1
|
Mannino MC, Cassidy MB, Florez S, Rusan Z, Chakraborty S, Schoborg T. Mutations in abnormal spindle disrupt temporal transcription factor expression and trigger immune responses in the Drosophila brain. Genetics 2023; 225:iyad188. [PMID: 37831641 PMCID: PMC10697820 DOI: 10.1093/genetics/iyad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The coordination of cellular behaviors during neurodevelopment is critical for determining the form, function, and size of the central nervous system (CNS). Mutations in the vertebrate Abnormal Spindle-Like, Microcephaly Associated (ASPM) gene and its Drosophila melanogaster ortholog abnormal spindle (asp) lead to microcephaly (MCPH), a reduction in overall brain size whose etiology remains poorly defined. Here, we provide the neurodevelopmental transcriptional landscape for a Drosophila model for autosomal recessive primary microcephaly-5 (MCPH5) and extend our findings into the functional realm to identify the key cellular mechanisms responsible for Asp-dependent brain growth and development. We identify multiple transcriptomic signatures, including new patterns of coexpressed genes in the developing CNS. Defects in optic lobe neurogenesis were detected in larval brains through downregulation of temporal transcription factors (tTFs) and Notch signaling targets, which correlated with a significant reduction in brain size and total cell numbers during the neurogenic window of development. We also found inflammation as a hallmark of asp mutant brains, detectable throughout every stage of CNS development, which also contributes to the brain size phenotype. Finally, we show that apoptosis is not a primary driver of the asp mutant brain phenotypes, further highlighting an intrinsic Asp-dependent neurogenesis promotion mechanism that is independent of cell death. Collectively, our results suggest that the etiology of the asp mutant brain phenotype is complex and that a comprehensive view of the cellular basis of the disorder requires an understanding of how multiple pathway inputs collectively determine tissue size and architecture.
Collapse
Affiliation(s)
- Maria C Mannino
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Steven Florez
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Zeid Rusan
- Personalis, Inc., Fremont, CA 94555, USA
| | - Shalini Chakraborty
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Todd Schoborg
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
2
|
Wu X, Li Z, Wang ZQ, Xu X. The neurological and non-neurological roles of the primary microcephaly-associated protein ASPM. Front Neurosci 2023; 17:1242448. [PMID: 37599996 PMCID: PMC10436222 DOI: 10.3389/fnins.2023.1242448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Primary microcephaly (MCPH), is a neurological disorder characterized by small brain size that results in numerous developmental problems, including intellectual disability, motor and speech delays, and seizures. Hitherto, over 30 MCPH causing genes (MCPHs) have been identified. Among these MCPHs, MCPH5, which encodes abnormal spindle-like microcephaly-associated protein (ASPM), is the most frequently mutated gene. ASPM regulates mitotic events, cell proliferation, replication stress response, DNA repair, and tumorigenesis. Moreover, using a data mining approach, we have confirmed that high levels of expression of ASPM correlate with poor prognosis in several types of tumors. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer.
Collapse
Affiliation(s)
- Xingxuan Wu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Laboratory of Genome Stability, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Zheng Li
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhao-Qi Wang
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Laboratory of Genome Stability, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Mannino MC, Bartels Cassidy M, Florez S, Rusan Z, Chakraborty S, Schoborg T. The neurodevelopmental transcriptome of the Drosophila melanogaster microcephaly gene abnormal spindle reveals a role for temporal transcription factors and the immune system in regulating brain size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523369. [PMID: 36711768 PMCID: PMC9882087 DOI: 10.1101/2023.01.09.523369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The coordination of cellular behaviors during neurodevelopment is critical for determining the form, function, and size of the central nervous system. Mutations in the vertebrate Abnormal Spindle-Like, Microcephaly Associated (ASPM) gene and its Drosophila melanogaster ortholog abnormal spindle (asp) lead to microcephaly, a reduction in overall brain size whose etiology remains poorly defined. Here we provide the neurodevelopmental transcriptional landscape for a Drosophila model for autosomal recessive primary microcephaly (MCPH) and extend our findings into the functional realm in an attempt to identify the key cellular mechanisms responsible for Asp-dependent brain growth and development. We identify multiple transcriptomic signatures, including new patterns of co-expressed genes in the developing CNS. Defects in optic lobe neurogenesis were detected in larval brains through downregulation of temporal transcription factors (tTFs) and Notch signaling targets, which correlated with a significant reduction in brain size and total cell numbers during the neurogenic window of development. We also found inflammation as a hallmark of asp MCPH brains, detectable throughout every stage of CNS development, which also contributes to the brain size phenotype. Finally, we show that apoptosis is not a primary driver of the asp MCPH phenotype, further highlighting an intrinsic Asp-dependent neurogenesis promotion mechanism that is independent of cell death. Collectively, our results suggest that the etiology of asp MCPH is complex and that a comprehensive view of the cellular basis of the disorder requires an understanding of how multiple pathway inputs collectively determine the microcephaly phenotype.
Collapse
Affiliation(s)
- Maria C. Mannino
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Steven Florez
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Shalini Chakraborty
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Todd Schoborg
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
4
|
Hussain S, Nawaz A, Hamid M, Ullah W, Khan IN, Afshan M, Rehman A, Nawaz H, Halswick J, Rehman SU, Ahmad S, Muzammal M, Muhammad N, Jan A, Khan S, Windpassinger C, Khan MA. Mutation screening of multiple Pakistani MCPH families revealed novel and recurrent protein-truncating mutations of ASPM. Biotechnol Appl Biochem 2022; 69:2296-2303. [PMID: 34826358 DOI: 10.1002/bab.2286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022]
Abstract
Autosomal primary microcephaly (MCPH) is a heterogenetic disorder that affects brain's cerebral cortex size and leads to a reduction in the cranial vault. Along with the hallmark feature of reduced head circumference, microcephalic patients also exhibit a variable degree of intellectual disability as well. Genetic studies have reported 28 MCPH genes, most of which produce microtubule-associated proteins and are involved in cell division. Herein this study, 14 patients from seven Pashtun origin Pakistani families of primary microcephaly were analyzed. Mutation analysis was performed through targeted Sanger DNA sequencing on the basis of phenotype-linked genetic makeup. Genetic analysis in one family found a novel pathogenic DNA change in the abnormal spindle microtubule assembly (ASPM) gene (NM_018136.4:c.3871dupGA), while the rest of the families revealed recurrent nonsense mutation c.3978G>A (p.Trp1326*) in the same gene. The novel reported frameshift insertion presumably truncates the protein p.(Lys1291Glyfs*14) and deletes the N-terminus domains. Identification of novel ASPM-truncating mutation expands the mutational spectrum of the ASPM gene, while mapping of recurrent mutation c.3978G>A (p.Trp1326*) will aid in establishing its founder effect in the Khyber Pakhtunkhwa (KPK) inhabitant population of Pakistan and should be suggestively screened for premarital counseling of MCPH susceptible families. Most of the recruited families are related to first-degree consanguinity. Hence, all the family elders were counseled to avoid intrafamilial marriages.
Collapse
Affiliation(s)
- Sadam Hussain
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Nawaz
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Malaika Hamid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Waseem Ullah
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Iqbal Nawaz Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mehak Afshan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Adil Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Hamid Nawaz
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Julia Halswick
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Shoaib-Ur Rehman
- Department of Biotechnology, University of Science and Technology Bannu, Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Sohail Ahmad
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D. I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Muzammal
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D. I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abid Jan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Christian Windpassinger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D. I. Khan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
5
|
The Green Valley of Drosophila melanogaster Constitutive Heterochromatin: Protein-Coding Genes Involved in Cell Division Control. Cells 2022; 11:cells11193058. [PMID: 36231024 PMCID: PMC9563267 DOI: 10.3390/cells11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and shares similar genetic and molecular properties in animal and plant species. Studies conducted over the last few years on D. melanogaster and other organisms led to the discovery of several functions associated with constitutive heterochromatin. This made it possible to revise the concept that this ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of heterochromatin, which are implicated in different steps of cell division.
