1
|
Kutzner CE, Bauer KC, Lackmann JW, Acton RJ, Sarkar A, Pokrzywa W, Hoppe T. Optogenetic induction of mechanical muscle stress identifies myosin regulatory ubiquitin ligase NHL-1 in C. elegans. Nat Commun 2024; 15:6879. [PMID: 39128917 PMCID: PMC11317515 DOI: 10.1038/s41467-024-51069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Mechanical stress during muscle contraction is a constant threat to proteome integrity. However, there is a lack of experimental systems to identify critical proteostasis regulators under mechanical stress conditions. Here, we present the transgenic Caenorhabditis elegans model OptIMMuS (Optogenetic Induction of Mechanical Muscle Stress) to study changes in the proteostasis network associated with mechanical forces. Repeated blue light exposure of a muscle-expressed Chlamydomonas rheinhardii channelrhodopsin-2 variant results in sustained muscle contraction and mechanical stress. Using OptIMMuS, combined with proximity labeling and mass spectrometry, we identify regulators that cooperate with the myosin-directed chaperone UNC-45 in muscle proteostasis. One of these is the TRIM E3 ligase NHL-1, which interacts with UNC-45 and muscle myosin in genetic epistasis and co-immunoprecipitation experiments. We provide evidence that the ubiquitylation activity of NHL-1 regulates myosin levels and functionality under mechanical stress. In the future, OptIMMuS will help to identify muscle-specific proteostasis regulators of therapeutic relevance.
Collapse
Affiliation(s)
- Carl Elias Kutzner
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Karen Carolyn Bauer
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Richard James Acton
- Human Developmental Biology Initiative (HDBI) at Babraham Institute, Cambridge, United Kingdom
| | - Anwesha Sarkar
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Matheny CJ, Qadota H, Bailey AO, Valdebenito-Silva S, Oberhauser AF, Benian GM. The myosin chaperone UNC-45 has an important role in maintaining the structure and function of muscle sarcomeres during adult aging. Mol Biol Cell 2024; 35:ar98. [PMID: 38809582 PMCID: PMC11244168 DOI: 10.1091/mbc.e23-12-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
C. elegans undergo age-dependent declines in muscle organization and function, similar to human sarcopenia. The chaperone UNC-45 is required to fold myosin heads after translation and is likely used for refolding after thermally- or chemically-induced unfolding. UNC-45's TPR region binds HSP-90 and its UCS domain binds myosin heads. We observe early onset sarcopenia when UNC-45 is reduced at the beginning of adulthood. There is sequential decline of HSP-90, UNC-45, and MHC B myosin. A mutation in age-1 delays sarcopenia and loss of HSP-90, UNC-45, and myosin. UNC-45 undergoes age-dependent phosphorylation, and mass spectrometry reveals phosphorylation of six serines and two threonines, seven of which occur in the UCS domain. Additional expression of UNC-45 results in maintenance of MHC B myosin and suppression of A-band disorganization in old animals. Our results suggest that increased expression or activity of UNC-45 might be a strategy for prevention or treatment of sarcopenia.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Aaron O. Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550
| | | | - Andres F. Oberhauser
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77550
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
3
|
Ding N, Sun X, Yu Q, Hong H, Luo Y, Tan Y. Unlocking the secrets of crude myofibril-bound serine protease from grass carp: The role in degrading myofibrillar proteins. Food Chem 2024; 437:137844. [PMID: 37918161 DOI: 10.1016/j.foodchem.2023.137844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Grass carp (Ctenopharyngodon idella) are used as raw material for conventional surimi products in Southern China. However, endogenous serine proteases deteriorated the texture of the surimi gel. To unlock the mechanism behind, the present study isolated the crude myofibril-bound serine protease (cMBSP) in grass carp and studied its effects on surimi gel. The cMBSP activity was the highest at 40 °C and pH 8.0, and it remained stable at 20-55 °C neutral pH. Additionally, it was susceptible to serine protease inhibitors and high concentrations of Na+. The maximum degradation of myosin heavy chain by cMBSP was observed at 50 °C. Protein unc-45 homolog B (a myosin chaperone) is one of the apparent degradation products according to mass spectrometry. The cMBSP caused lower water holding capacity and deteriorated texture in the surimi gel. This study expanded insights about the mechanism of surimi gel degradation by cMBSP, which provided theoretical basis for enhancing surimi quality.
Collapse
Affiliation(s)
- Ning Ding
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyue Sun
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qinye Yu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Schiller NR, Almuhanna SA, Hoppe PE. UNC-82/NUAK kinase is required by myosin A, but not myosin B, to assemble and function in the thick filament arms of C. elegans striated muscle. Cytoskeleton (Hoboken) 2023. [PMID: 37983932 DOI: 10.1002/cm.21807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
The mechanisms that ensure proper assembly, activity, and turnover of myosin II filaments are fundamental to a diverse range of cellular processes. In Caenorhabditis elegans striated muscle, thick filaments contain two myosins that are functionally distinct and spatially segregated. Using transgenic double mutants, we demonstrate that the ability of increased myosin A expression to restore muscle structure and movement in myosin B mutants requires UNC-82/NUAK kinase activity. Myosin B function appears unaffected in the kinase-impaired unc-82(e1220) mutant: the recessive antimorphic effects on early assembly of paramyosin and myosin A in this mutant are counteracted by increased myosin B expression and exacerbated by loss of myosin B. Using chimeric myosins and motility assays, we mapped the region of myosin A that requires UNC-82 activity to a 531-amino-acid region of the coiled-coil rod. This region includes the 264-amino-acid Region 1, which is sufficient in chimeric myosins to rescue the essential filament-initiation function of myosin A, as well as two sites that interact with myosin head domains in the Interacting Heads Motif. A specific physical interaction between myosin A and UNC-82::GFP is supported by GFP labeling of ectopic myosin A filaments but not thin filaments. We hypothesize that UNC-82 regulates assembly competence of myosin A during parallel assembly in the filament arms.
Collapse
Affiliation(s)
- NaTasha R Schiller
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
- Biology Department, Wingate University, Wingate, North Carolina, USA
| | - Sarah A Almuhanna
- Clinical Laboratory Sciences, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Pamela E Hoppe
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| |
Collapse
|
5
|
Kutzner CE, Bauer KC, Hoppe T. A ubiquitin fusion reporter to monitor muscle proteostasis in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000824. [PMID: 37159574 PMCID: PMC10163378 DOI: 10.17912/micropub.biology.000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Muscle is a highly dynamic tissue in which a variety of folding and degradation processes are active to maintain protein homeostasis (proteostasis) and functionality. The muscle-specific chaperone UNC-45 folds the motor protein myosin and assembles it into myofilaments. Malfunction of this chaperone leads to misfolding of myosin, disorganization of myofilaments, and degradation of misfolded myosin molecules by the proteasome. Here, we present a new muscle-specific ubiquitin fusion degradation (UFD) model substrate in C. elegans that helps clarify how UNC-45 dysfunction affects muscle proteostasis.
Collapse
Affiliation(s)
- Carl Elias Kutzner
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), Cologne, Germany
| | - Karen Carolyn Bauer
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), Cologne, Germany
- Correspondence to: Thorsten Hoppe (
)
| |
Collapse
|
6
|
Odunuga OO, Oberhauser AF. Beyond Chaperoning: UCS Proteins Emerge as Regulators of Myosin-Mediated Cellular Processes. Subcell Biochem 2023; 101:189-211. [PMID: 36520308 DOI: 10.1007/978-3-031-14740-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The UCS (UNC-45/CRO1/She4p) family of proteins has emerged as chaperones specific for the folding, assembly, and function of myosin. UCS proteins participate in various myosin-dependent cellular processes including myofibril organization and muscle functions, cell differentiation, striated muscle development, cytokinesis, and endocytosis. Mutations in the genes that code for UCS proteins cause serious defects in myosin-dependent cellular processes. UCS proteins that contain an N-terminal tetratricopeptide repeat (TPR) domain are called UNC-45. Vertebrates usually possess two variants of UNC-45, the ubiquitous general-cell UNC-45 (UNC-45A) and the striated muscle UNC-45 (UNC-45B), which is exclusively expressed in skeletal and cardiac muscles. Except for the TPR domain in UNC-45, UCS proteins comprise of several irregular armadillo (ARM) repeats that are organized into a central domain, a neck region, and the canonical C-terminal UCS domain that functions as the chaperoning module. With or without TPR, UCS proteins form linear oligomers that serve as scaffolds that mediate myosin folding, organization into myofibrils, repair, and motility. This chapter reviews emerging functions of these proteins with a focus on UNC-45 as a dedicated chaperone for folding, assembly, and function of myosin at protein and potentially gene levels. Recent experimental evidences strongly support UNC-45 as an absolute regulator of myosin, with each domain of the chaperone playing different but complementary roles during the folding, assembly, and function of myosin, as well as recruiting Hsp90 as a co-chaperone to optimize key steps. It is becoming increasingly clear that UNC-45 also regulates the transcription of several genes involved in myosin-dependent cellular processes.
