1
|
Schwabl S, Teis D. Protein quality control at the Golgi. Curr Opin Cell Biol 2022; 75:102074. [PMID: 35364487 DOI: 10.1016/j.ceb.2022.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
The majority of the proteome in eukaryotic cells is targeted to organelles. To maintain protein homeostasis (proteostasis), distinct protein quality control (PQC) machineries operate on organelles, where they detect misfolded proteins, orphaned and mis-localized proteins and selectively target these proteins into different ubiquitin-dependent or -independent degradation pathways. Thereby, PQC prevents proteotoxic effects that would disrupt organelle integrity and cause cellular damage that leads to diseases. Here, we will discuss emerging mechanisms for PQC machineries at the Golgi apparatus, the central station for the sorting and the modification of proteins that traffic to the endo-lysosomal system, or along the secretory pathway to the PM and to the extracellular space. We will focus on Golgi PQC pathways that (1) retrieve misfolded and orphaned proteins from the Golgi back to the endoplasmic reticulum, (2) extract these proteins from Golgi membranes for proteasomal degradation, (3) or selectively target these proteins to lysosomes for degradation.
Collapse
Affiliation(s)
- Sinead Schwabl
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Austria
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Austria.
| |
Collapse
|
2
|
Fote GM, Geller NR, Efstathiou NE, Hendricks N, Vavvas DG, Reidling JC, Thompson LM, Steffan JS. Isoform-dependent lysosomal degradation and internalization of apolipoprotein E requires autophagy proteins. J Cell Sci 2022; 135:jcs258687. [PMID: 34982109 PMCID: PMC8917355 DOI: 10.1242/jcs.258687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/17/2021] [Indexed: 12/09/2022] Open
Abstract
The human apolipoprotein E4 isoform (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and lysosomal dysfunction has been implicated in AD pathogenesis. We found, by examining cells stably expressing each APOE isoform, that APOE4 increases lysosomal trafficking, accumulates in enlarged lysosomes and late endosomes, alters autophagic flux and the abundance of autophagy proteins and lipid droplets, and alters the proteomic contents of lysosomes following internalization. We investigated APOE-related lysosomal trafficking further in cell culture, and found that APOE from the post-Golgi compartment is degraded through autophagy. We found that this autophagic process requires the lysosomal membrane protein LAMP2 in immortalized neuron-like and hepatic cells, and in mouse brain tissue. Several macroautophagy-associated proteins were also required for autophagic degradation and internalization of APOE in hepatic cells. The dysregulated autophagic flux and lysosomal trafficking of APOE4 that we observed suggest a possible novel mechanism that might contribute to AD pathogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gianna M. Fote
- UC Irvine Department of Biological Chemistry, 825 Health Sciences Road, Medical Sciences I, Room D240, UC Irvine School of Medicine, Irvine, CA 92697-1700, USA
| | - Nicolette R. Geller
- UC Irvine Department of Psychiatry and Human Behavior, Neuropsychiatric Center, UC Irvine Medical Center, 101 The City Drive South, Building 3, Route 88, Orange, CA 92868, USA
| | - Nikolaos E. Efstathiou
- Harvard Medical School Department of Ophthalmology, 243 Charles Street, Boston, MA 02114, USA
| | - Nathan Hendricks
- Institute for Integrative Genome Biology, UC Riverside, Eucalyptus Drive, Riverside, CA 92521, USA
| | - Demetrios G. Vavvas
- Harvard Medical School Department of Ophthalmology, 243 Charles Street, Boston, MA 02114, USA
| | - Jack C. Reidling
- UC Irvine MIND Institute, 2642 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Leslie M. Thompson
- UC Irvine Department of Biological Chemistry, 825 Health Sciences Road, Medical Sciences I, Room D240, UC Irvine School of Medicine, Irvine, CA 92697-1700, USA
- UC Irvine Department of Psychiatry and Human Behavior, Neuropsychiatric Center, UC Irvine Medical Center, 101 The City Drive South, Building 3, Route 88, Orange, CA 92868, USA
- UC Irvine MIND Institute, 2642 Biological Sciences III, Irvine, CA 92697-4545, USA
- UC Irvine Department of Neurobiology and Behavior, 2205 McGaugh Hall, Irvine, CA 92697, USA
| | - Joan S. Steffan
- UC Irvine Department of Psychiatry and Human Behavior, Neuropsychiatric Center, UC Irvine Medical Center, 101 The City Drive South, Building 3, Route 88, Orange, CA 92868, USA
- UC Irvine MIND Institute, 2642 Biological Sciences III, Irvine, CA 92697-4545, USA
| |
Collapse
|
3
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
4
|
Abstract
The mammalian Golgi apparatus is a highly dynamic organelle, which is normally localized in the juxtanuclear space and plays an essential role in the regulation of cellular homeostasis. While posttranslational modification of cargo is mediated by the resident enzymes (glycosyltransferases, glycosidases, and kinases), the ribbon structure of Golgi and its cisternal stacking mostly rely on the cooperation of coiled-coil matrix golgins. Among them, giantin, GM130, and GRASPs are unique, because they form a tripartite complex and serve as Golgi docking sites for cargo delivered from the endoplasmic reticulum (ER). Golgi undergoes significant disorganization in many pathologies associated with a block of the ER-to-Golgi or intra-Golgi transport, including cancer, different neurological diseases, alcoholic liver damage, ischemic stress, viral infections, etc. In addition, Golgi fragments during apoptosis and mitosis. Here, we summarize and analyze clinically relevant observations indicating that Golgi fragmentation is associated with the selective loss of Golgi residency for some enzymes and, conversely, with the relocation of some cytoplasmic proteins to the Golgi. The central concept is that ER and Golgi stresses impair giantin docking site but have no impact on the GM130-GRASP65 complex, thus inducing mislocalization of giantin-sensitive enzymes only. This cardinally changes the processing of proteins by eliminating the pathways controlled by the missing enzymes and by activating the processes now driven by the GM130-GRASP65-dependent proteins. This type of Golgi disorganization is different from the one induced by the cytoskeleton alteration, which despite Golgi de-centralization, neither impairs function of golgins nor alters trafficking.
Collapse
Affiliation(s)
- A Petrosyan
- College of Medicine, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE 68588, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE 68106, USA
| |
Collapse
|
5
|
Dirck AT, Whyte ML, Hudson AW. HHV-7 U21 exploits Golgi quality control carriers to reroute class I MHC molecules to lysosomes. Mol Biol Cell 2019; 31:196-208. [PMID: 31851583 PMCID: PMC7001482 DOI: 10.1091/mbc.e19-07-0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human herpesvirus-7 (HHV-7) U21 glycoprotein binds to class I major histocompatibility complex (MHC) molecules in the endoplasmic reticulum (ER) and reroutes them to lysosomes. How this single viral glycoprotein efficiently redirects the U21/class I MHC complex to the lysosomal compartment is poorly understood. To investigate the trafficking of HHV-7 U21, we followed synchronous release of U21 from the ER as it traffics through the secretory system. Sorting of integral membrane proteins from the trans-Golgi network (TGN) has been shown to occur through tubular carriers that emanate from the TGN or through vesicular carriers that recruit GGA (Golgi-localized, γ-ear–containing, ARF-binding protein), clathrin adaptors, and clathrin. Here, we present evidence for the existence of a third type of Golgi-derived carrier that is vesicular, yet clathrin independent. This U21-containing carrier also carries a Golgi membrane protein engineered to form inducible oligomers. We propose that U21 employs the novel mechanism of forming oligomeric complexes with class I MHC molecules that result in sorting of the oligomeric U21/class I MHC complexes to Golgi-derived quality control carriers destined for lysosomes.
Collapse
Affiliation(s)
- Aaron T Dirck
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Melissa L Whyte
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Amy W Hudson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
6
|
Vidal M. Exosomes: Revisiting their role as "garbage bags". Traffic 2019; 20:815-828. [PMID: 31418976 DOI: 10.1111/tra.12687] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
In recent years, the term "extracellular vesicle" (EV) has been used to define different types of vesicles released by various cells. It includes plasma membrane-derived vesicles (ectosomes/microvesicles) and endosome-derived vesicles (exosomes). Although it remains difficult to evaluate the compartment of origin of the two kinds of vesicles once released, it is critical to discriminate these vesicles because their mode of biogenesis is probably directly related to their physiologic function and/or to the physio-pathologic state of the producing cell. The purpose of this review is to specifically consider exosome secretion and its consequences in terms of a material loss for producing cells, rather than on the effects of exosomes once they are taken up by recipient cells. I especially describe one putative basic function of exosomes, that is, to convey material out of cells for off-site degradation by recipient cells. As illustrated by some examples, these components could be evacuated from cells for various reasons, for example, to promote "differentiation" or enhance homeostatic responses. This basic function might explain why so many diseases have made use of the exosomal pathway during pathogenesis.
Collapse
Affiliation(s)
- Michel Vidal
- LPHI - Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
7
|
Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol 2019; 218:3171-3187. [PMID: 31537714 PMCID: PMC6781448 DOI: 10.1083/jcb.201906047] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
8
|
Hellerschmied D, Serebrenik YV, Shao L, Burslem GM, Crews CM. Protein folding state-dependent sorting at the Golgi apparatus. Mol Biol Cell 2019; 30:2296-2308. [PMID: 31166830 PMCID: PMC6743468 DOI: 10.1091/mbc.e19-01-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, organelle-specific protein quality control (PQC) is critical for maintaining cellular homeostasis. Despite the Golgi apparatus being the major protein processing and sorting site within the secretory pathway, how it contributes to PQC has remained largely unknown. Using different chemical biology-based protein unfolding systems, we reveal the segregation of unfolded proteins from folded proteins in the Golgi. Quality control (QC) substrates are subsequently exported in distinct carriers, which likely contain unfolded proteins as well as highly oligomerized cargo that mimic protein aggregates. At an additional sorting step, oligomerized proteins are committed to lysosomal degradation, while unfolded proteins localize to the endoplasmic reticulum (ER) and associate with chaperones. These results highlight the existence of checkpoints at which QC substrates are selected for Golgi export and lysosomal degradation. Our data also suggest that the steady-state ER localization of misfolded proteins, observed for several disease-causing mutants, may have different origins.
