, these rare cell populations were identified and selected for further characterization. Our analyses indicated that these cell cycle-related events occur predominantly in excitatory neurons and that cellular senescence is likely their immediate terminal fate. Quantitatively, the number of cell cycle re-engaging and senescent neurons decreased during the normal brain aging process, but in the context of late-onset Alzheimer's disease (AD), these cells accumulate instead. Transcriptomic profiling of these cells suggested that disease-specific differences were predominantly tied to the early stage of the senescence process, revealing that these cells presented more proinflammatory, metabolically deregulated, and pathology-associated signatures in disease-affected brains. Similarly, these general features of cell cycle re-engaging neurons were also observed in a subpopulation of dopaminergic neurons identified in the Parkinson's disease (PD)-Lewy body dementia (LBD) model. An extended analysis conducted in a mouse model of brain aging further validated the ability of this bioinformatics approach to determine the robust relationship between the cell cycle and senescence processes in neurons in this cross-species setting.
Collapse
Affiliation(s)
- Deng Wu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Shreeya T, Ansari MS, Kumar P, Saifi M, Shati AA, Alfaifi MY, Elbehairi SEI. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. FRONTIERS IN AGING 2024; 4:1292053. [PMID: 38596783 PMCID: PMC11002673 DOI: 10.3389/fragi.2023.1292053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Senescence is a complicated, multi-factorial, irreversible cell cycle halt that has a tumor-suppressing effect in addition to being a significant factor in aging and neurological diseases. Damaged DNA, neuroinflammation, oxidative stress and disrupted proteostasis are a few of the factors that cause senescence. Senescence is triggered by DNA damage which initiates DNA damage response. The DNA damage response, which includes the formation of DNA damage foci containing activated H2AX, which is a key factor in cellular senescence, is provoked by a double strand DNA break. Oxidative stress impairs cognition, inhibits neurogenesis, and has an accelerated aging effect. Senescent cells generate pro-inflammatory mediators known as senescence-associated secretory phenotype (SASP). These pro-inflammatory cytokines and chemokines have an impact on neuroinflammation, neuronal death, and cell proliferation. While it is tempting to think of neurodegenerative diseases as manifestations of accelerated aging and senescence, this review will present information on brain ageing and neurodegeneration as a result of senescence and DNA damage response.
Collapse
Affiliation(s)
- Tejal Shreeya
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Mohd Saifullah Ansari
- Institute of Genetics, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Prabhat Kumar
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | | | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
4
|
Martí-Clúa J. 5-Bromo-2'-deoxyuridine labeling: historical perspectives, factors influencing the detection, toxicity, and its implications in the neurogenesis. Neural Regen Res 2024; 19:302-308. [PMID: 37488882 PMCID: PMC10503596 DOI: 10.4103/1673-5374.379038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 07/26/2023] Open
Abstract
The halopyrimidine 5-bromo-2'-deoxyuridine (BrdU) is an exogenous marker of DNA synthesis. Since the introduction of monoclonal antibodies against BrdU, an increasing number of methodologies have been used for the immunodetection of this synthesized bromine-tagged base analogue into replicating DNA. BrdU labeling is widely used for identifying neuron precursors and following their fate during the embryonic, perinatal, and adult neurogenesis in a variety of vertebrate species including birds, reptiles, and mammals. Due to BrdU toxicity, its incorporation into replicating DNA presents adverse consequences on the generation, survival, and settled patterns of cells. This may lead to false results and misinterpretation in the identification of proliferative neuroblasts. In this review, I will indicate the detrimental effects of this nucleoside during the development of the central nervous system, as well as the reliability of BrdU labeling to detect proliferating neuroblasts. Moreover, it will show factors influencing BrdU immunodetection and the contribution of this nucleoside to the study of prenatal, perinatal, and adult neurogenesis. Human adult neurogenesis will also be discussed. It is my hope that this review serves as a reference for those researchers who focused on detecting cells that are in the synthetic phase of the cell cycle.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología. Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia. Facultad de Biociencias. Institut de Neurociències. Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
5
|
Paterno G, Torrellas J, Bell BM, Gorion KMM, Quintin SS, Hery GP, Prokop S, Giasson BI. Novel Conformation-Dependent Tau Antibodies Are Modulated by Adjacent Phosphorylation Sites. Int J Mol Sci 2023; 24:13676. [PMID: 37761979 PMCID: PMC10530490 DOI: 10.3390/ijms241813676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Tau proteins within the adult central nervous system (CNS) are found to be abnormally aggregated into heterogeneous filaments in neurodegenerative diseases, termed tauopathies. These tau inclusions are pathological hallmarks of Alzheimer's disease (AD), Pick's disease (PiD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP). The neuropathological hallmarks of these diseases burden several cell types within the CNS, and have also been shown to be abundantly phosphorylated. The mechanism(s) by which tau aggregates in the CNS is not fully known, but it is hypothesized that hyperphosphorylated tau may precede and further promote filament formation, leading to the production of these pathological inclusions. In the studies herein, we generated and thoroughly characterized two novel conformation-dependent tau monoclonal antibodies that bind to residues Pro218-Glu222, but are sensitive to denaturing conditions and highly modulated by adjacent downstream phosphorylation sites. These epitopes are present in the neuropathological hallmarks of several tauopathies, including AD, PiD, CBD, and PSP. These novel antibodies will further enable investigation of tau-dependent pathological inclusion formation and enhance our understanding of the phosphorylation signatures within tauopathies with the possibility of new biomarker developments.
Collapse
Affiliation(s)
- Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Jose Torrellas
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Kimberly-Marie M. Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Stephan S. Quintin
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Gabriela P. Hery
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Moloney CM, Labuzan SA, Crook JE, Siddiqui H, Castanedes-Casey M, Lachner C, Petersen RC, Duara R, Graff-Radford NR, Dickson DW, Mielke MM, Murray ME. Phosphorylated tau sites that are elevated in Alzheimer's disease fluid biomarkers are visualized in early neurofibrillary tangle maturity levels in the post mortem brain. Alzheimers Dement 2023; 19:1029-1040. [PMID: 35920592 PMCID: PMC9895127 DOI: 10.1002/alz.12749] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) biomarkers are increasingly more reliable in predicting neuropathology. To facilitate interpretation of phosphorylated tau sites as an early fluid biomarker, we sought to characterize which neurofibrillary tangle maturity levels (pretangle, intermediary 1, mature tangle, intermediary 2, and ghost tangle) are recognized. METHODS We queried the Florida Autopsied Multi-Ethnic (FLAME) cohort for cases ranging from Braak stages I through VI, excluding non-AD neuropathologies and tauopathies. Thioflavin-S staining was compared to immunohistochemical measures of phosphorylated threonine (pT) 181, pT205, pT217, and pT231 in two hippocampal subsectors across n = 24 cases. RESULTS Each phosphorylated tau site immunohistochemically labeled early neurofibrillary tangle maturity levels compared to advanced levels recognized by thioflavin-S. Hippocampal burden generally increased with each Braak stage. DISCUSSION These results provide neurobiologic evidence that these phosphorylated tau fluid biomarker sites are present during early neurofibrillary tangle maturity levels and may explain why these fluid biomarker measures are observed before symptom onset. HIGHLIGHTS Immunohistochemical evaluation of four phosphorylated tau fluid biomarker sites. Earlier neurofibrillary tangle maturity levels recognized by phosphorylated tau in proline-rich region. Advanced tangle pathology is elevated in the subiculum compared to the cornu ammonis 1 of the hippocampus. Novel semi-quantitative frequency to calculate tangle maturity frequency.
Collapse
Affiliation(s)
| | | | - Julia E. Crook
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Habeeba Siddiqui
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Christian Lachner
- Division of Psychiatry, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | | | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
7
|
Xie W, Guo D, Li J, Yue L, Kang Q, Chen G, Zhou T, Wang H, Zhuang K, Leng L, Li H, Chen Z, Gao W, Zhang J. CEND1 deficiency induces mitochondrial dysfunction and cognitive impairment in Alzheimer's disease. Cell Death Differ 2022; 29:2417-2428. [PMID: 35732922 PMCID: PMC9751129 DOI: 10.1038/s41418-022-01027-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease featured with memory loss and cognitive function impairments. Chronic mitochondrial stress is a vital pathogenic factor for AD and finally leads to massive neuronal death. However, the underlying mechanism is unclear. By proteomic analysis, we identified a new mitochondrial protein, cell-cycle exit and neuronal differentiation 1 (CEND1), which was decreased significantly in the brain of 5xFAD mice. CEND1 is a neuronal specific protein and locates in the presynaptic mitochondria. Depletion of CEND1 leads to increased mitochondrial fission mediated by upregulation of dynamin related protein 1 (Drp1), resulting in abnormal mitochondrial functions. CEND1 deficiency leads to cognitive impairments in mice. Overexpression of CEND1 in the hippocampus of 5xFAD mice rescued cognitive deficits. Moreover, we identified that CDK5/p25 interacted with and phosphorylated CEND1 which promoted its degradation. Our study provides new mechanistic insights in mitochondrial function regulations by CEND1 in Alzheimer's disease.
Collapse
Affiliation(s)
- Wenting Xie
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Dong Guo
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jieyin Li
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lei Yue
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Qi Kang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guimiao Chen
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Tingwen Zhou
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Han Wang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kai Zhuang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lige Leng
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huifang Li
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenyi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Weiwei Gao
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350004, China.
| | - Jie Zhang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350004, China.