Collapse
Affiliation(s)
- Odutayo O Odunuga
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA.
| | - Andres F Oberhauser
- Department of Neuroscience, Cell Biology, & Anatomy, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
7
|
Johnson CA, Behbehani R, Buss F. Unconventional Myosins from Caenorhabditis elegans as a Probe to Study Human Orthologues. Biomolecules 2022; 12:biom12121889. [PMID: 36551317 PMCID: PMC9775386 DOI: 10.3390/biom12121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Unconventional myosins are a superfamily of actin-based motor proteins that perform a number of roles in fundamental cellular processes, including (but not limited to) intracellular trafficking, cell motility, endocytosis, exocytosis and cytokinesis. 40 myosins genes have been identified in humans, which belong to different 12 classes based on their domain structure and organisation. These genes are widely expressed in different tissues, and mutations leading to loss of function are associated with a wide variety of pathologies while over-expression often results in cancer. Caenorhabditis elegans (C. elegans) is a small, free-living, non-parasitic nematode. ~38% of the genome of C. elegans has predicted orthologues in the human genome, making it a valuable tool to study the function of human counterparts and human diseases. To date, 8 unconventional myosin genes have been identified in the nematode, from 6 different classes with high homology to human paralogues. The hum-1 and hum-5 (heavy chain of an unconventional myosin) genes encode myosin of class I, hum-2 of class V, hum-3 and hum-8 of class VI, hum-6 of class VII and hum-7 of class IX. The hum-4 gene encodes a high molecular mass myosin (307 kDa) that is one of the most highly divergent myosins and is a member of class XII. Mutations in many of the human orthologues are lethal, indicating their essential properties. However, a functional characterisation for many of these genes in C. elegans has not yet been performed. This article reviews the current knowledge of unconventional myosin genes in C. elegans and explores the potential use of the nematode to study the function and regulation of myosin motors to provide valuable insights into their role in diseases.
Collapse
|
8
|
Liu C, Hao J, Yao LL, Wei M, Chen W, Yang Q, Li XD. Insect Sf9 cells are suitable for functional expression of insect, but not vertebrate, striated muscle myosin. Biochem Biophys Res Commun 2022; 635:259-266. [DOI: 10.1016/j.bbrc.2022.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022]
|
9
|
Piper PW, Scott JE, Millson SH. UCS Chaperone Folding of the Myosin Head: A Function That Evolved before Animals and Fungi Diverged from a Common Ancestor More than a Billion Years Ago. Biomolecules 2022; 12:biom12081028. [PMID: 35892339 PMCID: PMC9331494 DOI: 10.3390/biom12081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
The folding of the myosin head often requires a UCS (Unc45, Cro1, She4) domain-containing chaperone. Worms, flies, and fungi have just a single UCS protein. Vertebrates have two; one (Unc45A) which functions primarily in non-muscle cells and another (Unc45B) that is essential for establishing and maintaining the contractile apparatus of cardiac and skeletal muscles. The domain structure of these proteins suggests that the UCS function evolved before animals and fungi diverged from a common ancestor more than a billion years ago. UCS proteins of metazoans and apicomplexan parasites possess a tetratricopeptide repeat (TPR), a domain for direct binding of the Hsp70/Hsp90 chaperones. This, however, is absent in the UCS proteins of fungi and largely nonessential for the UCS protein function in Caenorhabditis elegans and zebrafish. The latter part of this review focusses on the TPR-deficient UCS proteins of fungi. While these are reasonably well studied in yeasts, there is little precise information as to how they might engage in interactions with the Hsp70/Hsp90 chaperones or might assist in myosin operations during the hyphal growth of filamentous fungi.
Collapse
Affiliation(s)
- Peter William Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence: (P.W.P.); (S.H.M.)
| | | | - Stefan Heber Millson
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
- Correspondence: (P.W.P.); (S.H.M.)
| |
Collapse
|
10
|
Moncrief T, Matheny CJ, Gaziova I, Miller JM, Qadota H, Benian GM, Oberhauser AF. Mutations in conserved residues of the myosin chaperone UNC-45 result in both reduced stability and chaperoning activity. Protein Sci 2021; 30:2221-2232. [PMID: 34515376 DOI: 10.1002/pro.4180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023]
Abstract
Proper muscle development and function depend on myosin being properly folded and integrated into the thick filament structure. For this to occur the myosin chaperone UNC-45, or UNC-45B, must be present and able to chaperone myosin. Here we use a combination of in vivo C. elegans experiments and in vitro biophysical experiments to analyze the effects of six missense mutations in conserved regions of UNC-45/UNC-45B. We found that the phenotype of paralysis and disorganized thick filaments in 5/6 of the mutant nematode strains can likely be attributed to both reduced steady state UNC-45 protein levels and reduced chaperone activity. Interestingly, the biophysical assays performed on purified proteins show that all of the mutations result in reduced myosin chaperone activity but not overall protein stability. This suggests that these mutations only cause protein instability in the in vivo setting and that these conserved regions may be involved in UNC-45 protein stability/regulation via posttranslational modifications, protein-protein interactions, or some other unknown mechanism.
Collapse
Affiliation(s)
- Taylor Moncrief
- Department of Neuroscience, Cell Biology and Anatomy, Emory University, Atlanta, Georgia
| | | | - Ivana Gaziova
- Department of Neuroscience, Cell Biology and Anatomy, Emory University, Atlanta, Georgia
| | - John M Miller
- Department of Biochemistry and Molecular Biology, Emory University, Atlanta, Georgia
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Andres F Oberhauser
- Department of Neuroscience, Cell Biology and Anatomy, Emory University, Atlanta, Georgia.,Department of Biochemistry and Molecular Biology, Emory University, Atlanta, Georgia.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
11
|
Dafsari HS, Kocaturk NM, Daimagüler HS, Brunn A, Dötsch J, Weis J, Deckert M, Cirak S. Bi-allelic mutations in uncoordinated mutant number-45 myosin chaperone B are a cause for congenital myopathy. Acta Neuropathol Commun 2019; 7:211. [PMID: 31852522 PMCID: PMC6921565 DOI: 10.1186/s40478-019-0869-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022] Open
Abstract
Congenital myopathies (CM) form a genetically heterogeneous group of disorders characterized by perinatal muscle weakness. Here, we report an 11-year old male offspring of consanguineous parents of Lebanese origin. He presented with proximal weakness including Gower’s sign, and skeletal muscle biopsy revealed myopathic changes with core-like structures. Whole exome sequencing of this index patient lead to the discovery of a novel genetically defined CM subtype based on bi-allelic mutations in the uncoordinated mutant number-45 myosin chaperone B (UNC45B) NM_173167:c.2261G > A, p.Arg754Gln. The mutation is conserved in evolution and co-segregates within the pedigree with the phenotype, and located in the myosin binding armadillo repeat domain 3 (ARM3), and has a CADD Score of 35. On a multimeric level, UNC45B aggregates to a chain which serves as an assembly line and functions as a “template” defining the geometry, regularity, and periodicity of myosin arranged into muscle thick filaments. Our discovery is in line with the previously described myopathological phenotypes in C. elegans and in vertebrate mutants and knockdown–models. In conclusion, we here report for the first time a patient with an UNC45B mutation causing a novel genetically defined congenital myopathy disease entity.
Collapse
|
12
|
Escalante SG, Brightmore JA, Piper PW, Millson SH. UCS protein function is partially restored in the Saccharomyces cerevisiae she4 mutant with expression of the human UNC45-GC, but not UNC45-SM. Cell Stress Chaperones 2018; 23:609-615. [PMID: 29288355 PMCID: PMC6045556 DOI: 10.1007/s12192-017-0870-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 11/29/2022] Open
Abstract
A dedicated UNC45, Cro1, She4 (UCS) domain-containing protein assists in the Hsp90-mediated folding of the myosin head. Only weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and striated muscle UNC45s; UNC45-GC and UNC45-SM, respectively). In vertebrates, UNC45-GC facilitates cytoskeletal functions, whereas the 55% identical UNC45-SM assists assembly of the contractile apparatus of cardiac and skeletal muscles. A Saccharomyces cerevisiae she4Δ mutant, totally lacking any UCS protein, was engineered to express as its sole Hsp90 either the Hsp90α or the Hsp90β isoforms of human cytosolic Hsp90. A transient induction of the human UNC45-GC, but not UNC45-SM, could rescue the defective endocytosis in these she4Δ cells at 39 °C, irrespective of whether they possessed Hsp90α or Hsp90β. UNC45-GC-mediated rescue of the localisation of a Myo5-green fluorescent protein (GFP) fusion to cortical patches at 39 °C was more efficient in the yeast containing Hsp90α, though this may relate to more efficient functioning of Hsp90α as compared to Hsp90β in these strains. Furthermore, inducible expression of UNC45-GC, but not UNC45-SM, could partially rescue survival at a more extreme temperature (45 °C) that normally causes she4Δ mutant yeast cells to lyse. The results indicate that UCS protein function has been most conserved-yeast to man-in the UNC45-GC, not UNC45-SM. This may reflect UNC45-GC being the vertebrate UCS protein that assists formation of the actomyosin complexes needed for cytokinesis, cell morphological change, and organelle trafficking-events also facilitated by the myosins in yeast.