Collapse
Affiliation(s)
| | | | - Lin Shao
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520
| | | | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology
- Department of Chemistry, Yale University, New Haven, CT 06511
- Department of Pharmacology, Yale University, New Haven, CT 06511
| |
Collapse
|
9
|
Chen Y, Gershlick DC, Park SY, Bonifacino JS. Segregation in the Golgi complex precedes export of endolysosomal proteins in distinct transport carriers. J Cell Biol 2017; 216:4141-4151. [PMID: 28978644 PMCID: PMC5716290 DOI: 10.1083/jcb.201707172] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 01/26/2023] Open
Abstract
Biosynthetic sorting of newly synthesized transmembrane cargos to endosomes and lysosomes is thought to occur at the TGN through recognition of sorting signals in the cytosolic tails of the cargos by adaptor proteins, leading to cargo packaging into coated vesicles destined for the endolysosomal system. Here we present evidence for a different mechanism in which two sets of endolysosomal proteins undergo early segregation to distinct domains of the Golgi complex by virtue of the proteins' luminal and transmembrane domains. Proteins in one Golgi domain exit into predominantly vesicular carriers by interaction of sorting signals with adaptor proteins, but proteins in the other domain exit into predominantly tubular carriers shared with plasma membrane proteins, independently of signal-adaptor interactions. These findings demonstrate that sorting of endolysosomal proteins begins at an earlier stage and involves mechanisms that partly differ from those described by classical models.
Collapse
Affiliation(s)
- Yu Chen
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sang Yoon Park
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Venkat S, Linstedt AD. Manganese-induced trafficking and turnover of GPP130 is mediated by sortilin. Mol Biol Cell 2017; 28:2569-2578. [PMID: 28768823 PMCID: PMC5597328 DOI: 10.1091/mbc.e17-05-0326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/11/2022] Open
Abstract
By binding and directing the cycling Golgi protein GPP130 to lysosomes, the sorting receptor sortilin mediates the manganese-induced GPP130 down-regulation that protects against Shiga toxicosis. Elevated, nontoxic doses of manganese (Mn) protect against Shiga toxin-1–induced cell death via down-regulation of GPP130, a cycling Golgi membrane protein that serves as an endosome-to-Golgi trafficking receptor for the toxin. Mn binds to GPP130 in the Golgi and causes GPP130 to oligomerize/aggregate, and the complexes are diverted to lysosomes. In fact, based on experiments using the self-interacting FM domain, it appears generally true that aggregation of a Golgi protein leads to its lysosomal degradation. How such oligomers are selectively sorted out of the Golgi is unknown. Here we provide evidence that Mn-induced exit of GPP130 from the trans-Golgi network (TGN) toward lysosomes is mediated by the sorting receptor sortilin interacting with the lumenal stem domain of GPP130. In contrast, FM-induced lysosomal trafficking of the Golgi protein galactosyltransferase was sortilin independent and occurred even in the absence of its native lumenal domain. Thus sortilin-dependent as well as sortilin-independent sorting mechanisms target aggregated Golgi membrane proteins for lysosomal degradation.
Collapse
Affiliation(s)
- Swati Venkat
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adam D Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
11
|
Tewari R, Bachert C, Linstedt AD. Induced oligomerization targets Golgi proteins for degradation in lysosomes. Mol Biol Cell 2015; 26:4427-37. [PMID: 26446839 PMCID: PMC4666137 DOI: 10.1091/mbc.e15-04-0207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023] Open
Abstract
Oligomerization or homotypic clustering diverts Golgi membrane proteins into the canonical GGA1/clathrin-dependent Golgi-to-lysosome pathway revealing the presence of cellular quality control that could be useful for therapies designed to down-regulate specific proteins in the secretory pathway. Manganese protects cells against forms of Shiga toxin by down-regulating the cycling Golgi protein GPP130. Down-regulation occurs when Mn binding causes GPP130 to oligomerize and traffic to lysosomes. To determine how GPP130 is redirected to lysosomes, we tested the role of GGA1 and clathrin, which mediate sorting in the canonical Golgi-to-lysosome pathway. GPP130 oligomerization was induced using either Mn or a self-interacting version of the FKBP domain. Inhibition of GGA1 or clathrin specifically blocked GPP130 redistribution, suggesting recognition of the aggregated GPP130 by the GGA1/clathrin-sorting complex. Unexpectedly, however, GPP130’s cytoplasmic domain was not required, and redistribution also occurred after removal of GPP130 sequences needed for its normal cycling. Therefore, to test whether aggregate recognition might be a general phenomenon rather than one involving a specific GPP130 determinant, we induced homo-oligomerization of two unrelated Golgi-targeted constructs using the FKBP strategy. These were targeted to the cis- and trans-Golgi, respectively, using domains from mannosidase-1 and galactosyltransferase. Significantly, upon oligomerization, each redistributed to peripheral punctae and was degraded. This occurred in the absence of detectable UPR activation. These findings suggest the unexpected presence of quality control in the Golgi that recognizes aggregated Golgi proteins and targets them for degradation in lysosomes.
Collapse
Affiliation(s)
- Ritika Tewari
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Collin Bachert
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adam D Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
12
|
Tewari R, Jarvela T, Linstedt AD. Manganese induces oligomerization to promote down-regulation of the intracellular trafficking receptor used by Shiga toxin. Mol Biol Cell 2014; 25:3049-58. [PMID: 25079690 PMCID: PMC4230593 DOI: 10.1091/mbc.e14-05-1003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Manganese down-regulates the Shiga toxin receptor GPP130, which protects against lethal toxin doses. This study reveals a major aspect of the mechanism. Manganese binds GPP130, inducing GPP130 oligomerization, which is required and sufficient to redirect GPP130 out of the Golgi toward lysosomes. Manganese (Mn) protects cells against lethal doses of purified Shiga toxin by causing the degradation of the cycling transmembrane protein GPP130, which the toxin uses as a trafficking receptor. Mn-induced GPP130 down-regulation, in addition to being a potential therapeutic approach against Shiga toxicosis, is a model for the study of metal-regulated protein sorting. Significantly, however, the mechanism by which Mn regulates GPP130 trafficking is unknown. Here we show that a transferable trafficking determinant within GPP130 bound Mn and that Mn binding induced GPP130 oligomerization in the Golgi. Alanine substitutions blocking Mn binding abrogated both oligomerization of GPP130 and GPP130 sorting from the Golgi to lysosomes. Further, oligomerization was sufficient because forced aggregation, using a drug-controlled polymerization domain, redirected GPP130 to lysosomes in the absence of Mn. These experiments reveal metal-induced oligomerization as a Golgi sorting mechanism for a medically relevant receptor for Shiga toxin.
Collapse
Affiliation(s)
- Ritika Tewari
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Timothy Jarvela
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adam D Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
13
|
Human herpesvirus 7 U21 tetramerizes to associate with class I major histocompatibility complex molecules. J Virol 2014; 88:3298-308. [PMID: 24390327 DOI: 10.1128/jvi.02639-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The U21 gene product from human herpesvirus 7 binds to and redirects class I major histocompatibility complex (MHC) molecules to a lysosomal compartment. The molecular mechanism by which U21 reroutes class I MHC molecules to lysosomes is not known. Here, we have reconstituted the interaction between purified soluble U21 and class I MHC molecules, suggesting that U21 does not require additional cellular proteins to interact with class I MHC molecules. Our results demonstrate that U21, itself predicted to contain an MHC class I-like protein fold, interacts tightly with class I MHC molecules as a tetramer, in a 4:2 stoichiometry. These observations have helped to elucidate a refined model describing the mechanism by which U21 escorts class I MHC molecules to the lysosomal compartment. IMPORTANCE In this report, we show that the human herpesvirus 7 (HHV-7) immunoevasin U21, itself a class I MHC-like protein, binds with high affinity to class I MHC molecules as a tetramer and escorts them to lysosomes, where they are degraded. While many class I MHC-like molecules have been described in detail, this unusual viral class I-like protein functions as a tetramer, associating with class I MHC molecules in a 4:2 ratio, illuminating a functional significance of homooligomerization of a class I MHC-like protein.
Collapse
|
14
|
Averna M, Pedrazzi M, Minicucci L, De Tullio R, Cresta F, Salamino F, Pontremoli S, Melloni E. Calpain inhibition promotes the rescue of F(508)del-CFTR in PBMC from cystic fibrosis patients. PLoS One 2013; 8:e66089. [PMID: 23785472 PMCID: PMC3681946 DOI: 10.1371/journal.pone.0066089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023] Open
Abstract
A basal calpain activity promotes the limited proteolysis of wild type (WT) cystic fibrosis conductance regulator (CFTR), inducing the internalization of the split channel. This process contributes to the regulation in the level of the active CFTR at the plasma membranes. In peripheral blood mononuclear cells (PBMC) from 16 healthy donors, the inhibition of calpain activity induces a 3-fold increase in the amount of active WT CFTR at the plasma membranes. Instead, in PBMC from cystic fibrosis (CF) patients, calpain activity is expressed at aberrant levels causing the massive removal of F508del-CFTR from the cell surface. In these patients, the inhibition of such abnormal proteolysis rescues physiological amounts of active mutated CFTR in 90% of the patients (25 over 28). The recovery of functional F508del-CFTR at the physiological location, in cells treated with a synthetic calpain inhibitor, indicates that F508del-CFTR folding, maturation, and trafficking operate in CF-PBMC at significant rate. Thus, an increase in the basal calpain activity seems primarily involved in the CFTR defect observed in various CF cells. Furthermore, in CF-PBMC the recovery of the scaffolding protein Na+/H+ exchanger regulatory factor 1 (NHERF-1), occurring following inhibition of the aberrant calpain activity, can contribute to rescue CFTR-functional clusters.