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
8
|
Beck JS, Madaj Z, Cheema CT, Kara B, Bennett DA, Schneider JA, Gordon MN, Ginsberg SD, Mufson EJ, Counts SE. Co-expression network analysis of frontal cortex during the progression of Alzheimer's disease. Cereb Cortex 2022; 32:5108-5120. [PMID: 35076713 PMCID: PMC9667180 DOI: 10.1093/cercor/bhac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/29/2023] Open
Abstract
Mechanisms of Alzheimer's disease (AD) and its putative prodromal stage, amnestic mild cognitive impairment (aMCI), involve the dysregulation of multiple candidate molecular pathways that drive selective cellular vulnerability in cognitive brain regions. However, the spatiotemporal overlap of markers for pathway dysregulation in different brain regions and cell types presents a challenge for pinpointing causal versus epiphenomenal changes characterizing disease progression. To approach this problem, we performed Weighted Gene Co-expression Network Analysis and STRING interactome analysis of gene expression patterns quantified in frontal cortex samples (Brodmann area 10) from subjects who died with a clinical diagnosis of no cognitive impairment, aMCI, or mild/moderate AD. Frontal cortex was chosen due to the relatively protracted involvement of this region in AD, which might reveal pathways associated with disease onset. A co-expressed network correlating with clinical diagnosis was functionally associated with insulin signaling, with insulin (INS) being the most highly connected gene within the network. Co-expressed networks correlating with neuropathological diagnostic criteria (e.g., NIA-Reagan Likelihood of AD) were associated with platelet-endothelium-leucocyte cell adhesion pathways and hypoxia-oxidative stress. Dysregulation of these functional pathways may represent incipient alterations impacting disease progression and the clinical presentation of aMCI and AD.
Collapse
Affiliation(s)
- John S Beck
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Calvin T Cheema
- Department of Mathematics and Computer Science, Kalamazoo College, Kalamazoo, MI 49006, USA
| | - Betul Kara
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Research Center, Chicago, IL 60612, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Research Center, Chicago, IL 60612, USA
| | - Marcia N Gordon
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI 49503, USA
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Specific phosphorylation of microtubule-associated protein 2c by extracellular signal-regulated kinase reduces interactions at its Pro-rich regions. J Biol Chem 2022; 298:102384. [PMID: 35987383 PMCID: PMC9520037 DOI: 10.1016/j.jbc.2022.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2) is an important neuronal target of extracellular signal-regulated kinase 2 (ERK2) involved in Raf signaling pathways, but mechanistic details of MAP2 phosphorylation are unclear. Here, we used NMR spectroscopy to quantitatively describe the kinetics of phosphorylation of individual serines and threonines in the embryonic MAP2 variant MAP2c. We carried out real-time monitoring of phosphorylation to discover major phosphorylation sites that were not identified in previous studies relying on specific antibodies. Our comparison with phosphorylation of MAP2c by a model cyclin-dependent kinase CDK2 and with phosphorylation of the MAP2c homolog Tau revealed differences in phosphorylation profiles that explain specificity of regulation of biological functions of MAP2c and Tau. To probe the molecular basis of the regulatory effect of ERK2, we investigated the interactions of phosphorylated and unphosphorylated MAP2c by NMR with single-residue resolution. As ERK2 phosphorylates mostly outside the regions binding microtubules, we studied the binding of proteins other than tubulin, namely regulatory subunit RIIα of cAMP-dependent protein kinase (PKA), adaptor protein Grb2, Src homology domain 3 of tyrosine kinases Fyn and Abl, and ERK2 itself. We found ERK2 phosphorylation interfered mostly with binding to proline-rich regions of MAP2c. Furthermore, our NMR experiments in SH-SY5Y neuroblastoma cell lysates showed that the kinetics of dephosphorylation are compatible with in-cell NMR studies and that residues targeted by ERK2 and PKA are efficiently phosphorylated in the cell lysates. Taken together, our results provide a deeper characterization of MAP2c phosphorylation and its effects on interactions with other proteins.
Collapse
|
10
|
Down-regulation of cyclin D2 in amyloid β toxicity, inflammation, and Alzheimer's disease. PLoS One 2021; 16:e0259740. [PMID: 34793515 PMCID: PMC8601534 DOI: 10.1371/journal.pone.0259740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
In the current study, we analyzed the effects of the systemic inflammatory response (SIR) and amyloid β (Aβ) peptide on the expression of genes encoding cyclins and cyclin-dependent kinase (Cdk) in: (i) PC12 cells overexpressing human beta amyloid precursor protein (βAPP), wild-type (APPwt-PC12), or carrying the Swedish mutantion (APPsw-PC12); (ii) the murine hippocampus during SIR; and (iii) Alzheimer’s disease (AD) brain. In APPwt-PC12 expression of cyclin D2 (cD2) was exclusively reduced, and in APPsw-PC12 cyclins cD2 and also cA1 were down-regulated, but cA2, cB1, cB2, and cE1 were up-regulated. In the SIR cD2, cB2, cE1 were found to be significantly down-regulated and cD3, Cdk5, and Cdk7 were significantly up-regulated. Cyclin cD2 was also found to be down-regulated in AD neocortex and hippocampus. Our novel data indicate that Aβ peptide and inflammation both significantly decreased the expression of cD2, suggesting that Aβ peptides may also contribute to downregulation of cD2 in AD brain.
Collapse
|
11
|
Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer's disease: A clinicopathologic perspective for biomarker research. Alzheimers Dement 2021; 17:1554-1574. [PMID: 33797838 PMCID: PMC8478697 DOI: 10.1002/alz.12321] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 12/29/2022]
Abstract
Neurofibrillary tangles, one of the neuropathologic hallmarks of Alzheimer's disease, have a dynamic lifespan of maturity that associates with progressive neuronal dysfunction and cognitive deficits. As neurofibrillary tangles mature, the biology of the neuron undergoes extensive changes that may impact biomarker recognition and therapeutic targeting. Neurofibrillary tangle maturity encompasses three levels: pretangles, mature tangles, and ghost tangles. In this review, we detail distinct and overlapping characteristics observed in the human brain regarding morphologic changes the neuron undergoes, conversion from intracellular to extracellular space, tau immunostaining patterns, and tau isoform expression changes across the lifespan of the neurofibrillary tangle. Post-translational modifications of tau such as phosphorylation, ubiquitination, conformational events, and truncations are discussed to contextualize tau immunostaining patterns. We summarize accumulated and emerging knowledge of neurofibrillary tangle maturity, discuss the current tools used to interpret the dynamic nature in the postmortem brain, and consider implications for cognitive dysfunction and tau biomarkers.
Collapse
Affiliation(s)
| | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
12
|
Pharmacological relevance of CDK inhibitors in Alzheimer's disease. Neurochem Int 2021; 148:105115. [PMID: 34182065 DOI: 10.1016/j.neuint.2021.105115] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Evidence suggests that cell cycle activation plays a role in the pathophysiology of neurodegenerative diseases. Alzheimer's disease is a progressive, terminal neurodegenerative disease that affects memory and other important mental functions. Intracellular deposition of Tau protein, a hyperphosphorylated form of a microtubule-associated protein, and extracellular aggregation of Amyloid β protein, which manifests as neurofibrillary tangles (NFT) and senile plaques, respectively, characterize this condition. In recent years, however, several studies have concluded that cell cycle re-entry is one of the key causes of neuronal death in the pathogenesis of Alzheimer's disease. The eukaryotic cell cycle is well-coordinated machinery that performs critical functions in cell replenishment, such as DNA replication, cell creation, repair, and the birth of new daughter cells from the mother cell. The complex interplay between the levels of various cyclins and cyclin-dependent kinases (CDKs) at different checkpoints is needed for cell cycle synchronization. CDKIs (cyclin-dependent kinase inhibitors) prevent cyclin degradation and CDK inactivation. Different external and internal factors regulate them differently, and they have different tissue expression and developmental functions. The checkpoints ensure that the previous step is completed correctly before starting the new cell cycle phase, and they protect against the transfer of defects to the daughter cells. Due to the development of more selective and potent ATP-competitive CDK inhibitors, CDK inhibitors appear to be on the verge of having a clinical impact. This avenue is likely to yield new and effective medicines for the treatment of cancer and other neurodegenerative diseases. These new methods for recognizing CDK inhibitors may be used to create non-ATP-competitive agents that target CDK4, CDK5, and other CDKs that have been recognized as important therapeutic targets in Alzheimer's disease treatment.
Collapse
|
13
|
Development of P301S tau seeded organotypic hippocampal slice cultures to study potential therapeutics. Sci Rep 2021; 11:10309. [PMID: 33986302 PMCID: PMC8119691 DOI: 10.1038/s41598-021-89230-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/21/2021] [Indexed: 01/26/2023] Open
Abstract
Intracellular tau inclusions are a pathological hallmark of Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates may spread to neighbouring cells and functionally connected brain regions, where they can seed further tau aggregation. This process is referred to as tau propagation. Here we describe an ex vivo system using organotypic hippocampal slice cultures (OHCs) which recapitulates aspects of this phenomenon. OHCs are explants of hippocampal tissue which may be maintained in culture for months. They maintain their synaptic connections and multicellular 3D architecture whilst also permitting direct control of the environment and direct access for various analysis types. We inoculated OHCs prepared from P301S mouse pups with brain homogenate from terminally ill P301S mice and then examined the slices for viability and the production and localization of insoluble phosphorylated tau. We show that following seeding, phosphorylated insoluble tau accumulate in a time and concentration dependent manner within OHCs. Furthermore, we show the ability of the conformation dependent anti-tau antibody, MC1, to compromise tau accrual in OHCs, thus showcasing the potential of this therapeutic approach and the utility of OHCs as an ex vivo model system for assessing such therapeutics.