Collapse
Affiliation(s)
- Susana Gómez Escalante
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL, UK
| | - Joseph A Brightmore
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL, UK
| | - Peter W Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL, UK.
| | - Stefan H Millson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL, UK
| |
Collapse
|
13
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
14
|
Loss-of-Function Mutations in UNC45A Cause a Syndrome Associating Cholestasis, Diarrhea, Impaired Hearing, and Bone Fragility. Am J Hum Genet 2018; 102:364-374. [PMID: 29429573 DOI: 10.1016/j.ajhg.2018.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the rapid discovery of genes for rare genetic disorders, we continue to encounter individuals presenting with syndromic manifestations. Here, we have studied four affected people in three families presenting with cholestasis, congenital diarrhea, impaired hearing, and bone fragility. Whole-exome sequencing of all affected individuals and their parents identified biallelic mutations in Unc-45 Myosin Chaperone A (UNC45A) as a likely driver for this disorder. Subsequent in vitro and in vivo functional studies of the candidate gene indicated a loss-of-function paradigm, wherein mutations attenuated or abolished protein activity with concomitant defects in gut development and function.
Collapse
|
15
|
Hellerschmied D, Roessler M, Lehner A, Gazda L, Stejskal K, Imre R, Mechtler K, Dammermann A, Clausen T. UFD-2 is an adaptor-assisted E3 ligase targeting unfolded proteins. Nat Commun 2018; 9:484. [PMID: 29396393 PMCID: PMC5797217 DOI: 10.1038/s41467-018-02924-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 01/09/2018] [Indexed: 11/09/2022] Open
Abstract
Muscle development requires the coordinated activities of specific protein folding and degradation factors. UFD-2, a U-box ubiquitin ligase, has been reported to play a central role in this orchestra regulating the myosin chaperone UNC-45. Here, we apply an integrative in vitro and in vivo approach to delineate the substrate-targeting mechanism of UFD-2 and elucidate its distinct mechanistic features as an E3/E4 enzyme. Using Caenorhabditis elegans as model system, we demonstrate that UFD-2 is not regulating the protein levels of UNC-45 in muscle cells, but rather shows the characteristic properties of a bona fide E3 ligase involved in protein quality control. Our data demonstrate that UFD-2 preferentially targets unfolded protein segments. Moreover, the UNC-45 chaperone can serve as an adaptor protein of UFD-2 to poly-ubiquitinate unfolded myosin, pointing to a possible role of the UFD-2/UNC-45 pair in maintaining proteostasis in muscle cells.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Max Roessler
- Max F. Perutz Laboratories (MFPL), University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Anita Lehner
- Vienna Biocenter Core Facilities, Doktor-Bohr-Gasse 3, 1030, Vienna, Austria
| | - Linn Gazda
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Richard Imre
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories (MFPL), University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria. .,Medical University of Vienna, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
16
|
Gomez-Escalante S, Piper PW, Millson SH. Mutation of the Ser18 phosphorylation site on the sole Saccharomyces cerevisiae UCS protein, She4, can compromise high-temperature survival. Cell Stress Chaperones 2017; 22:135-141. [PMID: 27888470 PMCID: PMC5225067 DOI: 10.1007/s12192-016-0750-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/11/2016] [Accepted: 11/15/2016] [Indexed: 01/27/2023] Open
Abstract
Folding of the myosin head often requires the joint actions of Hsp90 and a dedicated UNC45, Cro1, She4 (UCS) domain-containing cochaperone protein. Relatively weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and smooth muscle UNC45s; UNC45-GC and UNC45-SM respectively). In vertebrates, UNC45-GC facilitates cytoskeletal function whereas the 55% identical UNC45-SM assists in the assembly of the contractile apparatus of cardiac and skeletal muscles. UNC45-SM, unlike UNC45-GC, shares with yeast She4 an IDSL sequence motif known to be a site of in vivo serine phosphorylation in yeast. Investigating this further, we found that both a non-phosphorylatable (S18A) and a phosphomimetic (S18E) mutant form of She4 could rescue the type 1 myosin localisation and endocytosis defects of the yeast she4Δ mutant at 39 °C. Nevertheless, at higher temperature (45 °C), only She4 (S18A), not She4(S18E), could substantially rescue the cell lysis defect of she4Δ mutant cells. In the yeast two-hybrid system, the non-phosphorylatable S18A and S251A mutant forms of She4 and UNC45-SM still displayed the stress-enhanced in vivo interaction with Hsp90 seen with the wild-type She4 and UNC45-SM. Such high-temperature enforcement to interaction was though lost with the phosphomimetic mutant forms (She4(S18E) and UNC45-SM (S251E)), an indication that phosphorylation might suppress these increases in She4/Hsp90 and UNC45-SM/Hsp90 interaction with stress.
Collapse
Affiliation(s)
- Susana Gomez-Escalante
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN,, UK
| | - Peter W Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN,, UK.
| | - Stefan H Millson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN,, UK
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL,, UK
| |
Collapse
|
17
|
Arribere JA, Cenik ES, Jain N, Hess GT, Lee CH, Bassik MC, Fire AZ. Translation readthrough mitigation. Nature 2016; 534:719-23. [PMID: 27281202 PMCID: PMC5054982 DOI: 10.1038/nature18308] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/05/2016] [Indexed: 12/31/2022]
Abstract
A fraction of ribosomes engaged in translation will fail to terminate when reaching a stop codon, yielding nascent proteins inappropriately extended on their C termini. Although such extended proteins can interfere with normal cellular processes, known mechanisms of translational surveillance are insufficient to protect cells from potential dominant consequences. Here, through a combination of transgenics and CRISPR–Cas9 gene editing in Caenorhabditis elegans, we demonstrate a consistent ability of cells to block accumulation of C-terminal-extended proteins that result from failure to terminate at stop codons. Sequences encoded by the 3′ untranslated region (UTR) were sufficient to lower protein levels. Measurements of mRNA levels and translation suggested a co- or post-translational mechanism of action for these sequences in C. elegans. Similar mechanisms evidently operate in human cells, in which we observed a comparable tendency for translated human 3′ UTR sequences to reduce mature protein expression in tissue culture assays, including 3′ UTR sequences from the hypomorphic ‘Constant Spring’ haemoglobin stop codon variant. We suggest that 3′ UTRs may encode peptide sequences that destabilize the attached protein, providing mitigation of unwelcome and varied translation errors.
Collapse
|
18
|
Hu J, Guo T, Pan WQ, Gan T, Wei J, Wang JP, Leng XJ, Li XQ. Cloning, molecular characterization, and expression analysis of the unc45 myosin chaperone b(unc45b)gene of grass carp (Ctenopharyngodon idellus). J Muscle Res Cell Motil 2016; 37:71-81. [PMID: 27334505 DOI: 10.1007/s10974-016-9445-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Abstract
Unc45 myosin chaperone b(unc45b)gene is a molecular chaperone that mediates the folding, assembly and accumulation of thick-filament myosin in the formation of sarcomere, which plays an important role in the development of striated muscle and the stability of sarcomere. In this study, the complete cDNA sequence of unc45b gene of grass carp was obtained by rapid amplification of cDNA ends (RACE), and the characteristics of the unc45b protein predicted from gene sequence was analyzed by bioinformatics methods. The differential expression pattern in tissues was also detected by quantitative real-time PCR. The results showed that the full-length of unc45b gene of grass carp is 3163 bp, which contains a 60 bp 5'UTR, a 298 bp 3'UTR, and a 2865 bp open reading frame (ORF) encoding a 934 amino acid peptide. The deduced unc45b protein exhibits a homology of 92, 86, 86 % with the protein of zebrafish (Danio rerio), channel catfish (Ietalurus punctatus) and tilapia (Oreochromis niloticus) respectively, and the protein contains UCS myosin head binding domain and TPR peptide repeat domain. The protein is a hydrophilic and non-secretory protein with a molecular mass and isoeletronic point of 103,699.8 and 7.39 Da. The structural elements of the protein includes α-helixes and loops, and the unc45b gene highly expresses in skeletal muscle and heart in grass carp. This study laid a foundation for further research in explaining the myofibril accumulation in crisped grass carp.
