1
|
Meng K, Liu Q, Qin Y, Qin W, Zhu Z, Sun L, Jiang M, Adu-Amankwaah J, Gao F, Tan R, Yuan J. Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility. Chin Med J (Engl) 2024:00029330-990000000-01098. [PMID: 38855875 DOI: 10.1097/cm9.0000000000003126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 06/11/2024] Open
Abstract
ABSTRACT Male infertility has become a global concern, accounting for 20-70% of infertility. Dysfunctional spermatogenesis is the most common cause of male infertility; thus, treating abnormal spermatogenesis may improve male infertility and has attracted the attention of the medical community. Mitochondria are essential organelles that maintain cell homeostasis and normal physiological functions in various ways, such as mitochondrial oxidative phosphorylation (OXPHOS). Mitochondrial OXPHOS transmits electrons through the respiratory chain, synthesizes adenosine triphosphate (ATP), and produces reactive oxygen species (ROS). These mechanisms are vital for spermatogenesis, especially to maintain the normal function of testicular Sertoli cells and germ cells. The disruption of mitochondrial OXPHOS caused by external factors can result in inadequate cellular energy supply, oxidative stress, apoptosis, or ferroptosis, all inhibiting spermatogenesis and damaging the male reproductive system, leading to male infertility. This article summarizes the latest pathological mechanism of mitochondrial OXPHOS disorder in testicular Sertoli cells and germ cells, which disrupts spermatogenesis and results in male infertility. In addition, we also briefly outline the current treatment of spermatogenic malfunction caused by mitochondrial OXPHOS disorders. However, relevant treatments have not been fully elucidated. Therefore, targeting mitochondrial OXPHOS disorders in Sertoli cells and germ cells is a research direction worthy of attention. We believe this review will provide new and more accurate ideas for treating male infertility.
Collapse
Affiliation(s)
- Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
| | - Qian Liu
- College of Basic Medical, Jining Medical University, Jining, Shandong 272067, China
| | - Yiding Qin
- College of Basic Medical, Jining Medical University, Jining, Shandong 272067, China
| | - Wenjie Qin
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Ziming Zhu
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Longlong Sun
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Mingchao Jiang
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Joseph Adu-Amankwaah
- College of Basic Medical, Xuzhou Medical University, Xuzhou, Zhejiang 221004, China
| | - Fei Gao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 101408, China
| | - Rubin Tan
- College of Basic Medical, Xuzhou Medical University, Xuzhou, Zhejiang 221004, China
| | - Jinxiang Yuan
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
2
|
Kumar A, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS, Samant R. Magnesium (Mg 2+): Essential Mineral for Neuronal Health: From Cellular Biochemistry to Cognitive Health and Behavior Regulation. Curr Pharm Des 2024; 30:3074-3107. [PMID: 39253923 DOI: 10.2174/0113816128321466240816075041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 09/11/2024]
Abstract
Magnesium (Mg2+) is a crucial mineral involved in numerous cellular processes critical for neuronal health and function. This review explores the multifaceted roles of Mg2+, from its biochemical interactions at the cellular level to its impact on cognitive health and behavioral regulation. Mg2+ acts as a cofactor for over 300 enzymatic reactions, including those involved in ATP synthesis, nucleic acid stability, and neurotransmitter release. It regulates ion channels, modulates synaptic plasticity, and maintains the structural integrity of cell membranes, which are essential for proper neuronal signaling and synaptic transmission. Recent studies have highlighted the significance of Mg2+ in neuroprotection, showing its ability to attenuate oxidative stress, reduce inflammation, and mitigate excitotoxicity, thereby safeguarding neuronal health. Furthermore, Mg2+ deficiency has been linked to a range of neuropsychiatric disorders, including depression, anxiety, and cognitive decline. Supplementation with Mg2+, particularly in the form of bioavailable compounds such as Magnesium-L-Threonate (MgLT), Magnesium-Acetyl-Taurate (MgAT), and other Magnesium salts, has shown some promising results in enhancing synaptic density, improving memory function, and alleviating symptoms of mental health disorders. This review highlights significant current findings on the cellular mechanisms by which Mg2+ exerts its neuroprotective effects and evaluates clinical and preclinical evidence supporting its therapeutic potential. By elucidating the comprehensive role of Mg2+ in neuronal health, this review aims to underscore the importance of maintaining optimal Mg2+ levels for cognitive function and behavioral regulation, advocating for further research into Mg2+ supplementation as a viable intervention for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Aakash Kumar
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Sidharth Mehan
- 1Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Aarti Tiwari
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Zuber Khan
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Rajaram Samant
- Department of Research and Development, Celagenex Research, Thane, Maharashtra, India
| |
Collapse
|
3
|
Werry F, Mazur E, Theyse LFH, Edlich F. Apoptosis Regulation in Osteoarthritis and the Influence of Lipid Interactions. Int J Mol Sci 2023; 24:13028. [PMID: 37685835 PMCID: PMC10488181 DOI: 10.3390/ijms241713028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic diseases in human and animal joints. The joints undergo several morphological and histological changes during the development of radiographically visible osteoarthritis. The most discussed changes include synovial inflammation, the massive destruction of articular cartilage and ongoing joint destruction accompanied by massive joint pain in the later stadium. Either the increased apoptosis of chondrocytes or the insufficient apoptosis of inflammatory macrophages and synovial fibroblasts are likely to underly this process. In this review, we discuss the current state of research on the pathogenesis of OA with special regard to the involvement of apoptosis.
Collapse
Affiliation(s)
- Frederike Werry
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Emilia Mazur
- Soft Tissue & Orthopaedic Surgery Service, Department for Small Animals, College of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Lars F. H. Theyse
- Soft Tissue & Orthopaedic Surgery Service, Department for Small Animals, College of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Frank Edlich
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
4
|
PW06 Triggered Fas-FADD to Induce Apoptotic Cell Death In Human Pancreatic Carcinoma MIA PaCa-2 Cells through the Activation of the Caspase-Mediated Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3479688. [PMID: 36820406 PMCID: PMC9938777 DOI: 10.1155/2023/3479688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 02/13/2023]
Abstract
Pancreatic cancer has higher incidence and mortality rates worldwide. PW06 [(E)-3-(9-ethyl-9H-carbazol-3-yl)-1-(2,5-dimethoxyphenyl) prop-2-en-1-one] is a carbazole derivative containing chalcone moiety which was designed for inhibiting tumorigenesis in human pancreatic cancer. This study is aimed at investigating PW06-induced anticancer effects in human pancreatic cancer MIA PaCa-2 cells in vitro. The results showed PW06 potent antiproliferative/cytotoxic activities and induced cell morphological changes in a human pancreatic cancer cell line (MIA PaCa-2), and these effects are concentration-dependent (IC50 is 0.43 μM). Annexin V and DAPI staining assays indicated that PW06 induced apoptotic cell death and DNA condensation. Western blotting indicated that PW06 increased the proapoptotic proteins such as Bak and Bad but decreased the antiapoptotic protein such as Bcl-2 and Bcl-xL. Moreover, PW06 increased the active form of caspase-8, caspase-9, and caspase-3, PARP, releasing cytochrome c, AIF, and Endo G from mitochondria in MIA PaCa-2 cells. Confocal laser microscopy assay also confirmed that PW06 increased Bak and decreased Bcl-xL. Also, the cells were pretreated with inhibitors of caspase-3, caspase-8, and caspase-9 and then were treated with PW06, resulting in increased viable cell number compared to PW06 treated only. Furthermore, PW06 showed a potent binding ability with hydrophobic interactions in the core site of the Fas-Fas death domains (FADD). In conclusion, PW06 can potent binding ability to the Fas-FADD which led to antiproliferative, cytotoxic activities, and apoptosis induction accompanied by the caspase-dependent and mitochondria-dependent pathways in human pancreatic cancer MIA PaCa-2 cells.
Collapse
|
5
|
Wu G, Yang F, Cheng X, Mai Z, Wang X, Chen T. Live-cell imaging analysis on the anti-apoptotic function of the Bcl-xL transmembrane carboxyl terminal domain. Biochem Biophys Res Commun 2023; 639:91-99. [PMID: 36476951 DOI: 10.1016/j.bbrc.2022.11.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
The Transmembrane Carboxyl Terminal Domain (TMD) of some Bcl-2 family proteins has been demonstrated to play a key role in modulating apoptosis. We here ustilzed live-cell fluorescence imaging to evaluate how the Bcl-xL TMD (XT) regulate apoptosis. Cell viability assay revealed that XT had strong anti-apoptotic ability similarly to the full-length Bcl-xL. Fluorescence images of living cells co-expressing CFP-XT and Bad-YFP or YFP-Bax revealed that XT recruited Bad to mitochondria but prevented Bax translocation to mitochondria, and also significantly suppressed Bad/Bax-mediated apoptosis, indicating that XT prevents the pro-apoptotic function of Bad and Bax. Fluorescence Resonance Energy Transfer (FRET) analyses determined that XT directly interacted with Bad and Bax, and deletion of XT completely eliminated the mitochondrial localization and homo-oligomerization of Bcl-xL. Fluorescence images of living cells co-expressing CFP-XT and YFP-Bax revealed that XT significantly prevented mitochondrial Bax oligomerization, resulting in cytosolic Bax distribution. Collectively, XT is necessary for the mitochondrial localization and anti-apoptotic capacity of Bcl-xL, and XT, similarly to the full-length Bcl-xL, forms homo-oligomers on mitochondria to directly interact with Bad and Bax to inhibit their apoptotic functions.
Collapse
Affiliation(s)
- Ge Wu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Fangfang Yang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xuecheng Cheng
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Zihao Mai
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital, Jinan University, Guangzhou, 5610632, China.