Collapse
|
14
|
Gazarian K, Ramirez-Garcia L, Tapía Orozco L, Luna-Muñoz J, Pacheco-Herrero M. Human Dental Pulp Stem Cells Display a Potential for Modeling Alzheimer Disease-Related Tau Modifications. Front Neurol 2021; 11:612657. [PMID: 33569035 PMCID: PMC7868559 DOI: 10.3389/fneur.2020.612657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022] Open
Abstract
We present here the first description of tau in human dental pulp stem cells (DPSCs) evidenced by RT-PCR data on expression of the gene MAPT and by immunocytochemical detection of epitopes by 12 anti-tau antibodies. The tau specificity of eight of these antibodies was confirmed by their affinity to neurofibrillary tangles (NFTs) in Alzheimer's disease (AD) postmortem brain samples. We therefore used DPSCs and AD brain samples as a test system for determining the probability of the involvement of tau epitopes in the mechanisms converting tau into NFT in AD. Three antibodies to non-phosphorylated and seven antibodies to phosphorylated epitopes bound tau in both DPSCs and AD NFTs, thus suggesting that their function was not influenced by inducers of formation of NFTs in the AD brain. In contrast, AT100, which recognizes a hyperphosphorylated epitope, did not detect it in the cytoplasm of DPSCs but detected it in AD brain NFTs, demonstrating its AD diagnostic potential. This indicated that the phosphorylation/conformational events required for the creation of this epitope do not occur in normal cytoplasm and are a part of the mechanism (s) leading to NFT in AD brain. TG3 bound tau in the cytoplasm and in mitotic chromosomes but did not find it in nuclei. Collectively, these observations characterize DPSCs as a novel tau-harboring neuronal lineage long-term propagable in vitro cellular system for the normal conformational state of tau sites, detectable by antibodies, with their state in AD NFTs revealing those involved in the pathological processes converting tau into NFTs in the course of AD. With this information, one can model the interaction of tau with inducers and inhibitors of hyperphosphorylation toward NFT-like aggregates to search for drug candidates. Additionally, the clonogenicity of DPSCs provides the option for generation of cell lineages with CRISPR-mutagenized genes of familial AD modeling.
Collapse
Affiliation(s)
- Karlen Gazarian
- Laboratorio de Reprogramación Celular, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Luis Ramirez-Garcia
- Laboratorio de Reprogramación Celular, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Luis Tapía Orozco
- Laboratorio de Reprogramación Celular, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, Mexico.,Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, Dominican Republic
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago De Los Caballeros, Dominican Republic
| |
Collapse
|
15
|
Barrett T, Stangis KA, Saito T, Saido T, Park KH. Neuronal Cell Cycle Re-Entry Enhances Neuropathological Features in AppNLF Knock-In Mice. J Alzheimers Dis 2021; 82:1683-1702. [PMID: 34219712 PMCID: PMC8461670 DOI: 10.3233/jad-210091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aberrant cell cycle re-entry is a well-documented process occurring early in Alzheimer's disease (AD). This is an early feature of the disease and may contribute to disease pathogenesis. OBJECTIVE To assess the effect of forced neuronal cell cycle re-entry in mice expressing humanized Aβ, we crossed our neuronal cell cycle re-entry mouse model with AppNLF knock-in (KI) mice. METHODS Our neuronal cell cycle re-entry (NCCR) mouse model is bitransgenic mice heterozygous for both Camk2a-tTA and TRE-SV40T. The NCCR mice were crossed with AppNLF KI mice to generate NCCR-AppNLF animals. Using this tet-off system, we triggered NCCR in our animals via neuronal expression of SV40T starting at 1 month of age. The animals were examined at the following time points: 9, 12, and 18 months of age. Various neuropathological features in our mice were evaluated by image analysis and stereology on brain sections stained using either immunofluorescence or immunohistochemistry. RESULTS We show that neuronal cell cycle re-entry in humanized Aβ plaque producing AppNLF KI mice results in the development of additional AD-related pathologies, namely, pathological tau, neuroinflammation, brain leukocyte infiltration, DNA damage response, and neurodegeneration. CONCLUSION Our findings show that neuronal cell cycle re-entry enhances AD-related neuropathological features in AppNLF mice and highlight our unique AD mouse model for studying the pathogenic role of aberrant cell cycle re-entry in AD.
Collapse
Affiliation(s)
- Tomás Barrett
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Kevin H.J. Park
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
- Biochemistry, Cellular & Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI, USA
- Michigan Alzheimer’s Disease Research Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry 2021; 26:280-295. [PMID: 32382138 DOI: 10.1038/s41380-020-0760-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Several epidemiological studies show an inverse association between cancer and Alzheimer's disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and "healthy", while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer's disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.
| |
Collapse
|
17
|
Abate G, Frisoni GB, Bourdon JC, Piccirella S, Memo M, Uberti D. The pleiotropic role of p53 in functional/dysfunctional neurons: focus on pathogenesis and diagnosis of Alzheimer's disease. Alzheimers Res Ther 2020; 12:160. [PMID: 33272326 PMCID: PMC7712978 DOI: 10.1186/s13195-020-00732-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Understanding the earliest pathophysiological changes of Alzheimer's disease (AD) may aid in the search for timely diagnostic biomarkers and effective disease-modifying therapies. The p53 protein is mostly known for its role in tumor suppression. However, emerging evidence supports that dysregulated p53 activity may contribute to various peripheral and brain alterations during the earliest stages of AD. This review describes the mechanisms through which p53 dysregulation may exacerbate AD pathology and how this could be used as a potential peripheral biomarker for early detection of the disease. MAIN BODY: p53, known as the guardian of the genome, may underlie various compensation or defense mechanisms that prevent neurons from degeneration. These mechanisms include maintenance of redox homeostasis, regulation of inflammation, control of synaptic function, reduction of amyloid β peptides, and inhibition of neuronal cell cycle re-entry. Thereby, dysregulation of p53-dependent compensation mechanisms may contribute to neuronal dysfunction, thus leading to neurodegeneration. Interestingly, a conformational misfolded variant of p53, described in the literature as unfolded p53, which has lost its canonical structure and function, was observed in peripheral cells from mild cognitive impairment (MCI) and AD patients. In AD pathology, this peculiar conformational variant was caused by post-translational modifications rather than mutations as commonly observed in cancer. Although the presence of the conformational variant of p53 in the brain has yet to be formally demonstrated, the plethora of p53-dependent compensation mechanisms underscores that the guardian of the genome may not only be lost in the periphery during AD pathology. CONCLUSION These findings revisit the role of p53 in the early development and exacerbation of AD pathology, both in the brain and periphery. The conformational variant of p53 represents a potential peripheral biomarker that could detect AD at its earliest stages.
Collapse
Affiliation(s)
- Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, BS, Italy
| | - Giovanni B Frisoni
- Memory Clinic, University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, BS, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, BS, Italy.
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
18
|
Potic J, Mbefo M, Berger A, Nicolas M, Wanner D, Kostic C, Matet A, Behar-Cohen F, Moulin A, Arsenijevic Y. An in vitro Model of Human Retinal Detachment Reveals Successive Death Pathway Activations. Front Neurosci 2020; 14:571293. [PMID: 33324144 PMCID: PMC7726250 DOI: 10.3389/fnins.2020.571293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 01/30/2023] Open
Abstract
Purpose was to create an in vitro model of human retinal detachment (RD) to study the mechanisms of photoreceptor death. Methods Human retinas were obtained through eye globe donations for research purposes and cultivated as explants. Cell death was investigated in retinas with (control) and without retinal pigment epithelium (RPE) cells to mimic RD. Tissues were studied at different time points and immunohistological analyses for TUNEL, Cleaved caspase3, AIF, CDK4 and the epigenetic mark H3K27me3 were performed. Human and monkey eye globes with retinal detachment served as controls. Results The number of TUNEL-positive cells, compared between 1 and 7 days, increased with time in both retinas with RPE (from 1.2 ± 0.46 to 8 ± 0.89, n = 4) and without RPE (from 2.6 ± 0.73 to 16.3 ± 1.27, p < 0.014). In the group without RPE, cell death peaked at day 3 (p = 0.014) and was high until day 7. Almost no Cleaved-Caspase3 signal was observed, whereas a transient augmentation at day 3 of AIF-positive cells was observed to be about 10-fold in comparison to the control group (n = 2). Few CDK4-positive cells were found in both groups, but significantly more in the RD group at day 7 (1.8 ± 0.24 vs. 4.7 ± 0.58, p = 0.014). The H3K27me3 mark increased by 7-fold after 5 days in the RD group (p = 0.014) and slightly decreased at day 7 and was also observed to be markedly increased in human and monkey detached retina samples. Conclusion AIF expression coincides with the first peak of cell death, whereas the H3K27me3 mark increases during the cell death plateau, suggesting that photoreceptor death is induced by different successive pathways after RD. This in vitro model should permit the identification of neuroprotective drugs with clinical relevance.