Collapse
Affiliation(s)
- Jing Hu
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Ting Guo
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Wen-Qian Pan
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Tian Gan
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Jing Wei
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Jun-Peng Wang
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Xiang-Jun Leng
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China.
| | - Xiao-Qin Li
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China.
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, No. 999, Huchenghuan Road, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, No. 999, Huchenghuan Road, Shanghai, 201306, China.
- Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center, No. 999, Huchenghuan Road, Shanghai, 201306, China.
| |
Collapse
|
19
|
Etard C, Armant O, Roostalu U, Gourain V, Ferg M, Strähle U. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol 2015; 16:267. [PMID: 26631063 PMCID: PMC4668643 DOI: 10.1186/s13059-015-0825-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/05/2015] [Indexed: 01/03/2023] Open
Abstract
Background Mutations in myosin chaperones Unc45b and Hsp90aa1.1 as well as in the Unc45b-binding protein Smyd1b impair formation of myofibrils in skeletal muscle and lead to the accumulation of misfolded myosin. The concomitant transcriptional response involves up-regulation of the three genes encoding these proteins, as well as genes involved in muscle development. The transcriptional up-regulation of unc45b, hsp90aa1.1 and smyd1b is specific to zebrafish mutants with myosin folding defects, and is not triggered in other zebrafish myopathy models. Results By dissecting the promoter of unc45b, we identify a Heat shock factor 1 (Hsf1) binding element as a mediator of unc45b up-regulation in myofibers lacking myosin folding proteins. Loss-of-function of Hsf1 abolishes unc45b up-regulation in mutants with defects in myosin folding. Conclusions Taken together, our data show that skeletal muscle cells respond to defective myosin chaperones with a complex gene program and suggest that this response is mediated by Hsf1 activation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0825-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christelle Etard
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Urmas Roostalu
- Present address: Institute of Inflammation and Repair, Michael Smith Bldg, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany.
| |
Collapse
|
20
|
Prill K, Windsor Reid P, Wohlgemuth SL, Pilgrim DB. Still Heart Encodes a Structural HMT, SMYD1b, with Chaperone-Like Function during Fast Muscle Sarcomere Assembly. PLoS One 2015; 10:e0142528. [PMID: 26544721 PMCID: PMC4636364 DOI: 10.1371/journal.pone.0142528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
The vertebrate sarcomere is a complex and highly organized contractile structure whose assembly and function requires the coordination of hundreds of proteins. Proteins require proper folding and incorporation into the sarcomere by assembly factors, and they must also be maintained and replaced due to the constant physical stress of muscle contraction. Zebrafish mutants affecting muscle assembly and maintenance have proven to be an ideal tool for identification and analysis of factors necessary for these processes. The still heart mutant was identified due to motility defects and a nonfunctional heart. The cognate gene for the mutant was shown to be smyd1b and the still heart mutation results in an early nonsense codon. SMYD1 mutants show a lack of heart looping and chamber definition due to a lack of expression of heart morphogenesis factors gata4, gata5 and hand2. On a cellular level, fast muscle fibers in homozygous mutants do not form mature sarcomeres due to the lack of fast muscle myosin incorporation by SMYD1b when sarcomeres are first being assembled (19hpf), supporting SMYD1b as an assembly protein during sarcomere formation.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela Windsor Reid
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Serene L. Wohlgemuth
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David B. Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
21
|
Abstract
The UCS (UNC-45/CRO1/She4p) family of proteins has emerged as chaperones that are specific for the folding, assembly and function of myosin. These proteins participate in various important myosin-dependent cellular processes that include myofibril organization and muscle functions, cell differentiation, cardiac and skeletal muscle development, cytokinesis and endocytosis. Mutations in the genes that code for UCS proteins cause serious defects in these actomyosin-based processes. Homologs of UCS proteins can be broadly divided into (1) animal UCS proteins, generally known as UNC-45 proteins, which contain an N-terminal tetratricopeptide repeat (TPR) domain in addition to the canonical UCS domain, and (2) fungal UCS proteins, which lack the TPR domain. Structurally, except for TPR domain, both sub-classes of UCS proteins comprise of several irregular armadillo (ARM) repeats that are divided into two-domain architecture: a combined central-neck domain and a C-terminal UCS domain. Structural analyses suggest that UNC-45 proteins form elongated oligomers that serve as scaffolds to recruit Hsp90 and/or Hsp70 to form a multi-protein chaperoning complex that assists myosin heads to fold and simultaneously organize them into myofibrils. Similarly, fungal UCS proteins may dimerize to promote folding of non-muscle myosins as well as determine their step size along actin filaments. These findings confirm UCS proteins as a new class of myosin-specific chaperones and co-chaperones for Hsp90. This chapter reviews the implications of the outcome of studies on these proteins in cellular processes such as muscle formation, and disease states such as myopathies and cancer.
Collapse
Affiliation(s)
- Weiming Ni
- Department of Genetics, Howard Hughes Medical Institute, Yale School of Medicine, 06520, New Haven, CT, USA,
| | | |
Collapse
|
22
|
Smith DA, Carland CR, Guo Y, Bernstein SI. Getting folded: chaperone proteins in muscle development, maintenance and disease. Anat Rec (Hoboken) 2014; 297:1637-1649. [PMID: 25125177 PMCID: PMC4135391 DOI: 10.1002/ar.22980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 09/26/2024]
Abstract
Chaperone proteins are critical for protein folding and stability, and hence are necessary for normal cellular organization and function. Recent studies have begun to interrogate the role of this specialized class of proteins in muscle biology. During development, chaperone-mediated folding of client proteins enables their integration into nascent functional sarcomeres. In addition to assisting with muscle differentiation, chaperones play a key role in the maintenance of muscle tissues. Furthermore, disruption of the chaperone network can result in neuromuscular disease. In this review, we discuss how chaperones are involved in myofibrillogenesis, sarcomere maintenance, and muscle disorders. We also consider the possibilities of therapeutically targeting chaperones to treat muscle disease.
Collapse
Affiliation(s)
- Daniel A. Smith
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Carmen R. Carland
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Yiming Guo
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Sanford I. Bernstein
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| |
Collapse
|
23
|
Myhre JL, Hills JA, Jean F, Pilgrim DB. Unc45b is essential for early myofibrillogenesis and costamere formation in zebrafish. Dev Biol 2014; 390:26-40. [DOI: 10.1016/j.ydbio.2014.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 01/16/2023]
|
24
|
The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. Eur J Hum Genet 2014; 22:1290-7. [PMID: 24549050 DOI: 10.1038/ejhg.2014.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 01/17/2023] Open
Abstract
Genome-wide linkage analysis, followed by targeted deep sequencing, in a Danish multigeneration family with juvenile cataract revealed a region of chromosome 17 co-segregating with the disease trait. Affected individuals were heterozygous for two potentially protein-disrupting alleles in this region, in ACACA and UNC45B. As alterations of the UNC45B protein have been shown to affect eye development in model organisms, effort was focused on the heterozygous UNC45B missense mutation. UNC45B encodes a myosin-specific chaperone that, together with the general heat shock protein HSP90, is involved in myosin assembly. The mutation changes p.Arg805 to Trp in the UCS domain, an amino acid that is highly conserved from yeast to human. UNC45B is strongly expressed in the heart and skeletal muscle tissue, but here we show expression in human embryo eye and zebrafish lens. The zebrafish mutant steif, carrying an unc45b nonsense mutation, has smaller eyes than wild-type embryos and shows accumulation of nuclei in the lens. Injection of RNA encoding the human wild-type UNC45B protein into the steif homozygous embryo reduced the nuclei accumulation and injection of human mutant UNC45B cDNA in wild-type embryos resulted in development of a phenotype similar to the steif mutant. The p.Arg805Trp alteration in the mammalian UNC45B gene suggests that developmental cataract may be caused by a defect in non-muscle myosin assembly during maturation of the lens fiber cells.