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China.
| |
Collapse
|
6
|
Javani G, Ghaffari-Nasab A, Farajdokht F, Mohaddes G. Chronic stress-induced apoptosis is mitigated by young mitochondria transplantation in the prefrontal cortex of aged rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:725-730. [PMID: 37275757 PMCID: PMC10237165 DOI: 10.22038/ijbms.2023.69551.15145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/15/2023] [Indexed: 06/07/2023]
Abstract
Objectives Apoptosis is common and often comorbid with aging and stress-related mood disorders. Evidence suggests that fresh mitochondria could reverse age-related dysfunctions in organs, especially in the brain. Therefore, this study investigated the effect of young mitochondria administration on the apoptosis process in the prefrontal cortex (PFC) of aged rats exposed to chronic stress. Materials and Methods Aged (22 months old) male rats were randomly assigned into four groups: aged control (AC), aged rats treated with young mitochondria (A+M), aged rats subjected to chronic stress for four weeks (A+St), and aged rats subjected to chronic stress and treated with young mitochondria (A+St+M). A+M and A+St+M groups received a single ICV injection (10 μl) of fresh mitochondria isolated from the brain of young rats for five minutes (2 µl/min). Finally, the levels of Malondialdehyde (MDA), Cytochrome c (Cyt c), Bax, Bcl-2, and Caspase-3 expression were investigated in the PFC. Results Young mitochondria administration reduced neuronal apoptosis in the PFC, associated with down-regulation of MDA, Bax, and Caspase-3 and up-regulation of Bcl-2. Moreover, fresh mitochondria partially improved the chronic stress-induced mitochondrial dysfunction in aged rats, as indicated by reduced cytochrome c (Cyt c) release from the mitochondria. Conclusion These results suggest mitotherapy could reverse cell viability and mitochondrial dysfunction-induced apoptosis in the PFC tissue of aged rats subjected to stressful stimuli.
Collapse
Affiliation(s)
- Gonja Javani
- Drug Applied Research, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Drug Applied Research, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| |
Collapse
|
7
|
Guo Y, Fan Y, Wang Z, Li G, Zhan M, Gong J, Majoral JP, Shi X, Shen M. Chemotherapy Mediated by Biomimetic Polymeric Nanoparticles Potentiates Enhanced Tumor Immunotherapy via Amplification of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206861. [PMID: 36125843 DOI: 10.1002/adma.202206861] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Construction of multifunctional nanoplatforms to elevate chemotherapeutic efficacy and induce long-term antitumor immunity still remains to be an extreme challenge. Herein, the design of an advanced redox-responsive nanomedicine formulation based on phosphorus dendrimer-copper(II) complexes (1G3 -Cu)- and toyocamycin (Toy)-loaded polymeric nanoparticles (GCT NPs) coated with cancer cell membranes (CM) are reported. The designed GCT@CM NPs with a size of 210 nm are stable under physiological conditions but are rapidly dissociated in the reductive tumor microenvironment to deplete glutathione and release drugs. The co-loading of 1G3 -Cu and Toy within the NPs causes significant tumor cell apoptosis and immunogenic cell death through 1G3 -Cu-induced mitochondrial dysfunction and Toy-mediated amplification of endoplasmic reticulum stress, respectively, thus effectively suppressing tumor growth, promoting dendritic cell maturation, and increasing tumor-infiltrating cytotoxic T lymphocytes. Likewise, the coated CM and the loaded 1G3 -Cu render the GCT@CM NPs with homotypic targeting and T1 -weighted magnetic resonance imaging of tumors, respectively. With the assistance of programmed cell death ligand 1 antibody, the GCT@CM NP-mediated chemotherapy can significantly potentiate tumor immunotherapy for effective inhibition of tumor recurrence and metastasis. The developed GCT@CM NPs hold a great potential for chemotherapy-potentiated immunotherapy of different tumor types through different mechanisms or synergies.
Collapse
Affiliation(s)
- Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Junli Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | | | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
8
|
Zhang J, Deng J, Ding R, Yuan J, Liu J, Zhao X, Wu T, Jia J, Cheng X. Identification of pyroptosis-related genes and long non-coding RNAs signatures in osteosarcoma. Cancer Cell Int 2022; 22:322. [PMID: 36244998 PMCID: PMC9575257 DOI: 10.1186/s12935-022-02729-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Osteosarcoma is a highly malignant tumor, with very high disability and fatality rates. However, the overall prognosis is not optimistic. Pyroptosis is a newly discovered cell death modality accompanied by inflammation, which is closely related to varieties of cancers. In this study, the RNA-seq data were downloaded from public databases, the differences in the expression of the pyroptosis-related genes (PRGs) were identified, and the six PRGs signature was established through the univariate and LASSO Cox analysis. The patients were grouped according to the PRGs signature, and the prognosis between the two groups was further compared. In addition, a ten pyroptosis-related lncRNAs (PRLs) prognostic signature was also constructed. Through functional analysis of the differentially expressed genes (DEGs), the immune-related pathways were found to be enriched. The Pearson correlation analysis showed a strong correlation between the pyroptosis-related biomarkers. Finally, we identified a promising biomarker, CHMP4C, which is highly expressed in osteosarcoma. Overexpression of CHMP4C promoted the proliferation, migration and invasion of the osteosarcoma cell. Our results thus provide new evidence for exploring prognostic biomarkers and therapeutic targets of osteosarcoma.
Collapse
|
9
|
Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119317. [PMID: 35752202 DOI: 10.1016/j.bbamcr.2022.119317] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.
Collapse
Affiliation(s)
- Philipp Wolf
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Axel Schoeniger
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Frank Edlich
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
10
|
Malott KF, Leon Parada K, Lee M, Swanson E, Luderer U. Gestational Benzo[a]pyrene Exposure Destroys F1 Ovarian Germ Cells Through Mitochondrial Apoptosis Pathway and Diminishes Surviving Oocyte Quality. Toxicol Sci 2022; 190:23-40. [PMID: 35993611 PMCID: PMC9960072 DOI: 10.1093/toxsci/kfac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polycyclic aromatic hydrocarbons, including benzo[a]pyrene (BaP), are products of incomplete combustion. In female mouse embryos primordial germ cells proliferate before and after arriving at the gonadal ridge around embryonic (E) 10 and begin entering meiosis at E13.5. Now oocytes, they arrest in the first meiotic prophase beginning at E17.5. We previously reported dose-dependent depletion of ovarian follicles in female mice exposed to 2 or 10 mg/kg-day BaP E6.5-15.5. We hypothesized that embryonic ovaries are more sensitive to gestational BaP exposure during the mitotic developmental window, and that this exposure results in persistent oxidative stress in ovaries and oocytes of exposed F1 female offspring. We orally dosed timed-pregnant female mice with 0 or 2 mg/kg-day BaP in oil from E6.5-11.5 (mitotic window) or E12.5-17.5 (meiotic window). Cultured E13.5 ovaries were utilized to investigate the mechanism of BaP-induced germ cell death. We observed statistically significant follicle depletion and increased ovarian lipid peroxidation in F1 pubertal ovaries following BaP exposure during either prenatal window. Culture of E13.5 ovaries with BaP induced germ cell DNA damage and release of cytochrome c from the mitochondria in oocytes, confirming that BaP exposure induced apoptosis via the mitochondrial pathway. Mitochondrial membrane potential, oocyte lipid droplet (LD) volume, and mitochondrial-LD colocalization were decreased and mitochondrial superoxide levels were increased in the MII oocytes of F1 females exposed gestationally to BaP. Results demonstrate similar sensitivity to germ cell depletion and persistent oxidative stress in F1 ovaries and oocytes following gestational BaP exposure during mitotic or meiotic windows.
Collapse
Affiliation(s)
- Kelli F Malott
- Environmental Health Sciences Graduate Program, University of California, Irvine, Irvine, California 92617, USA,Department of Environmental and Occupational Health, University of California, Irvine, Irvine, California 92617, USA
| | - Kathleen Leon Parada
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92617, USA
| | - Melody Lee
- Department of Medicine, University of California, Irvine, Irvine, California 92617, USA
| | - Edward Swanson
- Department of Medicine, University of California, Irvine, Irvine, California 92617, USA
| | - Ulrike Luderer
- To whom correspondence should be addressed at Center for Occupational and Environmental Health, 100 Theory Drive, Suite 100, Irvine, CA 92617, USA. E-mail:
| |
Collapse
|
11
|
How Do Hexokinases Inhibit Receptor-Mediated Apoptosis? BIOLOGY 2022; 11:biology11030412. [PMID: 35336786 PMCID: PMC8945020 DOI: 10.3390/biology11030412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary In multicellular animals, cells autonomously respond to lethal stress by inducing cell death programs. The most common regulated cell death is apoptosis. Cells protect their neighbors from damage by their cell contents or infection through this process. Apoptosis can occur as a result of intrinsic stress or induced by surface receptors, for example, by immune cells. In most cases, receptor-mediated apoptosis also requires the intrinsic signaling pathway. Intrinsic apoptosis is controlled by proteins of the B-cell lymphoma 2 (BCL-2) family. Pro-apoptotic BCL-2 proteins are inhibited by retrotranslocation from the mitochondria into the cytosol until the cell commits to apoptosis. Increasingly, discoveries show that BCL-2 proteins are regulated by proteins that are not themselves members of the BCL-2 family. Here, we discuss the selective inhibition of the link between death receptors activation and intrinsic apoptosis by hexokinases. These enzymes funnel glucose into the cellular metabolism. Independently, hexokinases retrotranslocate BCL-2 proteins and thereby protect cells from receptor-mediated apoptosis. Abstract The regulated cell death apoptosis enables redundant or compromised cells in ontogeny and homeostasis to remove themselves receptor-dependent after extrinsic signaling or after internal stress by BCL-2 proteins on the outer mitochondrial membrane (OMM). Mitochondrial BCL-2 proteins are also often needed for receptor-mediated signaling in apoptosis. Then, the truncated BH3-only protein BID (tBID) blocks retrotranslocation of the pro-apoptotic BCL-2 proteins BAX and BAK from the mitochondria into the cytosol. BAX and BAK in turn permeabilize the OMM. Although the BCL-2 proteins are controlled by a complex regulatory network, a specific mechanism for the inhibition of tBID remained unknown. Curiously, it was suggested that hexokinases, which channel glucose into the metabolism, have an intriguing function in the regulation of apoptosis. Recent analysis of transient hexokinase interactions with BAX revealed its participation in the inhibition of BAX and also BAK by retrotranslocation from mitochondria to the cytosol. In contrast to general apoptosis inhibition by anti-apoptotic BCL-2 proteins, hexokinase I and hexokinase 2 specifically inhibit tBID and thus the mitochondrial apoptosis pathway in response to death receptor signaling. Mitochondrial hexokinase localization and BH3 binding of cytosolic hexokinase domains are prerequisites for protection against receptor-mediated cell death, whereas glucose metabolism is not. This mechanism protects cells from apoptosis induced by cytotoxic T cells.