Collapse
Affiliation(s)
- Jelena Potic
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.,Clinic for Eye Diseases, Clinical Center of Serbia, Belgrade, Serbia.,Department of Ophthalmology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Martial Mbefo
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Adeline Berger
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Michael Nicolas
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Dana Wanner
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Corinne Kostic
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexandre Matet
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.,Department of Ophthalmology, Institut Curie, Université de Paris, Paris, France
| | - Francine Behar-Cohen
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.,INSERM U 1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Alexandre Moulin
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
19
|
Flores-Rodríguez P, Harrington CR, Wischik CM, Ibarra-Bracamontes V, Zarco N, Navarrete A, Martínez-Maldonado A, Guadarrama-Ortíz P, Villanueva-Fierro I, Ontiveros-Torres MA, Perry G, Alonso AD, Floran-Garduño B, Segovia J, Luna-Muñoz J. Phospho-Tau Protein Expression in the Cell Cycle of SH-SY5Y Neuroblastoma Cells: A Morphological Study. J Alzheimers Dis 2020; 71:631-645. [PMID: 31424392 DOI: 10.3233/jad-190155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been reported that the main function of tau protein is to stabilize microtubules and promote the movement of organelles through the axon in neurons. In Alzheimer's disease, tau protein is the major constituent of the paired helical filament, and it undergoes post-translational modifications including hyperphosphorylation and truncation. Whether other functions of tau protein are involved in Alzheimer's disease is less clear. We used SH-SY5Y human neuroblastoma cells as an in vitro model to further study the functions of tau protein. We detected phosphorylated tau protein as small dense dots in the cell nucleus, which strongly colocalize with intranuclear speckle structures that were also labelled with an antibody to SC35, a protein involved in nuclear RNA splicing. We have shown further that tau protein, phosphorylated at the sites recognized by pT231, TG-3, and AD2 antibodies, is closely associated with cell division. Different functions may be characteristic of phosphorylation at specific sites. Our findings suggest that the presence of tau protein is involved in separation of sister chromatids in anaphase, and that tau protein also participates in maintaining the integrity of the DNA (pT231, prophase) and chromosomes during cell division (TG-3).
Collapse
Affiliation(s)
- Paola Flores-Rodríguez
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México.,Brain Bank, Laboratorio Nacional de Servicios Experimentales, LaNSE-CINVESTAV, CDMX, México.,CIIDIR Durango, Instituto Politécnico Nacional, Becario COFAA, Durango, México
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Vanessa Ibarra-Bracamontes
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México.,Brain Bank, Laboratorio Nacional de Servicios Experimentales, LaNSE-CINVESTAV, CDMX, México
| | - Natanael Zarco
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - Araceli Navarrete
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - Alejandra Martínez-Maldonado
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México.,Anahuac University North Mexico, CDMX, México
| | | | | | | | - George Perry
- College of Sciences, University of Texas at San Antonio, TX, USA
| | - Alejandra D Alonso
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | | | - José Segovia
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - José Luna-Muñoz
- Brain Bank, Laboratorio Nacional de Servicios Experimentales, LaNSE-CINVESTAV, CDMX, México
| |
Collapse
|
20
|
Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiol Dis 2020; 144:105010. [PMID: 32682954 PMCID: PMC7365083 DOI: 10.1016/j.nbd.2020.105010] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) and tau proteins currently represent the two most promising targets to treat Alzheimer's disease. The most extensively developed method to treat the pathologic forms of these proteins is through the administration of exogenous antibodies, or passive immunotherapy. In this review, we discuss the molecular-level strategies that researchers are using to design an effective therapeutic antibody, given the challenges in treating this disease. These challenges include selectively targeting a protein that has misfolded or is pathological rather than the more abundant, healthy protein, designing strategic constructs for immunizing an animal to raise an antibody that has the appropriate conformational selectivity to achieve this end, and clearing the pathological protein species before prion-like cell-to-cell spread of misfolded protein has irreparably damaged neurons, without invoking damaging inflammatory responses in the brain that naturally arise when the innate immune system is clearing foreign agents. The various solutions to these problems in current clinical trials will be discussed.
Collapse
Affiliation(s)
- Steven S Plotkin
- University of British Columbia, Department of Physics and Astronomy and Genome Sciences and Technology Program, Vancouver, BC V6T 1Z1, Canada.
| | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
21
|
Park KHJ, Barrett T. Gliosis Precedes Amyloid-β Deposition and Pathological Tau Accumulation in the Neuronal Cell Cycle Re-Entry Mouse Model of Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:243-253. [PMID: 32904753 PMCID: PMC7458550 DOI: 10.3233/adr-200170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: The presence of cell cycle markers in postmortem Alzheimer’s disease (AD) brains suggest a potential role of cell cycle activation in AD. It was shown that cell cycle activation in postmitotic neurons in mice produces Aβ and tau pathologies from endogenous mouse proteins in the absence of AβPP or tau mutations. Objective: In this study, we examined the microglial and astrocytic responses in these mice since neuroinflammation is another key pathological feature in AD. Methods: Our neuronal cell cycle re-entry (NCCR) mouse model are bitransgenic mice heterozygous for both Camk2a-tTA and TRE-SV40T. Using this tet-off system, we triggered NCCR in our animals via neuronal expression of SV40T starting at 1 month of age. TRE-SV40T Tg mice were used as SV40T transgene controls. The animals were examined at following time points: 2, 3, 4, 6, and 12 months of age. The microglia and astrocyte responses in our mice were determined by image analysis and stereology on brain sections immunofluorescently labeled using the following antibodies: Iba1, CD45, CD68, MHCII, and GFAP. Cellular senescent marker p16 was also used in this study. Results: Our NCCR mice demonstrate early and persistent activation of microglia and astrocytes. Additionally, proinflammatory and senescent microglia phenotype and brain leukocyte infiltration is present at 12 months of age. Conclusion: In the absence of FAD gene mutations, our NCCR mice simultaneously display many of the pathological changes associated with AD, such as ectopic neuronal cell cycle re-entry, Aβ and tau pathologies, neuroinflammation, and neurodegeneration. These animals represent a promising alternative AD mouse model.
Collapse
Affiliation(s)
- Kevin H J Park
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA.,Biochemistry, Cellular & Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA.,Michigan Alzheimer's Disease Center, University of Michigan, Ann Arbor, MI, USA
| | - Tomás Barrett
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
22
|
Martínez-Cué C, Rueda N. Cellular Senescence in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:16. [PMID: 32116562 PMCID: PMC7026683 DOI: 10.3389/fncel.2020.00016] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a homeostatic biological process characterized by a permanent state of cell cycle arrest that can contribute to the decline of the regenerative potential and function of tissues. The increased presence of senescent cells in different neurodegenerative diseases suggests the contribution of senescence in the pathophysiology of these disorders. Although several factors can induce senescence, DNA damage, oxidative stress, neuroinflammation, and altered proteostasis have been shown to play a role in its onset. Oxidative stress contributes to accelerated aging and cognitive dysfunction stages affecting neurogenesis, neuronal differentiation, connectivity, and survival. During later life stages, it is implicated in the progression of cognitive decline, synapse loss, and neuronal degeneration. Also, neuroinflammation exacerbates oxidative stress, synaptic dysfunction, and neuronal death through the harmful effects of pro-inflammatory cytokines on cell proliferation and maturation. Both oxidative stress and neuroinflammation can induce DNA damage and alterations in DNA repair that, in turn, can exacerbate them. Another important feature associated with senescence is altered proteostasis. Because of the disruption in the function and balance of the proteome, senescence can modify the proper synthesis, folding, quality control, and degradation rate of proteins producing, in some diseases, misfolded proteins or aggregation of abnormal proteins. There is an extensive body of literature that associates cellular senescence with several neurodegenerative disorders including Alzheimer’s disease (AD), Down syndrome (DS), and Parkinson’s disease (PD). This review summarizes the evidence of the shared neuropathological events in these neurodegenerative diseases and the implication of cellular senescence in their onset or aggravation. Understanding the role that cellular senescence plays in them could help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
23
|
Potter H, Chial HJ, Caneus J, Elos M, Elder N, Borysov S, Granic A. Chromosome Instability and Mosaic Aneuploidy in Neurodegenerative and Neurodevelopmental Disorders. Front Genet 2019; 10:1092. [PMID: 31788001 PMCID: PMC6855267 DOI: 10.3389/fgene.2019.01092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Evidence from multiple laboratories has accumulated to show that mosaic neuronal aneuploidy and consequent apoptosis characterizes and may underlie neuronal loss in many neurodegenerative diseases, particularly Alzheimer’s disease and frontotemporal dementia. Furthermore, several neurodevelopmental disorders, including Seckel syndrome, ataxia telangiectasia, Nijmegen breakage syndrome, Niemann–Pick type C, and Down syndrome, have been shown to also exhibit mosaic aneuploidy in neurons in the brain and in other cells throughout the body. Together, these results indicate that both neurodegenerative and neurodevelopmental disorders with apparently different pathogenic causes share a cell cycle defect that leads to mosaic aneuploidy in many cell types. When such mosaic aneuploidy arises in neurons in the brain, it promotes apoptosis and may at least partly underlie the cognitive deficits that characterize the neurological symptoms of these disorders. These findings have implications for both diagnosis and treatment/prevention.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Heidi J Chial
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Julbert Caneus
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
| | - Mihret Elos
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Nina Elder
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Sergiy Borysov
- Department of Math and Science, Saint Leo University, Saint Leo, FL, United States
| | - Antoneta Granic
- AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle University Institute for Ageing, NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Graham EJ, Vermeulen M, Vardarajan B, Bennett D, De Jager P, Pearse RV, Young-Pearse TL, Mostafavi S. Somatic mosaicism of sex chromosomes in the blood and brain. Brain Res 2019; 1721:146345. [PMID: 31348909 PMCID: PMC6717667 DOI: 10.1016/j.brainres.2019.146345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022]
Abstract
In the blood, mosaic somatic aneuploidy (mSA) of all chromosomes has been found to be associated with adverse health outcomes, including hematological cancer. Sex chromosome mSA in the blood has been found to occur at a higher rate than autosomal mSA. Mosaic loss of the Y chromosome is the most common copy number alteration in males, and has been found to be associated with Alzheimer's disease (AD) in blood lymphocytes. mSA of the sex chromosomes has also been identified in the brain; however, little is known about its frequency across individuals. Using WGS data from 362 males and 719 females from the ROSMAP cohort, we quantified the relative rate of sex chromosome mSA in the dorsolateral prefrontal cortex (DLPFC), cerebellum and whole blood. To ascertain the functionality of observed sex chromosome mosaicism in the DLPFC, we examined its correlation with chromosome X and Y gene expression as well as neuropathological and clinical characteristics of AD and cognitive ageing. In males, we found that mSA of the Y chromosome occurs more frequently in blood than in the DLPFC or cerebellum. In the DLPFC, the presence of at least one APOE4 allele was associated with a reduction in read depth of the Y chromosome (p = 1.9e-02). In the female DLPFC, a reduction in chromosome X read depth was associated with reduced cognition at the last clinical visit and faster rate of cognitive decline (p = 7.8e-03; p = 1.9e-02). mSA of all sex chromosomes in the DLPFC were associated with aggregate measures of gene expression, implying functional impact. Our results provide insight into the relative rate of mSA between tissues and suggest that Y and female X chromosome read depth in the DLPFC is modestly associated with late AD risk factors and cognitive pathologies.