Collapse
Affiliation(s)
- Monica Averna
- Department of Experimental Medicine (DIMES) - Biochemistry Section, and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Molinski S, Eckford PDW, Pasyk S, Ahmadi S, Chin S, Bear CE. Functional Rescue of F508del-CFTR Using Small Molecule Correctors. Front Pharmacol 2012; 3:160. [PMID: 23055971 PMCID: PMC3458236 DOI: 10.3389/fphar.2012.00160] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/17/2012] [Indexed: 01/21/2023] Open
Abstract
High-throughput screens for small molecules that are effective in “correcting” the functional expression of F508del-CFTR have yielded several promising hits. Two such compounds are currently in clinical trial. Despite this success, it is clear that further advances will be required in order to restore 50% or greater of wild-type CFTR function to the airways of patients harboring the F508del-CFTR protein. Progress will be enhanced by our better understanding of the molecular and cellular defects caused by the F508del mutation, present in 90% of CF patients. The goal of this chapter is to review the current understanding of defects caused by F508del in the CFTR protein and in CFTR-mediated interactions important for its biosynthesis, trafficking, channel function, and stability at the cell surface. Finally, we will discuss the gaps in our knowledge regarding the mechanism of action of existing correctors, the unmet need to discover compounds which restore proper CFTR structure and function in CF affected tissues and new strategies for therapy development.
Collapse
Affiliation(s)
- Steven Molinski
- Programme in Molecular Structure and Function, Research Institute, Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, University of Toronto Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Preininger A, Schlokat U, Mohr G, Himmelspach M, Stichler V, Kyd-Rebenburg A, Plaimauer B, Turecek PL, Schwarz HP, Wernhart W, Fischer BE, Dorner F. Strategies for recombinant Furin employment in a biotechnological process: complete target protein precursor cleavage. Cytotechnology 2011; 30:1-16. [PMID: 19003349 DOI: 10.1023/a:1008030407679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coagulation factors, amongst many other proteins, often require posttranslational endoproteolytic processing for maturation. Upon high yield expression of recombinant forms of these proteins, processing frequently becomes severely limiting, resulting in a hampered function of the protein. In this report, the human endoprotease Furin was used to achieve complete propeptide removal from recombinant von Willebrand Factor (rvWF) precursors in CHO cells. At expression beyond 200 ng rvWF/106 cells x day, processing became insufficient. Stable co- and overexpression of full length Furin resulted in complete precursor cleavage in cell clones expressing 2 mug rvWF/106 cells x day. Rather than occuring intracellularly, processing was found to be mediated by a naturally secreted form of rFurin, present in 100 fold higher concentrations than endogenous Furin and accumulating in the cell culture supernatant. Attempts to increase rFurin yield by amplification, in order to ensure complete rvWF precursor processing at expression rates beyond 2 mug rvWF/106 cells x day, failed. Truncation of the trans-membrane domain resulted in immediate secretion of rFurin and approximately 10 fold higher concentrations in the conditioned medium. In cases where these high rFurin concentrations are not sufficient to ensure complete processing, an in vitro downstream processing procedure has to be established. Secreted affinity epitope-tagged rFurin derivatives were constructed, the fate of which, at expression, was dependent on the size of the C-terminal truncation and the type of the heterologous epitope added. A suitable candidate was purified by a one step affinity procedure, and successfully used for in vitro processing. This allows complete proteolytic processing of large amounts of precursor molecules by comparably small quantities of rFurin. Complete precursor cleavage of a target protein at expression rates of up to approximately 200 ng, 2 mug, and 20 mug, as well as beyond 20 mug/106 cells x day can thus be anticipated to be accomplished by endogenous Furin, additional expression of full length rFurin, co-expression of truncated and hence secreted rFurin, and a protein-chemical in vitro procedure, respectively.
Collapse
Affiliation(s)
- A Preininger
- IMMUNO Division of BAXTER, Biomedical Research Center, Uferstrasse 15, 2304, Orth/Donau, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kwon S, Christian JL. Sortilin associates with transforming growth factor-beta family proteins to enhance lysosome-mediated degradation. J Biol Chem 2011; 286:21876-85. [PMID: 21521695 PMCID: PMC3122242 DOI: 10.1074/jbc.m111.228262] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/15/2011] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor (TGF)-β family proteins are synthesized as precursors that are cleaved to generate an active ligand. Previous studies suggest that TGF-β activity can be controlled by lysosomal degradation of both precursor proteins and ligands, but how these soluble proteins are trafficked to the lysosome is incompletely understood. The current studies show that sortilin selectively co-immunoprecipitates with the cleaved prodomain and/or precursor form of TGF-β family members. Furthermore, sortilin co-localizes with, and enhances accumulation of a nodal family member in the Golgi. Co-expression of sortilin with TGF-β family members leads to decreased accumulation of precursor proteins and cleavage products and this is attenuated by lysosomal, but not proteosomal inhibitors. In Xenopus embryos, overexpression of sortilin leads to a decrease in phospho-Smad2 levels and phenocopies loss of nodal signaling. Conversely, down-regulation of sortilin expression in HeLa cells leads to an up-regulation of endogenous bone morphogenic protein pathway activation, as indicated by an increase in phospho-Smad1/5/8 levels. Our results suggest that sortilin negatively regulates TGF-β signaling by diverting trafficking of precursor proteins to the lysosome during transit through the biosynthetic pathway.
Collapse
Affiliation(s)
- Sunjong Kwon
- From the Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Jan L. Christian
- From the Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
18
|
Exit from the trans-Golgi network: from molecules to mechanisms. Curr Opin Cell Biol 2011; 23:443-51. [PMID: 21550789 DOI: 10.1016/j.ceb.2011.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/07/2011] [Accepted: 03/22/2011] [Indexed: 11/23/2022]
Abstract
The trans-Golgi network is a major sorting platform of the secretory pathway from which proteins and lipids, both newly synthesized and retrieved from endocytic compartments, are targeted to different destinations. These sorting processes occur during the formation of pleomorphic tubular-vesicular carriers. The past years have provided insights into basic mechanisms coordinating the spatial and temporal organization of machineries necessary for the segregation of membrane components into distinct microdomains, for the bending, elongation, and fission of corresponding membranes, thus revealing a complex interplay of protein-protein and protein-lipid interactions.
Collapse
|
19
|
Abstract
A temperature-sensitive chimeric transmembrane protein reveals a mechanism for disposing misfolded proteins that make it to the plasma membrane. Cellular protein homeostasis profoundly depends on the disposal of terminally damaged polypeptides. To demonstrate the operation and elucidate the molecular basis of quality control of conformationally impaired plasma membrane (PM) proteins, we constructed CD4 chimeras containing the wild type or a temperature-sensitive bacteriophage λ domain in their cytoplasmic region. Using proteomic, biochemical, and genetic approaches, we showed that thermal unfolding of the λ domain at the PM provoked the recruitment of Hsp40/Hsc70/Hsp90 chaperones and the E2–E3 complex. Mixed-chain polyubiquitination, monitored by bioluminescence resonance energy transfer and immunoblotting, is responsible for the nonnative chimera–accelerated internalization, impaired recycling, and endosomal sorting complex required for transport–dependent lysosomal degradation. A similar paradigm prevails for mutant dopamine D4.4 and vasopressin V2 receptor removal from the PM. These results outline a peripheral proteostatic mechanism in higher eukaryotes and its potential contribution to the pathogenesis of a subset of conformational diseases.
Collapse
Affiliation(s)
- Pirjo M Apaja
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | | | | |
Collapse
|
20
|
Skinner JR, Shew TM, Schwartz DM, Tzekov A, Lepus CM, Abumrad NA, Wolins NE. Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. J Biol Chem 2009; 284:30941-8. [PMID: 19748893 PMCID: PMC2781494 DOI: 10.1074/jbc.m109.013995] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/01/2009] [Indexed: 12/21/2022] Open
Abstract
Fatty acid-induced triacylglycerol synthesis produces triacylglycerol droplets with a protein coat that includes perilipin 3/TIP47 and perilipin 4/S3-12. This study addresses the following two questions. Where do lipid droplets emerge, and how are their coat proteins recruited? We show that perilipin 3- and perilipin 4-coated lipid droplets emerge along the endoplasmic reticulum (ER). Blocking membrane trafficking with AlF(4)(-) during fatty acid-induced triacylglycerol synthesis drove perilipin 3 to the tubular ER. Forskolin, which like AlF(4)(-) activates adenylate cyclase, did not redistribute perilipin 3, but when added together with AlF(4)(-) perilipin 3 was recruited to lipid droplets rather than the ER. Thus inhibiting trafficking with AlF(4)(-) redistributed perilipin 3 differently under conditions of triacylglycerol synthesis (fatty acid addition) versus hydrolysis (forskolin) suggesting a shared acylglycerol-mediated mechanism. We tested whether diacylglycerol (DG), the immediate precursor of triacylglycerol and its first hydrolytic product, affects the distribution of perilipin 3. Stabilizing DG with the DG lipase inhibitor RHC80267 enhanced the perilipin 3 recruited to lipid droplets and raised DG levels in this fraction. Treating cells with a membrane-permeable DG recruited perilipin 3 to the ER. Stabilizing DG, by blocking its hydrolysis with RHC80267 or its acylation with triacsin C, enhanced recruitment of perilipin 3 to the ER. Expressing the ER enzyme DGAT1, which removes DG by converting it to triacylglycerol, attenuated perilipin 3 DG-induced ER recruitment. Membrane-permeable DG also drove perilipin 4 and 5 onto the ER. Together the data suggest that these lipid droplet proteins are recruited to DG-enriched membranes thereby linking lipid coat proteins to the metabolic state of the cell.