Collapse
|
6
|
Murph M, Singh S, Schvarzstein M. A combined in silico and in vivo approach to the structure-function annotation of SPD-2 provides mechanistic insight into its functional diversity. Cell Cycle 2022; 21:1958-1979. [PMID: 35678569 PMCID: PMC9415446 DOI: 10.1080/15384101.2022.2078458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022] Open
Abstract
Centrosomes are organelles that function as hubs of microtubule nucleation and organization, with key roles in organelle positioning, asymmetric cell division, ciliogenesis, and signaling. Aberrant centrosome number, structure or function is linked to neurodegenerative diseases, developmental abnormalities, ciliopathies, and tumor development. A major regulator of centrosome biogenesis and function in C. elegans is the conserved Spindle-defective protein 2 (SPD-2), a homolog of the human CEP-192 protein. CeSPD-2 is required for centrosome maturation, centriole duplication, spindle assembly and possibly cell polarity establishment. Despite its importance, the specific molecular mechanism of CeSPD-2 regulation and function is poorly understood. Here, we combined computational analysis with cell biology approaches to uncover possible structure-function relationships of CeSPD-2 that may shed mechanistic light on its function. Domain prediction analysis corroborated and refined previously identified coiled-coils and ASH (Aspm-SPD-2 Hydin) domains and identified new domains: a GEF domain, an Ig-like domain, and a PDZ-like domain. In addition to these predicted structural features, CeSPD-2 is also predicted to be intrinsically disordered. Surface electrostatic maps identified a large basic region unique to the ASH domain of CeSPD-2. This basic region overlaps with most of the residues predicted to be involved in protein-protein interactions. In vivo, ASH::GFP localized to centrosomes and centrosome-associated microtubules. Our analysis groups ASH domains, PapD, Usher chaperone domains, and Major Sperm Protein (MSP) domains into a single superfold within the larger Immunoglobulin superfamily. This study lays the groundwork for designing rational hypothesis-based experiments to uncover the mechanisms of CeSPD-2 function in vivo.Abbreviations: AIR, Aurora kinase; ASH, Aspm-SPD-2 Hydin; ASP, Abnormal Spindle Protein; ASPM, Abnormal Spindle-like Microcephaly-associated Protein; CC, coiled-coil; CDK, Cyclin-dependent Kinase; Ce, Caenorhabditis elegans; CEP, Centrosomal Protein; CPAP, centrosomal P4.1-associated protein; D, Drosophila; GAP, GTPase activating protein; GEF, GTPase guanine nucleotide exchange factor; Hs, Homo sapiens/Human; Ig, Immunoglobulin; MAP, Microtubule associated Protein; MSP, Major Sperm Protein; MDP, Major Sperm Domain-Containing Protein; OCRL-1, Golgi endocytic trafficking protein Inositol polyphosphate 5-phosphatase; PAR, abnormal embryonic PARtitioning of the cytosol; PCM, Pericentriolar material; PCMD, pericentriolar matrix deficient; PDZ, PSD95/Dlg-1/zo-1; PLK, Polo like kinase; RMSD, Root Mean Square Deviation; SAS, Spindle assembly abnormal proteins; SPD, Spindle-defective protein; TRAPP, TRAnsport Protein Particle; Xe, Xenopus; ZYG, zygote defective protein.
Collapse
Affiliation(s)
- Mikaela Murph
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
| | - Shaneen Singh
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| | - Mara Schvarzstein
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| |
Collapse
|
7
|
Popova JV, Pavlova GA, Razuvaeva AV, Yarinich LA, Andreyeva EN, Anders AF, Galimova YA, Renda F, Somma MP, Pindyurin AV, Gatti M. Genetic Control of Kinetochore-Driven Microtubule Growth in Drosophila Mitosis. Cells 2022; 11:cells11142127. [PMID: 35883570 PMCID: PMC9323100 DOI: 10.3390/cells11142127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/08/2023] Open
Abstract
Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but not KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM), and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6, and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin, and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1, and Patronin positively regulate polymerization, bundling, and stabilization of regrowing MTs until a bipolar spindle is reformed.
Collapse
Affiliation(s)
- Julia V. Popova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Gera A. Pavlova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Alyona V. Razuvaeva
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lyubov A. Yarinich
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgeniya N. Andreyeva
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Alina F. Anders
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Yuliya A. Galimova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Fioranna Renda
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
| | - Maria Patrizia Somma
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
| | - Alexey V. Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Correspondence: (A.V.P.); (M.G.)
| | - Maurizio Gatti
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
- Correspondence: (A.V.P.); (M.G.)
| |
Collapse
|
8
|
Türkyılmaz A, Sager SG. Two New Cases of Primary Microcephaly with Neuronal Migration Defect Caused by Truncating Mutations in the ASPM Gene. Mol Syndromol 2022; 13:56-63. [PMID: 35221876 PMCID: PMC8832193 DOI: 10.1159/000516201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 08/22/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a uncommon disorder due to congenital deficiency in the development of the cerebral cortex, characterized by a head circumference below 2 SD. MCPH is a group of diseases with genetic heterogeneity and has been reported by the Online Mendelian Inheritance In Man® (OMIM) database and associated with 25 different genes. It is known that MCPH cases are most frequently associated with abnormal spindle-like, microcephaly-associated (ASPM) gene mutations. The ASPM protein consists of an N-terminal 81 IQ (isoleucine-glutamine) domain, a calponin-homology domain, and a C-terminal domain. It interacts with calmodulin and calmodulin-related proteins via the IQ domain and acts as a part in mitotic spindle function. The basic characteristics of cases with ASPM gene mutations are microcephaly (below -3 SD) present before 1 year of age, intellectual disability, and the absence of other congenital anomalies. Macroscopic organization of the brain is preserved in cases with ASPM mutation, and a decrease in brain volume, particularly gray matter volume loss and a simplified gyral pattern are observed. Cortical migration defects are a very rare finding in patients with ASPM mutations. In the present study, we aimed to discuss the clinical and genetic findings in 2 cases with cortical dysplasia in which truncated variants in the ASPM gene were detected, particularly in terms of genotype-phenotype correlation in comparison with the literature.
Collapse
Affiliation(s)
- Ayberk Türkyılmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Safiye Gunes Sager
- Department of Pediatric Neurology, Dr. Lutfi Kirdar City Hospital, İstanbul, Turkey
| |
Collapse
|
9
|
Vicars H, Karg T, Warecki B, Bast I, Sullivan W. Kinetochore-independent mechanisms of sister chromosome separation. PLoS Genet 2021; 17:e1009304. [PMID: 33513180 PMCID: PMC7886193 DOI: 10.1371/journal.pgen.1009304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/16/2021] [Accepted: 12/08/2020] [Indexed: 11/19/2022] Open
Abstract
Although kinetochores normally play a key role in sister chromatid separation and segregation, chromosome fragments lacking kinetochores (acentrics) can in some cases separate and segregate successfully. In Drosophila neuroblasts, acentric chromosomes undergo delayed, but otherwise normal sister separation, revealing the existence of kinetochore- independent mechanisms driving sister chromosome separation. Bulk cohesin removal from the acentric is not delayed, suggesting factors other than cohesin are responsible for the delay in acentric sister separation. In contrast to intact kinetochore-bearing chromosomes, we discovered that acentrics align parallel as well as perpendicular to the mitotic spindle. In addition, sister acentrics undergo unconventional patterns of separation. For example, rather than the simultaneous separation of sisters, acentrics oriented parallel to the spindle often slide past one another toward opposing poles. To identify the mechanisms driving acentric separation, we screened 117 RNAi gene knockdowns for synthetic lethality with acentric chromosome fragments. In addition to well-established DNA repair and checkpoint mutants, this candidate screen identified synthetic lethality with X-chromosome-derived acentric fragments in knockdowns of Greatwall (cell cycle kinase), EB1 (microtubule plus-end tracking protein), and Map205 (microtubule-stabilizing protein). Additional image-based screening revealed that reductions in Topoisomerase II levels disrupted sister acentric separation. Intriguingly, live imaging revealed that knockdowns of EB1, Map205, and Greatwall preferentially disrupted the sliding mode of sister acentric separation. Based on our analysis of EB1 localization and knockdown phenotypes, we propose that in the absence of a kinetochore, microtubule plus-end dynamics provide the force to resolve DNA catenations required for sister separation.
Collapse
Affiliation(s)
- Hannah Vicars
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Travis Karg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Brandt Warecki
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Ian Bast
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
10
|
Gao ZY, Yu F, Jia HX, Ye Z, Yao SJ. ASPM predicts poor prognosis and regulates cell proliferation in bladder cancer. Kaohsiung J Med Sci 2020; 36:1021-1029. [PMID: 32767492 DOI: 10.1002/kjm2.12284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 01/05/2023] Open
Abstract
Bladder cancer (BCa) is one of the most common malignancies with high morbidity and mortality worldwide. In recent years, it is of great importance to investigate the molecular etiology associated with of BCa. Abnormal spindle-like microcephaly associated gene (ASPM) is the human orthologous of the Drosophila abnormal spindle (asp) and the most commonly mutated gene of autosomal recessive primary microcephaly. ASPM is overexpressed in several types of cancer cell lines and affects the progression and development of multiple types of cancers. However, its possible role in BCa progression is still unclear. Herein, we demonstrated the possible involvement of ASPM in the progression of BCa. We noticed that high expression of ASPM was positively associated with the poor prognosis. Its knockdown could significantly inhibit the proliferation of BCa cells in vitro and in mice. Therefore, we thought ASPM could act as a promising therapeutic target for BCa.