Collapse
Affiliation(s)
- Emma J Graham
- Department of Bioinformatics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Michael Vermeulen
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Badri Vardarajan
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Phil De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York City, NY, United States; Cell Circuits Program, Broad Institute, Cambridge, MA, United States; Neurodegeneration Program, New York Genome Center, New York, NY, United States
| | - Richard V Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Tracy L Young-Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sara Mostafavi
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Department of Statistics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Kajiwara Y, Wang E, Wang M, Sin WC, Brennand KJ, Schadt E, Naus CC, Buxbaum J, Zhang B. GJA1 (connexin43) is a key regulator of Alzheimer's disease pathogenesis. Acta Neuropathol Commun 2018; 6:144. [PMID: 30577786 PMCID: PMC6303945 DOI: 10.1186/s40478-018-0642-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/02/2022] Open
Abstract
GJA1 (connexin43) has been predicted as the top key driver of an astrocyte enriched subnetwork associated with Alzheimer's disease (AD). In this study, we comprehensively examined GJA1 expression across 29 transcriptomic and proteomic datasets from post-mortem AD and normal control brains. We demonstrated that GJA1 was strongly associated with AD amyloid and tau pathologies and cognitive functions. RNA sequencing analysis of Gja1-/- astrocytes validated that Gja1 regulated the subnetwork identified in AD, and many genes involved in Aβ metabolism. Astrocytes lacking Gja1 showed reduced Apoe protein levels as well as impaired Aβ phagocytosis. Consistent with this, wildtype neurons co-cultured with Gja1-/- astrocytes contained higher levels of Aβ species than those with wildtype astrocytes. Moreover, Gja1-/- astrocytes was more neuroprotective under Aβ stress. Our results underscore the importance of GJA1 in AD pathogenesis and its potential for further investigation as a promising pharmacological target in AD.
Collapse
Affiliation(s)
- Yuji Kajiwara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Current address: Denali Therapeutics,, South San Francisco,, CA, 94080, USA
| | - Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wun Chey Sin
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Joseph Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
26
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
27
|
Shepherd CE, Yang Y, Halliday GM. Region- and Cell-specific Aneuploidy in Brain Aging and Neurodegeneration. Neuroscience 2018; 374:326-334. [PMID: 29432756 DOI: 10.1016/j.neuroscience.2018.01.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 01/02/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Variations in genomic DNA content, or aneuploidy, are a well-recognized feature of normal human brain development. Whether changes in the levels of aneuploidy are a factor in Alzheimer's disease (AD) is less clear, as the data reported to date vary substantially in the levels of aneuploidy detected (0.7-11.5%), possibly due to methodological limitations, but also influenced by individual, regional and cellular heterogeneity as well as variations in cell subtypes. These issues have not been adequately addressed to date. While it is known that the DNA damage response increases with age, the limited human studies investigating aneuploidy in normal aging also show variable results, potentially due to susceptibility to age-related neurodegenerative processes. Neuronal aneuploidy has recently been reported in multiple brain regions in Lewy body disease, but similar genomic changes are not a feature of all synucleinopathies and aneuploidy does not appear to be related to alpha-synuclein aggregation. Rather, aneuploidy was associated with Alzheimer's pathology in the hippocampus and anterior cingulate cortex and neuronal degeneration in the substantia nigra. The association between Alzheimer's pathology and aneuploidy in regions with limited neurodegeneration is supported by a growing body of in vitro and in vivo data on aneuploidy and beta-amyloid and tau abnormalities. Large-scale studies using high-resolution techniques alongside other sensitive and specific methodologies are now required to assess the true extent of cell- and region-specific aneuploidy in aging and neurodegeneration, and to determine any associations with pathologies.
Collapse
Affiliation(s)
- C E Shepherd
- Neuroscience Research Australia, Margarete Ainsworth Building, Barker Street, Randwick, Sydney 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney 2031, Australia.
| | - Y Yang
- Neuroscience Research Australia, Margarete Ainsworth Building, Barker Street, Randwick, Sydney 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney 2031, Australia; Brain and Mind Centre, Sydney Medical School, The University of Sydney, Australia.
| | - G M Halliday
- Neuroscience Research Australia, Margarete Ainsworth Building, Barker Street, Randwick, Sydney 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney 2031, Australia; Brain and Mind Centre, Sydney Medical School, The University of Sydney, Australia.
| |
Collapse
|
28
|
Mead E, Kestoras D, Gibson Y, Hamilton L, Goodson R, Jones S, Eversden S, Davies P, O'Neill M, Hutton M, Szekeres P, Wolak J. Halting of Caspase Activity Protects Tau from MC1-Conformational Change and Aggregation. J Alzheimers Dis 2018; 54:1521-1538. [PMID: 27589517 PMCID: PMC5088409 DOI: 10.3233/jad-150960] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Intracellular neurofibrillary tangles (NFTs) are the hallmark of Alzheimer’s disease and other tauopathies in which tau, a microtubule-associated protein, loses its ability to stabilize microtubules. Several post-translational modifications including phosphorylation and truncation increase tau’s propensity to aggregate thus forming NFTs; however, the mechanisms underlying tau conformational change and aggregation still remain to be defined. Caspase activation and subsequent proteolytic cleavage of tau is thought to be a potential trigger of this disease-related pathological conformation. The aim of this work was to investigate the link between caspase activation and a disease-related conformational change of tau in a neuroblastoma cell-based model of spontaneous tau aggregation. We demonstrated that caspase induction initiates proteolytic cleavage of tau and generation of conformationally altered and aggregated tau recognized by the MC1 conformational antibody. Most importantly, these events were shown to be attenuated with caspase inhibitors. This implies that therapeutics aimed at inhibiting caspase-mediated tau cleavage may prove beneficial in slowing cleavage and aggregation, thus potentially halting tau pathology and disease progression.
Collapse
Affiliation(s)
- Emma Mead
- Lilly Research Centre, Windlesham, Surrey, UK
| | | | | | | | | | | | | | - Peter Davies
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | | | | | | |
Collapse
|
29
|
Marciniak E, Leboucher A, Caron E, Ahmed T, Tailleux A, Dumont J, Issad T, Gerhardt E, Pagesy P, Vileno M, Bournonville C, Hamdane M, Bantubungi K, Lancel S, Demeyer D, Eddarkaoui S, Vallez E, Vieau D, Humez S, Faivre E, Grenier-Boley B, Outeiro TF, Staels B, Amouyel P, Balschun D, Buee L, Blum D. Tau deletion promotes brain insulin resistance. J Exp Med 2017; 214:2257-2269. [PMID: 28652303 PMCID: PMC5551570 DOI: 10.1084/jem.20161731] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/20/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022] Open
Abstract
The molecular pathways underlying tau pathology-induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Elodie Marciniak
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Antoine Leboucher
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Emilie Caron
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France
| | - Tariq Ahmed
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Anne Tailleux
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011EGID, Lille, France
| | - Julie Dumont
- LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France.,Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Tarik Issad
- INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Institut Cochin, Paris, France
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Goettingen, Goettingen, Germany
| | - Patrick Pagesy
- INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Institut Cochin, Paris, France
| | - Margaux Vileno
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Clément Bournonville
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Malika Hamdane
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Kadiombo Bantubungi
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011EGID, Lille, France
| | - Steve Lancel
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011EGID, Lille, France
| | - Dominique Demeyer
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Sabiha Eddarkaoui
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Emmanuelle Vallez
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011EGID, Lille, France
| | - Didier Vieau
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Sandrine Humez
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Emilie Faivre
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Benjamin Grenier-Boley
- LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France.,Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Goettingen, Goettingen, Germany
| | - Bart Staels
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011EGID, Lille, France
| | - Philippe Amouyel
- LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France.,Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Detlef Balschun
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Luc Buee
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - David Blum
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France .,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| |
Collapse
|
30
|
Oliveira J, Costa M, de Almeida MSC, da Cruz e Silva OA, Henriques AG. Protein Phosphorylation is a Key Mechanism in Alzheimer’s Disease. J Alzheimers Dis 2017; 58:953-978. [DOI: 10.3233/jad-170176] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joana Oliveira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Márcio Costa
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | | | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
31
|
Milenkovic I, Jarc J, Dassler E, Aronica E, Iyer A, Adle-Biassette H, Scharrer A, Reischer T, Hainfellner JA, Kovacs GG. The physiological phosphorylation of tau is critically changed in fetal brains of individuals with Down syndrome. Neuropathol Appl Neurobiol 2017; 44:314-327. [PMID: 28455903 DOI: 10.1111/nan.12406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/17/2017] [Accepted: 04/15/2017] [Indexed: 01/15/2023]
Abstract
AIMS Down syndrome (DS) is a common cause of mental retardation accompanied by cognitive impairment. Comprehensive studies suggested a link between development and ageing, as nearly all individuals with DS develop Alzheimer disease (AD)-like pathology. However, there is still a paucity of data on tau in early DS to support this notion. METHODS Using morphometric immunohistochemistry we compared tau phosphorylation in normal brains and in brains of individuals with DS from early development until early postnatal life. RESULTS We observed in DS a critical loss of physiological phosphorylation of tau. Rhombencephalic structures showed prominent differences between controls and DS using antibodies AT8 (Ser-202/Thr-205) and AT180 (Thr-231). In contrast, in the subiculum only a small portion of controls deviated from DS using antibodies AT100 (Thr-212/Ser-214) and AT270 (Thr-181). With exception of the subiculum, phosphorylation-independent tau did not differ between groups, as confirmed by immunostaining for the HT-7 antibody (epitope between 159 and 163 of the human tau) as well. DISCUSSION Our observations suggest functional tau disturbance in DS brains during development, rather than axonal loss. This supports the role of tau as a further important player in the pathophysiology of cognitive impairment in DS and related AD.