Collapse
Affiliation(s)
| | | | | | | | | | - Nada A. Abumrad
- From the Center for Human Nutrition and
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
21
|
Ashok A, Hegde RS. Selective processing and metabolism of disease-causing mutant prion proteins. PLoS Pathog 2009; 5:e1000479. [PMID: 19543376 PMCID: PMC2691595 DOI: 10.1371/journal.ppat.1000479] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/18/2009] [Indexed: 11/18/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by aberrant metabolism of the cellular prion protein (PrPC). In genetic forms of these diseases, mutations in the globular C-terminal domain are hypothesized to favor the spontaneous generation of misfolded PrP conformers (including the transmissible PrPSc form) that trigger downstream pathways leading to neuronal death. A mechanistic understanding of these diseases therefore requires knowledge of the quality control pathways that recognize and degrade aberrant PrPs. Here, we present comparative analyses of the biosynthesis, trafficking, and metabolism of a panel of genetic disease-causing prion protein mutants in the C-terminal domain. Using quantitative imaging and biochemistry, we identify a misfolded subpopulation of each mutant PrP characterized by relative detergent insolubility, inaccessibility to the cell surface, and incomplete glycan modifications. The misfolded populations of mutant PrPs were neither recognized by ER quality control pathways nor routed to ER-associated degradation despite demonstrable misfolding in the ER. Instead, mutant PrPs trafficked to the Golgi, from where the misfolded subpopulation was selectively trafficked for degradation in acidic compartments. Surprisingly, selective re-routing was dependent not only on a mutant globular domain, but on an additional lysine-based motif in the highly conserved unstructured N-terminus. These results define a specific trafficking and degradation pathway shared by many disease-causing PrP mutants. As the acidic lysosomal environment has been implicated in facilitating the conversion of PrPC to PrPSc, our identification of a mutant-selective trafficking pathway to this compartment may provide a cell biological basis for spontaneous generation of PrPSc in familial prion disease. Prion diseases are transmissible fatal neurodegenerative diseases caused by aberrant metabolism of the cellular prion protein (PrPC). The transmissible agent is PrPSc, a misfolded version (conformer) of PrP capable of converting PrPC into PrPSc. PrPSc can be generated de novo in inherited prion diseases due to synthesis of aberrant PrP forms from a mutated PrP gene. Such mutant PrP forms, analogous to other aberrant proteins, should typically be destroyed by various cellular ‘quality control’ (QC) pathways; however, several human diseases result from an eventual breakdown in these QC systems, often due to prolonged bombardment by mutant proteins. We have therefore sought to identify the specific pathways that normally cope with disease-causing misfolded PrPs. By carefully following the generation and turnover of these mutant PrPs in cells, we have discovered an intracellular QC pathway that selectively routes biochemically aberrant PrP species to lysosomes. As the lysosomal system has been implicated as a site for conversion of PrPC to PrPSc, our identification of a mutant-selective trafficking pathway to this compartment may provide a cell biological basis for spontaneous generation of PrPSc in familial prion disease. Importantly, these findings suggest that eventual changes or breakdown of this QC pathway may contribute to disease progression.
Collapse
Affiliation(s)
- Aarthi Ashok
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ramanujan S. Hegde
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ikonomov OC, Fligger J, Sbrissa D, Dondapati R, Mlak K, Deeb R, Shisheva A. Kinesin adapter JLP links PIKfyve to microtubule-based endosome-to-trans-Golgi network traffic of furin. J Biol Chem 2009; 284:3750-61. [PMID: 19056739 PMCID: PMC2635046 DOI: 10.1074/jbc.m806539200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/10/2008] [Indexed: 11/06/2022] Open
Abstract
JIPs (c-Jun N-terminal kinase interacting proteins), which scaffold JNK/p38 MAP kinase signaling modules, also bind conventional kinesins and are implicated in microtubule-based membrane trafficking in neuronal cells. Here we have identified a novel splice variant of the Jip4 gene product JLP(L) (JNK-interacting leucine zipper protein) in yeast-two hybrid screens with the phosphoinositide kinase PIKfyve. The interaction was confirmed by pulldown and coimmunoprecipitation assays in native cells. It engages the PIKfyve cpn60_TCP1 consensus sequence and the last 75 residues of the JLP C terminus. Subpopulations of both proteins cofractionated and populated similar structures at the cell perinuclear region. Because PIKfyve is essential in endosome-to-trans-Golgi network (TGN) cargo transport, we tested whether JLP is a PIKfyve functional partner in this trafficking pathway. Short interfering RNA (siRNA)-mediated depletion of endogenous JLP or PIKfyve profoundly delayed the microtubule-based transport of chimeric furin (Tac-furin) from endosomes to the TGN in a CHO cell line, which was rescued upon ectopic expression of siRNA-resistant JLP or PIKfyve constructs. Peptides from the contact sites in PIKfyve and JLP, or a dominant-negative PIKfyve mutant introduced into cells by ectopic expression or microinjection, induced a similar defect. Because Tac-TGN38 delivery from endosomes to the TGN, unlike that of Tac-furin, does not require intact microtubules, we monitored the effect of JLP and PIKfyve depletion or the interacting peptides administration on Tac-TGN38 trafficking. Remarkably, neither maneuver altered the Tac-TGN38 delivery to the TGN. Our data indicate that JLP interacts with PIKfyve and that both proteins and their association are required in microtubule-based, but not in microtubule-independent, endosome-to-TGN cargo transport.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ashok A, Hegde RS. Prions and retroviruses: an endosomal rendezvous? EMBO Rep 2006; 7:685-7. [PMID: 16819462 PMCID: PMC1500823 DOI: 10.1038/sj.embor.7400749] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 05/31/2006] [Indexed: 12/12/2022] Open
Affiliation(s)
- Aarthi Ashok
- Cell Biology and Metabolism Branch of the National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Drive, Building 18, Room 101, Bethesda, MD 20892, USA
| | - Ramanujan S Hegde
- Cell Biology and Metabolism Branch of the National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Drive, Building 18, Room 101, Bethesda, MD 20892, USA
- Tel: +1 301 496 4855; Fax: +1 301 402 0078;
| |
Collapse
|
24
|
Theos AC, Truschel ST, Tenza D, Hurbain I, Harper DC, Berson JF, Thomas PC, Raposo G, Marks MS. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell 2006; 10:343-54. [PMID: 16516837 PMCID: PMC1773005 DOI: 10.1016/j.devcel.2006.01.012] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/19/2005] [Accepted: 01/11/2006] [Indexed: 11/21/2022]
Abstract
Cargo partitioning into intralumenal vesicles (ILVs) of multivesicular endosomes underlies such cellular processes as receptor downregulation, viral budding, and biogenesis of lysosome-related organelles such as melanosomes. We show that the melanosomal protein Pmel17 is sorted into ILVs by a mechanism that is dependent upon lumenal determinants and conserved in non-pigment cells. Pmel17 targeting to ILVs does not require its native cytoplasmic domain or cytoplasmic residues targeted by ubiquitylation and, unlike sorting of ubiquitylated cargo, is insensitive to functional inhibition of Hrs and ESCRT complexes. Chimeric protein and deletion analyses indicate that two N-terminal lumenal subdomains are necessary and sufficient for ILV targeting. Pmel17 fibril formation, which occurs during melanosome maturation in melanocytes, requires a third lumenal subdomain and proteolytic processing that itself requires ILV localization. These results establish an Hrs- and perhaps ESCRT-independent pathway of ILV sorting by lumenal determinants and a requirement for ILV sorting in fibril formation.
Collapse
Affiliation(s)
- Alexander C. Theos
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Steven T. Truschel
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | | | - Ilse Hurbain
- Institut Curie, CNRS-UMR144, Paris, Cedex 75005,
France
| | - Dawn C. Harper
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Joanne F. Berson
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Penelope C. Thomas
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Graça Raposo
- Institut Curie, CNRS-UMR144, Paris, Cedex 75005,
France
| | - Michael S. Marks
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
- ‡To whom correspondence should be addressed: Dept. of
Pathology and Laboratory Medicine, Univ. of Pennsylvania School of Medicine, 513
Stellar Chance Labs/6100, Philadelphia, PA 19104-6100, Phone: 215-898-3204, FAX:
215-573-4345,
| |
Collapse
|
25
|
Feliciangeli SF, Thomas L, Scott GK, Subbian E, Hung CH, Molloy SS, Jean F, Shinde U, Thomas G. Identification of a pH sensor in the furin propeptide that regulates enzyme activation. J Biol Chem 2006; 281:16108-16. [PMID: 16601116 PMCID: PMC4293020 DOI: 10.1074/jbc.m600760200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folding and activation of furin occur through two pH- and compartment-specific autoproteolytic steps. In the endoplasmic reticulum (ER), profurin folds under the guidance of its prodomain and undergoes an autoproteolytic excision at the consensus furin site Arg-Thr-Lys-Arg107/ generating an enzymatically masked furin-propeptide complex competent for transport to late secretory compartments. In the mildly acidic environment of the trans-Golgi network/endosomal system, the bound propeptide is cleaved at the internal site 69HRGVTKR75/, unmasking active furin capable of cleaving substrates in trans. Here, by using cellular, biochemical, and modeling studies, we demonstrate that the conserved His69 is a pH sensor that regulates the compartment-specific cleavages of the propeptide. In the ER, unprotonated His69 stabilizes a solvent-accessible hydrophobic pocket necessary for autoproteolytic excision at Arg107. Profurin molecules unable to form the hydrophobic pocket, and hence, the furin-propeptide complex, are restricted to the ER by a PACS-2- and COPI-dependent mechanism. Once exposed to the acidic pH of the late secretory pathway, protonated His69 disrupts the hydrophobic pocket, resulting in exposure and cleavage of the internal cleavage site at Arg75 to unmask the enzyme. Together, our data explain the pH-regulated activation of furin and how this His-dependent regulatory mechanism is a model for other proteins.