Collapse
Affiliation(s)
- Zhen-Ya Gao
- School of Medicine Xuchang University, Xuchang, China
| | - Fang Yu
- School of Medicine Xuchang University, Xuchang, China
| | - Huan-Xia Jia
- School of Medicine Xuchang University, Xuchang, China
| | - Zhuo Ye
- the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Jie Yao
- Department of Urology in Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
11
|
Naseer MI, Abdulkareem AA, Muthaffar OY, Sogaty S, Alkhatabi H, Almaghrabi S, Chaudhary AG. Whole Exome Sequencing Identifies Three Novel Mutations in the ASPM Gene From Saudi Families Leading to Primary Microcephaly. Front Pediatr 2020; 8:627122. [PMID: 33643967 PMCID: PMC7904689 DOI: 10.3389/fped.2020.627122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental defect that is characterized by reduced head circumference at birth along with non-progressive intellectual disability. Till date, 25 genes related to MCPH have been reported so far in humans. The ASPM (abnormal spindle-like, microcephaly-associated) gene is among the most frequently mutated MCPH gene. We studied three different families having primary microcephaly from different regions of Saudi Arabia. Whole exome sequencing (WES) and Sanger sequencing were done to identify the genetic defect. Collectively, three novel variants were identified in the ASPM gene from three different primary microcephaly families. Family 1, showed a deletion mutation leading to a frameshift mutation c.1003del. (p.Val335*) in exon 3 of the ASPM gene and family 2, also showed deletion mutation leading to frameshift mutation c.1047del (p.Gln349Hisfs*18), while in family 3, we identified a missense mutation c.5623A>G leading to a change in protein (p.Lys1875Glu) in exon 18 of the ASPM gene underlying the disorder. The identified respective mutations were ruled out in 100 healthy control samples. In conclusion, we found three novel mutations in the ASPM gene in Saudi families that will help to establish a disease database for specified mutations in Saudi population and will further help to identify strategies to tackle primary microcephaly in the kingdom.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrahman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Sameera Sogaty
- Department of Medical Genetics, King Fahed General Hospital, Jeddah, Saudi Arabia
| | - Hiba Alkhatabi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,College of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Almaghrabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Schoborg TA, Smith SL, Smith LN, Morris HD, Rusan NM. Micro-computed tomography as a platform for exploring Drosophila development. Development 2019; 146:dev.176685. [PMID: 31722883 DOI: 10.1242/dev.176685] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Understanding how events at the molecular and cellular scales contribute to tissue form and function is key to uncovering the mechanisms driving animal development, physiology and disease. Elucidating these mechanisms has been enhanced through the study of model organisms and the use of sophisticated genetic, biochemical and imaging tools. Here, we present an accessible method for non-invasive imaging of Drosophila melanogaster at high resolution using micro-computed tomography (µ-CT). We show how rapid processing of intact animals, at any developmental stage, provides precise quantitative assessment of tissue size and morphology, and permits analysis of inter-organ relationships. We then use µ-CT imaging to study growth defects in the Drosophila brain through the characterization of a bnormal spindle (asp) and WD repeat domain 62 (W dr62), orthologs of the two most commonly mutated genes in human microcephaly patients. Our work demonstrates the power of combining µ-CT with traditional genetic, cellular and developmental biology tools available in model organisms to address novel biological mechanisms that control animal development and disease.
Collapse
Affiliation(s)
- Todd A Schoborg
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha L Smith
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren N Smith
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Douglas Morris
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Abstract
Microtubules are cytoskeletal filaments essential for numerous aspects of cell physiology. They are polarized polymeric tubes with a fast growing plus end and a slow growing minus end. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge on the dynamics and organization of microtubule minus ends. Several factors, including the γ-tubulin ring complex, CAMSAP/Patronin, ASPM/Asp, SPIRAL2 (in plants) and the KANSL complex recognize microtubule minus ends and regulate their nucleation, stability and interactions with partners, such as microtubule severing enzymes, microtubule depolymerases and protein scaffolds. Together with minus-end-directed motors, these microtubule minus-end targeting proteins (-TIPs) also control the formation of microtubule-organizing centers, such as centrosomes and spindle poles, and mediate microtubule attachment to cellular membrane structures, including the cell cortex, Golgi complex and the cell nucleus. Structural and functional studies are starting to reveal the molecular mechanisms by which dynamic -TIP networks control microtubule minus ends.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland .,University of Basel, Biozentrum, CH-4056 Basel, Switzerland
| |
Collapse
|
14
|
Swider ZT, Ng RK, Varadarajan R, Fagerstrom CJ, Rusan NM. Fascetto interacting protein ensures proper cytokinesis and ploidy. Mol Biol Cell 2019; 30:992-1007. [PMID: 30726162 PMCID: PMC6589905 DOI: 10.1091/mbc.e18-09-0573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell division is critical for development, organ growth, and tissue repair. The later stages of cell division include the formation of the microtubule (MT)-rich central spindle in anaphase, which is required to properly define the cell equator, guide the assembly of the acto-myosin contractile ring and ultimately ensure complete separation and isolation of the two daughter cells via abscission. Much is known about the molecular machinery that forms the central spindle, including proteins needed to generate the antiparallel overlapping interzonal MTs. One critical protein that has garnered great attention is the protein regulator of cytokinesis 1, or Fascetto (Feo) in Drosophila, which forms a homodimer to cross-link interzonal MTs, ensuring proper central spindle formation and cytokinesis. Here, we report on a new direct protein interactor and regulator of Feo we named Feo interacting protein (FIP). Loss of FIP results in a reduction in Feo localization, rapid disassembly of interzonal MTs, and several defects related to cytokinesis failure, including polyploidization of neural stem cells. Simultaneous reduction in Feo and FIP results in very large, tumorlike DNA-filled masses in the brain that contain hundreds of centrosomes. In aggregate, our data show that FIP acts directly on Feo to ensure fully accurate cell division.
Collapse
Affiliation(s)
- Zachary T Swider
- Graduate Program in Cell and Molecular Biology, University of Wisconsin, Madison, WI 53606
| | - Rachel K Ng
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ramya Varadarajan
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Carey J Fagerstrom
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
15
|
Context-dependent spindle pole focusing. Essays Biochem 2018; 62:803-813. [PMID: 30429281 DOI: 10.1042/ebc20180034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022]
Abstract
The formation of a robust, bi-polar spindle apparatus, capable of accurate chromosome segregation, is a complex process requiring the co-ordinated nucleation, sorting, stabilization and organization of microtubules (MTs). Work over the last 25 years has identified protein complexes that act as functional modules to nucleate spindle MTs at distinct cellular sites such as centrosomes, kinetochores, chromatin and pre-existing MTs themselves. There is clear evidence that the extent to which these different MT nucleating pathways contribute to spindle mass both during mitosis and meiosis differs not only between organisms, but also in different cell types within an organism. This plasticity contributes the robustness of spindle formation; however, whether such plasticity is present in other aspects of spindle formation is less well understood. Here, we review the known roles of the protein complexes responsible for spindle pole focusing, investigating the evidence that these, too, act co-ordinately and differentially, depending on cellular context. We describe relationships between MT minus-end directed motors dynein and HSET/Ncd, depolymerases including katanin and MCAK, and direct minus-end binding proteins such as nuclear-mitotic apparatus protein, ASPM and Patronin/CAMSAP. We further explore the idea that the focused spindle pole acts as a non-membrane bound condensate and suggest that the metaphase spindle pole be treated as a transient organelle with context-dependent requirements for function.
Collapse
|
16
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
17
|
Comprehensive review on the molecular genetics of autosomal recessive primary microcephaly (MCPH). Genet Res (Camb) 2018; 100:e7. [PMID: 30086807 DOI: 10.1017/s0016672318000046] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Primary microcephaly (MCPH) is an autosomal recessive sporadic neurodevelopmental ailment with a trivial head size characteristic that is below 3-4 standard deviations. MCPH is the smaller upshot of an architecturally normal brain; a significant decrease in size is seen in the cerebral cortex. At birth MCPH presents with non-progressive mental retardation, while secondary microcephaly (onset after birth) presents with and without other syndromic features. MCPH is a neurogenic mitotic syndrome nevertheless pretentious patients demonstrate normal neuronal migration, neuronal apoptosis and neural function. Eighteen MCPH loci (MCPH1-MCPH18) have been mapped to date from various populations around the world and contain the following genes: Microcephalin, WDR62, CDK5RAP2, CASC5, ASPM, CENPJ, STIL, CEP135, CEP152, ZNF335, PHC1, CDK6, CENPE, SASS6, MFSD2A, ANKLE2, CIT and WDFY3, clarifying our understanding about the molecular basis of microcephaly genetic disorder. It has previously been reported that phenotype disease is caused by MCB gene mutations and the causes of this phenotype are disarrangement of positions and organization of chromosomes during the cell cycle as a result of mutated DNA, centriole duplication, neurogenesis, neuronal migration, microtubule dynamics, transcriptional control and the cell cycle checkpoint having some invisible centrosomal process that can manage the number of neurons that are produced by neuronal precursor cells. Furthermore, researchers inform us about the clinical management of families that are suffering from MCPH. Establishment of both molecular understanding and genetic advocating may help to decrease the rate of this ailment. This current review study examines newly identified genes along with previously identified genes involved in autosomal recessive MCPH.
Collapse
|
18
|
Khan A, Wang R, Han S, Ahmad W, Zhang X. Identification of a Novel Nonsense ASPM Mutation in a Large Consanguineous Pakistani Family Using Targeted Next-Generation Sequencing. Genet Test Mol Biomarkers 2018; 22:159-164. [PMID: 29431480 DOI: 10.1089/gtmb.2017.0229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To identify the pathogenic mutation underlying microcephaly primary hereditary (MCPH) in a large consanguineous Pakistani family. METHODS A five-generation family with an autosomal recessive transmission of MCPH was recruited. Targeted next-generation DNA sequencing was carried out to analyze the genomic DNA sample from the proband with MCPH using a previously designed panel targeting 46 known microcephaly-causing genes. Sanger sequencing was performed to verify all identified variants. RESULTS We found a novel homozygous nonsense mutation, c.7543C>T, in the ASPM gene. This mutation led to the substitution of an arginine with a stop codon at amino acid residue 2515 (p.Arg2515Ter). The mutation cosegregated with the MCPH phenotype in all affected and obligate carrier family members, but was not present in public databases (dbSNP147, Exome Variant Server, the 1000 Genomes Project, Exome Aggregation Consortium, Human Gene Mutation Database, and ClinVar) or 200 control individuals. The c.7543C>T mutation in ASPM may activate nonsense-mediated mRNA decay pathways and could underlie the pathogenesis of MCPH through a loss-of-function mechanism. CONCLUSIONS The c.7543C>T (p.Arg2515Ter) mutation in ASPM is a novel pathogenic mutation for the typical MCPH phenotype in this family.