Collapse
|
12
|
Rodríguez I, Saavedra E, del Rosario H, Perdomo J, Quintana J, Prencipe F, Oliva P, Romagnoli R, Estévez F. Apoptosis Pathways Triggered by a Potent Antiproliferative Hybrid Chalcone on Human Melanoma Cells. Int J Mol Sci 2021; 22:ijms222413462. [PMID: 34948260 PMCID: PMC8706831 DOI: 10.3390/ijms222413462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization reported that approximately 324,000 new cases of melanoma skin cancer were diagnosed worldwide in 2020. The incidence of melanoma has been increasing over the past decades. Targeting apoptotic pathways is a potential therapeutic strategy in the transition to preclinical models and clinical trials. Some naturally occurring products and synthetic derivatives are apoptosis inducers and may represent a realistic option in the fight against the disease. Thus, chalcones have received considerable attention due to their potential cytotoxicity against cancer cells. We have previously reported a chalcone containing an indole and a pyridine heterocyclic rings and an α-bromoacryloylamido radical which displays potent antiproliferative activity against several tumor cell lines. In this study, we report that this chalcone is a potent apoptotic inducer for human melanoma cell lines SK-MEL-1 and MEL-HO. Cell death was associated with mitochondrial cytochrome c release and poly(ADP-ribose) polymerase cleavage and was prevented by a non-specific caspase inhibitor. Using SK-MEL-1 as a model, we found that the mechanism of cell death involves (i) the generation of reactive oxygen species, (ii) activation of the extrinsic and intrinsic apoptotic and mitogen-activated protein kinase pathways, (iii) upregulation of TRAIL, DR4 and DR5, (iv) downregulation of p21Cip1/WAF1 and, inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Irene Rodríguez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
| | - Ester Saavedra
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
- Instituto Canario de Investigación del Cáncer (ICIC), 35016 Las Palmas de Gran Canaria, Spain
| | - Henoc del Rosario
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
| | - Juan Perdomo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
| | - José Quintana
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via L. Borsari 46, 44121 Ferrara, Italy; (F.P.); (P.O.); (R.R.)
| | - Paola Oliva
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via L. Borsari 46, 44121 Ferrara, Italy; (F.P.); (P.O.); (R.R.)
| | - Romeo Romagnoli
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via L. Borsari 46, 44121 Ferrara, Italy; (F.P.); (P.O.); (R.R.)
| | - Francisco Estévez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (I.R.); (E.S.); (H.d.R.); (J.P.); (J.Q.)
- Correspondence: ; Tel.: +34-928-451-443; Fax: +34-928-451-441
| |
Collapse
|
13
|
Characterization of oxidation of glutathione by cytochrome c. J Bioenerg Biomembr 2021; 54:1-8. [PMID: 34893948 PMCID: PMC8789735 DOI: 10.1007/s10863-021-09926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/22/2021] [Indexed: 10/29/2022]
Abstract
Cytochrome c is a member of the respiratory chain of the mitochondria. Non-membrane-bound (free) cytochrome c can be reduced by gluthatione as well as ascorbic acid. We investigated the effect of pH, Ca2+, Mg2+ and anionic phospholipids on the reduction of cytochrome c by glutathione.The reduction of cytochrome c by thiols was measured using photometry. Mitochondrial oxygen consumption was detected by use of oxygen electrode. Glutathione does not reduce cytochrome c at pH = 7.0 in the absence of Ca2+ and Mg2+. The reduction of cytochrome c by glutathione is inhibited by anionic lipids, especially cardiolipin. The typical conditions of apoptosis-elevated pH, Ca2+ level and Mg2+-increases the reduction of cytochrome c. Glutathione (5 mM) causes increased mitochondrial O2 consumption at pH = 8.0, in the presence of ADP either 1 mM Mg2+ or 1 mM Ca2+. Our results suggest that membrane bound cyt c does not oxidize glutathione. Free (not membrane bound) cytochrome c can oxidize glutathione. In mitochondria, O2 is depleted only in the presence of ADP, so the O2 depletion observed in the presence of glutathione can be related to the respiratory chain. Decreased glutathione levels play a role in apoptosis. Therefore, membrane unbound cyt c can contribute to apoptosis by oxidation of glutathione.
Collapse
|
14
|
Yamana K, Inoue J, Yoshida R, Sakata J, Nakashima H, Arita H, Kawaguchi S, Gohara S, Nagao Y, Takeshita H, Maeshiro M, Liu R, Matsuoka Y, Hirayama M, Kawahara K, Nagata M, Hirosue A, Toya R, Murakami R, Kuwahara Y, Fukumoto M, Nakayama H. Extracellular vesicles derived from radioresistant oral squamous cell carcinoma cells contribute to the acquisition of radioresistance via the miR-503-3p-BAK axis. J Extracell Vesicles 2021; 10:e12169. [PMID: 34894384 PMCID: PMC8665688 DOI: 10.1002/jev2.12169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Despite advancements in treatments, oral squamous cell carcinoma (OSCC) has not significantly improved in prognosis or survival rate primarily due to the presence of treatment-resistant OSCC. The intercellular communication between tumour cells is a molecular mechanism involved in acquiring OSCC treatment resistance. Extracellular vesicles (EVs) and encapsulated miRNAs are important mediators of intercellular communication. Here, we focused on EVs released from clinically relevant radioresistant (CRR) OSCC cells. Additionally, we evaluated the correlation between miRNA expression in the serum samples of patients who showed resistance to radiotherapy and in EVs released from CRR OSCC cells. We found that EVs released from CRR OSCC cells conferred radioresistance to radiosensitive OSCC cells via miR-503-3p contained in EVs. This miR-503-3p inhibited BAK and impaired the caspase cascade to suppress radiation-induced apoptosis. Furthermore, OSCC cells with BAK knockdown had increased radioresistance. Additionally, the expression of circulating miR-503-3p in patients with OSCC was correlated with a poor treatment response and prognosis of radiotherapy. Our results provide new insights into the relationship between EVs and the radioresistance of OSCC and suggest that the miR-503-3p-BAK axis may be a therapeutic target and that circulating miR-503-3p is a useful prognostic biomarker in the radiotherapy of OSCC.
Collapse
Affiliation(s)
- Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Junki Inoue
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Hidetaka Arita
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Sho Kawaguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Hisashi Takeshita
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Manabu Maeshiro
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Rin Liu
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Yuichiro Matsuoka
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Ryo Toya
- Department of Radiation OncologyKumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Murakami
- Department of Medical Imaging, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Yoshikazu Kuwahara
- Radiation Biology and Medicine, Faculty of MedicineTohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Manabu Fukumoto
- Department of Molecular PathologyTokyo Medical University, Tokyo, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Yang A, Zhang P, Sun Z, Liu X, Zhang X, Liu X, Wang D, Meng Z. Lysionotin induces apoptosis of hepatocellular carcinoma cells via caspase-3 mediated mitochondrial pathway. Chem Biol Interact 2021; 344:109500. [PMID: 33989594 DOI: 10.1016/j.cbi.2021.109500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022]
Abstract
As the sixth most prevalent cancer, liver cancer has been reported as the second cause of cancer-induced deaths globally. Lysionotin, a flavonoid compound widely distributed in Lysionotus pauciflorus Maxim, has attracted considerable attention due to its multiple biological activities. The present study analyzes the anti-liver cancer effects of lysionotin in cells and mouse models. In HepG2 and SMMC-7721 cells, lysionotin significantly reduced the viability of cells, inhibited cell proliferation and migration, enhanced cell apoptosis, promoted the increase of intracellular reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential (MMP), and alternated the content of apoptosis-related proteins. In HepG2-and SMMC-7721-xenograft tumor mouse models, lysionotin inhibited tumor growth, reduced the expression levels of anti-apoptotic proteins and enhanced the expression levels of pro-apoptotic proteins in tumor tissues. Additionally, the pre-treatment of Ac-DEVD-CHO, an inhibitor of caspase-3, strongly restored the low cell viability, the enhanced apoptosis rate, the dissipation of MMP caused by lysionotin exposure, as well as prevented the lysionotin-caused enhancement on expressions of apoptosis related proteins, especially cleaved poly (ADP-ribose) polymerase (PARP), Fas Ligand (FasL), cleaved caspase-3 and Bax in both HepG2 and SMMC-7721 cells. Altogether, lysionotin showed significant anti-liver cancer effects related to caspase-3 mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Anhui Yang
- Department of Translational Medicine Research, First Hospital, Jilin University, Changchun, Jilin, 130061, China; School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital, Jilin University, Changchun, 130021, China.
| | - Zhen Sun
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xinrui Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital, Jilin University, Changchun, 130021, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Zhaoli Meng
- Department of Translational Medicine Research, First Hospital, Jilin University, Changchun, Jilin, 130061, China.
| |
Collapse
|
16
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
17
|
Lee JH, Shin HJ, Kim YD, Lim DK. Real-time surface-enhanced Raman scattering-based live cell monitoring of the changes in mitochondrial membrane potential. NANOSCALE ADVANCES 2021; 3:3470-3480. [PMID: 36133723 PMCID: PMC9418680 DOI: 10.1039/d0na01076f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Obtaining molecular information on cells in real time has been a critical challenge in studying the interaction between molecules of interest and intracellular components. Fluorescence-based methods have long served as excellent tools to study such important interactions. In this paper, we introduce a Raman scattering-based method as a promising platform to achieve the real-time monitoring of subtle molecular changes occurring within cells. We found that the Raman scattering-based method enabled monitoring changes in the mitochondrial membrane potential at the single-cell level in rheumatoid arthritis synovial fibroblasts induced by tumor necrosis factor-alpha (TNF-α) protein, various chemicals (MgCl2, FCCP, and sodium pyruvate), and a non-chemical stimulus (i.e., light). The triphenylphosphine-modified gold nanoparticles were selectively localized in the mitochondria and showed the characteristic Raman spectrum of cytochrome C and other Raman spectra of molecular components inside the cell. The surface-enhanced Raman spectrum originating from mitochondria was sensitively changed over time when mitochondrial depolarization was induced by the addition of TNF-α, or chemicals known to induce mitochondrial depolarization. The Raman-based signal changes were well matched with results of the conventional fluorescence-based analysis. However, in contrast to the conventional approach, the Raman-based method enables monitoring such changes in real time and provides detailed molecular information in terms of the interaction of molecules. Therefore, these results highlight the possibility of surface-enhanced Raman scattering-based live cell analysis for future proteomics or drug-screening applications.