Collapse
Affiliation(s)
| | - Laurel Thomas
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Gregory K. Scott
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Ezhilkani Subbian
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Chien-Hui Hung
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Sean S. Molloy
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - François Jean
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Gary Thomas
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
- To whom correspondence should be addressed: Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239. Tel.: 503-494-6955; Fax: 503-494-1218;
| |
Collapse
|
26
|
Radtke S, Jörissen A, de Leur HSV, Heinrich PC, Behrmann I. Three Dileucine-like Motifs within the Interbox1/2 Region of the Human Oncostatin M Receptor Prevent Efficient Surface Expression in the Absence of an Associated Janus Kinase. J Biol Chem 2006; 281:4024-34. [PMID: 16286453 DOI: 10.1074/jbc.m511779200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The oncostatin M receptor (OSMR) is part of receptor complexes for oncostatin M and interleukin-31. Signaling events are triggered by Jaks (Janus kinases) that constitutively bind to membrane-proximal receptor regions. Besides their established role in signaling, Jaks are involved in the regulation of the surface expression of several cytokine receptors. Here, we analyzed the structural requirements within the human OSMR that underlie its limited surface expression in the absence of associated Jaks. We identified three dileucine-like motifs within the Jak-binding region of the OSMR that control receptor surface and overall expression. A receptor mutant in which all three motifs were mutated to alanine displayed markedly increased surface expression. Although the surface half-life of this mutant was increased compared with that of the wild-type receptor, no difference in the internalization rate was detectable, implying that these receptors differ in their post-endocytic fate. The protein stability of the wild-type receptor was markedly lower than that of mutant receptors, but could be strongly increased in the presence of the lysosomal inhibitor chloroquine. Our data are consistent with the dileucine motifs being involved in destabilization of receptors devoid of associated Jaks as part of a quality control ensuring signaling competence of OSMRs.
Collapse
Affiliation(s)
- Simone Radtke
- Institut für Biochemie, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen, Germany
| | | | | | | | | |
Collapse
|
27
|
Nunziante M, Kehler C, Maas E, Kassack MU, Groschup M, Schätzl HM. Charged bipolar suramin derivatives induce aggregation of the prion protein at the cell surface and inhibit PrPSc replication. J Cell Sci 2005; 118:4959-73. [PMID: 16219680 DOI: 10.1242/jcs.02609] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conversion of the cellular prion protein (PrPc) into a pathogenic isoform (PrP(Sc)) is one of the underlying events in the pathogenesis of the fatal transmissible spongiform encephalopathies (TSEs). Numerous compounds have been described to inhibit prion replication and PrP(Sc) accumulation in cell culture. Among these, the drug suramin induces aggregation and re-targeting of PrPc to endocytic compartments. Plasma membrane and sites of conversion into PrP(Sc) are thereby bypassed. In the present study, a library of suramin analogues was tested as a potential class of new anti-prion compounds and the molecular mechanisms underlying these effects were analysed. Treatment of prion-infected neuroblastoma cells with compounds containing symmetrical aromatic sulfonic acid substitutions inhibited de novo synthesis of PrP(Sc) and induced aggregation and reduction of the half-life of PrPc without downregulating PrPc cell surface expression. Half-molecule compounds lacking the symmetrical bipolar structure or the anionic groups had no effect on PrP(Sc) synthesis or PrPc solubility. Cell surface expression of PrPc was necessary for the activity of effective compounds. Suramin derivatives did not induce aggregation of PrPc when transport along the secretory pathway was compromised, suggesting that their effects occur at a post trans-Golgi network (TGN) site, possibly close to the compartment of conversion into PrP(Sc). In vitro studies with recombinant PrP demonstrated that the inhibitory effect correlated with direct binding to PrP and induction of insoluble PrP aggregates. Our data reveal an anti-prion effect that differs from those characterising other sulphated polyanions and is dependent on the presence of the symmetrical anionic structure of these molecules.
Collapse
Affiliation(s)
- Max Nunziante
- Prion Research Group, Institute of Virology, Technical University of Munich, Biedersteiner-Str. 29, 80802 Munich, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Receptors, hormones, enzymes, ion channels, and structural components of the cell are created by the act of protein synthesis. Synthesis alone is insufficient for proper function, of course; for a cell to operate effectively, its components must be correctly compartmentalized. The mechanism by which proteins maintain the fidelity of localization warrants attention in light of the large number of different molecules that must be routed to distinct subcellular loci, the potential for error, and resultant disease. This review summarizes diseases known to have etiologies based on defective protein folding or failure of the cell's quality control apparatus and presents approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Cecilia Castro-Fernández
- Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
29
|
Coers J, Ranft C, Skoda RC. A truncated isoform of c-Mpl with an essential C-terminal peptide targets the full-length receptor for degradation. J Biol Chem 2004; 279:36397-404. [PMID: 15210714 DOI: 10.1074/jbc.m401386200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Thrombopoietin and its cognate receptor c-Mpl are the primary regulators of megakaryopoiesis and platelet production. They also play an important role in the maintenance of hematopoietic stem cells. Here, we have analyzed the function of a truncated Mpl receptor isoform (Mpl-tr), which results from alternative splicing. The mpl-tr variant is the only alternate mpl isoform conserved between mouse and humans, suggesting a relevant function in regulating Mpl signaling. Despite the presence of a signal peptide and the lack of a transmembrane domain, Mpl-tr is retained intracellularly. Our results provide evidence that Mpl-tr exerts a dominant-negative effect on thrombopoietin-dependent cell proliferation and survival. We demonstrate that this inhibitory effect is due to down-regulation of the full-length Mpl protein. The C terminus of Mpl-tr, consisting of 30 amino acids of unique sequence, is essential for the suppression of thrombopoietin-dependent proliferation and Mpl protein down-regulation. Cathepsin inhibitor-1 (CATI-1), an inhibitor of cathepsin-like cysteine proteases, counteracts the effect of Mpl-tr on Mpl protein expression, suggesting that Mpl-tr targets Mpl for lysosomal degradation. Together, these data suggest a new paradigm for the regulation of cytokine receptor expression and function through a proteolytic process directed by a truncated isoform of the same receptor.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Research, Experimental Hematology, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | |
Collapse
|
30
|
Sharma M, Pampinella F, Nemes C, Benharouga M, So J, Du K, Bache KG, Papsin B, Zerangue N, Stenmark H, Lukacs GL. Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. ACTA ACUST UNITED AC 2004; 164:923-33. [PMID: 15007060 PMCID: PMC2172283 DOI: 10.1083/jcb.200312018] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the degradation mechanism of misfolded membrane proteins from the cell surface, we used mutant cystic fibrosis transmembrane conductance regulators (CFTRs) exhibiting conformational defects in post-Golgi compartments. Here, we show that the folding state of CFTR determines the post-endocytic trafficking of the channel. Although native CFTR recycled from early endosomes back to the cell surface, misfolding prevented recycling and facilitated lysosomal targeting by promoting the ubiquitination of the channel. Rescuing the folding defect or down-regulating the E1 ubiquitin (Ub)-activating enzyme stabilized the mutant CFTR without interfering with its internalization. These observations with the preferential association of mutant CFTRs with Hrs, STAM-2, TSG101, hVps25, and hVps32, components of the Ub-dependent endosomal sorting machinery, establish a functional link between Ub modification and lysosomal degradation of misfolded CFTR from the cell surface. Our data provide evidence for a novel cellular mechanism of CF pathogenesis and suggest a paradigm for the quality control of plasma membrane proteins involving the coordinated function of ubiquitination and the Ub-dependent endosomal sorting machinery.
Collapse
Affiliation(s)
- Manu Sharma
- Hospital for Sick Children, Program in Cell and Lung Biology, 555 University Ave., Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Collette J, Bocock JP, Ahn K, Chapman RL, Godbold G, Yeyeodu S, Erickson AH. Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:1-51. [PMID: 15548418 DOI: 10.1016/s0074-7696(04)41001-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Upregulation of cathepsin L expression, whether during development or cell transformation, or mediated by ectopic expression from a plasmid, alters the targeting of the protease and thus its physiological function. Upregulated procathepsin L is targeted to small dense core vesicles and to the dense cores of multivesicular bodies, as well as to lysosomes and to the plasma membrane for selective secretion. The multivesicular vesicles resemble secretory lysosomes characterized in specialized cell types in that they are endosomes that stably store an upregulated protein and they possess the tetraspanin CD63. Morphologically the multivesicular endosomes also resemble late endosomes, but they store procathepsin L, not the active protease, and they are not the major site for LAMP-1 accumulation. Distinction between the lysosomal proenzyme and active protease thus identifies two populations of multivesicular endosomes in fibroblasts, one a storage compartment and one an enzymatically active compartment. A distinctive targeting pathway using aggregation is utilized to enrich the storage endosomes with a particular lysosomal protease that can potentially activate and be secreted.