Collapse
|
25
|
Lee CF, Melkani GC, Bernstein SI. The UNC-45 myosin chaperone: from worms to flies to vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:103-44. [PMID: 25376491 DOI: 10.1016/b978-0-12-800177-6.00004-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNC-45 (uncoordinated mutant number 45) is a UCS (UNC-45, CRO1, She4p) domain protein that is critical for myosin stability and function. It likely aides in folding myosin during cellular differentiation and maintenance, and protects myosin from denaturation during stress. Invertebrates have a single unc-45 gene that is expressed in both muscle and nonmuscle tissues. Vertebrates possess one gene expressed in striated muscle (unc-45b) and another that is more generally expressed (unc-45a). Structurally, UNC-45 is composed of a series of α-helices connected by loops. It has an N-terminal tetratricopeptide repeat domain that binds to Hsp90 and a central domain composed of armadillo repeats. Its C-terminal UCS domain, which is also comprised of helical armadillo repeats, interacts with myosin. In this chapter, we present biochemical, structural, and genetic analyses of UNC-45 in Caenorhabditis elegans, Drosophila melanogaster, and various vertebrates. Further, we provide insights into UNC-45 functions, its potential mechanism of action, and its roles in human disease.
Collapse
Affiliation(s)
- Chi F Lee
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Girish C Melkani
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
26
|
Hellerschmied D, Clausen T. Myosin chaperones. Curr Opin Struct Biol 2013; 25:9-15. [PMID: 24440450 PMCID: PMC4045384 DOI: 10.1016/j.sbi.2013.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 12/31/2022]
Abstract
The folding and assembly of myosin motor proteins is essential for most movement processes at the cellular, but also at the organism level. Importantly, myosins, which represent a very diverse family of proteins, require the activity of general and specialized folding factors to develop their full motor function. The activities of the myosin-specific UCS (UNC-45/Cro1/She4) chaperones range from assisting acto-myosin dependent transport processes to scaffolding multi-subunit chaperone complexes, which are required to assemble myofilaments. Recent structure-function studies revealed the structural organization of TPR (tetratricopeptide repeat)-containing and TPR-less UCS chaperones. The observed structural differences seem to reflect the specialized and remarkably versatile working mechanisms of myosin-directed chaperones, as will be discussed in this review.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
27
|
Pokrzywa W, Hoppe T. Chaperoning myosin assembly in muscle formation and aging. WORM 2013; 2:e25644. [PMID: 24778937 PMCID: PMC3875649 DOI: 10.4161/worm.25644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/05/2013] [Indexed: 01/06/2023]
Abstract
The activity and assembly of various myosin subtypes is coordinated by conserved UCS (UNC-45/CRO1/She4p) domain proteins. One founding member of the UCS family is the Caenorhabditis elegans UNC-45 protein important for the organization of striated muscle filaments. Our recent structural and biochemical results demonstrated that UNC-45 forms a protein chain with defined periodicity of myosin interaction domains. Intriguingly, the UNC-45 chain serves as docking platform for myosin molecules, which promotes ordered spacing and incorporation of myosin into contractile muscle sarcomeres. The physiological relevance of this observation was demonstrated in C. elegans by transgenic expression of UNC-45 chain formation mutants, which provokes defects in muscle structure and size. Collaborating with the molecular chaperones, Hsp70 and Hsp90, chain formation of UNC-45 links myosin folding with myofilament assembly. Here, we discuss our recent findings on the dynamic regulation of UNC-45 structure and stability in the context of muscle regeneration mechanisms that are affected in myopathic diseases and during aging.
Collapse
Affiliation(s)
- Wojciech Pokrzywa
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne, Germany
| |
Collapse
|
28
|
Suda H. Noise-driven onset time of biodemographic aging. Exp Gerontol 2013; 48:845-51. [PMID: 23751408 DOI: 10.1016/j.exger.2013.05.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/20/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
The lifespan of each individual, even in an isogenic cohort and a uniform environment, is quite different. The genetic factors influencing the lifespan in humans as well as animal models are few. The balance is attributed to "chance" variations. In this study, we focus on a third factor, noise or chance variations, as well as on genetic and environmental factors and examine how biodemographic aging is related to stochastic fluctuations, or noise. To elucidate the third factor in relation to aging and lifespan, we employed the nematode Caenorhabditis elegans, which can provide an ideal system for analyzing the mathematical and biophysical models. An amplification of ATP noise was clearly evident from around the onset of biodemographic aging (t(0)) as if the t(0) was synchronized with or derived from the amplification of noise. Furthermore, the expression noise of the unc-54 gene, which encodes the myosin heavy chain, increased from around the t(0). In contrast, the noise of genes related to the mitochondrial respiratory chain was almost constant with aging. There is a high energy barrier between life and death. Here we propose that the transition from living to dying may be facilitated by noise amplification. The finite value (or non-zero) of t(0) is essential to the lifespan equation derived from the diffusion model.
Collapse
Affiliation(s)
- Hitoshi Suda
- Life Sciences, Course of Biosciences, University of Tokai, 317 Nishino, Numazu, Shizuoka 410-0395 Japan.
| |
Collapse
|
29
|
The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans. Cell 2013; 152:183-95. [PMID: 23332754 PMCID: PMC3549490 DOI: 10.1016/j.cell.2012.12.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 12/11/2012] [Indexed: 01/16/2023]
Abstract
The UCS (UNC-45/CRO1/She4) chaperones play an evolutionarily conserved role in promoting myosin-dependent processes, including cytokinesis, endocytosis, RNA transport, and muscle development. To investigate the protein machinery orchestrating myosin folding and assembly, we performed a comprehensive analysis of Caenorhabditis elegans UNC-45. Our structural and biochemical data demonstrate that UNC-45 forms linear protein chains that offer multiple binding sites for cooperating chaperones and client proteins. Accordingly, Hsp70 and Hsp90, which bind to the TPR domain of UNC-45, could act in concert and with defined periodicity on captured myosin molecules. In vivo analyses reveal the elongated canyon of the UCS domain as a myosin-binding site and show that multimeric UNC-45 chains support organization of sarcomeric repeats. In fact, expression of transgenes blocking UNC-45 chain formation induces dominant-negative defects in the sarcomere structure and function of wild-type worms. Together, these findings uncover a filament assembly factor that directly couples myosin folding with myofilament formation.
Collapse
|
30
|
Wu T, Zhang Z, Yuan Z, Lo LJ, Chen J, Wang Y, Peng J. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs. PLoS One 2013; 8:e53181. [PMID: 23301040 PMCID: PMC3536781 DOI: 10.1371/journal.pone.0053181] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/26/2012] [Indexed: 02/04/2023] Open
Abstract
Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhenhai Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Zhangqin Yuan
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Jan Lo
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinrong Peng
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Comyn SA, Pilgrim D. Lack of developmental redundancy between Unc45 proteins in zebrafish muscle development. PLoS One 2012; 7:e48861. [PMID: 23144999 PMCID: PMC3492250 DOI: 10.1371/journal.pone.0048861] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/03/2012] [Indexed: 01/09/2023] Open
Abstract
Since the majority of protein-coding genes in vertebrates have intra-genomic homologues, it has been difficult to eliminate the potential of functional redundancy from analyses of mutant phenotypes, whether produced by genetic lesion or transient knockdown. Further complicating these analyses, not all gene products have activities that can be assayed in vitro, where the efficiency of the various family members can be compared against constant substrates. Two vertebrate UNC-45 homologues, unc45a and unc45b, affect distinct stages of muscle differentiation when knocked down in cell culture and are functionally redundant in vitro. UNC-45 proteins are members of the UCS (UNC-45/CRO1/She4p) protein family that has been shown to regulate myosin-dependent functions from fungi to vertebrates through direct interaction with the myosin motor domain. To test whether the same functional relationship exists between these unc45 paralogs in vivo, we examined the developmental phenotypes of doubly homozygous unc45b−/−; unc45a−/− mutant zebrafish embryos. We focused specifically on the combined effects on morphology and gene expression resulting from the zygotic lack of both paralogs. We found that unc45b−/− and unc45b−/−; unc45a−/− embryos were phenotypically indistinguishable with both mutants displaying identical cardiac, skeletal muscle, and jaw defects. We also found no evidence to support a role for zygotic Unc45a function in myoblast differentiation. In contrast to previous in vitro work, this rules out a model of functional redundancy between Unc45a and Unc45b in vivo. Instead, our phylogenetic and phenotypic analyses provide evidence for the role of functional divergence in the evolution of the UCS protein family.