Collapse
Affiliation(s)
- Ji Hye Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| | - Hyeon Jeong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| | - Yong Duk Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| |
Collapse
|
18
|
Maietta V, Reyes-García J, Yadav VR, Zheng YM, Peng X, Wang YX. Cellular and Molecular Processes in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:21-38. [PMID: 34019261 DOI: 10.1007/978-3-030-68748-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) is a progressive lung disease characterized by persistent pulmonary vasoconstriction. Another well-recognized characteristic of PH is the muscularization of peripheral pulmonary arteries. This pulmonary vasoremodeling manifests in medial hypertrophy/hyperplasia of smooth muscle cells (SMCs) with possible neointimal formation. The underlying molecular processes for these two major vascular responses remain not fully understood. On the other hand, a series of very recent studies have shown that the increased reactive oxygen species (ROS) seems to be an important player in mediating pulmonary vasoconstriction and vasoremodeling, thereby leading to PH. Mitochondria are a primary site for ROS production in pulmonary artery (PA) SMCs, which subsequently activate NADPH oxidase to induce further ROS generation, i.e., ROS-induced ROS generation. ROS control the activity of multiple ion channels to induce intracellular Ca2+ release and extracellular Ca2+ influx (ROS-induced Ca2+ release and influx) to cause PH. ROS and Ca2+ signaling may synergistically trigger an inflammatory cascade to implicate in PH. Accordingly, this paper explores the important roles of ROS, Ca2+, and inflammatory signaling in the development of PH, including their reciprocal interactions, key molecules, and possible therapeutic targets.
Collapse
Affiliation(s)
- Vic Maietta
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jorge Reyes-García
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.,Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vishal R Yadav
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX, USA.
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
19
|
Younes M, Ammoury C, Haykal T, Nasr L, Sarkis R, Rizk S. The selective anti-proliferative and pro-apoptotic effect of A. cherimola on MDA-MB-231 breast cancer cell line. BMC Complement Med Ther 2020; 20:343. [PMID: 33187495 PMCID: PMC7664056 DOI: 10.1186/s12906-020-03120-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Background Herbal medicines have been a major target for numerous studies through the past years as an alternative treatment for cancer, mainly due to their minimal effects on normal healthy cells. Annona cherimola, popularly known as Cherimoya, is an edible natural fruit rich in phytochemical components and known to possess various biological activities. Previous studies have reported the anti-cancerous effect of A. cherimola ethanolic leaf extract (AELE) on leukemia. This study aims at studying the potential anti-cancer activity of this extract in vitro in two different breast cancer cell lines, namely MDA-MB-231 and MCF-7, in addition to investigating its toxicity on normal mesenchymal stem cells. Methods The anti-proliferative effect of AELE was evaluated via cell viability assay. Propidium iodide staining, Cell Death Detection ELISA and flow cytometry analysis of Annexin V binding were used to assess cell cycle progression, DNA fragmentation and apoptosis induction, respectively. Protein expression was determined via Western Blot analysis to decipher the underlying apoptotic molecular mechanism induced upon AELE treatment. Results The anti-proliferative effect of the extract was found to be selective on the triple-negative breast cancer cell line (MDA-MB-231) in a time- and dose-dependent manner with an IC50 of 390.2 μg/mL at 48 h, with no cytotoxic effects on normal murine mesenchymal stem cells. The pro-apoptotic effect was confirmed by the increase in cellular and DNA fragmentation, flipping of the phosphatidylserine moiety to the outer leaflet, and the increase in Annexin V binding. The underlying molecular mechanism revealed the involvement of the mitochondrial pathway, as shown by alterations in mitochondrial permeability and the upregulation of cytochrome c expression. Conclusion All the data presented in our study suggest that AELE exhibits a selective anti-proliferative and pro-apoptotic effect on the chemo-resistant MDA-MB-231 breast cancer cells, providing evidence for the anti-tumor effects of A. cherimola.
Collapse
Affiliation(s)
- Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Carl Ammoury
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tony Haykal
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Leah Nasr
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Rita Sarkis
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.,Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
20
|
Sun X, Tang Y, Jiang C, Luo S, Jia H, Xu Q, Zhao C, Liang Y, Cao Z, Shao G, Loor JJ, Xu C. Oxidative stress, NF-κB signaling, NLRP3 inflammasome, and caspase apoptotic pathways are activated in mammary gland of ketotic Holstein cows. J Dairy Sci 2020; 104:849-861. [PMID: 33131808 DOI: 10.3168/jds.2020-18788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
Ketosis is a serious metabolic disorder characterized by systemic and hepatic oxidative stress, inflammation, and apoptosis, as well as reduced milk yield. Because of the paucity of data on mammary responses during ketosis, the aim of this study was to evaluate alterations in oxidative stress, NF-κB signaling, NLRP3 inflammasome, and caspase apoptotic pathways in mammary gland of dairy cows with ketosis. Blood, mammary gland tissue, and milk samples were collected from healthy cows [Control, blood concentration of β-hydroxybutyrate (BHB) <0.6 mM, n = 10] and cows with subclinical ketosis (SCK, blood concentration of BHB >1.2 mM and <3 mM, n = 10) or clinical ketosis (CK, blood concentration of BHB >3 mM, n = 10) at median 8 d in milk (range = 6-12). Compared with Control, serum concentration of glucose was lower (3.91 vs. 2.86 or 2.12 mM) in cows with SCK or CK, whereas concentrations of fatty acids (0.25 vs. 0.57 or 1.09 mM) and BHB (0.42 vs. 1.81 or 3.85 mM) were greater. Compared with Control, the percentage of milk fat was greater in cows with SCK or CK. In contrast, the percentage of milk protein was lower in cows with SCK or CK. We detected no differences in milk lactose content across groups. Compared with Control, activities of glutathione peroxidase, superoxide dismutase, and catalase were lower in mammary gland tissue of cows with SCK or CK. In contrast, concentrations of hydrogen peroxide and malondialdehyde were greater in cows with SCK or CK. Compared with Control, mRNA abundances of TNFA, IL6, and IL1B were greater in mammary tissues of cows with SCK or CK. In addition, activity of IKKβ and the ratio of phosphorylated inhibitor of κBα to IκBα, and of phosphorylated NF-κB p65 to NF-κB p65, were also greater in mammary tissues of cows with SCK or CK. Subclinical or clinical ketosis also led to greater activity of caspase 1 and protein abundance of caspase 1, NLRP3, Bax, caspase 3, and caspase 9. In contrast, abundance of the antiapoptotic protein was lower in SCK or CK cows. The data indicate that the mammary gland of SKC or CK cows undergoes severe oxidative stress, inflammation, and cell death.
Collapse
Affiliation(s)
- Xudong Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Yan Tang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Chunhui Jiang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Shengbin Luo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Hongdou Jia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Qiushi Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Chenxu Zhao
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guang Shao
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang Province 161000, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chuang Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China.
| |
Collapse
|
21
|
Wanderoy S, Hees JT, Klesse R, Edlich F, Harbauer AB. Kill one or kill the many: interplay between mitophagy and apoptosis. Biol Chem 2020; 402:73-88. [PMID: 33544491 DOI: 10.1515/hsz-2020-0231] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are key players of cellular metabolism, Ca2+ homeostasis, and apoptosis. The functionality of mitochondria is tightly regulated, and dysfunctional mitochondria are removed via mitophagy, a specialized form of autophagy that is compromised in hereditary forms of Parkinson's disease. Through mitophagy, cells are able to cope with mitochondrial stress until the damage becomes too great, which leads to the activation of pro-apoptotic BCL-2 family proteins located on the outer mitochondrial membrane. Active pro-apoptotic BCL-2 proteins facilitate the release of cytochrome c from the mitochondrial intermembrane space (IMS) into the cytosol, committing the cell to apoptosis by activating a cascade of cysteinyl-aspartate specific proteases (caspases). We are only beginning to understand how the choice between mitophagy and the activation of caspases is determined on the mitochondrial surface. Intriguingly in neurons, caspase activation also plays a non-apoptotic role in synaptic plasticity. Here we review the current knowledge on the interplay between mitophagy and caspase activation with a special focus on the central nervous system.
Collapse
Affiliation(s)
- Simone Wanderoy
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany
| | - J Tabitha Hees
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany
| | - Ramona Klesse
- Institute for Biochemistry and Molecular Biology, University of Freiburg, D-79104Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104Freiburg, Germany
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, D-79104Freiburg, Germany
| | - Angelika B Harbauer
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany.,Technical University of Munich, Institute of Neuronal Cell Biology, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
22
|
Steamed ginseng shoot extract rich in less-polar ginsenosides ameliorated the acute hepatotoxicity caused by overdose of acetaminophen in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Anis E, Zafeer MF, Firdaus F, Islam SN, Khan AA, Hossain MM. Perillyl Alcohol Mitigates Behavioural Changes and Limits Cell Death and Mitochondrial Changes in Unilateral 6-OHDA Lesion Model of Parkinson's Disease Through Alleviation of Oxidative Stress. Neurotox Res 2020; 38:461-477. [PMID: 32394056 DOI: 10.1007/s12640-020-00213-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
In this study, we aim to assess the phytomedicinal potential of perillyl alcohol (PA), a dietary monoterpenoid, in a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). We observed that PA supplementation alleviated behavioural abnormalities such as loss of coordination, reduced rearing and motor asymmetry in lesioned animals. We also observed that PA-treated animals exhibited reduced oxidative stress, DNA fragmentation and caspase 3 activity indicating alleviation of apoptotic cell death. We found reduced mRNA levels of pro-apoptotic regulator BAX and pro-inflammatory mediators IL18 and TNFα in PA-treated animals. Further, PA treatment successfully increased mRNA and protein levels of Bcl2, mitochondrial biogenesis regulator PGC1α and tyrosine hydroxylase (TH) in lesioned animals. We observed that PA treatment blocked BAX and Drp1 translocation to mitochondria, an event often associated with the inception of apoptosis. Further, 6-OHDA exposure reduced expression of electron transport chain complexes I and IV, thereby disturbing energy metabolism. Conversely, expression levels of both complexes were upregulated with PA treatment in lesioned rats. Finally, we found that protein levels of Nrf2, the transcription factor responsible for antioxidant gene expression, were markedly reduced in cytosolic and nuclear fraction on 6-OHDA exposure, and PA increased expression of Nrf2 in both fractions. We believe that our data hints towards PA having the ability to provide cytoprotection in a hemiparkinsonian rat model through alleviation of motor deficits, oxidative stress, mitochondrial dysfunction and apoptosis.