Collapse
Affiliation(s)
- John Collette
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, Florida 33101 USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The biosynthesis of secretory and membrane proteins in the endoplasmic reticulum (ER) yields mostly properly folded and assembled structures with full biological activity. Such fidelity is maintained by quality control (QC) mechanisms that avoid the production of nonnative structures. QC relies on chaperone systems in the ER that monitor and assist in the folding process. When folding promotion is not sufficient, proteins are retained in the ER and eventually retranslocated to the cytosol for degradation by the ubiquitin proteasome pathway. Retention of proteins that fail QC can sometimes occur beyond the ER, and degradation can take place in lysosomes. Several diseases are associated with proteins that do not pass QC, fail to be degraded efficiently, and accumulate as aggregates. In other cases, pathology arises from the downregulation of mutated but potentially functional proteins that are retained and degraded by the QC system.
Collapse
Affiliation(s)
- E Sergio Trombetta
- Department of Cell Biology, Yale University School of Medicine, PO Box 208002, New Haven, Connecticut 06520-8002, USA.
| | | |
Collapse
|
33
|
Rosen H, Gao Y, Johnsson E, Olsson I. Artificially controlled aggregation of proteins and targeting in hematopoietic cells. J Leukoc Biol 2003; 74:800-9. [PMID: 12960262 DOI: 10.1189/jlb.0203066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The targeting mechanisms for granule proteins in hematopoietic cells are largely unknown. Aggregation is believed to be important for protein sorting-for-entry and sorting-by-retention in endocrine and neuroendocrine cells. We asked whether artificially induced multimerization/aggregation of chimeric proteins could affect their sorting in hematopoietic cells. A system was used that permits ligand-controlled intracellular oligomerization of hybrid proteins containing the FK506-binding protein (FKBP). The hybrid proteins ELA-(FKBP)3 with neutrophil elastase (ELA) and (FKBP*)4-FCS-hGH with a furin cleavage site (FCS) and human growth hormone (hGH) were expressed in the myeloblastic 32D and the rat basophilic leukemia (RBL-1) hematopoietic cell lines. ELA alone is normally targeted to secretory lysosomes. However, the hybrid proteins and ligand-induced aggregates of them were constitutively secreted and not targeted. The hGH that was released at the FCS in (FKBP*)4-FCS-hGH was also constitutively secreted. We conclude that protein multimerization/aggregation per se is not enough to facilitate sorting-for-entry to secretory lysosomes in hematopoietic cells and that improperly folded proteins may be eliminated from sorting by constitutive secretion.
Collapse
|
34
|
Arnaoutova I, Smith AM, Coates LC, Sharpe JC, Dhanvantari S, Snell CR, Birch NP, Loh YP. The prohormone processing enzyme PC3 is a lipid raft-associated transmembrane protein. Biochemistry 2003; 42:10445-55. [PMID: 12950171 DOI: 10.1021/bi034277y] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthesis of most biologically active peptides involves the action of prohomone convertases, including PC3 (also known as PC1), that catalyze limited proteolysis of precursor proteins. Proteolysis of prohormones occurs mainly in the granules of the regulated secretory pathway. It has been proposed that the targeting of these processing enzymes to secretory granules involves their association with lipid rafts in granule membranes. We now provide evidence for the interaction of the 86 and 64 kDa forms of PC3 with secretory granule membranes. Furthermore, both forms of PC3 were resistant to extraction with TX-100, were floated to low-density fractions in sucrose gradients, and were partially extracted upon cholesterol depletion by methyl-beta-cyclodextrin, indicating that they were associated with lipid rafts in the membranes. Protease protection assays, immunolabeling, and biotinylation of proteins in intact secretory granules identified an approximately 115-residue cytoplasmic tail for 86 kDa PC3. Using two-dimensional gel electrophoresis and a specific antibody, a novel, raft-associated form of 64 kDa PC3 that contains a transmembrane domain consisting of residues 619-638 was identified. This form was designated as 64 kDa PC3-TM, and differs from the 64 kDa mature form of PC3. We present a model of the membrane topology of PC3, where it is anchored to lipid rafts in secretory granule membranes via the transmembrane domain. We demonstrate that the transmembrane domain of PC3 alone was sufficient to target the extracellular domain of the IL2 receptor alpha-subunit (Tac) to secretory granules.
Collapse
Affiliation(s)
- Irina Arnaoutova
- Section on Cellular Neurobiology, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gao Y, Rosén H, Johnsson E, Calafat J, Tapper H, Olsson I. Sorting of soluble TNF-receptor for granule storage in hematopoietic cells as a principle for targeting of selected proteins to inflamed sites. Blood 2003; 102:682-8. [PMID: 12649164 DOI: 10.1182/blood-2002-10-3055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic cells have secretory lysosomes that degranulate at the inflammatory site upon stimulation. We asked whether one could target exogenous proteins with a therapeutic potential to secretory lysosomes in hematopoietic cells. For this purpose, we expressed a soluble tumor necrosis factor (TNF) receptor form (sTNFR1) in hematopoietic cell lines. In order to accomplish targeting to secretory lysosomes, both endoplasmic reticulum (ER) retention and constitutive secretion have to be prevented. ER export was facilitated by addition of a transmembrane (tm) sequence, and constitutive secretion was overcome by incorporating a cytosolic sorting signal (Y) from CD63. This signal directed the resulting sTNFR1-tm-Y to secretory lysosomes. Confirmation of these results was provided by biosynthetic radiolabeling, subcellular fractionation, immunofluorescence microscopy, and immunoelectron microscopy. The tm-Y fragment was cleaved by proteolysis, resulting in generation of the membrane-free sTNFR1 in secretory lysosomes. Our results suggest a potential for using the storage organelles of hematopoietic cells as vehicles for targeting sites of inflammation with therapeutically active agents.
Collapse
Affiliation(s)
- Ying Gao
- Department of Hematology, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Spiropoulou CF, Goldsmith CS, Shoemaker TR, Peters CJ, Compans RW. Sin Nombre virus glycoprotein trafficking. Virology 2003; 308:48-63. [PMID: 12706089 DOI: 10.1016/s0042-6822(02)00092-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sin Nombre virus (SNV) is a major representative of the New World hantaviruses and the most common cause of hantavirus pulmonary syndrome (HPS) with high mortality in North America. Unlike other members of the family Bunyaviridae which mature in the Golgi complex, New World hantaviruses have been previously reported to mature at the cell surface. For family Bunyaviridae viruses, retention of the viral glycoproteins at the Golgi complex is thought to be responsible for their Golgi maturation. In our studies, the majority of SNV glycoproteins, G1 and G2, was localized in the Golgi complex when expressed from a full-length GPC clone or in SNV-infected cells, in agreement with data for other members of the family Bunyaviridae, including the Old World hantaviruses. However, the SNV glycoproteins could also be detected at the cell surface at advanced posttransfection or postinfection time points. G1 expressed in the absence of G2 did not accumulate in the Golgi, but remained predominantly associated with the endoplasmic reticulum (ER). Overexpressed amounts of apparently misfolded G1 were aggregated in a subcellular compartment likely to represent the aggresome. Unexpectedly, an additional major pool of G1 was detected intracellularly in SNV-infected and GPC-expressing transfected cells, by using a SNV G1-specific Fab antibody. This pool of G1 is predominantly localized in late endosomes-lysosomes.
Collapse
Affiliation(s)
- C F Spiropoulou
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
37
|
Zhang CF, Dhanvantari S, Lou H, Loh YP. Sorting of carboxypeptidase E to the regulated secretory pathway requires interaction of its transmembrane domain with lipid rafts. Biochem J 2003; 369:453-60. [PMID: 12403651 PMCID: PMC1223124 DOI: 10.1042/bj20020827] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Revised: 10/24/2002] [Accepted: 10/29/2002] [Indexed: 11/17/2022]
Abstract
Carboxypeptidase E (CPE) functions as a regulated secretory pathway sorting receptor for several prohormones, including pro-opiomelanocortin (POMC), proenkephalin and proinsulin. The association of CPE with lipid rafts in the trans -Golgi network and secretory granule membranes is necessary for its sorting receptor function. We now provide evidence that a domain within the C-terminal 25 residues of CPE functions as a signal for both raft association and the sorting of CPE to the regulated secretory pathway. A fusion protein containing the extracellular domain of the human interleukin-2 receptor Tac (N-Tac) and the C-terminal 25 amino acids of CPE was transfected into Neuro2A cells. This fusion protein floated in sucrose density gradients, indicating raft association, and co-localized with chromogranin A (CGA), a secretory granule marker. To define further a minimum sequence required for raft association and sorting, deletion mutants of CPE that lacked the C-terminal four or 15 residues (CPE-Delta4 and CPE-Delta15 respectively) were transfected into a clone of CPE-deficient Neuro2A cells. In contrast with full-length CPE, neither CPE-Delta4 nor CPE-Delta15 floated in sucrose density gradients. The sorting of both CPE-Delta4 and CPE-Delta15 to the regulated secretory pathway was impaired, as indicated by significantly increased basal secretion and a lack of response to stimulation. Additionally, there was a significant decrease in the co-localization of mutant CPE immunofluorescence with CGA when compared with full-length CPE. Finally, the sorting of the prohormone POMC to the regulated pathway was impaired in cells transfected with either CPE-Delta4 or CPE-Delta15. We conclude that the sorting of CPE to the regulated secretory pathway in endocrine cells is mediated by lipid rafts, and that the C-terminal four residues of CPE, i.e. Thr(431)-Leu-Asn-Phe(434), are required for raft association and sorting.