Collapse
Affiliation(s)
- Amjad Khan
- 1 The Research Center for Medical Genomics, China Medical University , Shenyang, China .,2 State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College , Beijing, China .,3 Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University , Islamabad, Pakistan
| | - Rongrong Wang
- 2 State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College , Beijing, China
| | - Shirui Han
- 1 The Research Center for Medical Genomics, China Medical University , Shenyang, China .,2 State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College , Beijing, China
| | - Wasim Ahmad
- 3 Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University , Islamabad, Pakistan
| | - Xue Zhang
- 1 The Research Center for Medical Genomics, China Medical University , Shenyang, China .,2 State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College , Beijing, China
| |
Collapse
|
19
|
Bernard F, Lepesant JA, Guichet A. Nucleus positioning within Drosophila egg chamber. Semin Cell Dev Biol 2017; 82:25-33. [PMID: 29056490 DOI: 10.1016/j.semcdb.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Both types of Drosophila egg chamber germ cells, i.e. oocyte and nurse cells, have to control their nucleus positions in order to produce a viable gamete. Interestingly, while actin microfilaments are crucial to position the nuclei in nurse cells, these are the microtubules that are important for oocyte nucleus to migrate and adopt the correct position. In this review, we discuss the mechanisms underlying these positioning processes in the two cell types with respect to the organization and dynamics of the actin and microtubule skeleton. In the nurse cells it is essential to keep firmly the nuclei in a central position to prevent them from obstructing the ring canals when the cytoplasmic content of the cells is dumped into the oocyte cells toward the end of oogenesis. This is achieved by the assembly of thick filopodia-like actin cables anchored to the plasma membrane, which grow inwardly and eventually encase tightly the nuclei in a cage-like structure. In the oocyte, the migration at an early stage of oogenesis of the nucleus from a posterior location to an anchorage site at an asymmetric anterior position, is an essential step in the setting up of the dorsoventral polarity axis of the future embryo. This process is controlled by an interplay between MT networks that just start to be untangled. Although both mechanisms have evolved to fulfill cell-type specific cell processes in the context of fly oogenesis, interesting parallels can be drawn with other nuclear positioning mechanisms in the mouse oocyte and the developing muscle respectively.
Collapse
Affiliation(s)
- Fred Bernard
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| | - Jean-Antoine Lepesant
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| | - Antoine Guichet
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| |
Collapse
|
20
|
Lattao R, Kovács L, Glover DM. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster. Genetics 2017; 206:33-53. [PMID: 28476861 PMCID: PMC5419478 DOI: 10.1534/genetics.116.198168] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division.
Collapse
Affiliation(s)
- Ramona Lattao
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - Levente Kovács
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - David M Glover
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| |
Collapse
|
21
|
Jiang K, Rezabkova L, Hua S, Liu Q, Capitani G, Altelaar AFM, Heck AJR, Kammerer RA, Steinmetz MO, Akhmanova A. Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex. Nat Cell Biol 2017; 19:480-492. [PMID: 28436967 PMCID: PMC5458804 DOI: 10.1038/ncb3511] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022]
Abstract
ASPM (known as Asp in fly and ASPM-1 in worm) is a microcephaly-associated protein family that regulates spindle architecture, but the underlying mechanism is poorly understood. Here, we show that ASPM forms a complex with another protein linked to microcephaly, the microtubule-severing ATPase katanin. ASPM and katanin localize to spindle poles in a mutually dependent manner and regulate spindle flux. X-ray crystallography revealed that the heterodimer formed by the N- and C-terminal domains of the katanin subunits p60 and p80, respectively, binds conserved motifs in ASPM. Reconstitution experiments demonstrated that ASPM autonomously tracks growing microtubule minus ends and inhibits their growth, while katanin decorates and bends both ends of dynamic microtubules and potentiates the minus-end blocking activity of ASPM. ASPM also binds along microtubules, recruits katanin and promotes katanin-mediated severing of dynamic microtubules. We propose that the ASPM-katanin complex controls microtubule disassembly at spindle poles and that misregulation of this process can lead to microcephaly.
Collapse
Affiliation(s)
- Kai Jiang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Shasha Hua
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Qingyang Liu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Guido Capitani
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and The Netherlands Proteomics Centre, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and The Netherlands Proteomics Centre, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
22
|
High expression of ASPM correlates with tumor progression and predicts poor outcome in patients with prostate cancer. Int Urol Nephrol 2017; 49:817-823. [DOI: 10.1007/s11255-017-1545-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/10/2017] [Indexed: 02/04/2023]
|
23
|
Abstract
ABSTRACT
Cell division controls the faithful segregation of genomic and cytoplasmic materials between the two nascent daughter cells. Members of the Aurora, Polo and cyclin-dependent (Cdk) kinase families are known to regulate multiple events throughout cell division, whereas another kinase, citron kinase (CIT-K), for a long time has been considered to function solely during cytokinesis, the last phase of cell division. CIT-K was originally proposed to regulate the ingression of the cleavage furrow that forms at the equatorial cortex of the dividing cell after chromosome segregation. However, studies in the last decade have clarified that this kinase is, instead, required for the organization of the midbody in late cytokinesis, and also revealed novel functions of CIT-K earlier in mitosis and in DNA damage control. Moreover, CIT-K mutations have recently been linked to the development of human microcephaly, and CIT-K has been identified as a potential target in cancer therapy. In this Commentary, I describe and re-evaluate the functions and regulation of CIT-K during cell division and its involvement in human disease. Finally, I offer my perspectives on the open questions and future challenges that are necessary to address, in order to fully understand this important and yet unjustly neglected mitotic kinase.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
24
|
Tungadi EA, Ito A, Kiyomitsu T, Goshima G. Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2. J Cell Sci 2017; 130:3676-3684. [DOI: 10.1242/jcs.203703] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/31/2017] [Indexed: 12/30/2022] Open
Abstract
Nonsense mutations in the ASPM gene have been most frequently identified among familial microcephaly patients. Depletion of the Drosophila orthologue causes spindle pole unfocusing during mitosis in multiple cell types. However, it remains unknown whether human ASPM has a similar function. Here, using CRISPR-based gene knockout (KO) and RNA interference combined with auxin-inducible degron, we show that ASPM functions in spindle pole organisation during mitotic metaphase redundantly with another microcephaly protein CDK5RAP2 (also called CEP215) in human tissue culture cells. Deletion of the ASPM gene alone did not affect spindle morphology or mitotic progression. However, when the pericentriolar material protein CDK5RAP2 was depleted in ASPM KO cells, spindle poles were unfocused during prometaphase and anaphase onset was significantly delayed. The phenotypic analysis of CDK5RAP2-depleted cells suggested that the pole-focusing function of CDK5RAP2 is independent of its known function to localise the kinesin-14 motor HSET or activate the γ-tubulin complex. Finally, a hypomorphic mutation identified in ASPM microcephaly patients similarly caused spindle pole unfocusing in the absence of CDK5RAP2, suggesting a possible link between spindle pole disorganisation and microcephaly.
Collapse
Affiliation(s)
- Elsa A. Tungadi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ami Ito
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tomomi Kiyomitsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
25
|
Gai M, Bianchi FT, Vagnoni C, Vernì F, Bonaccorsi S, Pasquero S, Berto GE, Sgrò F, Chiotto AM, Annaratone L, Sapino A, Bergo A, Landsberger N, Bond J, Huttner WB, Di Cunto F. ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules. EMBO Rep 2016; 17:1396-1409. [PMID: 27562601 DOI: 10.15252/embr.201541823] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 07/26/2016] [Indexed: 11/09/2022] Open
Abstract
Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT-stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral-MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins.
Collapse
Affiliation(s)
- Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federico T Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Cristiana Vagnoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnologies "C. Darwin", Sapienza, Università di Roma, Rome, Italy
| | - Silvia Bonaccorsi
- Department of Biology and Biotechnologies "C. Darwin", Sapienza, Università di Roma, Rome, Italy
| | - Selina Pasquero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaia E Berto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Ma Chiotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Bergo
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nicoletta Landsberger
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Jacqueline Bond
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Wieland B Huttner
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Ito A, Goshima G. Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle. J Cell Biol 2016; 211:999-1009. [PMID: 26644514 PMCID: PMC4674282 DOI: 10.1083/jcb.201507001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Depletion of Drosophila melanogaster Asp, an orthologue of microcephaly protein ASPM, causes spindle pole unfocusing during mitosis. However, it remains unclear how Asp contributes to pole focusing, a process that also requires the kinesin-14 motor Ncd. We show that Asp localizes to the minus ends of spindle microtubule (MT) bundles and focuses them to make the pole independent of Ncd. We identified a critical domain in Asp exhibiting MT cross-linking activity in vitro. Asp was also localized to, and focuses the minus ends of, intraspindle MTs that were nucleated in an augmin-dependent manner and translocated toward the poles by spindle MT flux. Ncd, in contrast, functioned as a global spindle coalescence factor not limited to MT ends. We propose a revised molecular model for spindle pole focusing in which Asp at the minus ends cross-links MTs at the pole and within the spindle. Additionally, this study provides new insight into the dynamics of intraspindle MTs by using Asp as a minus end marker.