Collapse
Affiliation(s)
- I Milenkovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - J Jarc
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - E Dassler
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.,SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - A Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - H Adle-Biassette
- Inserm U1141, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, Paris, France.,Lariboisière Hospital, APHP, Paris, France
| | - A Scharrer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - T Reischer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - J A Hainfellner
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - G G Kovacs
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Role and regulation of Cdc25A phosphatase in neuron death induced by NGF deprivation or β-amyloid. Cell Death Discov 2016; 2:16083. [PMID: 28028440 PMCID: PMC5149581 DOI: 10.1038/cddiscovery.2016.83] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022] Open
Abstract
Neuron death during development and in Alzheimer’s disease (AD) is associated with aberrant regulation/induction of cell cycle proteins. However, the proximal events in this process are unknown. Cell cycle initiation requires dephosphorylation of cyclin-dependent kinases by cell division cycle 25A (Cdc25A). Here, we show that Cdc25A is essential for neuronal death in response to NGF deprivation or β-amyloid (Aβ) treatment and describe the mechanisms by which it is regulated in these paradigms. Cdc25A mRNA, protein and Cdc25A phosphatase activity were induced by NGF deprivation and Aβ treatment. Enhanced Cdc25A expression was also observed in rat brains infused with Aβ and in Aβ-overexpressing AβPPswe-PS1dE9 mice. In cultured neurons Cdc25A inhibition by chemical inhibitors or shRNA prevented cell death and neurite degeneration caused by NGF deprivation or Aβ. Additionally, Cdc25A inhibition diminished distal signaling events including Cdk-dependent elevation of phospho-pRb and subsequent caspase-3 activation. Mechanism studies revealed that Cdc25A induction by NGF deprivation and Aβ is mediated by activation of Forkhead transcription factors that in turn suppress miR-21, a negative regulator of Cdc25A. Our studies thus identify Cdc25A as a required upstream element of the apoptotic cell cycle pathway that is required for neuron death in response to trophic factor deprivation and to Aβ exposure and therefore as a potential target to suppress pathologic neuron death.
Collapse
|
33
|
Counts SE, Mufson EJ. Regulator of Cell Cycle (RGCC) Expression During the Progression of Alzheimer's Disease. Cell Transplant 2016; 26:693-702. [PMID: 27938491 DOI: 10.3727/096368916x694184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Unscheduled cell cycle reentry of postmitotic neurons has been described in cases of mild cognitive impairment (MCI) and Alzheimer's disease (AD) and may form a basis for selective neuronal vulnerability during disease progression. In this regard, the multifunctional protein regulator of cell cycle (RGCC) has been implicated in driving G1/S and G2/M phase transitions through its interactions with cdc/cyclin-dependent kinase 1 (cdk1) and is induced by p53, which mediates apoptosis in neurons. We tested whether RGCC levels were dysregulated in frontal cortex samples obtained postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), MCI, or AD. RGCC mRNA and protein levels were upregulated by ∼50%-60% in MCI and AD compared to NCI, and RGCC protein levels were associated with poorer antemortem global cognitive performance in the subjects examined. To test whether RGCC might regulate neuronal cell cycle reentry and apoptosis, we differentiated neuronotypic PC12 cultures with nerve growth factor (NGF) followed by NGF withdrawal to induce abortive cell cycle activation and cell death. Experimental reduction of RGCC levels increased cell survival and reduced levels of the cdk1 target cyclin B1. RGCC may be a candidate cell cycle target for neuroprotection during the onset of AD.
Collapse
|
34
|
Antón-Fernández A, Aparicio-Torres G, Tapia S, DeFelipe J, Muñoz A. Morphometric alterations of Golgi apparatus in Alzheimer's disease are related to tau hyperphosphorylation. Neurobiol Dis 2016; 97:11-23. [PMID: 27793637 PMCID: PMC5176038 DOI: 10.1016/j.nbd.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 12/19/2022] Open
Abstract
The Golgi apparatus (GA) is a highly dynamic organelle, which is mainly involved in the post-translational processing and targeting of cellular proteins and which undergoes significant morphological changes in response to different physiological and pathological conditions. In the present study, we have analyzed the possible alterations of GA in neurons from the temporal neocortex and hippocampus of Alzheimer's disease (AD) patients, using double immunofluorescence techniques, confocal microscopy and 3D quantification techniques. We found that in AD patients, the percentage of temporal neocortical and CA1 hippocampal pyramidal neurons with a highly altered GA is much higher (approximately 65%) in neurons with neurofibrillary tangles (NFT) than in NFT-free neurons (approximately 6%). Quantitative analysis of the surface area and volume of GA elements in neurons revealed that, compared with NFT-free neurons, NFT-bearing neurons had a reduction of approximately one half in neocortical neurons and one third in CA1 neurons. In both regions, neurons with a pre-tangle stage of phospho-tau accumulation had surface area and GA volume values that were intermediate, that is, between those of NFT-free and NFT-bearing neurons. These findings support the idea that the progressive accumulation of phospho-tau is associated with structural alterations of the GA including fragmentation and a decrease in the surface area and volume of GA elements. These alterations likely impact the processing and trafficking of proteins, which might contribute to neuronal dysfunction in AD.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Guillermo Aparicio-Torres
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Silvia Tapia
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | - Alberto Muñoz
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain; Department of Cell Biology, Complutense University, Madrid, Spain.
| |
Collapse
|
35
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
36
|
Atwood CS, Bowen RL. A Unified Hypothesis of Early- and Late-Onset Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2016; 47:33-47. [PMID: 26402752 DOI: 10.3233/jad-143210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early-onset familial Alzheimer's disease (EOFAD) and late-onset sporadic AD (LOSAD) both follow a similar pathological and biochemical course that includes: neuron and synapse loss and dysfunction, microvascular damage, microgliosis, extracellular amyloid-β deposition, tau phosphorylation, formation of intracellular neurofibrillary tangles, endoreduplication and related cell cycle events in affected brain regions. Any mechanistic explanation of AD must accommodate these biochemical and neuropathological features for both forms of the disease. In this insight paper we provide a unifying hypothesis for EOFAD and LOSAD that proposes that the aberrant re-entry of terminally differentiated, post-mitotic neurons into the cell division cycle is a common pathway that explains both early and late-onset forms of AD. Cell cycle abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles, and explain the biochemical (e.g. tau phosphorylation), neuropathological (e.g. neuron hypertrophy; polypoidy) and cognitive changes observed in EOFAD and LOSAD. Genetic mutations in AβPP, PSEN1, and PSEN2 that alter amyloid-β precursor protein and Notch processing drive reactivation of the cell cycle in EOFAD, while age-related reproductive endocrine dyscrasia that upregulates mitogenic TNF signaling and AβPP processing toward the amyloidogenic pathway drives reactivation of the cell cycle in LOSAD. In essence, AβPP and presenilin mutations initiate early, what endocrine dyscrasia initiates later: aberrant cell cycle re-entry of post-mitotic neurons leading to neurodegeneration and cognitive decline in AD. Inhibition of cell cycle re-entry in post-mitotic neurons may be a useful therapeutic strategy to prevent, slow or halt disease progression.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, USA.,School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | |
Collapse
|
37
|
Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 2016; 139 Suppl 2:237-252. [DOI: 10.1111/jnc.13632] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Karran
- Alzheimer's Research UK Research; Cambridge Cambridgeshire UK
- VIB Center for the Biology of Disease; VIB-Leuven; Leuven Belgium
- Institute of Neurology; University College London; London UK
| | - Bart De Strooper
- VIB Center for the Biology of Disease; VIB-Leuven; Leuven Belgium
- Center for Human Genetics; Universitaire ziekenhuizen and LIND; KU Leuven; Leuven Belgium
- Institute of Neurology; University College London; London UK
| |
Collapse
|
38
|
Short Fibrils Constitute the Major Species of Seed-Competent Tau in the Brains of Mice Transgenic for Human P301S Tau. J Neurosci 2016; 36:762-72. [PMID: 26791207 DOI: 10.1523/jneurosci.3542-15.2016] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interneuronal propagation of aggregated tau is believed to play an important role in the pathogenesis of human tauopathies. It requires the uptake of seed-competent tau into cells, seeding of soluble tau in recipient neurons and release of seeded tau into the extracellular space to complete the cycle. At present, it is not known which tau species are seed-competent. Here, we have dissected the molecular characteristics of seed-competent tau species from the TgP301S tau mouse model using various biochemical techniques and assessed their seeding ability in cell and animal models. We found that sucrose gradient fractions from brain lysates seeded cellular tau aggregation only when large (>10 mer) aggregated, hyperphosphorylated (AT8- and AT100-positive) and nitrated tau was present. In contrast, there was no detectable seeding by fractions containing small, oligomeric (<6 mer) tau. Immunodepletion of the large aggregated AT8-positive tau strongly reduced seeding; moreover, fractions containing these species initiated the formation and spreading of filamentous tau pathology in vivo, whereas fractions containing tau monomers and small oligomeric assemblies did not. By electron microscopy, seed-competent sucrose gradient fractions contained aggregated tau species ranging from ring-like structures to small filaments. Together, these findings indicate that a range of filamentous tau aggregates are the major species that underlie the spreading of tau pathology in the P301S transgenic model. Significance statement: The spread of tau pathology from neuron to neuron is postulated to account for, or at least to contribute to, the overall propagation of tau pathology during the development of human tauopathies including Alzheimer's disease. It is therefore important to characterize the native tau species responsible for this process of seeding and pathology spreading. Here, we use several biochemical techniques to dissect the molecular characteristics of native tau protein conformers from TgP301S tau mice and show that seed-competent tau species comprise small fibrils capable of seeding tau pathology in cell and animal models. Characterization of seed-competent tau gives insight into disease mechanisms and therapeutic interventions.