Collapse
Affiliation(s)
- Chun-Fa Zhang
- Section on Cellular Neurobiology, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | | | | | | |
Collapse
|
38
|
Arvan P, Zhao X, Ramos-Castaneda J, Chang A. Secretory pathway quality control operating in Golgi, plasmalemmal, and endosomal systems. Traffic 2002; 3:771-80. [PMID: 12383343 DOI: 10.1034/j.1600-0854.2002.31102.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exportable proteins that have significant defects in nascent polypeptide folding or subunit assembly are frequently retained in the endoplasmic reticulum and subject to endoplasmic reticulum-associated degradation by the ubiquitin-proteasome system. In addition to this, however, there is growing evidence for post-endoplasmic reticulum quality control mechanisms in which mutant or non-native exportable proteins may undergo anterograde transport to the Golgi complex and post-Golgi compartments before intracellular disposal. In some instances, these proteins may undergo retrograde transport back to the endoplasmic reticulum with re-targeting to the endoplasmic reticulum-associated degradation pathway; in other typical cases, they are targeted into the endosomal system for degradation by vacuolar/lysosomal proteases. Such quality control targeting is likely to involve recognition of features more commonly expressed in mutant proteins, but may also be expressed by wild-type proteins, especially in cells with perturbation of local environments that are essential for normal protein trafficking and stability in the secretory pathway and at the cell surface.
Collapse
Affiliation(s)
- Peter Arvan
- Division of Endocrinology/Diabetes Center and Department of Developmental/Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx NY 10461, USA.
| | | | | | | |
Collapse
|
39
|
Anderson ED, Molloy SS, Jean F, Fei H, Shimamura S, Thomas G. The ordered and compartment-specfific autoproteolytic removal of the furin intramolecular chaperone is required for enzyme activation. J Biol Chem 2002; 277:12879-90. [PMID: 11799113 PMCID: PMC1424220 DOI: 10.1074/jbc.m108740200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The propeptide of furin has multiple roles in guiding the activation of the endoprotease in vivo. The 83-residue N-terminal propeptide is autoproteolytically excised in the endoplasmic reticulum (ER) at the consensus furin site, -Arg(104)-Thr-Lys-Arg(107)-, but remains bound to furin as a potent autoinhibitor. Furin lacking the propeptide is ER-retained and proteolytically inactive. Co-expression with the propeptide, however, restores trans-Golgi network (TGN) localization and enzyme activity, indicating that the furin propeptide is an intramolecular chaperone. Blocking this step results in localization to the ER-Golgi intermediate compartment (ERGIC)/cis-Golgi network (CGN), suggesting the ER and ERGIC/CGN recognize distinct furin folding intermediates. Following transport to the acidified TGN/endosomal compartments, furin cleaves the bound propeptide at a second, internal P1/P6 Arg site (-Arg-Gly-Val(72)-Thr-Lys-Arg(75)-) resulting in propeptide dissociation and enzyme activation. Cleavage at Arg(75), however, is not required for proper furin trafficking. Kinetic analyses of peptide substrates indicate that the sequential pH-modulated propeptide cleavages result from the differential recognition of these sites by furin. Altering this preference by converting the internal site to a canonical P1/P4 Arg motif (Val(72) --> Arg) caused ER retention and blocked activation of furin, demonstrating that the structure of the furin propeptide mediates folding of the enzyme and directs its pH-regulated, compartment-specific activation in vivo.
Collapse
|
40
|
|
41
|
Cha H, Lee EK, Shapiro P. Identification of a C-terminal region that regulates mitogen-activated protein kinase kinase-1 cytoplasmic localization and ERK activation. J Biol Chem 2001; 276:48494-501. [PMID: 11604401 DOI: 10.1074/jbc.m107601200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal region of mitogen-activated protein kinase kinase-1 and 2 (MKK1 and MKK2) may function in regulating interactions with upstream kinases or the magnitude and duration of ERK mitogen-activated protein kinase activity. The MKK C-terminal region contains a proline-rich region that reportedly functions in regulating interactions with the Raf-1 kinase and ERK activity. In addition, phosphorylation sites in the C terminus of MKK1 have been suggested to either sustain or attenuate MKK1 activity. To further understand how phosphorylation at the C terminus of MKK1 and protein interactions regulate MKK1 function, we have generated several MKK1 C-terminal deletion mutants and examined their function in regulating MKK1 localization, ERK protein activation, and cell growth. A deletion of C-terminal amino acids encompassing two putative alpha-helices between residues 330 and 379 caused a re-distribution of mutant MKK1 proteins to membrane compartments. Immunofluorescence analysis of MKK1 mutants revealed a loss of homogenous cytosolic distribution that is typically observed with MKK1 wild type, suggesting this region regulates MKK1 cellular localization. In contrast, MKK1 C-terminal deletion mutants localized to various sized punctate regions that overlapped with lysosome compartments. ERK activation in response to constitutively active Raf-1 or growth factor stimulus was attenuated in cells expressing MKK1 C-terminal deletion mutants. This could be partly explained by the inability of Raf-1 to phosphorylate MKK1 C-terminal deletion mutants even though the phosphorylation sites were intact in these mutants. Finally, we show that cells expressing MKK1 C-terminal deletion mutants displayed characteristic patterns of apoptotic cell death and reduced cell proliferation. These findings identify a novel C-terminal region between amino acid residues 330 and 379 on MKK1 that is necessary for regulating the cytoplasmic distribution and subsequent ERK protein activation necessary for cell survival and viability.
Collapse
Affiliation(s)
- H Cha
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
42
|
Steveson TC, Zhao GC, Keutmann HT, Mains RE, Eipper BA. Access of a membrane protein to secretory granules is facilitated by phosphorylation. J Biol Chem 2001; 276:40326-37. [PMID: 11524414 DOI: 10.1074/jbc.m011460200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM), an integral membrane protein essential for the biosynthesis of amidated peptides, was used to assess the role of cytosolic acidic clusters in trafficking to regulated secretory granules. Casein kinase II phosphorylates Ser(949) and Thr(946) of PAM, generating a short, cytosolic acidic cluster. P-CIP2, a protein kinase identified by its ability to interact with several juxtamembrane determinants in the PAM cytosolic domain, also phosphorylates Ser(949). Antibody specific for phospho-Ser(949)-PAM-CD demonstrates that a small fraction of the PAM-1 localized to the perinuclear region bears this modification. Pituitary cell lines expressing PAM-1 mutants that mimic (TS/DD) or prevent (TS/AA) phosphorylation at these sites were studied. PAM-1 TS/AA yields a lumenal monooxygenase domain that enters secretory granules inefficiently and is rapidly degraded. In contrast, PAM-1 TS/DD is routed to regulated secretory granules more efficiently than wild-type PAM-1 and monooxygenase release is more responsive to secretagogue. Furthermore, this acidic cluster affects exit of internalized PAM-antibody complexes from late endosomes; internalized PAM-1 TS/DD accumulates in a late endocytic compartment instead of the trans-Golgi network. The increased ability of solubilized PAM-1 TS/DD to aggregate at neutral pH may play an important role in its altered trafficking.
Collapse
Affiliation(s)
- T C Steveson
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
43
|
Bell-Parikh LC, Eipper BA, Mains RE. Response of an integral granule membrane protein to changes in pH. J Biol Chem 2001; 276:29854-63. [PMID: 11395514 DOI: 10.1074/jbc.m103936200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key feature of the regulated secretory pathway in neuroendocrine cells is lumenal pH, which decreases between trans-Golgi network and mature secretory granules. Because peptidylglycine alpha-amidating monooxygenase (PAM) is one of the few membrane-spanning proteins concentrated in secretory granules and is a known effector of regulated secretion, we examined its sensitivity to pH. Based on antibody binding experiments, the noncatalytic linker regions between the two enzymatic domains of PAM show pH-dependent conformational changes; these changes occur in the presence or absence of a transmembrane domain. Integral membrane PAM-1 solubilized from rat anterior pituitary or from transfected AtT-20 cells aggregates reversibly at pH 5.5 while retaining enzyme activity. Over 35% of the PAM-1 in anterior pituitary extracts aggregates at pH 5.5, whereas only about 5% aggregates at pH 7.5. PAM-1 recovered from secretory granules and endosomes is highly responsive to low pH-induced aggregation, whereas PAM-1 recovered from a light, intracellular recycling compartment is not. Mutagenesis studies indicate that a transmembrane domain is necessary but not sufficient for low pH-induced aggregation and reveal a short lumenal, juxtamembrane segment that also contributes to pH-dependent aggregation. Taken together, these results demonstrate that several properties of membrane PAM serve as indicators of granule pH in neuroendocrine cells.
Collapse
Affiliation(s)
- L C Bell-Parikh
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
44
|
Zhang BY, Chang A, Kjeldsen TB, Arvan P. Intracellular retention of newly synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol 2001; 153:1187-98. [PMID: 11402063 PMCID: PMC2192022 DOI: 10.1083/jcb.153.6.1187] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2001] [Accepted: 05/08/2001] [Indexed: 11/22/2022] Open
Abstract
An insulin-containing fusion protein (ICFP, encoding the yeast prepro-alpha factor leader peptide fused via a lysine-arginine cleavage site to a single chain insulin) has been expressed in Saccharomyces cerevisiae where it is inefficiently secreted. Single gene disruptions have been identified that cause enhanced immunoreactive insulin secretion (eis). Five out of six eis mutants prove to be vacuolar protein sorting (vps)8, vps35, vps13, vps4, and vps36, which affect Golgi<-->endosome trafficking. Indeed, in wild-type yeast insulin is ultimately delivered to the vacuole, whereas vps mutants secrete primarily unprocessed ICFP. Disruption of KEX2, which blocks intracellular processing to insulin, quantitatively reroutes ICFP to the cell surface, whereas loss of the Vps10p sorting receptor is without effect. Secretion of unprocessed ICFP is not based on a dominant secretion signal in the alpha-leader peptide. Although insulin sorting mediated by Kex2p is saturable, Kex2p functions not as a sorting receptor but as a protease: replacement of Kex2p by truncated secretory Kex2p (which travels from Golgi to cell surface) still causes endoproteolytic processing and intracellular insulin retention. Endoproteolysis promotes a change in insulin's biophysical properties. B5His residues normally participate in multimeric insulin packing; a point mutation at this position permits ICFP processing but causes the majority of processed insulin to be secreted. The data argue that multimeric assembly consequent to endoproteolytic maturation regulates insulin sorting in the secretory pathway.