Collapse
Affiliation(s)
| | - David Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
32
|
At the Start of the Sarcomere: A Previously Unrecognized Role for Myosin Chaperones and Associated Proteins during Early Myofibrillogenesis. Biochem Res Int 2012; 2012:712315. [PMID: 22400118 PMCID: PMC3287041 DOI: 10.1155/2012/712315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/10/2011] [Indexed: 01/03/2023] Open
Abstract
The development of striated muscle in vertebrates requires the assembly of contractile myofibrils, consisting of highly ordered bundles of protein filaments. Myofibril formation occurs by the stepwise addition of complex proteins, a process that is mediated by a variety of molecular chaperones and quality control factors. Most notably, myosin of the thick filament requires specialized chaperone activity during late myofibrillogenesis, including that of Hsp90 and its cofactor, Unc45b. Unc45b has been proposed to act exclusively as an adaptor molecule, stabilizing interactions between Hsp90 and myosin; however, recent discoveries in zebrafish and C. elegans suggest the possibility of an earlier role for Unc45b during myofibrillogenesis. This role may involve functional control of nonmuscle myosins during the earliest stages of myogenesis, when premyofibril scaffolds are first formed from dynamic cytoskeletal actin. This paper will outline several lines of evidence that converge to build a model for Unc45b activity during early myofibrillogenesis.
Collapse
|
33
|
Gaiser AM, Kaiser CJO, Haslbeck V, Richter K. Downregulation of the Hsp90 system causes defects in muscle cells of Caenorhabditis elegans. PLoS One 2011; 6:e25485. [PMID: 21980476 PMCID: PMC3182237 DOI: 10.1371/journal.pone.0025485] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022] Open
Abstract
The ATP-dependent molecular chaperone Hsp90 is required for the activation of a variety of client proteins involved in various cellular processes. Despite the abundance of known client proteins, functions of Hsp90 in the organismal context are not fully explored. In Caenorhabditis elegans, Hsp90 (DAF-21) has been implicated in the regulation of the stress-resistant dauer state, in chemosensing and in gonad formation. In a C. elegans strain carrying a DAF-21 mutation with a lower ATP turnover, we observed motility defects. Similarly, a reduction of DAF-21 levels in wild type nematodes leads to reduced motility and induction of the muscular stress response. Furthermore, aggregates of the myosin MYO-3 are visible in muscle cells, if DAF-21 is depleted, implying a role of Hsp90 in the maintenance of muscle cell functionality. Similar defects can also be observed upon knockdown of the Hsp90-cochaperone UNC-45. In life nematodes YFP-DAF-21 localizes to the I-band and the M-line of the muscular ultrastructure, but the protein is not stably attached there. The Hsp90-cofactor UNC-45-CFP contrarily can be found in all bands of the nematode muscle ultrastructure and stably associates with the UNC-54 containing A-band. Thus, despite the physical interaction between DAF-21 and UNC-45, apparently the two proteins are not always localized to the same muscular structures. While UNC-45 can stably bind to myofilaments in the muscular ultrastructure, Hsp90 (DAF-21) appears to participate in the maintenance of muscle structures as a transiently associated diffusible factor.
Collapse
Affiliation(s)
- Andreas M. Gaiser
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Christoph J. O. Kaiser
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Veronika Haslbeck
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Klaus Richter
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
- * E-mail:
| |
Collapse
|
34
|
Hsp90 in non-mammalian metazoan model systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:712-21. [PMID: 21983200 DOI: 10.1016/j.bbamcr.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/26/2023]
Abstract
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
35
|
Lee CF, Melkani GC, Yu Q, Suggs JA, Kronert WA, Suzuki Y, Hipolito L, Price MG, Epstein HF, Bernstein SI. Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability. J Cell Sci 2011; 124:699-705. [PMID: 21285246 DOI: 10.1242/jcs.078964] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
UNC-45 is a chaperone that facilitates folding of myosin motor domains. We have used Drosophila melanogaster to investigate the role of UNC-45 in muscle development and function. Drosophila UNC-45 (dUNC-45) is expressed at all developmental stages. It colocalizes with non-muscle myosin in embryonic blastoderm of 2-hour-old embryos. At 14 hours, it accumulates most strongly in embryonic striated muscles, similarly to muscle myosin. dUNC-45 localizes to the Z-discs of sarcomeres in third instar larval body-wall muscles. We produced a dunc-45 mutant in which zygotic expression is disrupted. This results in nearly undetectable dUNC-45 levels in maturing embryos as well as late embryonic lethality. Muscle myosin accumulation is robust in dunc-45 mutant embryos at 14 hours. However, myosin is dramatically decreased in the body-wall muscles of 22-hour-old mutant embryos. Furthermore, electron microscopy showed only a few thick filaments and irregular thick-thin filament lattice spacing. The lethality, defective protein accumulation, and ultrastructural abnormalities are rescued with a wild-type dunc-45 transgene, indicating that the mutant phenotypes arise from the dUNC-45 deficiency. Overall, our data indicate that dUNC-45 is important for myosin accumulation and muscle function. Furthermore, our results suggest that dUNC-45 acts post-translationally for proper myosin folding and maturation.
Collapse
Affiliation(s)
- Chi F Lee
- Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bernick EP, Zhang PJ, Du S. Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos. BMC Cell Biol 2010; 11:70. [PMID: 20849610 PMCID: PMC2954953 DOI: 10.1186/1471-2121-11-70] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/17/2010] [Indexed: 02/01/2023] Open
Abstract
Background Unc-45 is a myosin chaperone and a Hsp90 co-chaperone that plays a key role in muscle development. Genetic and biochemical studies in C. elegans have demonstrated that Unc-45 facilitates the process of myosin folding and assembly in body wall muscles. Loss or overexpression of Unc-45 in C. elegans results in defective myofibril organization. In the zebrafish Danio rerio, unc-45b, a homolog of C. elegans unc-45, is expressed in both skeletal and cardiac muscles. Earlier studies indicate that mutation or knockdown of unc-45b expression in zebrafish results in a phenotype characterized by a loss of both thick and thin filament organization in skeletal and cardiac muscle. The effects of unc-45b knockdown on other sarcomeric structures and the phenotype of Unc-45b overexpression, however, are poorly understood in vertebrates. Results Both knockdown and overexpression provide useful tools to study gene function during animal development. Using such methods, we characterized the role of Unc-45b in myofibril assembly of skeletal muscle in Danio rerio. We showed that, in addition to thick and thin filament defects, knockdown of unc-45b expression disrupted sarcomere organization in M-lines and Z-lines of skeletal muscles in zebrafish embryos. Western blotting analysis showed that myosin protein levels were significantly decreased in unc-45b knockdown embryos. Similarly, embryos overexpressing Unc-45b also exhibited severely disorganized myosin thick filaments. Disruption of thick filament organization by Unc-45b overexpression depends on the C-terminal UCS domain in Unc-45b required for interaction with myosin. Deletion of the C-terminal UCS domain abolished the disruptive activity of Unc-45b in myosin thick filament organization. In contrast, deletion of the N-terminal TPR domain required for binding with Hsp90α had no effect. Conclusion Collectively, these studies indicate that the expression levels of Unc-45b must be precisely regulated to ensure normal myofibril organization. Loss or overexpression of Unc-45b leads to defective myofibril organization.
Collapse
Affiliation(s)
- Elena P Bernick
- University of Maryland School of Medicine Interdisciplinary Training Program in Muscle Biology, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
37
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
38
|
Xu XL, Li K, Peng ZZ, Zhao SH, Yu M, Fan B, Zhu MJ, Xu SP, Du YQ, Liu B. Molecular characterization, expression and association analysis of the porcine CMYA4 gene with carcass traits. J Anim Breed Genet 2008; 125:234-9. [PMID: 18717965 DOI: 10.1111/j.1439-0388.2008.00719.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
CMYA4 (cardiomyopathy-associated 4) gene plays an important role in thick filament assembly. In this study, we obtained the mRNA sequence including the full coding sequence and the partial 5' untranslated region of the porcine CMYA4 gene by using the rapid amplification of cDNA ends and reverse transcriptase polymerase chain reaction (RT-PCR) and the sequence was deposited in the GenBank nucleotide database (DQ_286571). The human (NM_173167) and mouse (NM_178680) homologues have a 91% and 87% identity with the porcine CMYA4 gene, respectively. The sequence contains an open reading frame encoding 930 amino acid residues, and the amino terminus of the predicted CMYA4 protein contains three tandem repeats belonging to the tetratricopeptide repeat family. Semi-quantitative RT-PCR results showed that the porcine CMYA4 gene is expressed exclusively in striated muscle tissue. An A558G single nucleotide polymorphism in the CMYA4 intron 15 detected as an MspI PCR-restriction fragment length polymorphism showed allele frequency differences among 225 unrelated pigs from six breeds. Association of the genotypes with growth and carcass traits showed that different genotypes of the CMYA4 gene were significantly associated with the backfat thickness of the area between sixth and seventh ribs (p < 0.05) and backfat thickness at the shoulder (p < 0.05).