Collapse
|
39
|
Bougé AL, Parmentier ML. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis Model Mech 2016; 9:307-19. [PMID: 26822478 PMCID: PMC4833329 DOI: 10.1242/dmm.022558] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease (AD), cell cycle defects and associated aneuploidy have been described. However, the importance of these defects in the physiopathology of AD and the underlying mechanistic processes are largely unknown, in particular with respect to the microtubule (MT)-binding protein Tau, which is found in excess in the brain and cerebrospinal fluid of affected individuals. Although it has long been known that Tau is phosphorylated during mitosis to generate a lower affinity for MTs, there is, to our knowledge, no indication that an excess of this protein could affect mitosis. Here, we studied the effect of an excess of human Tau (hTau) protein on cell mitosis in vivo. Using the Drosophila developing wing disc epithelium as a model, we show that an excess of hTau induces a mitotic arrest, with the presence of monopolar spindles. This mitotic defect leads to aneuploidy and apoptotic cell death. We studied the mechanism of action of hTau and found that the MT-binding domain of hTau is responsible for these defects. We also demonstrate that the effects of hTau occur via the inhibition of the function of the kinesin Klp61F, the Drosophila homologue of kinesin-5 (also called Eg5 or KIF11). We finally show that this deleterious effect of hTau is also found in other Drosophila cell types (neuroblasts) and tissues (the developing eye disc), as well as in human HeLa cells. By demonstrating that MT-bound Tau inhibits the Eg5 kinesin and cell mitosis, our work provides a new framework to consider the role of Tau in neurodegenerative diseases. Drosophila Collection: We show that Tau, a microtubule-binding protein involved in many neurodegenerative diseases, impairs mitosis when in excess. We show that this occurs via the inhibition of the kinesin-5 mitotic motor.
Collapse
Affiliation(s)
- Anne-Laure Bougé
- Department of Neurosciences, Institut de Génomique Fonctionnelle, CNRS-UMR5203, INSERM-U1191, Université Montpellier, 141 Rue de la Cardonille, Montpellier F-34094, Cedex 5, France
| | - Marie-Laure Parmentier
- Department of Neurosciences, Institut de Génomique Fonctionnelle, CNRS-UMR5203, INSERM-U1191, Université Montpellier, 141 Rue de la Cardonille, Montpellier F-34094, Cedex 5, France
| |
Collapse
|
40
|
Hradek AC, Lee HP, Siedlak SL, Torres SL, Jung W, Han AH, Lee HG. Distinct chronology of neuronal cell cycle re-entry and tau pathology in the 3xTg-AD mouse model and Alzheimer's disease patients. J Alzheimers Dis 2016; 43:57-65. [PMID: 25061053 DOI: 10.3233/jad-141083] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell cycle re-entry in Alzheimer's disease (AD) has emerged as an important pathological mechanism in the progression of the disease. This appearance of cell cycle related proteins has been linked to tau pathology in AD, but the causal and temporal relationship between the two is not completely clear. In this study, we found that hyperphosphorylated retinoblastoma protein (ppRb), a key regulator for G1/S transition, is correlated with a late marker for hyperphosphorylation of tau but not with other early markers for tau alteration in the 3xTg-AD mouse model. However, in AD brains, ppRb can colocalize with both early and later markers for tau alterations, and can often be found singly in many degenerating neurons, indicating the distinct development of pathology between the 3xTg-AD mouse model and human AD patients. The conclusions of this study are two-fold. First, our findings clearly demonstrate the pathological link between the aberrant cell cycle re-entry and tau pathology. Second, the chronological pattern of cell cycle re-entry with tau pathology in the 3xTg-AD mouse is different compared to AD patients suggesting the distinct pathogenic mechanism between the animal AD model and human AD patients.
Collapse
Affiliation(s)
- Alex C Hradek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hyun-Pil Lee
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sandy L Torres
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Wooyoung Jung
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ashley H Han
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hyoung-gon Lee
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
41
|
Potter H, Granic A, Caneus J. Role of Trisomy 21 Mosaicism in Sporadic and Familial Alzheimer's Disease. Curr Alzheimer Res 2016; 13:7-17. [PMID: 26651340 PMCID: PMC5570437 DOI: 10.2174/156720501301151207100616] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 08/30/2015] [Indexed: 02/07/2023]
Abstract
Trisomy 21 and the consequent extra copy of the amyloid precursor protein (APP) gene and increased beta-amyloid (Aβ) peptide production underlie the universal development of Alzheimer's disease (AD) pathology and high risk of AD dementia in people with Down syndrome (DS). Trisomy 21 and other forms of aneuploidy also arise among neurons and peripheral cells in both sporadic and familial AD and in mouse and cell models thereof, reinforcing the conclusion that AD and DS are two sides of the same coin. The demonstration that 90% of the neurodegeneration in AD can be attributed to the selective loss of aneuploid neurons generated over the course of the disease indicates that aneuploidy is an essential feature of the pathogenic pathway leading to the depletion of neuronal cell populations. Trisomy 21 mosaicism also occurs in neurons and other cells from patients with Niemann-Pick C1 disease and from patients with familial or sporadic frontotemporal lobar degeneration (FTLD), as well as in their corresponding mouse and cell models. Biochemical studies have shown that Aβ induces mitotic spindle defects, chromosome mis-segregation, and aneuploidy in cultured cells by inhibiting specific microtubule motors required for mitosis. These data indicate that neuronal trisomy 21 and other types of aneuploidy characterize and likely contribute to multiple neurodegenerative diseases and are a valid target for therapeutic intervention. For example, reducing extracellular calcium or treating cells with lithium chloride (LiCl) blocks the induction of trisomy 21 by Aβ. The latter finding is relevant in light of recent reports of a lowered risk of dementia in bipolar patients treated with LiCl and in the stabilization of cognition in AD patients treated with LiCl.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology and Linda Crnic Institute for Down Syndrome, 12700 E. 19th Ave room 4010, mail stop 8608, Aurora CO 80045, USA.
| | | | | |
Collapse
|
42
|
Antón-Fernández A, León-Espinosa G, DeFelipe J, Muñoz A. Changes in the Golgi Apparatus of Neocortical and Hippocampal Neurons in the Hibernating Hamster. Front Neuroanat 2015; 9:157. [PMID: 26696838 PMCID: PMC4678224 DOI: 10.3389/fnana.2015.00157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023] Open
Abstract
Hibernating animals have been used as models to study several aspects of the plastic changes that occur in the metabolism and physiology of neurons. These models are also of interest in the study of Alzheimer's disease because the microtubule-associated protein tau is hyperphosphorylated during the hibernation state known as torpor, similar to the pretangle stage of Alzheimer's disease. Hibernating animals undergo torpor periods with drops in body temperature and metabolic rate, and a virtual cessation of neural activity. These processes are accompanied by morphological and neurochemical changes in neurons, which reverse a few hours after coming out of the torpor state. Since tau has been implicated in the structural regulation of the neuronal Golgi apparatus (GA) we have used Western Blot and immunocytochemistry to analyze whether the GA is modified in cortical neurons of the Syrian hamster at different hibernation stages. The results show that, during the hibernation cycle, the GA undergo important structural changes along with differential modifications in expression levels and distribution patterns of Golgi structural proteins. These changes were accompanied by significant transitory reductions in the volume and surface area of the GA elements during torpor and arousal stages as compared with euthermic animals.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSICMadrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadrid, Spain
| | - Gonzalo León-Espinosa
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSICMadrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadrid, Spain
- Facultad de Farmacia, Universidad San Pablo CEUMadrid, Spain
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSICMadrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadrid, Spain
| | - Alberto Muñoz
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSICMadrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| |
Collapse
|
43
|
Atwood CS, Bowen RL. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease. Horm Behav 2015; 76:63-80. [PMID: 26188949 PMCID: PMC4807861 DOI: 10.1016/j.yhbeh.2015.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive and biochemical studies confirm the negative consequences of a high LH:sex steroid ratio on dendritic spine density and human cognitive performance. Prospective epidemiological and clinical evidence in humans supports the premise that rebalancing the ratio of circulating gonadotropins:sex steroids reduces the incidence of AD. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 WA, Australia.
| | - Richard L Bowen
- OTB Research, 217 Calhoun St, Unit 1, Charleston, SC 29401, USA
| |
Collapse
|
44
|
Mitra G, Gupta S, Poddar A, Bhattacharyya B. MAP2c prevents arachidonic acid-induced fibril formation of tau: Role of chaperone activity and phosphorylation. Biophys Chem 2015; 205:16-23. [DOI: 10.1016/j.bpc.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 01/16/2023]
|
45
|
Bujdoso R, Landgraf M, Jackson WS, Thackray AM. Prion-induced neurotoxicity: Possible role for cell cycle activity and DNA damage response. World J Virol 2015; 4:188-197. [PMID: 26279981 PMCID: PMC4534811 DOI: 10.5501/wjv.v4.i3.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/19/2015] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
Protein misfolding neurodegenerative diseases arise through neurotoxicity induced by aggregation of host proteins. These conditions include Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, motor neuron disease, tauopathies and prion diseases. Collectively, these conditions are a challenge to society because of the increasing aged population and through the real threat to human food security by animal prion diseases. It is therefore important to understand the cellular and molecular mechanisms that underlie protein misfolding-induced neurotoxicity as this will form the basis for designing strategies to alleviate their burden. Prion diseases are an important paradigm for neurodegenerative conditions in general since several of these maladies have now been shown to display prion-like phenomena. Increasingly, cell cycle activity and the DNA damage response are recognised as cellular events that participate in the neurotoxic process of various neurodegenerative diseases, and their associated animal models, which suggests they are truly involved in the pathogenic process and are not merely epiphenomena. Here we review the role of cell cycle activity and the DNA damage response in neurodegeneration associated with protein misfolding diseases, and suggest that these events contribute towards prion-induced neurotoxicity. In doing so, we highlight PrP transgenic Drosophila as a tractable model for the genetic analysis of transmissible mammalian prion disease.