Collapse
Affiliation(s)
- Ehraz Anis
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fakiha Firdaus
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shireen Naaz Islam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Azka Anees Khan
- Department of Pathology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - M Mobarak Hossain
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
24
|
Wang L, Lv Y, Liu G. The roles of SHANK1 in the development of colon cancer. Cell Biochem Funct 2020; 38:669-675. [PMID: 32356303 DOI: 10.1002/cbf.3529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 01/17/2023]
Abstract
SH3 and multiple ankyrin repeat domains protein 1 (SHANK1) belongs to a family of postsynaptic scaffolding proteins. In this study, we found that SHANK1 was abnormally high expressed in colon cancer tissues compared to normal tissues. Colon cancer patients with low SHANK1 expression had better prognosis. Furthermore, the expression of SHANK1 was knocked down in human colon cancer cell lines HCT116 and HT29 and the role of SHANK1 was investigated in colon cancer tumorigenesis. Our results showed that the knockdown of SHANK1 inhibited the survival and proliferation of both cells. The migration of these two cell lines was significantly reduced and the apoptosis was induced compared with control cells. The Bax/Bcl-2 ratio in both cell lines that SHANK1 was knocked down was increased, which is a signal that the mitochondrial apoptotic pathway was triggered. In addition, we observed that knockdown of SHANK1 reduced the expression of phosphorylated forms of AKT and mTOR. These data suggested that loss of SHANK1 inhibited viability and induced apoptosis of HCT116 and HT29 cells through the AKT/mTOR signaling pathway. Our data revealed that SHANK1 played important roles in the growth of colon cancer cells and may be used as a novel strategy for colon cancer therapy. SIGNIFICANCE OF THE STUDY: Herein, we reported that SHANK1 was abnormally high expressed in colon cancer tissues and associated with worse prognosis of patients. In addition, knockdown of SHANK1 inhibited viability and induced apoptosis in colon cancer cell lines through AKT/mTOR signaling pathways. These data suggest that SHANK1 may be a new oncogene in colon cancer. This study reveals the role of SHANK1 in addition to neuronal development and cognitive development. And it provides a new potential target for the prediction and treatment of colon cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastroenterological Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Lv
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Guoqin Liu
- Department of Gastroenterological Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
25
|
Chen L, Fan Y, Qiu J, Laurent R, Li J, Bignon J, Mignani S, Caminade AM, Shi X, Majoral JP. Potent Anticancer Efficacy of First-In-Class Cu II and Au III Metaled Phosphorus Dendrons with Distinct Cell Death Pathways. Chemistry 2020; 26:5903-5910. [PMID: 32142179 DOI: 10.1002/chem.202001014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 02/04/2023]
Abstract
First-in-class CuII and AuIII metaled phosphorus dendrons were synthesized and showed significant antiproliferative activity against several aggressive breast cancer cell lines. The data suggest that the cytotoxicity increases with reducing length of the alkyl chains, whereas the replacement of CuII with AuIII considerably increases the antiproliferative activity of metaled phosphorus dendrons. Very interestingly, we found that the cell death pathway is related to the nature of the metal complexed by the plain dendrons. CuII metaled dendrons showed a potent caspase-independent cell death pathway, whereas AuIII metaled dendrons displayed a caspase-dependent apoptotic pathway. The complexation of plain dendrons with AuIII increased the cellular lethality versus dendrons with CuII and promoted the translocation of Bax into the mitochondria and the release of Cytochrome C (Cyto C).
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.,Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France.,Université de Toulouse, INPT, 31077, Toulouse CEDEX 4, France
| | - Yu Fan
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Jieru Qiu
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France.,Université de Toulouse, INPT, 31077, Toulouse CEDEX 4, France
| | - Régis Laurent
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France.,Université de Toulouse, INPT, 31077, Toulouse CEDEX 4, France
| | - Jin Li
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles du CNRS, 91198 avenue de la Terrasse, Paris Gif-sur-Yvette Cedex, France
| | - Serge Mignani
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.,Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 86045, rue des Saints Pères, 75006, Paris, France.,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France.,Université de Toulouse, INPT, 31077, Toulouse CEDEX 4, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France.,Université de Toulouse, INPT, 31077, Toulouse CEDEX 4, France
| |
Collapse
|
26
|
Chen YJ, Cheng FC, Chen CJ, Su HL, Sheu ML, Sheehan J, Pan HC. Down-Regulated Expression of Magnesium Transporter Genes Following a High Magnesium Diet Attenuates Sciatic Nerve Crush Injury. Neurosurgery 2020; 84:965-976. [PMID: 29672725 DOI: 10.1093/neuros/nyy120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/10/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Magnesium supplementation has potential for use in nerve regeneration. The expression of some magnesium transporter genes is reflective of the intracellular magnesium levels. OBJECTIVE To assess the expression of various magnesium transporter genes as they relate to neurological alterations in a sciatic nerve injury model. METHODS Sciatic nerve injury was induced in rats, which were then fed either basal or high magnesium diets. Magnesium concentrations and 5 magnesium transporter genes (SLC41A1, MAGT1, CNNM2, TRPM6, and TRPM7) were measured in the tissue samples. RESULTS The high magnesium diet attenuated cytoskeletal loss in a dose-dependent manner in isolated nerve explants. The high magnesium diet augmented nerve regeneration and led to the restoration of nerve structure, increased S-100, and neurofilaments. This increased regeneration was consistent with the improvement of neurobehavioral and electrophysiological assessment. The denervated muscle morphology was restored with the high magnesium diet, and that was also highly correlated with the increased expression of desmin and acetylcholine receptors in denervated muscle. The plasma magnesium levels were significantly elevated after the animals consumed a high magnesium diet and were reciprocally related to the down-regulation of CNNM2, MagT1, and SCL41A1 in the blood monocytes, nerves, and muscle tissues of the nerve crush injury model. CONCLUSION The increased plasma magnesium levels after consuming a high magnesium diet were highly correlated with the down-regulation of magnesium transporter genes in monocytes, nerves, and muscle tissues after sciatic nerve crush injury. The study findings suggest that there are beneficial effects of administering magnesium after a nerve injury.
Collapse
Affiliation(s)
- Ying-Ju Chen
- Department of food and nutrition, Providence University, Taichung, Taiwan
| | - Fu-Chou Cheng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, Agriculture Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
27
|
Astaxanthin Protects PC12 Cells against Homocysteine- and Glutamate-Induced Neurotoxicity. Molecules 2020; 25:molecules25010214. [PMID: 31948056 PMCID: PMC6982875 DOI: 10.3390/molecules25010214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Memory impairment has been shown to be associated with glutamate (Glu) excitotoxicity, homocysteine (Hcy) accumulation, and oxidative stress. We hypothesize that Glu and Hcy could damage neuronal cells, while astaxanthin (ATX) could be beneficial to alleviate the adverse effects. Using PC12 cell model, we showed that Glu and Hcy provoked a huge amount of reactive oxygen species (ROS) production, causing mitochondrial damage at EC50 20 and 10 mm, respectively. The mechanisms of action include: (1) increasing calcium influx; (2) producing ROS; (3) initiating lipid peroxidation; (4) causing imbalance of the Bcl-2/Bax homeostasis; and (5) activating cascade of caspases involving caspases 12 and 3. Conclusively, the damages caused by Glu and Hcy to PC12 cells can be alleviated by the potent antioxidant ATX.
Collapse
|
28
|
Patel P, Karch J. Regulation of cell death in the cardiovascular system. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 353:153-209. [PMID: 32381175 DOI: 10.1016/bs.ircmb.2019.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adult heart is a post-mitotic terminally differentiated organ; therefore, beyond development, cardiomyocyte cell death is maladaptive. Heart disease is the leading cause of death in the world and aberrant cardiomyocyte cell death is the underlying problem for most cardiovascular-related diseases and fatalities. In this chapter, we will discuss the different cell death mechanisms that engage during normal cardiac development, aging, and disease states. The most abundant loss of cardiomyocytes occurs during a myocardial infarction, when the blood supply to the heart is obstructed, and the affected myocardium succumbs to cell death. Originally, this form of cell death was considered to be unregulated; however, research from the last half a century clearly demonstrates that this form of cell death is multifaceted and employees various degrees of regulation. We will explore all of the cell death pathways that have been implicated in this disease state and the potential interplay between them. Beyond myocardial infarction, we also explore the role and mechanisms of cardiomyocyte cell death in heart failure, myocarditis, and chemotherapeutic-induced cardiotoxicity. Inhibition of cardiomyocyte cell death has extensive therapeutic potential that will increase the longevity and health of the human heart.
Collapse
Affiliation(s)
- Pooja Patel
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
29
|
Marquardt JU, Edlich F. Predisposition to Apoptosis in Hepatocellular Carcinoma: From Mechanistic Insights to Therapeutic Strategies. Front Oncol 2019; 9:1421. [PMID: 31921676 PMCID: PMC6923252 DOI: 10.3389/fonc.2019.01421] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most rapidly evolving cancers in the Western world. The majority of HCCs develop on the basis of a chronic inflammatory liver damage that predisposes liver cancer development and leads to deregulation of multiple cellular signaling pathways. The resulting dysbalance between uncontrolled proliferation and impaired predisposition to cell death with consecutive failure to clear inflammatory damage is a key driver of malignant transformation. Therefore, resistance to death signaling accompanied by metabolic changes as well as failed immunological clearance of damaged pre-neoplastic hepatocytes are considered hallmarks of hepatocarcinogenesis. Hereby, the underlying liver disease, the type of liver damage and individual predisposition to apoptosis determines the natural course of the disease as well as the therapeutic response. Here, we will review common and individual aspects of cell death pathways in hepatocarcinogenesis with a particular emphasis on regulatory networks and key molecular alterations. We will further delineate the potential of targeting cell death-related signaling as a viable therapeutic strategy to improve the outcome of HCC patients.
Collapse
Affiliation(s)
- Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Department of Medicine, Lichtenberg Research Group, University Mainz, Mainz, Germany
| | - Frank Edlich
- Heisenberg Research Group "Regulation von Bcl-2-Proteinen Durch Konformationelle Flexibilität," Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Jurczyk MU, Żurawski J, Wirstlein PK, Kowalski K, Jurczyk M. Response of inflammatory cells to biodegradable ultra-fine grained Mg-based composites. Micron 2019; 129:102796. [PMID: 31821933 DOI: 10.1016/j.micron.2019.102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 11/29/2022]
Abstract
Ultra-fine grained biodegradable Mg-based Mg1Zn1Mn0.3 Zr - HA and Mg4Y5.5Dy0.5 Zr - 45S5 Bioglass composites have shown great medical potential. Two types of these Mg-based biomaterials subjected to different treatments were tested and as shown earlier they are biocompatible. The aim of the study is to determine how much culture media incubated with these ultra-fine trained Mg-based composites can cause inflammatory reactions and /or periodontal cell death. The incubation of composites in the medium releases metal ions into the solution. It can be assumed that this process is permanent and also occurs in the human body. The results have shown that the effect of proinflammatory IL-6 and TNF- cytokines results in the strongest production of the acute phase proteins in the first day on the Mg1Zn1Mn0.3 Zr-5 wt.% HA-1 wt. % Ag HF-treated biocomposite after immersion for 2 h in 40 % HF and then the fastest decrease in these processes on the third day. In turn, the inflammatory process induced on the Mg1Zn1Mn0.3 Zr-5 wt.% HA-1 wt. % Ag biomaterial, in BAX / BCL ratio assessment, is the strongest on the third day and maintains a significantly high level on the following day, which, at the same time, confirms its persistence and development. In addition, these results confirm the successively generated necrotic processes. Ions can induce inflammatory reactions, which in the case of the implant may take a long time, which results in the loss of the implant. Even if the material is biocompatible in rapid in-vitro tests, it can induce inflammation in the body after some time due to the release of ions. Not every treatment improves the material's properties in terms of subsequent safety.