Collapse
Affiliation(s)
- X L Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kachur TM, Pilgrim DB. Myosin assembly, maintenance and degradation in muscle: Role of the chaperone UNC-45 in myosin thick filament dynamics. Int J Mol Sci 2008; 9:1863-1875. [PMID: 19325835 PMCID: PMC2635755 DOI: 10.3390/ijms9091863] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/08/2008] [Accepted: 09/13/2008] [Indexed: 12/27/2022] Open
Abstract
Myofibrillogenesis in striated muscle cells requires a precise ordered pathway to assemble different proteins into a linear array of sarcomeres. The sarcomere relies on interdigitated thick and thin filaments to ensure muscle contraction, as well as properly folded and catalytically active myosin head. Achieving this organization requires a series of protein folding and assembly steps. The folding of the myosin head domain requires chaperone activity to attain its functional conformation. Folded or unfolded myosin can spontaneously assemble into short myosin filaments, but further assembly requires the short and incomplete myosin filaments to assemble into the developing thick filament. These longer filaments are then incorporated into the developing sarcomere of the muscle. Both myosin folding and assembly require factors to coordinate the formation of the thick filament in the sarcomere and these factors include chaperone molecules. Myosin folding and sarcomeric assembly requires association of classical chaperones as well as folding cofactors such as UNC-45. Recent research has suggested that UNC-45 is required beyond initial myosin head folding and may be directly or indirectly involved in different stages of myosin thick filament assembly, maintenance and degradation.
Collapse
Affiliation(s)
| | - David B. Pilgrim
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +1-780-492-2792
| |
Collapse
|
40
|
Srikakulam R, Liu L, Winkelmann DA. Unc45b forms a cytosolic complex with Hsp90 and targets the unfolded myosin motor domain. PLoS One 2008; 3:e2137. [PMID: 18478096 PMCID: PMC2377097 DOI: 10.1371/journal.pone.0002137] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 03/31/2008] [Indexed: 11/25/2022] Open
Abstract
Myosin folding and assembly in striated muscle is mediated by the general chaperones Hsc70 and Hsp90 and a myosin specific co-chaperone, UNC45. Two UNC45 genes are found in vertebrates, including a striated muscle specific form, Unc45b. We have investigated the role of Unc45b in myosin folding. Epitope tagged murine Unc45b (Unc45bFlag) was expressed in muscle and non-muscle cells and bacteria, isolated and characterized. The protein is a soluble monomer in solution with a compact folded rod-shaped structure of ∼19 nm length by electron microscopy. When over-expressed in striated muscle cells, Unc45bFlag fractionates as a cytosolic protein and isolates as a stable complex with Hsp90. Purified Unc45bFlag re-binds Hsp90 and forms a stable complex in solution. The endogenous Unc45b in muscle cell lysates is also found associated with Hsp90. The Unc45bFlag/Hsp90 complex binds the partially folded myosin motor domain when incubated with myosin subfragments synthesized in a reticulocyte lysate. This binding is independent of the myosin rod or light chains. Unc45bFlag does not bind native myosin subfragments consistent with a chaperone function. More importantly, Unc45bFlag enhances myosin motor domain folding during de novo motor domain synthesis indicating that it has a direct role in myosin maturation. Thus, mammalian Unc45b is a cytosolic protein that forms a stable complex with Hsp90, selectively binds the unfolded conformation of the myosin motor domain, and promotes motor domain folding.
Collapse
Affiliation(s)
- Rajani Srikakulam
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, United States of America
| | - Li Liu
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, United States of America
| | - Donald A. Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
41
|
Liu L, Srikakulam R, Winkelmann DA. Unc45 activates Hsp90-dependent folding of the myosin motor domain. J Biol Chem 2008; 283:13185-93. [PMID: 18326487 PMCID: PMC2442312 DOI: 10.1074/jbc.m800757200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/29/2008] [Indexed: 11/06/2022] Open
Abstract
Myosin folding and assembly in striated muscle are mediated by the general chaperones Hsc70 and Hsp90 and involve a myosin-specific co-chaperone related to the Caenorhabditis elegans gene unc-45. Two unc-45 genes are found in vertebrates, a general cell isoform, unc45a, and a striated muscle-specific isoform, unc45b. We have investigated the role of both isoforms of mouse Unc45 in myosin folding using an in vitro synthesis and folding assay. A smooth muscle myosin motor domain (MD) fused to green fluorescent protein (GFP) (MD::GFP) was used as substrate, and folding was measured by native gel electrophoresis and functional assays. In the absence of Unc45, the MD::GFP chimera folds poorly. Addition of either Unc45a or Unc45b dramatically enhances the folding in a reaction that is dependent on Hsp90 ATPase activity. Unc45a is more effective than Unc45b with a higher apparent affinity and greater extent of folding. The Unc45-Hsp90 chaperone complex acts late in the folding pathway and promotes motor domain maturation after release from the ribosome. Unc45a behaves kinetically as an activator of the folding reaction by stimulating the rate of the Hsp90-dependent folding by >20-fold with an apparent K(act) of 33 nm. This analysis of vertebrate Unc45 isoforms clearly demonstrates a direct role for Unc45 in Hsp90-mediated myosin motor domain folding and highlights major differences between the isoforms in substrate specificity and mechanism.
Collapse
Affiliation(s)
- Li Liu
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
42
|
Anderson MJ, Pham VN, Vogel AM, Weinstein BM, Roman BL. Loss of unc45a precipitates arteriovenous shunting in the aortic arches. Dev Biol 2008; 318:258-67. [PMID: 18462713 DOI: 10.1016/j.ydbio.2008.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/12/2008] [Accepted: 03/13/2008] [Indexed: 01/11/2023]
Abstract
Aortic arch malformations are common congenital disorders that are frequently of unknown etiology. To gain insight into the factors that guide branchial aortic arch development, we examined the process by which these vessels assemble in wild type zebrafish embryos and in kurzschluss(tr12) (kus(tr12)) mutants. In wild type embryos, each branchial aortic arch first appears as an island of angioblasts in the lateral pharyngeal mesoderm, then elaborates by angiogenesis to connect to the lateral dorsal aorta and ventral aorta. In kus(tr12) mutants, angioblast formation and initial sprouting are normal, but aortic arches 5 and 6 fail to form a lumenized connection to the lateral dorsal aorta. Blood enters these blind-ending vessels from the ventral aorta, distending the arteries and precipitating fusion with an adjacent vein. This arteriovenous malformation (AVM), which shunts nearly all blood directly back to the heart, is not exclusively genetically programmed, as its formation correlates with blood flow and aortic arch enlargement. By positional cloning, we have identified a nonsense mutation in unc45a in kus(tr12) mutants. Our results are the first to ascribe a role for Unc45a, a putative myosin chaperone, in vertebrate development, and identify a novel mechanism by which an AVM can form.
Collapse
Affiliation(s)
- Matthew J Anderson
- Tumor Biology Training Program, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
43
|
Etard C, Roostalu U, Strähle U. Shuttling of the chaperones Unc45b and Hsp90a between the A band and the Z line of the myofibril. ACTA ACUST UNITED AC 2008; 180:1163-75. [PMID: 18347070 PMCID: PMC2290844 DOI: 10.1083/jcb.200709128] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The formation of thick filaments in striated muscle involves the chaperones Hsp90a and Unc45. We show that Unc45b and Hsp90a, two zebrafish orthologues, colocalize with myosin during myofibrillogenesis and associate with the Z line when myofibril assembly is completed. In response to stress or damage to the myofiber, Unc45b and Hsp90a dissociate from the Z line and transiently associate with myosin. Although chaperone activity of Unc45b requires the full-length protein, only the central and Unc45-Cro1p-She4p domains are required to anchor it to the Z line, and multiple subdomains mediate association with nascent myosin. We propose that the Z line serves as a reservoir for chaperones, allowing a rapid mobilization in response to muscle damage. Our data are consistent with a differential affinity model as an explanation for the shuttling of the chaperones between the Z line and myosin.
Collapse
Affiliation(s)
- Christelle Etard
- Institute for Toxicology and Genetics, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany
| | | | | |
Collapse
|
44
|
Kachur TM, Audhya A, Pilgrim DB. UNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C. elegans. Dev Biol 2007; 314:287-99. [PMID: 18190904 DOI: 10.1016/j.ydbio.2007.11.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 01/07/2023]
Abstract
The Caenorhabditis elegans UNC-45 protein is required for proper body wall muscle assembly and acts as a molecular co-chaperone for type II myosins. In contrast to other body wall muscle components, UNC-45 is also abundant in the germline and embryo. We show that maternally provided UNC-45 acts with non-muscle myosin II (NMY-2) during embryonic polarity establishment, cytokinesis and germline cellularization. In embryos depleted for UNC-45, myosin contractility is eliminated resulting in embryonic defects in polar body extrusion, cytokinesis and establishment of polarity. Despite a lack of contractility in an unc-45(RNAi) embryo, NMY-2::GFP localizes to the cortex and accumulates at the presumptive cytokinetic furrow indicating that UNC-45 is not required for cortical localization. UNC-45 and NMY-2 are also required for fertility since the lack of either component results in complete sterility due to failed initiation of the cellularization furrows that separate syncytial nuclei into germ cells. In the absence of UNC-45, the actomyosin cytoskeleton does not contract despite non-functional myosin still directly binding actin. UNC-45 has been previously suggested to be required for the folding of the myosin head, and our results refine this hypothesis suggesting that UNC-45 is not required to fold or maintain the actin binding domain but is still required for myosin function.