Collapse
|
46
|
Bajic V, Spremo-Potparevic B, Zivkovic L, Isenovic ER, Arendt T. Cohesion and the aneuploid phenotype in Alzheimer's disease: A tale of genome instability. Neurosci Biobehav Rev 2015; 55:365-74. [PMID: 26003528 DOI: 10.1016/j.neubiorev.2015.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 03/26/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Neurons are postmitotic cells that are in permanent cell cycle arrest. However, components of the cell cycle machinery that are expressed in Alzheimer's disease (AD) neurons are showing features of a cycling cell and those attributed to a postmitotic cell as well. Furthermore, the unique physiological operations taking place in neurons, ascribed to "core cell cycle regulators" are also key regulators in cell division. Functions of these cell cycle regulators include neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. In this review, we focus on cohesion and cohesion related proteins in reference to their neuronal functions and how impaired centromere/cohesion dynamics may connect cell cycle dysfunction to aneuploidy in AD.
Collapse
Affiliation(s)
- Vladan Bajic
- Institute for Nuclear Research "Vinca", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, P.O. 522, 11001 Belgrade, Serbia.
| | - Biljana Spremo-Potparevic
- Faculty of Pharmacy, Institute of Physiology, Department of Biology and Human Genetics, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Lada Zivkovic
- Faculty of Pharmacy, Institute of Physiology, Department of Biology and Human Genetics, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Esma R Isenovic
- Institute for Nuclear Research "Vinca", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, P.O. 522, 11001 Belgrade, Serbia.
| | - Thomas Arendt
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, School of Medicine, Leipzig, Germany.
| |
Collapse
|
47
|
Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 2015; 18:794-9. [PMID: 26007212 DOI: 10.1038/nn.4017] [Citation(s) in RCA: 522] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a biologically complex neurodegenerative dementia. Nearly 20 years ago, with the combination of observations from biochemistry, neuropathology and genetics, a compelling hypothesis known as the amyloid cascade hypothesis was formulated. The core of this hypothesis is that it is pathological accumulations of amyloid-β, a peptide fragment of a membrane protein called amyloid precursor protein, that act as the root cause of AD and initiate its pathogenesis. Yet, with the passage of time, growing amounts of data have accumulated that are inconsistent with the basically linear structure of this hypothesis. And while there is fear in the field over the consequences of rejecting it outright, clinging to an inaccurate disease model is the option we should fear most. This Perspective explores the proposition that we are over-reliant on amyloid to define and diagnose AD and that the time has come to face our fears and reject the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Karl Herrup
- 1] Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong. [2] State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
48
|
Dubinina EE, Schedrina LV, Neznanov NG, Zalutskaya NM, Zakharchenko DV. [Oxidative stress and its effect on cells functional activity of alzheimer's disease]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:57-69. [PMID: 25762599 DOI: 10.18097/pbmc20156101057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The paper summarizes literature data on the importance of oxidative stress as one of the pathogenetic mechanisms in Alzheimer's disease. The paper describes the main specific and nonspecific ways of reactive oxygen species generation in the course of the disease development. The effect of reactive oxygen species generated by the functional activity of cells, i.e. apoptosis and mitotic cycle, is shown. The role of the regulatory system of nodal cells is performed by phosphorylation/dephosphorylation process which is associated with intense phosphorylation of tau protein and mitosis-specific proteins. In Alzheimer's disease, the regulating function of peptidyl-prolyl isomerases in particular of Pin1 associated with maintaining a balanced state of phosphorylation/dephosphorylation processes is disturbed. Taking into consideration the multifactorial impairment of the cell cycle control, this process should be considered from the standpoint of the general state of metabolic processes, and oxidative stress has one of the key positions in aging.
Collapse
|
49
|
Lee JC, Chen BH, Cho JH, Kim IH, Ahn JH, Park JH, Tae HJ, Cho GS, Yan BC, Kim DW, Hwang IK, Park J, Lee YL, Choi SY, Won MH. Changes in the expression of DNA-binding/differentiation protein inhibitors in neurons and glial cells of the gerbil hippocampus following transient global cerebral ischemia. Mol Med Rep 2014; 11:2477-85. [PMID: 25503067 PMCID: PMC4337738 DOI: 10.3892/mmr.2014.3084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/09/2014] [Indexed: 11/30/2022] Open
Abstract
Inhibitors of DNA-binding/differentiation (ID) proteins bind to basic helix-loop-helix (bHLH) transcription factors, including those that regulate differentiation and cell-cycle progression during development, and regulate gene transcription. However, little is known about the role of ID proteins in the brain under transient cerebral ischemic conditions. In the present study, we examined the effects of ischemia-reperfusion (I-R) injury on the immunoreactivity and protein levels of IDs 1–4 in the gerbil hippocampus proper Cornu Ammonis regions CA1–3 following 5 min of transient cerebral ischemia. Strong ID1 immunoreactivity was detected in the nuclei of pyramidal neurons in the hippocampal CA1–3 regions; immunoreactivity was significantly changed following I-R in the CA1 region, but not in the CA2/3 region. Five days following I-R, ID1 immunoreactivity was not detected in the CA1 pyramidal neurons. ID1 immunoreactivity was detected only in GABAergic interneurons in the ischemic CA1 region. Weak ID4 immunoreactivity was detected in non-pyramidal cells, and immunoreactivity was again only changed in the ischemic CA1 region. Five days following I-R, strong ID4 immunoreactivity was detected in non-pyramidal cells, which were identified as microglia, and not astrocytes, in the ischemic CA1 region. Furthermore, changes in the protein levels of ID1 and ID4 in the ischemic CA1 region studied by western blot were consistent with patterns of immunoreactivity. In summary, these results indicate that immunoreactivity and protein levels of ID1 and ID4 are distinctively altered following transient cerebral ischemia only in the CA1 region, and that the changes in ID1 and ID4 expression may relate to the ischemia-induced delayed neuronal death.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Bai Hui Chen
- Department of Physiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung‑Wonju National University, Gangneung, Gangwon 210‑702, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| |
Collapse
|
50
|
Falcon B, Cavallini A, Angers R, Glover S, Murray TK, Barnham L, Jackson S, O'Neill MJ, Isaacs AM, Hutton ML, Szekeres PG, Goedert M, Bose S. Conformation determines the seeding potencies of native and recombinant Tau aggregates. J Biol Chem 2014; 290:1049-65. [PMID: 25406315 PMCID: PMC4294473 DOI: 10.1074/jbc.m114.589309] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intracellular Tau inclusions are a pathological hallmark of several neurodegenerative diseases, collectively known as the tauopathies. They include Alzheimer disease, tangle-only dementia, Pick disease, argyrophilic grain disease, chronic traumatic encephalopathy, progressive supranuclear palsy, and corticobasal degeneration. Tau pathology appears to spread through intercellular propagation, requiring the formation of assembled “prion-like” species. Several cell and animal models have been described that recapitulate aspects of this phenomenon. However, the molecular characteristics of seed-competent Tau remain unclear. Here, we have used a cell model to understand the relationships between Tau structure/phosphorylation and seeding by aggregated Tau species from the brains of mice transgenic for human mutant P301S Tau and full-length aggregated recombinant P301S Tau. Deletion of motifs 275VQIINK280 and 306VQIVYK311 abolished the seeding activity of recombinant full-length Tau, suggesting that its aggregation was necessary for seeding. We describe conformational differences between native and synthetic Tau aggregates that may account for the higher seeding activity of native assembled Tau. When added to aggregated Tau seeds from the brains of mice transgenic for P301S Tau, soluble recombinant Tau aggregated and acquired the molecular properties of aggregated Tau from transgenic mouse brain. We show that seeding is conferred by aggregated Tau that enters cells through macropinocytosis and seeds the assembly of endogenous Tau into filaments.
Collapse
Affiliation(s)
- Benjamin Falcon
- From the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Annalisa Cavallini
- Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and
| | - Rachel Angers
- From the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom, Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and
| | - Sarah Glover
- Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and
| | - Tracey K Murray
- Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and
| | - Luanda Barnham
- Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and
| | - Samuel Jackson
- Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and
| | - Michael J O'Neill
- Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and
| | - Adrian M Isaacs
- the UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Michael L Hutton
- Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and
| | - Philip G Szekeres
- Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and
| | - Michel Goedert
- From the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom,
| | - Suchira Bose
- Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and
| |
Collapse
|