Collapse
Affiliation(s)
- Mieczyslawa U Jurczyk
- Division of Mother's and Child's Health, Poznan University of Medical Sciences, Polna 33, 60-535, Poznan, Poland.
| | - Jakub Żurawski
- Department of Immunobiochemistry, Chair of Biology and Environmental Sciences, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Przemyslaw K Wirstlein
- Department of Gynaecology and Obstetrics, Division of Reproduction, Poznan University of Medical Sciences, Polna 33, 60-535, Poznan, Poland.
| | - Kamil Kowalski
- Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61138, Poznan, Poland.
| | - Mieczyslaw Jurczyk
- Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61138, Poznan, Poland.
| |
Collapse
|
31
|
Novel 2,5-disubstituted-1,3,4-oxadiazole derivatives induce apoptosis in HepG2 cells through p53 mediated intrinsic pathway. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Madreiter-Sokolowski CT, Ramadani-Muja J, Ziomek G, Burgstaller S, Bischof H, Koshenov Z, Gottschalk B, Malli R, Graier WF. Tracking intra- and inter-organelle signaling of mitochondria. FEBS J 2019; 286:4378-4401. [PMID: 31661602 PMCID: PMC6899612 DOI: 10.1111/febs.15103] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria are as highly specialized organelles and masters of the cellular energy metabolism in a constant and dynamic interplay with their cellular environment, providing adenosine triphosphate, buffering Ca2+ and fundamentally contributing to various signaling pathways. Hence, such broad field of action within eukaryotic cells requires a high level of structural and functional adaptation. Therefore, mitochondria are constantly moving and undergoing fusion and fission processes, changing their shape and their interaction with other organelles. Moreover, mitochondrial activity gets fine-tuned by intra- and interorganelle H+ , K+ , Na+ , and Ca2+ signaling. In this review, we provide an up-to-date overview on mitochondrial strategies to adapt and respond to, as well as affect, their cellular environment. We also present cutting-edge technologies used to track and investigate subcellular signaling, essential to the understanding of various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Corina T Madreiter-Sokolowski
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Gabriela Ziomek
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Zhanat Koshenov
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,BioTechMed, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,BioTechMed, Graz, Austria
| |
Collapse
|
33
|
Olivas-Aguirre M, Torres-López L, Valle-Reyes JS, Hernández-Cruz A, Pottosin I, Dobrovinskaya O. Cannabidiol directly targets mitochondria and disturbs calcium homeostasis in acute lymphoblastic leukemia. Cell Death Dis 2019; 10:779. [PMID: 31611561 PMCID: PMC6791884 DOI: 10.1038/s41419-019-2024-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
Anticancer properties of non-psychoactive cannabinoid cannabidiol (CBD) have been demonstrated on tumors of different histogenesis. Different molecular targets for CBD were proposed, including cannabinoid receptors and some plasma membrane ion channels. Here we have shown that cell lines derived from acute lymphoblastic leukemia of T lineage (T-ALL), but not resting healthy T cells, are highly sensitive to CBD treatment. CBD effect does not depend on cannabinoid receptors or plasma membrane Ca2+-permeable channels. Instead, CBD directly targets mitochondria and alters their capacity to handle Ca2+. At lethal concentrations, CBD causes mitochondrial Ca2+ overload, stable mitochondrial transition pore formation and cell death. Our results suggest that CBD is an attractive candidate to be included into chemotherapeutic protocols for T-ALL treatment.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Col. 28030, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Col. 28030, Colima, Mexico
| | - Juan Salvador Valle-Reyes
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Col. 28030, Colima, Mexico
| | - Arturo Hernández-Cruz
- Department of Cognitive Neuroscience and National Laboratory of Channelopathies (LaNCa), Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico-City, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Col. 28030, Colima, Mexico.
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Col. 28030, Colima, Mexico.
| |
Collapse
|
34
|
Wang W, Wang J, Zhang J, Taq W, Zhang Z. miR‑222 induces apoptosis in human intervertebral disc nucleus pulposus cells by targeting Bcl‑2. Mol Med Rep 2019; 20:4875-4882. [PMID: 31638197 PMCID: PMC6854584 DOI: 10.3892/mmr.2019.10732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is characterized by abnormal induction of apoptosis in intervertebral disc nucleus pulposus (NP) cells. Previous studies indicated that miR-222 was upregulated in patients with rheumatoid arthritis. However, the effects of miR-222 in IDD remain unclear. The present study aimed to demonstrate the role of miR-222 in NP cells. The levels of miR-222 in patients with IDD were measured by reverse transcription-quantitative PCR. Cell Counting Kit-8 and western blotting assays were used to detect cell proliferation and apoptosis-associated protein levels, respectively. In addition, luciferase reporter assays were performed to validate the predicted target genes of miR-222. miR-222 was significantly upregulated in patients with IDD. Overexpression of miR-222 inhibited cell proliferation and induced cell apoptosis. Moreover, overexpression of miR-222 resulted in an upregulation in the levels of Bax and cleaved caspase 3, and a downregulation in the levels of Bcl-2 in NP cells. The luciferase reporter assays demonstrated that Bcl-2 is a target of miR-222. Furthermore, overexpression of miR-222 increased the levels of cytochrome c, apoptotic protease activating factor-1 and cleaved caspase 9 in NP cells. Conversely, downregulation of miR-222 could promote the proliferation of NP cells. The present data demonstrated that miR-222 induced apoptosis in NP cells by directly targeting Bcl-2. Therefore, miR-222 may act as a potential therapeutic target for the treatment of IDD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Rehabilitation, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jian Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jiayi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Wei Taq
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zhenxing Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
35
|
Magnesium Is a Key Player in Neuronal Maturation and Neuropathology. Int J Mol Sci 2019; 20:ijms20143439. [PMID: 31336935 PMCID: PMC6678825 DOI: 10.3390/ijms20143439] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Magnesium (Mg) is the second most abundant cation in mammalian cells, and it is essential for numerous cellular processes including enzymatic reactions, ion channel functions, metabolic cycles, cellular signaling, and DNA/RNA stabilities. Because of the versatile and universal nature of Mg2+, the homeostasis of intracellular Mg2+ is physiologically linked to growth, proliferation, differentiation, energy metabolism, and death of cells. On the cellular and tissue levels, maintaining Mg2+ within optimal levels according to the biological context, such as cell types, developmental stages, extracellular environments, and pathophysiological conditions, is crucial for development, normal functions, and diseases. Hence, Mg2+ is pathologically involved in cancers, diabetes, and neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and demyelination. In the research field regarding the roles and mechanisms of Mg2+ regulation, numerous controversies caused by its versatility and complexity still exist. As Mg2+, at least, plays critical roles in neuronal development, healthy normal functions, and diseases, appropriate Mg2+ supplementation exhibits neurotrophic effects in a majority of cases. Hence, the control of Mg2+ homeostasis can be a candidate for therapeutic targets in neuronal diseases. In this review, recent results regarding the roles of intracellular Mg2+ and its regulatory system in determining the cell phenotype, fate, and diseases in the nervous system are summarized, and an overview of the comprehensive roles of Mg2+ is provided.
Collapse
|
36
|
Tsai YH, Lin JJ, Ma YS, Peng SF, Huang AC, Huang YP, Fan MJ, Lien JC, Chung JG. Fisetin Inhibits Cell Proliferation through the Induction of G 0/G 1 Phase Arrest and Caspase-3-Mediated Apoptosis in Mouse Leukemia Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:841-863. [PMID: 31096772 DOI: 10.1142/s0192415x19500447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fisetin, a naturally occurring flavonoid, is found in common fruits and vegetables and has been shown to induce cytotoxic effects in many human cancer cell lines. No information has shown that fisetin induced cell cycle arrest and apoptosis in mouse leukemia WEHI-3 cells. We found that fisetin decreased total viable cells through G0/G1 phase arrest and induced sub-G1 phase (apoptosis). We have confirmed fisetin induced cell apoptosis by the formation of DNA fragmentation and induction of apoptotic cell death. Results indicated that fisetin induced intracellular Ca 2+ increase but decreased the ROS production and the levels of ΔΨ m in WEHI-3 cells. Fisetin increased the activities of caspase-3, -8 and -9. Cells were pre-treated with inhibitors of caspase-3, -8 and -9 and then treated with fisetin and results showed increased viable cell number when compared to fisetin treated only. Fisetin reduced expressions of cdc25a but increased p-p53, Chk1, p21 and p27 that may lead to G0/G1 phase arrest. Fisetin inhibited anti-apoptotic protein Bcl-2 and Bcl-xL and increased pro-apoptotic protein Bax and Bak. Furthermore, fisetin increased the protein expression of cytochrome c and AIF. Fisetin decreased cell number through G0/G1 phase arrest via the inhibition of cdc25c and induction of apoptosis through caspase-dependent and mitochondria-dependent pathways. Therefore, fisetin may be useful as a potential therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Yu-Hsiang Tsai
- * Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Jen-Jyh Lin
- † Department of Respiratory Therapy, China Medical University, Taichung 40402, Taiwan.,¶ Division of Cardiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yi-Shih Ma
- ∥ School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.,** Department of Chinese Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Shu-Fen Peng
- * Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - An-Cheng Huang
- †† Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26644, Taiwan
| | - Yi-Ping Huang
- ‡ Department of Physiology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ming-Jen Fan
- ‡‡ Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Jin-Cherng Lien
- § School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.,‡‡ Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
37
|
Agrawal S, Fox JH. Novel proteomic changes in brain mitochondria provide insights into mitochondrial dysfunction in mouse models of Huntington's disease. Mitochondrion 2019; 47:318-329. [PMID: 30902619 DOI: 10.1016/j.mito.2019.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/07/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is a progressive ultimately fatal disorder caused by a glutamine-encoding CAG expansion in the huntingtin (HTT) gene that results in degeneration mainly in striatal and cerebro-cortical brain regions. Mitochondrial dysfunction is one important facet of HD pathogenesis. Here we used R6/2 and YAC128 HD mouse models of human HD, that express different HTT transgenes and have different progression rates, to identify HD brain mitochondrial proteomic signatures. Cerebral cortical mitochondrial preparations from HD and wild-type litter mate mice were compared by two-dimensional SDS-PAGE electrophoresis and MALDI-TOF/TOF mass spectrometry. Proteomic analyses inferred 17 and 12 differentially expressed proteins, respectively in 12 week R6/2 and 15 month YAC128 HD mice, compared to controls. Peroxiredoxin 3, stress-70, DJ-1, isocitrate dehydrogenase [NAD] α subunit and ATP synthase subunit D were differentially expressed in both models. Using the PANTHER (Protein ANalysis THrough Evolutionary Relationships) classification system we show that the inferred proteins are involved in oxidative stress defense, oxidative phosphorylation, the citric acid cycle, pyruvate metabolism, apoptosis, protein folding and iron metabolism. Common mitochondrial proteomic changes are significant in mouse models of middle (YAC128) and advanced (R6/2) HD despite differences in the HTT transgenes, age, genetic background and disease stage. The findings identify a proteomic signature of HD mitochondria in mouse models that includes previously unrecognized proteins.