Collapse
Affiliation(s)
- Ami Ito
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
27
|
Schoborg T, Zajac AL, Fagerstrom CJ, Guillen RX, Rusan NM. An Asp-CaM complex is required for centrosome-pole cohesion and centrosome inheritance in neural stem cells. J Cell Biol 2015; 211:987-98. [PMID: 26620907 PMCID: PMC4674283 DOI: 10.1083/jcb.201509054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/27/2015] [Indexed: 01/29/2023] Open
Abstract
Calmodulin is required for abnormal spindle’s (Asp’s) ability to cross-link microtubules and ensure proper centrosome inheritance in neural stem cells, but it is dispensable for Asp’s role in brain size determination. The interaction between centrosomes and mitotic spindle poles is important for efficient spindle formation, orientation, and cell polarity. However, our understanding of the dynamics of this relationship and implications for tissue homeostasis remains poorly understood. Here we report that Drosophila melanogaster calmodulin (CaM) regulates the ability of the microcephaly-associated protein, abnormal spindle (Asp), to cross-link spindle microtubules. Both proteins colocalize on spindles and move toward spindle poles, suggesting that they form a complex. Our binding and structure–function analysis support this hypothesis. Disruption of the Asp–CaM interaction alone leads to unfocused spindle poles and centrosome detachment. This behavior leads to randomly inherited centrosomes after neuroblast division. We further show that spindle polarity is maintained in neuroblasts despite centrosome detachment, with the poles remaining stably associated with the cell cortex. Finally, we provide evidence that CaM is required for Asp’s spindle function; however, it is completely dispensable for Asp’s role in microcephaly suppression.
Collapse
Affiliation(s)
- Todd Schoborg
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Allison L Zajac
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Carey J Fagerstrom
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rodrigo X Guillen
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Chen JWC, Barker AR, Wakefield JG. The Ran Pathway in Drosophila melanogaster Mitosis. Front Cell Dev Biol 2015; 3:74. [PMID: 26636083 PMCID: PMC4659922 DOI: 10.3389/fcell.2015.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022] Open
Abstract
Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)—a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation.
Collapse
Affiliation(s)
- Jack W C Chen
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK ; Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
29
|
Williams SE, Garcia I, Crowther AJ, Li S, Stewart A, Liu H, Lough KJ, O'Neill S, Veleta K, Oyarzabal EA, Merrill JR, Shih YYI, Gershon TR. Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice. Development 2015; 142:3921-32. [PMID: 26450969 DOI: 10.1242/dev.124271] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/28/2015] [Indexed: 01/06/2023]
Abstract
Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma.
Collapse
Affiliation(s)
- Scott E Williams
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Idoia Garcia
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew J Crowther
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Shiyi Li
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Alyssa Stewart
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Hedi Liu
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kendall J Lough
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sean O'Neill
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine Veleta
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Esteban A Oyarzabal
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Joseph R Merrill
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy R Gershon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
30
|
Ito H, Shiwaku H, Yoshida C, Homma H, Luo H, Chen X, Fujita K, Musante L, Fischer U, Frints SGM, Romano C, Ikeuchi Y, Shimamura T, Imoto S, Miyano S, Muramatsu SI, Kawauchi T, Hoshino M, Sudol M, Arumughan A, Wanker EE, Rich T, Schwartz C, Matsuzaki F, Bonni A, Kalscheuer VM, Okazawa H. In utero gene therapy rescues microcephaly caused by Pqbp1-hypofunction in neural stem progenitor cells. Mol Psychiatry 2015; 20:459-71. [PMID: 25070536 PMCID: PMC4378255 DOI: 10.1038/mp.2014.69] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022]
Abstract
Human mutations in PQBP1, a molecule involved in transcription and splicing, result in a reduced but architecturally normal brain. Examination of a conditional Pqbp1-knockout (cKO) mouse with microcephaly failed to reveal either abnormal centrosomes or mitotic spindles, increased neurogenesis from the neural stem progenitor cell (NSPC) pool or increased cell death in vivo. Instead, we observed an increase in the length of the cell cycle, particularly for the M phase in NSPCs. Corresponding to the developmental expression of Pqbp1, the stem cell pool in vivo was decreased at E10 and remained at a low level during neurogenesis (E15) in Pqbp1-cKO mice. The expression profiles of NSPCs derived from the cKO mouse revealed significant changes in gene groups that control the M phase, including anaphase-promoting complex genes, via aberrant transcription and RNA splicing. Exogenous Apc4, a hub protein in the network of affected genes, recovered the cell cycle, proliferation, and cell phenotypes of NSPCs caused by Pqbp1-cKO. These data reveal a mechanism of brain size control based on the simple reduction of the NSPC pool by cell cycle time elongation. Finally, we demonstrated that in utero gene therapy for Pqbp1-cKO mice by intraperitoneal injection of the PQBP1-AAV vector at E10 successfully rescued microcephaly with preserved cortical structures and improved behavioral abnormalities in Pqbp1-cKO mice, opening a new strategy for treating this intractable developmental disorder.
Collapse
Affiliation(s)
- H Ito
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - H Shiwaku
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - C Yoshida
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - H Homma
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - H Luo
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - X Chen
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - K Fujita
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - L Musante
- Department of Human Molecular Genetics, Max-Planck Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | - U Fischer
- Department of Human Molecular Genetics, Max-Planck Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | - S G M Frints
- Department of Clinical Genetics, University Hospital azM Maastricht, Maastricht, The Netherlands,School for Oncology and Developmental Biology, GROW, Maastricht University, Maastricht, The Netherlands
| | - C Romano
- Unità Operativa Complessa di Pediatria e Genetica Medica, IRCCS Associazione Oasi Maria Santissima, Troina (Enna), Italy
| | - Y Ikeuchi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - T Shimamura
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Imoto
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Miyano
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S-i Muramatsu
- Department of Neurology, Jichi Medical University, Tochigi, Japan
| | - T Kawauchi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - M Hoshino
- Department of Biochemistry and Cellular Biology, National Center for Neurology and Psychiatry, Tokyo, Japan
| | - M Sudol
- Laboratory of Signal Transduction and Proteomic Profiling, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - A Arumughan
- Department of Neurogenetics, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - E E Wanker
- Department of Neurogenetics, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - T Rich
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - C Schwartz
- JC Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC, USA
| | - F Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN, Chuo-ku, Kobe, Japan
| | - A Bonni
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - V M Kalscheuer
- Department of Human Molecular Genetics, Max-Planck Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | - H Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan,Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan. E-mail:
| |
Collapse
|
31
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
32
|
Faheem M, Naseer MI, Rasool M, Chaudhary AG, Kumosani TA, Ilyas AM, Pushparaj P, Ahmed F, Algahtani HA, Al-Qahtani MH, Saleh Jamal H. Molecular genetics of human primary microcephaly: an overview. BMC Med Genomics 2015; 8 Suppl 1:S4. [PMID: 25951892 PMCID: PMC4315316 DOI: 10.1186/1755-8794-8-s1-s4] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder that is characterised by microcephaly present at birth and non-progressive mental retardation. Microcephaly is the outcome of a smaller but architecturally normal brain; the cerebral cortex exhibits a significant decrease in size. MCPH is a neurogenic mitotic disorder, though affected patients demonstrate normal neuronal migration, neuronal apoptosis and neural function. Twelve MCPH loci (MCPH1-MCPH12) have been mapped to date from various populations around the world and contain the following genes: Microcephalin, WDR62, CDK5RAP2, CASC5, ASPM, CENPJ, STIL, CEP135, CEP152, ZNF335, PHC1 and CDK6. It is predicted that MCPH gene mutations may lead to the disease phenotype due to a disturbed mitotic spindle orientation, premature chromosomal condensation, signalling response as a result of damaged DNA, microtubule dynamics, transcriptional control or a few other hidden centrosomal mechanisms that can regulate the number of neurons produced by neuronal precursor cells. Additional findings have further elucidated the microcephaly aetiology and pathophysiology, which has informed the clinical management of families suffering from MCPH. The provision of molecular diagnosis and genetic counselling may help to decrease the frequency of this disorder.
Collapse
|
33
|
Abstract
Epithelia are polarized layers of adherent cells that are the building blocks for organ and appendage structures throughout animals. To preserve tissue architecture and barrier function during both homeostasis and rapid growth, individual epithelial cells divide in a highly constrained manner. Building on decades of research focused on single cells, recent work is probing the mechanisms by which the dynamic process of mitosis is reconciled with the global maintenance of epithelial order during development. These studies reveal how symmetrically dividing cells both exploit and conform to tissue organization to orient their mitotic spindles during division and establish new adhesive junctions during cytokinesis.