Collapse
Affiliation(s)
- Torah M Kachur
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9 Canada
| | | | | |
Collapse
|
45
|
Bazzaro M, Santillan A, Lin Z, Tang T, Lee MK, Bristow RE, Shih IM, Roden RBS. Myosin II co-chaperone general cell UNC-45 overexpression is associated with ovarian cancer, rapid proliferation, and motility. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1640-9. [PMID: 17872978 PMCID: PMC2043524 DOI: 10.2353/ajpath.2007.070325] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Both tumor cell proliferation and metastasis are dependent on myosin II. Because UNC-45 is required to chaperone the assembly of a functional myosin II motor, we examined the expression of the general cell (GC) UNC-45 isoform in ovarian tumors. Serous carcinoma expressed elevated levels of GC UNC-45 compared with normal ovarian surface epithelium and benign cystadenoma. High-stage exhibited greater GC UNC-45 expression than low-stage serous carcinoma. Similarly, GC UNC-45 transcripts and protein levels were higher in ovarian cell lines than in immortalized ovarian surface epithelial cells. Elevation of GC UNC-45 levels by ectopic expression enhanced the rate of ovarian cancer cell proliferation, whereas siRNA knockdown of GC UNC-45 suppressed proliferation without altering myosin II levels. GC UNC-45 and myosin II were diffuse within the cytoplasm of confluent interphase cells, but both accumulated together at the cleavage furrow during cytokinesis. GC UNC-45 and myosin II also trafficked to the leading edges of ovarian cancer cells induced to move in a scratch assay. Knockdown of GC UNC-45 reduced the spreading ability of ovarian cancer cells whereas it was enhanced by GC UNC-45 overexpression. In sum, these findings implicate elevated GC UNC-45 protein expression in ovarian carcinoma proliferation and metastasis.
Collapse
Affiliation(s)
- Martina Bazzaro
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Etard C, Behra M, Fischer N, Hutcheson D, Geisler R, Strähle U. The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev Biol 2007; 308:133-43. [PMID: 17586488 DOI: 10.1016/j.ydbio.2007.05.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/09/2007] [Accepted: 05/15/2007] [Indexed: 11/18/2022]
Abstract
Contraction of muscles is mediated by highly organized arrays of myosin motor proteins. We report here the characterization of a mutation of a UCS gene named steif/unc-45b that is required for the formation of ordered myofibrils in both the skeletal and cardiac muscles of zebrafish. We show that Steif/Unc-45b interacts with the chaperone Hsp90a in vitro. The two genes are co-expressed in the skeletal musculature and knockdown of Hsp90a leads to impaired myofibril formation in the same manner as lack of Steif/Unc-45b activity. Transcripts of both genes are up-regulated in steif mutants suggesting co-regulation of the two genes. Our data indicate a requirement of Steif/unc-45b and Hsp90a for the assembly of the contractile apparatus in the vertebrate skeletal musculature.
Collapse
Affiliation(s)
- Christelle Etard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
47
|
Landsverk ML, Li S, Hutagalung AH, Najafov A, Hoppe T, Barral JM, Epstein HF. The UNC-45 chaperone mediates sarcomere assembly through myosin degradation in Caenorhabditis elegans. ACTA ACUST UNITED AC 2007; 177:205-10. [PMID: 17438072 PMCID: PMC2064129 DOI: 10.1083/jcb.200607084] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin motors are central to diverse cellular processes in eukaryotes. Homologues of the myosin chaperone UNC-45 have been implicated in the assembly and function of myosin-containing structures in organisms from fungi to humans. In muscle, the assembly of sarcomeric myosin is regulated to produce stable, uniform thick filaments. Loss-of-function mutations in Caenorhabditis elegans UNC-45 lead to decreased muscle myosin accumulation and defective thick filament assembly, resulting in paralyzed animals. We report that transgenic worms overexpressing UNC-45 also display defects in myosin assembly, with decreased myosin content and a mild paralysis phenotype. We find that the reduced myosin accumulation is the result of degradation through the ubiquitin/proteasome system. Partial proteasome inhibition is able to restore myosin protein and worm motility to nearly wild-type levels. These findings suggest a mechanism in which UNC-45–related proteins may contribute to the degradation of myosin in conditions such as heart failure and muscle wasting.
Collapse
Affiliation(s)
- Megan L Landsverk
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Wohlgemuth SL, Crawford BD, Pilgrim DB. The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev Biol 2006; 303:483-92. [PMID: 17189627 DOI: 10.1016/j.ydbio.2006.11.027] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 11/30/2022]
Abstract
The assembly of myosin into higher order structures is dependent upon accessory factors that are often tissue-specific. UNC-45 acts as such a molecular chaperone for myosin in the nematode Caenorhabditis elegans, in both muscle and non-muscle contexts. Although vertebrates contain homologues of UNC-45, their requirement for muscle function has not been assayed. We identified a zebrafish gene, unc45b, similar to a mammalian unc-45 homologue, expressed exclusively in striated muscle tissue, including the somites, heart and craniofacial muscle. Morpholino-oligonucleotide-mediated knockdown of unc45b results in paralysis and cardiac dysfunction. This paralysis is correlated with a loss of myosin filaments in the sarcomeres of the trunk muscle. Morphants lack circulation, heart looping and display severe cardiac and yolk-sac edema and also demonstrate ventral displacement of several jaw cartilages. Overall, this confirms a role for unc45b in zebrafish motility consistent with a function in myosin thick filament assembly and stability and uncovers novel roles for this gene in the function and morphogenesis of the developing heart and jaw. These results suggest that Unc45b acts as a chaperone that aids in the folding of myosin isoforms required for skeletal, cranial and cardiac muscle contraction.
Collapse
Affiliation(s)
- Serene L Wohlgemuth
- Department of Biological Sciences, CW405, Biological Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
49
|
Mishra M, D'souza VM, Chang KC, Huang Y, Balasubramanian MK. Hsp90 protein in fission yeast Swo1p and UCS protein Rng3p facilitate myosin II assembly and function. EUKARYOTIC CELL 2005; 4:567-76. [PMID: 15755919 PMCID: PMC1087793 DOI: 10.1128/ec.4.3.567-576.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The F-actin-based molecular motor myosin II is involved in a variety of cellular processes such as muscle contraction, cell motility, and cytokinesis. In recent years, a family of myosin II-specific cochaperones of the UCS family has been identified from work with yeasts, fungi, worms, and humans. Biochemical analyses have shown that a complex of Hsp90 and the Caenorhabditis elegans UCS domain protein UNC-45 prevent myosin head aggregation, thereby allowing it to assume a proper structure. Here we demonstrate that a temperature-sensitive mutant of the fission yeast Hsp90 (Swo1p), swo1-w1, is defective in actomyosin ring assembly at the restrictive temperature. Two alleles of swo1, swo1-w1 and swo1-26, showed synthetic lethality with a specific mutant allele of the fission yeast type II myosin head, myo2-E1, but not with two other mutant alleles of myo2 or with mutations affecting 14 other genes important for cytokinesis. swo1-w1 also showed a strong genetic interaction with rng3-65, a gene encoding a mutation in the fission yeast UCS domain protein Rng3p, which has previously been shown to be important for myosin II assembly. A similar deleterious effect was found when myo2-E1, swo1-w1, and rng3-65 were pharmacologically treated with geldanamycin to partially inhibit Hsp90 function. Interestingly, Swo1p-green fluorescent protein is detected at the improperly assembled actomyosin rings in myo2-E1 but not in a wild-type strain. Yeast two-hybrid and coimmunoprecipitation analyses verified interactions between Rng3p and the myosin head domain as well as interactions between Rng3p and Swo1p. Our analyses of Myo2p, Swo1p, and the UCS domain protein Rng3p establish that Swo1p and Rng3p collaborate in vivo to modulate myosin II function.
Collapse
Affiliation(s)
- Mithilesh Mishra
- Cell Division Laboratory, Temasek Life Sciences Laboratory, Department of Biological Sciences, The National University of Singapore, Singapore 117604
| | | | | | | | | |
Collapse
|
50
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|