Collapse
Affiliation(s)
- Sonal Agrawal
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA
| | - Jonathan H Fox
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA.
| |
Collapse
|
38
|
Liu Y, Wang X, Zhang Z, Xiao B, An B, Zhang J. The overexpression of Rab9 promotes tumor progression regulated by XBP1 in breast cancer. Onco Targets Ther 2019; 12:1815-1824. [PMID: 30881034 PMCID: PMC6404677 DOI: 10.2147/ott.s183748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes and is involved in the recycling of mannose-6-phosphate receptors (MPRs). Materials and methods To determine new treatment strategies for breast cancer and to elucidate the mechanism underlying the phenomenon, we investigated the effects of Rab9 in the human breast cancer cell lines MCF7 and MDA-MB-231. Results We observed that knockdown of Rab9 inhibited the survival and proliferation of MCF7 and MDA-MB-231 cells, whereas Rab9 overexpression facilitated cell survival and proliferation by inducing or suppressing apoptosis. These results were further confirmed by the Bax/Bcl-2 ratio in affected MCF7 and MDA-MB-231 cells, which demonstrated whether the mitochondrial apoptotic pathway was triggered. Furthermore, the AKT/PI3K pathway is implicated in cell growth and survival and Rab9 changed the expression and phosphorylation of PI3K signaling pathway members. XBP1 is a key regulator of Rab9 and further confirmed that Rab9 play important roles in breast cancer tumorigenesis. Conclusion These data suggest that Rab9 is a good candidate for a novel therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yansong Liu
- Breast Department, Shandong Cancer Hospital, Affiliated to Shandong University, Shandong, China,
| | - Xin Wang
- Breast Department, Yinan Country People's Hospital, Shandong, China
| | - Zhonghua Zhang
- Breast Department, Dongping Country People's Hospital, Shandong, China
| | - Bin Xiao
- Breast Department, Shanxian Hygeia Hospital, Shandong, China
| | - Baoming An
- Breast Department, Wulian Country People's Hospital, Shandong, China
| | - Jun Zhang
- Breast Department, Zhangqiu Hospital of Chinese Medicine, Shandong, China
| |
Collapse
|
39
|
Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, How CW, Masarudin MJ, Abdullah R, Alitheen NB. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep 2019; 9:1614. [PMID: 30733560 PMCID: PMC6367486 DOI: 10.1038/s41598-018-38214-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
Collapse
Affiliation(s)
- Noraini Nordin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan Region, Iraq
| | - Nur Rizi Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Cheras, Wilayah Persekutuan, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee Wun How
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
40
|
Wei W, Huo B, Shi X. miR-600 inhibits lung cancer via downregulating the expression of METTL3. Cancer Manag Res 2019; 11:1177-1187. [PMID: 30774445 PMCID: PMC6362936 DOI: 10.2147/cmar.s181058] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Methyltransferase like 3 (METTL3) is an RNA methyltransferase implicated in mRNA biogenesis, decay, and translation control through N6-methyladenosine (m6A) modification. Methods To find new treatment strategies for lung cancer and to elucidate the mechanism underlying the phenomenon, we treated the human lung cancer cell lines A549 and H1299 to investigate the effect of METTL3 on lung cancer. Results We observed that knockdown of METTL3 inhibited the survival and proliferation of A549 and H1299 cells. The migration and proliferation of both cell lines were significantly decreased, and the apoptosis was induced in comparison with control cells. These results were further confirmed by the transfection of miRNA of METTL3 increased the Bax/Bcl-2 ratio in A549 and H1299 cells, which is a sign that mitochondrial apoptotic pathway was triggered. The PI3K/Akt pathway is implicated in cell growth and survival and we also observed that knockdown of METTL3 changed the expression and phosphorylation of proteins of PI3K signaling pathway members. Further, our results demonstrated that miR-600 inhibited the expression of METTL3 and reversed the positive effect of METTL3 on NSCLC progression, indicating an miR-600/METTL3 pathway in NSCLC. Conclusion These data suggested that miR-600 inhibited lung cancer via down-regulating METTL3 expression, and knockdown of METTL3 might be used as a novel strategy for lung cancer therapy.
Collapse
Affiliation(s)
- Wenwen Wei
- Department of Respiratory Medicine, The Second People's Hospital of Dongying, Guangrao City, Shandong Province 257335, People's Republic of China,
| | - Baosheng Huo
- Department of Thoracic Surgery, The Second People's Hospital of Dongying, Guangrao City, Shandong Province 257335, People's Republic of China,
| | - Xiulan Shi
- Department of Respiratory Medicine, The Second People's Hospital of Dongying, Guangrao City, Shandong Province 257335, People's Republic of China,
| |
Collapse
|
41
|
AlBasher G, AlKahtane AA, Alarifi S, Ali D, Alessia MS, Almeer RS, Abdel-Daim MM, Al-Sultan NK, Al-Qahtani AA, Ali H, Alkahtani S. Methotrexate-induced apoptosis in human ovarian adenocarcinoma SKOV-3 cells via ROS-mediated bax/bcl-2-cyt-c release cascading. Onco Targets Ther 2018; 12:21-30. [PMID: 30588027 PMCID: PMC6301295 DOI: 10.2147/ott.s178510] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction The communication between a substance and a cell may depend on whether the cell is normal or pathological. The disease cells and drug interaction may occasionally overcome beneficial action of the drug; subsequently, it is important to investigate the effect of the drug in both the normal and target cells. This study aimed to evaluate the methotrexate (MTX) antiproliferative effect and explore the mechanistic approach to investigate the cell death index in SKOV-3 ovarian cells during treatment with MTX. Methods In vitro studies of SKOV-3 cells were examined by tetrazolium assay after exposure to various concentrations of MTX. Moreover, reactive oxygen species (ROS) generation, mitochondrial membrane potential, DNA damage, and AO/EtBr staining morphological analysis of necrotic/apoptotic cells were detected; cellular impairment in mitochondria and DNA was confirmed by JC-1 mitotracker/DAPI, respectively, and cell death pathway markers; bax/bcl-2 were analyzed. Results A dose-dependent antiproliferative effect of MTX treatment was observed in SKOV-3 cells; the prominent inhibitory concentration was 40 µM of MTX (P<0.01). The growth inhibition rates of the cancer cells reached 24.07% in MTX. The MTX showed increase in ROS generation and mitochondrial depolarization, and DNA integrity cells collectively advocated the apoptotic cell death at higher concentration. In addition, the results of reverse transcription polymerase chain reaction also supported the apoptosis by upregulating the bax and downregulating the bcl-2 (P<0.01). Thus the MTX moderately provokes apoptosis. Conclusion Our findings suggest that MTX acts on SKOV-3 cancer cells by increasing intracellular ROS levels, leading to DNA damage and altering the MMP along with apoptotic gene upregulation. This mechanism may provide new therapeutic targets to improve tumor treatment.
Collapse
Affiliation(s)
- Gadah AlBasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A AlKahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Alessia
- Department of Biology, Science College, Al-Imam Muhammad Ibn Saud, Islamic University, Riyadh, Saudi Arabia
| | - Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Nouf K Al-Sultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Huma Ali
- Department of Chemistry Maulana Azad National Institute of Technology, Bhopal, India,
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Wang S, Qiu L, Song H, Dang N. NPS - 2143 (hydrochloride) inhibits melanoma cancer cell proliferation and induces autophagy and apoptosis. Med Sci (Paris) 2018; 34 Focus issue F1:87-93. [PMID: 30403181 DOI: 10.1051/medsci/201834f115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanoma is a common and aggressive skin cancer caused by the oncogenic transformation of melanocytes. NPS-2143 (hydrochloride) is a calcification drug that acts as an antagonist of the calcium-sensing receptor (CaSR) and consequently stimulates the release of parathyroid hormone. In the present work, we treated cells from the human melanoma cell line M14 to investigate the effects of NPS-2143 on melanoma cells and elucidate their underlying mechanisms. We observed that NPS-2143 inhibits the survival and proliferation of M14 cells and suppresses the migration and proliferation of M14 cells by inducing apoptosis. The Bax/Bcl‑2 ratio in M14 cells was enhanced by the NPS-2143 treatment, suggesting that the mitochondrial apoptotic pathway was activated. The expression and phosphorylation of proteins involved in the PI3K signaling pathway were altered by NPS-2143 treatment. Our data show that NPS-2143 impacts the viability and induces the apoptosis of melanoma M14 cells through its impact on the PI3K signaling pathway. It suggests that NPS-2143 could represent a promising candidate for melanoma treatment.