Collapse
Affiliation(s)
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110 Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160
| |
Collapse
|
34
|
Mishra-Gorur K, Çağlayan AO, Schaffer AE, Chabu C, Henegariu O, Vonhoff F, Akgümüş GT, Nishimura S, Han W, Tu S, Baran B, Gümüş H, Dilber C, Zaki MS, Hossni HAA, Rivière JB, Kayserili H, Spencer EG, Rosti RÖ, Schroth J, Per H, Çağlar C, Çağlar Ç, Dölen D, Baranoski JF, Kumandaş S, Minja FJ, Erson-Omay EZ, Mane SM, Lifton RP, Xu T, Keshishian H, Dobyns WB, Chi NC, Šestan N, Louvi A, Bilgüvar K, Yasuno K, Gleeson JG, Günel M. Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Neuron 2014; 84:1226-39. [PMID: 25521378 PMCID: PMC5024344 DOI: 10.1016/j.neuron.2014.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
Abstract
Exome sequencing analysis of over 2,000 children with complex malformations of cortical development identified five independent (four homozygous and one compound heterozygous) deleterious mutations in KATNB1, encoding the regulatory subunit of the microtubule-severing enzyme Katanin. Mitotic spindle formation is defective in patient-derived fibroblasts, a consequence of disrupted interactions of mutant KATNB1 with KATNA1, the catalytic subunit of Katanin, and other microtubule-associated proteins. Loss of KATNB1 orthologs in zebrafish (katnb1) and flies (kat80) results in microcephaly, recapitulating the human phenotype. In the developing Drosophila optic lobe, kat80 loss specifically affects the asymmetrically dividing neuroblasts, which display supernumerary centrosomes and spindle abnormalities during mitosis, leading to cell cycle progression delays and reduced cell numbers. Furthermore, kat80 depletion results in dendritic arborization defects in sensory and motor neurons, affecting neural architecture. Taken together, we provide insight into the mechanisms by which KATNB1 mutations cause human cerebral cortical malformations, demonstrating its fundamental role during brain development.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ahmet Okay Çağlayan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ashleigh E Schaffer
- Neurogenetics Laboratory, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chiswili Chabu
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510, USA
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fernando Vonhoff
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Gözde Tuğce Akgümüş
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Wenqi Han
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shu Tu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Burçin Baran
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Hakan Gümüş
- Division of Pediatric Neurology, Department of Pediatrics, Erciyes University Medical Faculty, Kayseri 38039, Turkey
| | - Cengiz Dilber
- Division of Pediatric Neurology, Department of Pediatrics, Sütcü Imam University Medical Faculty, Kahramanmaraş 46100, Turkey
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Center, Cairo 12311, Egypt
| | - Heba A A Hossni
- Department of Neurology, National Institute of Neuromotor System, Cairo 12311, Egypt
| | - Jean-Baptiste Rivière
- Equipe Génétique des Anomalies du Développement, EA 4271, Université de Bourgogne, 21078 Dijon, France
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul 34093, Turkey
| | - Emily G Spencer
- Neurogenetics Laboratory, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rasim Ö Rosti
- Neurogenetics Laboratory, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jana Schroth
- Neurogenetics Laboratory, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hüseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Erciyes University Medical Faculty, Kayseri 38039, Turkey
| | - Caner Çağlar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Çağri Çağlar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Duygu Dölen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jacob F Baranoski
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sefer Kumandaş
- Division of Pediatric Neurology, Department of Pediatrics, Erciyes University Medical Faculty, Kayseri 38039, Turkey
| | - Frank J Minja
- Department of Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shrikant M Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tian Xu
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510, USA
| | - Haig Keshishian
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98105, USA
| | - Neil C Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nenad Šestan
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kaya Bilgüvar
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katsuhito Yasuno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joseph G Gleeson
- Neurogenetics Laboratory, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
35
|
Fujimori A, Itoh K, Goto S, Hirakawa H, Wang B, Kokubo T, Kito S, Tsukamoto S, Fushiki S. Disruption of Aspm causes microcephaly with abnormal neuronal differentiation. Brain Dev 2014; 36:661-9. [PMID: 24220505 DOI: 10.1016/j.braindev.2013.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 10/26/2022]
Abstract
AIMS A number of ASPM mutations have been detected in primary microcephaly patients. In order to evaluate the function of ASPM in brain development, we generated model animals of human autosomal recessive primary microcephaly-5 (MCPH5). METHODS In the Aspm knock-out mice, the exon 2-3 of the Aspm gene was encompassed by a pair of loxP signals so that cre-recombinase activity switched the allele from wild-type to null zygotes as frequently, as expected from the Mendelian inheritance. We precisely analyzed the brains of adults and fetuses using immunohistochemistry and morphometry. RESULTS The adult brains of the Aspm(-/-) mice were smaller, especially in the cerebrum. In the barrel field of the somatosensory cortex, layer I was significantly thicker, whereas layer VI was significantly thinner in Aspm(-/-) mice, compared with Aspm(+/+) mice. The total number of cells and the thickness of the cortical plate at embryonic day 16.5 was significantly decreased in Aspm(-/-) mice, compared with Aspm(+/+) mice. Furthermore, the expression of transcription factors, such as Tbr1 and Satb2, was significantly increased in the subplate of the Aspm(-/-) mice. CONCLUSIONS The results suggested that Aspm is essential to the proliferation and differentiation of neural stem/progenitor cells. The Aspm gene loss model provided a novel pathogenetic insight into acquired microcephaly, which can be caused by in utero exposure to both known and unknown teratogens.
Collapse
Affiliation(s)
- Akira Fujimori
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Shoko Goto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirokazu Hirakawa
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Bing Wang
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Toshiaki Kokubo
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Seiji Kito
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Satoshi Tsukamoto
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
36
|
Schou KB, Morthorst SK, Christensen ST, Pedersen LB. Identification of conserved, centrosome-targeting ASH domains in TRAPPII complex subunits and TRAPPC8. Cilia 2014; 3:6. [PMID: 25018876 PMCID: PMC4094338 DOI: 10.1186/2046-2530-3-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/22/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Assembly of primary cilia relies on vesicular trafficking towards the cilium base and intraflagellar transport (IFT) between the base and distal tip of the cilium. Recent studies have identified several key regulators of these processes, including Rab GTPases such as Rab8 and Rab11, the Rab8 guanine nucleotide exchange factor Rabin8, and the transport protein particle (TRAPP) components TRAPPC3, -C9, and -C10, which physically interact with each other and function together with Bardet Biedl syndrome (BBS) proteins in ciliary membrane biogenesis. However, despite recent advances, the exact molecular mechanisms by which these proteins interact and target to the basal body to promote ciliogenesis are not fully understood. RESULTS We surveyed the human proteome for novel ASPM, SPD-2, Hydin (ASH) domain-containing proteins. We identified the TRAPP complex subunits TRAPPC8, -9, -10, -11, and -13 as novel ASH domain-containing proteins. In addition to a C-terminal ASH domain region, we predict that the N-terminus of TRAPPC8, -9, -10, and -11, as well as their yeast counterparts, consists of an α-solenoid bearing stretches of multiple tetratricopeptide (TPR) repeats. Immunofluorescence microscopy analysis of cultured mammalian cells revealed that exogenously expressed ASH domains, as well as endogenous TRAPPC8, localize to the centrosome/basal body. Further, depletion of TRAPPC8 impaired ciliogenesis and GFP-Rabin8 centrosome targeting. CONCLUSIONS Our results suggest that ASH domains confer targeting to the centrosome and cilia, and that TRAPPC8 has cilia-related functions. Further, we propose that the yeast TRAPPII complex and its mammalian counterpart are evolutionarily related to the bacterial periplasmic trafficking chaperone PapD of the usher pili assembly machinery.
Collapse
Affiliation(s)
- Kenneth B Schou
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark ; Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stine K Morthorst
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| |
Collapse
|
37
|
Riparbelli MG, Gottardo M, Glover DM, Callaini G. Inhibition of Polo kinase by BI2536 affects centriole separation during Drosophila male meiosis. Cell Cycle 2014; 13:2064-72. [PMID: 24802643 PMCID: PMC4111698 DOI: 10.4161/cc.29083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 12/25/2022] Open
Abstract
Pharmacological inhibition of Drosophila Polo kinase with BI2536 has allowed us to re-examine the requirements for Polo during Drosophila male gametogenesis. BI2536-treated spermatocytes persisted in a pro-metaphase state without dividing and had condensed chromosomes that did not separate. Centrosomes failed to recruit γ-tubulin and centrosomin (Cnn) and were not associated with microtubule arrays that were abnormal and did not form proper bipolar spindles. Centrioles, which usually separate during the anaphase of the first meiosis, remained held together in a V-shaped configuration suggesting that Polo kinase regulates the proteolysis that breaks centriole linkage to ensure their disengagement. Despite these defects spermatid differentiation proceeds, leading to axoneme formation.
Collapse
Affiliation(s)
| | - Marco Gottardo
- Department of Life Sciences; University of Siena; Siena, Italy
| | - David M Glover
- Department of Genetics; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
38
|
The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II. Nat Cell Biol 2013; 15:1294-306. [PMID: 24142104 DOI: 10.1038/ncb2858] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022]
Abstract
Mutations in ASPM are the most frequent cause of microcephaly, a disorder characterized by reduced brain size at birth. ASPM is recognized as a major regulator of brain size, yet its role during neural development remains poorly understood. Moreover, the role of ASPM proteins in invertebrate brain morphogenesis has never been investigated. Here, we characterized the function of the Drosophila ASPM orthologue, Asp, and found that asp mutants present severe defects in brain size and neuroepithelium morphogenesis. We show that size reduction depends on the mitotic function of Asp, whereas regulation of tissue shape depends on an uncharacterized function. Asp interacts with myosin II regulating its polarized distribution along the apico-basal axis. In the absence of Asp, mislocalization of myosin II results in interkinetic nuclear migration and tissue architecture defects. We propose that Asp regulates neuroepithelium morphogenesis through myosin-II-mediated structural and mechanical processes to maintain force balance and tissue cohesiveness.