Collapse
Affiliation(s)
- Bao-yan Zhang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Amy Chang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Peter Arvan
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
- Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
45
|
Benharouga M, Haardt M, Kartner N, Lukacs GL. COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments. J Cell Biol 2001; 153:957-70. [PMID: 11381082 PMCID: PMC2174331 DOI: 10.1083/jcb.153.5.957] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2000] [Accepted: 03/30/2001] [Indexed: 01/02/2023] Open
Abstract
Impaired biosynthetic processing of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, constitutes the most common cause of CF. Recently, we have identified a distinct category of mutation, caused by premature stop codons and frameshift mutations, which manifests in diminished expression of COOH-terminally truncated CFTR at the cell surface. Although the biosynthetic processing and plasma membrane targeting of truncated CFTRs are preserved, the turnover of the complex-glycosylated mutant is sixfold faster than its wild-type (wt) counterpart. Destabilization of the truncated CFTR coincides with its enhanced susceptibility to proteasome-dependent degradation from post-Golgi compartments globally, and the plasma membrane specifically, determined by pulse-chase analysis in conjunction with cell surface biotinylation. Proteolytic cleavage of the full-length complex-glycosylated wt and degradation intermediates derived from both T70 and wt CFTR requires endolysosomal proteases. The enhanced protease sensitivity in vitro and the decreased thermostability of the complex-glycosylated T70 CFTR in vivo suggest that structural destabilization may account for the increased proteasome susceptibility and the short residence time at the cell surface. These in turn are responsible, at least in part, for the phenotypic manifestation of CF. We propose that the proteasome-ubiquitin pathway may be involved in the peripheral quality control of other, partially unfolded membrane proteins as well.
Collapse
Affiliation(s)
- Mohamed Benharouga
- Program in Lung and Cell Biology, The Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5G 1X8, Ontario, Canada
| | - Martin Haardt
- Program in Lung and Cell Biology, The Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5G 1X8, Ontario, Canada
| | - Norbert Kartner
- Department of Pharmacology, University of Toronto, Toronto M5G 1X8, Ontario, Canada
| | - Gergely L. Lukacs
- Program in Lung and Cell Biology, The Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5G 1X8, Ontario, Canada
| |
Collapse
|
46
|
Géminard C, Nault F, Johnstone RM, Vidal M. Characteristics of the interaction between Hsc70 and the transferrin receptor in exosomes released during reticulocyte maturation. J Biol Chem 2001; 276:9910-6. [PMID: 11133993 DOI: 10.1074/jbc.m009641200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transferrin receptor (TfR) of reticulocytes is released in vesicular form (exosomes) during their maturation to erythrocytes. The heat shock cognate 70-kDa protein (Hsc70) has been demonstrated to interact with the cytosolic domain of the TfR and could thus trigger the receptor toward this secretion pathway. We investigated the characteristics of the interaction between Hsc70 and the TfR in exosomes with an in vitro binding assay using TfR immobilized on Sepharose beads and purified Hsc70. The results show that Hsc70 binds to exosomal TfR with characteristics expected of a chaperone/peptide interaction. We demonstrated that heat-denatured luciferase competed for in vitro binding, dependent on the nucleotide bound to Hsc70, and that this interaction activates the ATPase activity of Hsc70. Moreover, we used immunosuppressive agents that interact with Hsc70, thus decreasing Hsc70 binding to TfR in our in vitro binding assay and enabling us to assess the role of this interaction in vivo during reticulocyte maturation.
Collapse
Affiliation(s)
- C Géminard
- UMR CNRS 5539, Université Montpellier II, cc107, 34095 Montpellier, France
| | | | | | | |
Collapse
|
47
|
Sharma M, Benharouga M, Hu W, Lukacs GL. Conformational and temperature-sensitive stability defects of the delta F508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments. J Biol Chem 2001; 276:8942-50. [PMID: 11124952 DOI: 10.1074/jbc.m009172200] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Deletion of phenylalanine at position 508 (DeltaF508) is the most common cystic fibrosis (CF)-associated mutation in the CF transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel. The consensus notion is that DeltaF508 imposes a temperature-sensitive folding defect and targets newly synthesized CFTR for degradation at endoplasmic reticulum (ER). A limited amount of CFTR activity, however, appears at the cell surface in the epithelia of homozygous DeltaF508 CFTR mice and patients, suggesting that the ER retention is not absolute in native tissues. To further elucidate the reasons behind the inability of DeltaF508 CFTR to accumulate at the plasma membrane, its stability was determined subsequent to escape from the ER, induced by reduced temperature and glycerol. Biochemical and functional measurements show that rescued DeltaF508 CFTR has a temperature-sensitive stability defect in post-ER compartments, including the cell surface. The more than 4-20-fold accelerated degradation rate between 37 and 40 degrees C is, most likely, due to decreased conformational stability of the rescued DeltaF508 CFTR, demonstrated by in situ protease susceptibility and SDS-resistant thermoaggregation assays. We propose that the decreased stability of the spontaneously or pharmacologically rescued mutant may contribute to its inability to accumulate at the cell surface. Thus, therapeutic efforts to correct the folding defect should be combined with stabilization of the native DeltaF508 CFTR.
Collapse
Affiliation(s)
- M Sharma
- Program in Lung and Cell Biology, Hospital for Sick Children, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
48
|
Wang ZH, Gershon MD, Lungu O, Zhu Z, Gershon AA. Trafficking of varicella-zoster virus glycoprotein gI: T(338)-dependent retention in the trans-Golgi network, secretion, and mannose 6-phosphate-inhibitable uptake of the ectodomain. J Virol 2000; 74:6600-13. [PMID: 10864674 PMCID: PMC112170 DOI: 10.1128/jvi.74.14.6600-6613.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trans-Golgi network (TGN) is putatively the site where varicella-zoster virus is enveloped. gE is targeted to the TGN by selective retrieval from the plasmalemma in response to signaling sequences in its endodomain. gI lacks these sequences but forms a complex with gE. We now find that gI is targeted to the TGN and plasma membrane when expressed in Cos-7 cells; nevertheless, surface labeling revealed that gI is not retrieved from the plasma membrane. TGN targeting of gI depended on the T(338) of its endodomain and was lost when T(338) was deleted or mutated to A, S, or D. The endodomain of gI was sufficient, if it contained T(338), to target a fusion protein containing the ectodomain of the human interleukin-2 receptor to the TGN. A truncated protein consisting only of the gI ectodomain was secreted and taken up by nontransfected cells. This uptake of the secreted gI ectodomain was blocked by mannose 6-phosphate. Following cotransfection, both gI and gE were retrieved to the TGN from the plasma membrane in 26.7% of cells, neither gI nor gE was internalized in 18.3%, and gE was retrieved to the TGN while gI remained at the plasma membrane in 55%. We suggest that the T(338) of its endodomain is necessary to retain gI in the TGN; moreover, because gI and gE interact, the signaling sequences of each glycoprotein reinforce one another in ensuring that both glycoproteins are concentrated in the TGN yet remain on the cell surface.
Collapse
Affiliation(s)
- Z H Wang
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
49
|
Bruzzaniti A, Marx R, Mains RE. Activation and routing of membrane-tethered prohormone convertases 1 and 2. J Biol Chem 1999; 274:24703-13. [PMID: 10455138 DOI: 10.1074/jbc.274.35.24703] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many peptide hormones and neuropeptides are processed by members of the subtilisin-like family of prohormone convertases (PCs), which are either soluble or integral membrane proteins. PC1 and PC2 are soluble PCs that are primarily localized to large dense core vesicles in neurons and endocrine cells. We examined whether PC1 and PC2 were active when expressed as membrane-tethered proteins, and how tethering to membranes alters the biosynthesis, enzymatic activity, and intracellular routing of these PCs. PC1 and PC2 chimeras were constructed using the transmembrane domain and cytoplasmic domain of the amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The membrane-tethered PCs were rerouted from large dense core vesicles to the Golgi region. In addition, the chimeras were transiently expressed at the cell surface and rapidly internalized to the Golgi region in a fashion similar to PAM. Membrane-tethered PC1 and PC2 exhibited changes in pro-domain maturation rates, N-glycosylation, and in the pH and calcium optima required for maximal enzymatic activity against a fluorogenic substrate. In addition, the PC chimeras efficiently cleaved endogenous pro-opiomelanocortin to the correct bioactive peptides. The PAM transmembrane domain/cytoplasmic domain also prevented stimulated secretion of pro-opiomelanocortin products in AtT-20 cells.
Collapse
Affiliation(s)
- A Bruzzaniti
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
50
|
Mallet WG, Maxfield FR. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways. J Cell Biol 1999; 146:345-59. [PMID: 10465644 PMCID: PMC2156176 DOI: 10.1083/jcb.146.2.345] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/1999] [Accepted: 06/18/1999] [Indexed: 11/22/2022] Open
Abstract
Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J. Cell Biol.142:923-936). Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.
Collapse
Affiliation(s)
- William G. Mallet
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|