Collapse
Affiliation(s)
- Shumei Wang
- Department of Community Medicine, Jinan Central Hospital affiliated to Shandong University, No.105 Jiefang Road, Jinan 250013, Shandong Province, China
| | - Liyun Qiu
- Department of Pharmacy, Jinan Central Hospital affiliated to Shandong University, No.105 Jiefang Road, Jinan 250013, Shandong Province, China
| | - Haiyan Song
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, No.105 Jiefang Road, Jinan 250013, Shandong Province, China
| | - Ningning Dang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, No.105 Jiefang Road, Jinan 250013, Shandong Province, China
| |
Collapse
|
43
|
Mukherjee A, Sarkar S, Jana S, Swarnakar S, Das N. Neuro-protective role of nanocapsulated curcumin against cerebral ischemia-reperfusion induced oxidative injury. Brain Res 2018; 1704:164-173. [PMID: 30326199 DOI: 10.1016/j.brainres.2018.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/31/2022]
Abstract
Cerebral ischemia-reperfusion (CIR) accelerates the progression of neurodegeneration by causing mitochondrial dysfunction to overproduce reactive oxygen species (ROS). Curcumin shows protective effects against CIR-induced oxidative damage. Free curcumin (FC) is effective at high doses due to its poor bioavailability. Also the blood-brain barrier (BBB) limits the passage of substances from circulation into the cerebral region. Thus, formulation of curcumin within polyethylene glycol (PEG)-ylated polylactide-co-glycolide (PLGA) nanoparticles (NC) was applied orally to aged rats to explore its role against CIR injury. Mitochondrial damage was evaluated. The levels of pro-inflammatory cytokines and components of apoptotic pathway were studied. Unlike FC, NC pre-treatment exerted better neuro-protection by ameliorating ROS-mediated oxidative damage and prevented CIR-induced neuronal apoptosis. Therefore, curcumin incorporated PEGylated PLGA nanoparticles may be used as a suitable delivery vehicle to the brain as they can increase curcumin bioavalability and the released curcumin may confer protection to the neurons against CIR-induced oxidative damage.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sibani Sarkar
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sayantan Jana
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Snehasikta Swarnakar
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nirmalendu Das
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
44
|
Bakshi S, McKee C, Walker K, Brown C, Chaudhry GR. Toxicity of JQ1 in neuronal derivatives of human umbilical cord mesenchymal stem cells. Oncotarget 2018; 9:33853-33864. [PMID: 30333915 PMCID: PMC6173460 DOI: 10.18632/oncotarget.26127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins regulate the transcription of many genes including c-MYC, a proto-oncogene, which is upregulated in many types of cancers. The thienodiazepine class of BET inhibitors, such as JQ1, inhibits growth of cancer cells and triggers apoptosis. However, the effects of BET inhibitors on normal cells and mesenchymal stem cells (MSCs), which are important in routine maintenance or regeneration of damaged cells and tissues, are poorly investigated. Previously, we have shown that JQ1 causes human umbilical cord MSCs to undergo cell cycle arrest and neural differentiation. In this study, we determined that JQ1 is more deleterious to neuronal derivatives (NDs) than adipogenic, chondrogenic or osteogenic derivatives of MSCs. NDs treated with JQ1 showed a significant decrease in cell proliferation, viability, and neuronal markers. JQ1 caused cell death through the intrinsic apoptotic pathway in NDs as determined by activation of Caspase 9 and increased expression of Cytochrome C. A comparative analysis showed differential action of JQ1 on MSCs and NDs. The results showed selective neuronal toxicity of JQ1 in NDs but not in the undifferentiated MSCs. These findings suggest a more careful examination of the selection and use of BET inhibitors as therapeutic agents, as they may cause unwanted damage to non-target cells and tissues.
Collapse
Affiliation(s)
- Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
45
|
Tong BCK, Wu AJ, Li M, Cheung KH. Calcium signaling in Alzheimer's disease & therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1745-1760. [PMID: 30059692 DOI: 10.1016/j.bbamcr.2018.07.018] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is characterized by the accumulation of amyloid (Aβ) plaques and neurofibrillary tangles in the brain. Much attention has been given to develop AD treatments based on the amyloid cascade hypothesis; however, none of these drugs had good efficacy at improving cognitive functions in AD patients suggesting that Aβ might not be the disease origin. Thus, there are urgent needs for the development of new therapies that target on the proximal cause of AD. Cellular calcium (Ca2+) signals regulate important facets of neuronal physiology. An increasing body of evidence suggests that age-related dysregulation of neuronal Ca2+ homeostasis may play a proximal role in the pathogenesis of AD as disrupted Ca2+ could induce synaptic deficits and promote the accumulation of Aβ plaques and neurofibrillary tangles. Given that Ca2+ disruption is ubiquitously involved in all AD pathologies, it is likely that using chemical agents or small molecules specific to Ca2+ channels or handling proteins on the plasma membrane and membranes of intracellular organelles to correct neuronal Ca2+ dysregulation could open up a new approach to AD prevention and treatment. This review summarizes current knowledge on the molecular mechanisms linking Ca2+ dysregulation with AD pathologies and discusses the possibility of correcting neuronal Ca2+ disruption as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Benjamin Chun-Kit Tong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Aston Jiaxi Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
46
|
Schneider C, Gebhardt L, Arndt S, Karrer S, Zimmermann JL, Fischer MJM, Bosserhoff AK. Cold atmospheric plasma causes a calcium influx in melanoma cells triggering CAP-induced senescence. Sci Rep 2018; 8:10048. [PMID: 29968804 PMCID: PMC6030087 DOI: 10.1038/s41598-018-28443-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023] Open
Abstract
Cold atmospheric plasma (CAP) is a promising approach in anti-cancer therapy, eliminating cancer cells with high selectivity. However, the molecular mechanisms of CAP action are poorly understood. In this study, we investigated CAP effects on calcium homeostasis in melanoma cells. We observed increased cytoplasmic calcium after CAP treatment, which also occurred in the absence of extracellular calcium, indicating the majority of the calcium increase originates from intracellular stores. Application of previously CAP-exposed extracellular solutions also induced cytoplasmic calcium elevations. A substantial fraction of this effect remained when the application was delayed for one hour, indicating the chemical stability of the activating agent(s). Addition of ryanodine and cyclosporin A indicate the involvement of the endoplasmatic reticulum and the mitochondria. Inhibition of the cytoplasmic calcium elevation by the intracellular chelator BAPTA blocked CAP-induced senescence. This finding helps to understand the molecular influence and the mode of action of CAP on tumor cells.
Collapse
Affiliation(s)
- Christin Schneider
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Gebhardt
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | | | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nürnberg, Erlangen, Germany.
- Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
47
|
Lee HA, Lee JH, Han JS. 2,7"-Phloroglucinol-6,6'-bieckol protects INS-1 cells against high glucose-induced apoptosis. Biomed Pharmacother 2018; 103:1473-1481. [DOI: 10.1016/j.biopha.2018.04.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022] Open
|
48
|
Cerebrospinal Fluid from Patients with Sporadic Amyotrophic Lateral Sclerosis Induces Degeneration of Motor Neurons Derived from Human Embryonic Stem Cells. Mol Neurobiol 2018; 56:1014-1034. [PMID: 29858777 DOI: 10.1007/s12035-018-1149-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
Disease modeling has become challenging in the context of amyotrophic lateral sclerosis (ALS), as obtaining viable spinal motor neurons from postmortem patient tissue is an unlikely possibility. Limitations in the animal models due to their phylogenetic distance from human species hamper the success of translating possible findings into therapeutic options. Accordingly, there is a need for developing humanized models as a lead towards identifying successful therapeutic possibilities. In this study, human embryonic stem cells-BJNHem20-were differentiated into motor neurons expressing HB9, Islet1, and choline acetyl transferase using retinoic acid and purmorphamine. These motor neurons discharged spontaneous action potentials with two different frequencies (< 5 and > 5 Hz), and majority of them were principal neurons firing with < 5 Hz. Exposure to cerebrospinal fluid from ALS patients for 48 h induced several degenerative changes in the motor neurons as follows: cytoplasmic changes such as beading of neurites and vacuolation; morphological alterations, viz., dilation and vacuolation of mitochondria, curled and closed Golgi architecture, dilated endoplasmic reticulum, and chromatin condensation in the nucleus; lowered activity of different mitochondrial complex enzymes; reduced expression of brain-derived neurotrophic factor; up-regulated neurofilament phosphorylation and hyperexcitability represented by increased number of spikes. All these changes along with the enhanced expression of pro-apoptotic proteins-Bax and caspase 9-culminated in the death of motor neurons.
Collapse
|
49
|
Tanajak P, Sa-Nguanmoo P, Apaijai N, Wang X, Liang G, Li X, Jiang C, Chattipakorn SC, Chattipakorn N. Comparisons of cardioprotective efficacy between fibroblast growth factor 21 and dipeptidyl peptidase-4 inhibitor in prediabetic rats. Cardiovasc Ther 2018; 35. [PMID: 28391633 DOI: 10.1111/1755-5922.12263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 01/12/2023] Open
Abstract
AIMS Comparative efficacy between fibroblast growth factor 21 (FGF21) and vildagliptin on metabolic regulation, cardiac mitochondrial function, heart rate variability (HRV), and left ventricular (LV) function is not known. We hypothesized that FGF21 and vildagliptin share a similar efficacy in improving these parameters in high fat diet (HFD)-induced obese-insulin resistant rats. METHODS Twenty-four male Wistar rats were fed with either a normal diet (ND) or a HFD for 12 weeks. Then, ND rats were received vehicle (NDV). Rats in the HFD group were divided into three subgroups to receive either vehicle (HFV), recombinant human FGF21 (rhFGF21, 0.1 mg/kg/d, ip; HFF), or vildagliptin (3 mg/kg/d, PO; HFVil) for 28 days. RESULTS HFV rats developed obese-insulin resistance, increased serum tumor necrosis factors alpha (TNF-α) level, impaired heart rate variability (HRV) together with cardiac mitochondrial dysfunction, and LV dysfunction. Cardiac apoptosis was markedly increased in HFV rats indicated by decreased B-cell lymphoma 2 (Bcl-2) with increased Bcl2-associated X-protein (Bax) and cleaved caspase 3 expression. Cardiac FGF21 signaling pathways were markedly decreased in HFV rats indicated by decreased phosphor-fibroblast growth factor receptors 1 (p-FGFR1), phosphor-extracellular signal-regulated protein kinases 1 (p-ERK1/2), proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and carnitine palmitoyltransferase-1 (CPT-1) expression. Although both FGF21 and vildagliptin similarly attenuated these impairments, only HFF rats had decreased body weight, visceral fat, and serum TNF-α levels. CONCLUSIONS FGF21 exerts better metabolic regulation and inflammation reduction than vildagliptin. However, FGF21 and vildagliptin shared a similar efficacy for cardioprotection by improving HRV and LV function.
Collapse
Affiliation(s)
- Pongpan Tanajak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Piangkwan Sa-Nguanmoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
50
|
Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem Biophys Res Commun 2018; 500:26-34. [DOI: 10.1016/j.bbrc.2017.06.190] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023]
|