Collapse
|
39
|
Noatynska A, Gotta M, Meraldi P. Mitotic spindle (DIS)orientation and DISease: cause or consequence? ACTA ACUST UNITED AC 2013; 199:1025-35. [PMID: 23266953 PMCID: PMC3529530 DOI: 10.1083/jcb.201209015] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Correct alignment of the mitotic spindle during cell division is crucial for cell fate determination, tissue organization, and development. Mutations causing brain diseases and cancer in humans and mice have been associated with spindle orientation defects. These defects are thought to lead to an imbalance between symmetric and asymmetric divisions, causing reduced or excessive cell proliferation. However, most of these disease-linked genes encode proteins that carry out multiple cellular functions. Here, we discuss whether spindle orientation defects are the direct cause for these diseases, or just a correlative side effect.
Collapse
Affiliation(s)
- Anna Noatynska
- Department of Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
40
|
Xu XL, Ma W, Zhu YB, Wang C, Wang BY, An N, An L, Liu Y, Wu ZH, Tian JH. The microtubule-associated protein ASPM regulates spindle assembly and meiotic progression in mouse oocytes. PLoS One 2012; 7:e49303. [PMID: 23152892 PMCID: PMC3496685 DOI: 10.1371/journal.pone.0049303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
The microtubule-associated protein ASPM (abnormal spindle-like microcephaly-associated) plays an important role in spindle organization and cell division in mitosis and meiosis in lower animals, but its function in mouse oocyte meiosis has not been investigated. In this study, we characterized the localization and expression dynamics of ASPM during mouse oocyte meiotic maturation and analyzed the effects of the downregulation of ASPM expression on meiotic spindle assembly and meiotic progression. Immunofluorescence analysis showed that ASPM localized to the entire spindle at metaphase I (MI) and metaphase II (MII), colocalizing with the spindle microtubule protein acetylated tubulin (Ac-tubulin). In taxol-treated oocytes, ASPM colocalized with Ac-tubulin on the excessively polymerized microtubule fibers of enlarged spindles and the numerous asters in the cytoplasm. Nocodazole treatment induced the gradual disassembly of microtubule fibers, during which ASPM remained colocalized with the dynamic Ac-tubulin. The downregulation of ASPM expression by a gene-specific morpholino resulted in an abnormal meiotic spindle and inhibited meiotic progression; most of the treated oocytes were blocked in the MI stage with elongated meiotic spindles. Furthermore, coimmunoprecipitation combined with mass spectrometry and western blot analysis revealed that ASPM interacted with calmodulin in MI oocytes and that these proteins colocalized at the spindle. Our results provide strong evidence that ASPM plays a critical role in meiotic spindle assembly and meiotic progression in mouse oocytes.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yu-Bo Zhu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Chao Wang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Bing-Yuan Wang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Na An
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhong-Hong Wu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Jian-Hui Tian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
41
|
Giansanti MG, Fuller MT. What Drosophila spermatocytes tell us about the mechanisms underlying cytokinesis. Cytoskeleton (Hoboken) 2012; 69:869-81. [PMID: 22927345 DOI: 10.1002/cm.21063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 12/21/2022]
Abstract
Cytokinesis separates the genomic material and organelles of a dividing cell equitably into two physically distinct daughter cells at the end of cell division. This highly choreographed process involves coordinated reorganization and regulated action of the actin and microtubule cytoskeletal systems, an assortment of motor proteins, and membrane trafficking components. Due to their large size, the ease with which exquisite cytological analysis may be performed on them, and the availability of numerous mutants and other genetic tools, Drosophila spermatocytes have provided an excellent system for exploring the mechanistic basis for the temporally programmed and precise spatially localized events of cytokinesis. Mutants defective in male meiotic cytokinesis can be easily identified in forward genetic screens by the production of multinucleate spermatids. In addition, the weak spindle assembly checkpoint in spermatocytes, which causes only a small delay of anaphase onset in the presence of unattached chromosomes, allows investigation of whether gene products required for spindle assembly and chromosome segregation are also involved in cytokinesis. Perhaps due to the large size of spermatocytes and the requirement for two rapid-fire rounds of division without intervening S or growth phases during meiosis, male meiotic mutants have also revealed much about molecular mechanisms underlying new membrane addition during cytokinesis. Finally, cell type-specific differences in the events that set up and complete cytokinesis are emerging from comparison of spermatocytes with cells undergoing mitosis either elsewhere in the organism or in tissue culture.
Collapse
Affiliation(s)
- Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie Università Sapienza di Roma, Piazzale A. Moro 5, Roma, Italy.
| | | |
Collapse
|
42
|
Abstract
The mechanisms that move chromatids poleward during anaphase A have fascinated researchers for decades. There is now growing evidence that this movement is tightly linked to the active depolymerization of both ends of kinetochore-associated microtubules, a mechanism we refer to as "Pacman-Flux." Contemporary data suggest that this is catalyzed by the integration of multiple enzymatic activities including (1) microtubule-end depolymerases housed at the pole or kinetochore, (2) microtubule-severing enzymes used to uncap the ends of kinetochore-associated microtubules, and (3) molecular motors which drive tubulins towards the pole or into kinetochores.
Collapse
|
43
|
Mahmood S, Ahmad W, Hassan MJ. Autosomal Recessive Primary Microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 2011; 6:39. [PMID: 21668957 PMCID: PMC3123551 DOI: 10.1186/1750-1172-6-39] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 06/13/2011] [Indexed: 12/21/2022] Open
Abstract
Autosomal Recessive Primary Microcephaly (MCPH) is a rare disorder of neurogenic mitosis characterized by reduced head circumference at birth with variable degree of mental retardation. In MCPH patients, brain size reduced to almost one-third of its original volume due to reduced number of generated cerebral cortical neurons during embryonic neurogensis. So far, seven genetic loci (MCPH1-7) for this condition have been mapped with seven corresponding genes (MCPH1, WDR62, CDK5RAP2, CEP152, ASPM, CENPJ, and STIL) identified from different world populations. Contribution of ASPM and WDR62 gene mutations in MCPH World wide is more than 50%. By and large, primary microcephaly patients are phenotypically indistinguishable, however, recent studies in patients with mutations in MCPH1, WDR62 and ASPM genes showed a broader clinical and/or cellular phenotype. It has been proposed that mutations in MCPH genes can cause the disease phenotype by disturbing: 1) orientation of mitotic spindles, 2) chromosome condensation mechanism during embryonic neurogenesis, 3) DNA damage-response signaling, 4) transcriptional regulations and microtubule dynamics, 5) certain unknown centrosomal mechanisms that control the number of neurons generated by neural precursor cells. Recent discoveries of mammalian models for MCPH have open up horizons for researchers to add more knowledge regarding the etiology and pathophysiology of MCPH. High incidence of MCPH in Pakistani population reflects the most probable involvement of consanguinity. Genetic counseling and clinical management through carrier detection/prenatal diagnosis in MCPH families can help reducing the incidence of this autosomal recessive disorder.
Collapse
Affiliation(s)
- Saqib Mahmood
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| | | | | |
Collapse
|
44
|
Kim HT, Lee MS, Choi JH, Jung JY, Ahn DG, Yeo SY, Choi DK, Kim CH. The microcephaly gene aspm is involved in brain development in zebrafish. Biochem Biophys Res Commun 2011; 409:640-4. [PMID: 21620798 DOI: 10.1016/j.bbrc.2011.05.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
MCPH is a neurodevelopmental disorder characterized by a global reduction in cerebral cortical volume. Homozygous mutation of the MCPH5 gene, also known as ASPM, is the most common cause of the MCPH phenotype. To elucidate the roles of ASPM during embryonic development, the zebrafish aspm was identified, which is specifically expressed in proliferating cells in the CNS. Morpholino-mediated knock-down of aspm resulted in a significant reduction in head size. Furthermore, aspm-deficient embryos exhibited a mitotic arrest during early development. These findings suggest that the reduction in brain size in MCPH might be caused by lack of aspm function in the mitotic cell cycle and demonstrate that the zebrafish can provide a model system for congenital diseases of the human nervous system.
Collapse
Affiliation(s)
- Hyun-Taek Kim
- Department of Biology and GRAST, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yong KJ, Yan B. The relevance of symmetric and asymmetric cell divisions to human central nervous system diseases. J Clin Neurosci 2011; 18:458-63. [PMID: 21288724 DOI: 10.1016/j.jocn.2010.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 12/29/2022]
Abstract
During development of the embryonic central nervous system (CNS), large numbers of neurons and glia are generated from the neuroepithelium and its progenitor derivatives as a result of symmetric and asymmetric cell divisions. We describe the biology of symmetric and asymmetric cell divisions in the CNS as gleaned from animal models, and discuss the relevance of these processes to human CNS development and disease.
Collapse
Affiliation(s)
- Kol Jia Yong
- Cancer Science Institute, National University of Singapore, Singapore
| | | |
Collapse
|
46
|
Higgins J, Midgley C, Bergh AM, Bell SM, Askham JM, Roberts E, Binns RK, Sharif SM, Bennett C, Glover DM, Woods CG, Morrison EE, Bond J. Human ASPM participates in spindle organisation, spindle orientation and cytokinesis. BMC Cell Biol 2010; 11:85. [PMID: 21044324 PMCID: PMC2988714 DOI: 10.1186/1471-2121-11-85] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 11/02/2010] [Indexed: 12/20/2022] Open
Abstract
Background Mutations in the Abnormal Spindle Microcephaly related gene (ASPM) are the commonest cause of autosomal recessive primary microcephaly (MCPH) a disorder characterised by a small brain and associated mental retardation. ASPM encodes a mitotic spindle pole associated protein. It is suggested that the MCPH phenotype arises from proliferation defects in neural progenitor cells (NPC). Results We show that ASPM is a microtubule minus end-associated protein that is recruited in a microtubule-dependent manner to the pericentriolar matrix (PCM) at the spindle poles during mitosis. ASPM siRNA reduces ASPM protein at the spindle poles in cultured U2OS cells and severely perturbs a number of aspects of mitosis, including the orientation of the mitotic spindle, the main determinant of developmental asymmetrical cell division. The majority of ASPM depleted mitotic cells fail to complete cytokinesis. In MCPH patient fibroblasts we show that a pathogenic ASPM splice site mutation results in the expression of a novel variant protein lacking a tripeptide motif, a minimal alteration that correlates with a dramatic decrease in ASPM spindle pole localisation. Moreover, expression of dominant-negative ASPM C-terminal fragments cause severe spindle assembly defects and cytokinesis failure in cultured cells. Conclusions These observations indicate that ASPM participates in spindle organisation, spindle positioning and cytokinesis in all dividing cells and that the extreme C-terminus of the protein is required for ASPM localisation and function. Our data supports the hypothesis that the MCPH phenotype caused by ASPM mutation is a consequence of mitotic aberrations during neurogenesis. We propose the effects of ASPM mutation are tolerated in somatic cells but have profound consequences for the symmetrical division of NPCs, due to the unusual morphology of these cells. This antagonises the early expansion of the progenitor pool that underpins cortical neurogenesis, causing the MCPH phenotype.
Collapse
Affiliation(s)
- Julie Higgins
- Section of Ophthalmology and Neuroscience, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, Topçu M, McDonald MT, Barry BJ, Felie J, Sunu C, Dobyns WB, Folkerth RD, Barkovich AJ, Walsh CA. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 2010; 42:1015-20. [PMID: 20890278 PMCID: PMC2969850 DOI: 10.1038/ng.683] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022]
Abstract
Genes associated with human microcephaly, a condition characterized by a small brain, include critical regulators of proliferation, cell fate and DNA repair. We describe a syndrome of congenital microcephaly and diverse defects in cerebral cortical architecture. Genome-wide linkage analysis in two families identified a 7.5-Mb locus on chromosome 19q13.12 containing 148 genes. Targeted high throughput sequence analysis of linked genes in each family yielded > 4,000 DNA variants and implicated a single gene, WDR62, as harboring potentially deleterious changes. We subsequently identified additional WDR62 mutations in four other families. Magnetic resonance imaging and postmortem brain analysis supports important roles for WDR62 in the proliferation and migration of neuronal precursors. WDR62 is a WD40 repeat-containing protein expressed in neuronal precursors as well as in postmitotic neurons in the developing brain and localizes to the spindle poles of dividing cells. The diverse phenotypes of WDR62 suggest it has central roles in many aspects of cerebral cortical development.
Collapse
Affiliation(s)
- Timothy W. Yu
- Division of Genetics, Department of Medicine, Children’s Hospital Boston, Boston, MA 02115
- Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA 02115
- Howard Hughes Medical Institute, Children’s Hospital Boston, Boston, MA 2115
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02215
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02138
- Division of Child Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Ganeshwaran H. Mochida
- Division of Genetics, Department of Medicine, Children’s Hospital Boston, Boston, MA 02115
- Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA 02115
- Howard Hughes Medical Institute, Children’s Hospital Boston, Boston, MA 2115
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02215
- Division of Child Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - David J. Tischfield
- Division of Genetics, Department of Medicine, Children’s Hospital Boston, Boston, MA 02115
- Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA 02115
- Howard Hughes Medical Institute, Children’s Hospital Boston, Boston, MA 2115
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02215
| | - Sema K. Sgaier
- Division of Genetics, Department of Medicine, Children’s Hospital Boston, Boston, MA 02115
- Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA 02115
- Howard Hughes Medical Institute, Children’s Hospital Boston, Boston, MA 2115
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02215
- Bill and Melinda Gates Foundation, New Delhi, India
| | - Laura Flores-Sarnat
- Department of Clinical Neurosciences, Division of Paediatric Neurology, Alberta Children’s Hospital, University of Calgary Faculty of Medicine, Calgary, AB T3B 6A8, -Canada
| | - Consolato M. Sergi
- Department of Laboratory Medicine & Pathology, University of Alberta Hospital, 5B4.09 Walter Mackenzie Health Sciences Centre, Edmonton, AB T6G 2B7, Canada
- Institute of Pathology, Medical University of Innsbruck, Muellerstrasse 44, AT-6020 Innsbruck, Austria
| | - Meral Topçu
- Department of Pediatrics Section of Pediatric Neurology, Hacettepe University, Medical Faculty, Ihsan Dogramaci Children’s Hospital, Sihhiye 06100, Ankara, Turkey
| | - Marie T. McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27710
| | - Brenda J. Barry
- Division of Genetics, Department of Medicine, Children’s Hospital Boston, Boston, MA 02115
- Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA 02115
- Howard Hughes Medical Institute, Children’s Hospital Boston, Boston, MA 2115
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02215
| | - Jillian Felie
- Division of Genetics, Department of Medicine, Children’s Hospital Boston, Boston, MA 02115
- Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA 02115
- Howard Hughes Medical Institute, Children’s Hospital Boston, Boston, MA 2115
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02215
| | - Christine Sunu
- Division of Genetics, Department of Medicine, Children’s Hospital Boston, Boston, MA 02115
- Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA 02115
- Howard Hughes Medical Institute, Children’s Hospital Boston, Boston, MA 2115
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02215
| | | | | | - A. James Barkovich
- Department of Radiology, University of California San Francisco, San Francisco, CA 94143
| | - Christopher A. Walsh
- Division of Genetics, Department of Medicine, Children’s Hospital Boston, Boston, MA 02115
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02215
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02138
| |
Collapse
|
48
|
Rath U, Rogers GC, Tan D, Gomez-Ferreria MA, Buster DW, Sosa HJ, Sharp DJ. The Drosophila kinesin-13, KLP59D, impacts Pacman- and Flux-based chromosome movement. Mol Biol Cell 2009; 20:4696-705. [PMID: 19793918 DOI: 10.1091/mbc.e09-07-0557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chromosome movements are linked to the active depolymerization of spindle microtubule (MT) ends. Here we identify the kinesin-13 family member, KLP59D, as a novel and uniquely important regulator of spindle MT dynamics and chromosome motility in Drosophila somatic cells. During prometaphase and metaphase, depletion of KLP59D, which targets to centrosomes and outer kinetochores, suppresses the depolymerization of spindle pole-associated MT minus ends, thereby inhibiting poleward tubulin Flux. Subsequently, during anaphase, loss of KLP59D strongly attenuates chromatid-to-pole motion by suppressing the depolymerization of both minus and plus ends of kinetochore-associated MTs. The mechanism of KLP59D's impact on spindle MT plus and minus ends appears to differ. Our data support a model in which KLP59D directly depolymerizes kinetochore-associated plus ends during anaphase, but influences minus ends indirectly by localizing the pole-associated MT depolymerase KLP10A. Finally, electron microscopy indicates that, unlike the other Drosophila kinesin-13s, KLP59D is largely incapable of oligomerizing into MT-associated rings in vitro, suggesting that such structures are not a requisite feature of kinetochore-based MT disassembly and chromosome movements.
Collapse
Affiliation(s)
- Uttama Rath
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Jung HM, Choi SJ, Kim JK. Expression profiles of SV40-immortalization-associated genes upregulated in various human cancers. J Cell Biochem 2009; 106:703-13. [DOI: 10.1002/jcb.22063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Zhang G, Breuer M, Förster A, Egger-Adam D, Wodarz A. Mars, a Drosophila protein related to vertebrate HURP, is required for the attachment of centrosomes to the mitotic spindle during syncytial nuclear divisions. J Cell Sci 2009; 122:535-45. [PMID: 19174464 DOI: 10.1242/jcs.040352] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The formation of the mitotic spindle is controlled by the microtubule organizing activity of the centrosomes and by the effects of chromatin-associated Ran-GTP on the activities of spindle assembly factors. In this study we show that Mars, a Drosophila protein with sequence similarity to vertebrate hepatoma upregulated protein (HURP), is required for the attachment of the centrosome to the mitotic spindle. More than 80% of embryos derived from mars mutant females do not develop properly due to severe mitotic defects during the rapid nuclear divisions in early embryogenesis. Centrosomes frequently detach from spindles and from the nuclear envelope and nucleate astral microtubules in ectopic positions. Consistent with its function in spindle organization, Mars localizes to nuclei in interphase and associates with the mitotic spindle, in particular with the spindle poles, during mitosis. We propose that Mars is an important linker between the spindle and the centrosomes that is required for proper spindle organization during the rapid mitotic cycles in early embryogenesis.
Collapse
Affiliation(s)
- Gang Zhang
- Abteilung Stammzellbiologie, DFG Research Center for Molecular Physiology of the Brain (CMPB), Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|