1
|
Corriero A, Zupa R, Mylonas CC, Passantino L. Atresia of ovarian follicles in fishes, and implications and uses in aquaculture and fisheries. JOURNAL OF FISH DISEASES 2021; 44:1271-1291. [PMID: 34132409 PMCID: PMC8453499 DOI: 10.1111/jfd.13469] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 05/04/2023]
Abstract
Atresia of ovarian follicles, that is the degenerative process of germ cells and their associated somatic cells, is a complex process involving apoptosis, autophagy and heterophagy. Follicular atresia is a normal component of fish oogenesis and it is observed throughout the ovarian cycle, although it is more frequent in regressing ovaries during the postspawning period. An increased occurrence of follicular atresia above physiological rates reduces fish fecundity and even causes reproductive failure in both wild and captive-reared fish stocks, and hence, this phenomenon has a wide range of implications in applied sciences such as fisheries and aquaculture. The present article reviews the available literature on both basic and applied traits of oocyte loss by atresia, including its morpho-physiological aspects and factors that cause a supraphysiological increase of follicular atresia. Finally, the review presents the use of early follicular atresia identification in the selection process of induced spawning in aquaculture and the implications of follicular atresia in fisheries management.
Collapse
Affiliation(s)
- Aldo Corriero
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| | - Rosa Zupa
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| | - Constantinos C. Mylonas
- Institute of Marine Biology, Biotechnology and AquacultureHellenic Center for Marine ResearchCreteGreece
| | - Letizia Passantino
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| |
Collapse
|
2
|
Schramm H, Jaramillo ML, Quadros TD, Zeni EC, Müller YMR, Ammar D, Nazari EM. Effect of UVB radiation exposure in the expression of genes and proteins related to apoptosis in freshwater prawn embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:25-33. [PMID: 28780296 DOI: 10.1016/j.aquatox.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Our previous studies showed that embryos of the freshwater prawn Macrobrachium olfersii exposed to ultraviolet B (UVB) radiation exhibited DNA damage, excessive ROS production, mitochondrial dysfunction and increased hsp70 expression, which are able, independently or together, to induce apoptosis. Thus, we attempted to elucidate some key apoptosis-related genes (ARG) and apoptosis-related proteins (ARP) and their expression during different stages of embryonic development, as well as to characterize the chronology of ARG expression and ARP contents after UVB radiation insult. We demonstrate that p53, Bax and Caspase3 genes are active in the embryonic cells at early embryonic developmental stages, and that the Bcl2 gene is active from the mid-embryonic stage. After UVB radiation exposure, we found an increase in ARP such as p53 and Bak after 3h of exposure. Moreover, an increase in ARG transcript levels for p53, Bax, Bcl2 and Caspase3 was observed at 6h after UVB exposure. Then, after 12h of UVB radiation exposure, an increase in Caspase3 gene expression and protein was observed, concomitantly with an increased number of apoptotic cells. Our data reveal that ARG and ARP are developmentally regulated in embryonic cells of M. olfersii and that UVB radiation causes apoptosis after 12h of exposure. Overall, we demonstrate that embryonic cells of M. olfersii are able to active the cell machinery against environmental changes, such as increased incidence of UVB radiation in aquatic ecosystems.
Collapse
Affiliation(s)
- Heloísa Schramm
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Michael L Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Thaline de Quadros
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eliane C Zeni
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara M R Müller
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Dib Ammar
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Centro Universitário Católica de Santa Catarina, Joinville, Santa Catarina, Brazil
| | - Evelise M Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Lolodi O, Yamazaki H, Otsuka S, Kumeta M, Yoshimura SH. Dissecting in vivo steady-state dynamics of karyopherin-dependent nuclear transport. Mol Biol Cell 2015; 27:167-76. [PMID: 26538027 PMCID: PMC4694755 DOI: 10.1091/mbc.e15-08-0601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/27/2015] [Indexed: 11/11/2022] Open
Abstract
The steady-state dynamics of karyopherin-dependent nuclear transport in a living cell is examined. The kinetic model established by a number of experimentally obtained parameters reveals how each step of the transport system contributes to maintaining steady-state cargo gradient and fluxes across the nuclear envelope. Karyopherin-dependent molecular transport through the nuclear pore complex is maintained by constant recycling pathways of karyopherins coupled with the Ran-dependent cargo catch-and-release mechanism. Although many studies have revealed the bidirectional dynamics of karyopherins, the entire kinetics of the steady-state dynamics of karyopherin and cargo is still not fully understood. In this study, we used fluorescence recovery after photobleaching and fluorescence loss in photobleaching on live cells to provide convincing in vivo proof that karyopherin-mediated nucleocytoplasmic transport of cargoes is bidirectional. Continuous photobleaching of the cytoplasm of live cells expressing NLS cargoes led to progressive decrease of nuclear fluorescence signals. In addition, experimentally obtained kinetic parameters of karyopherin complexes were used to establish a kinetic model to explain the entire cargo import and export transport cycles facilitated by importin β. The results strongly indicate that constant shuttling of karyopherins, either free or bound to cargo, ensures proper balancing of nucleocytoplasmic distribution of cargoes and establishes effective regulation of cargo dynamics by RanGTP.
Collapse
Affiliation(s)
| | - Hiroya Yamazaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Shotaro Otsuka
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Accorsi A, Zibaee A, Malagoli D. The multifaceted activity of insect caspases. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:17-23. [PMID: 25783954 DOI: 10.1016/j.jinsphys.2015.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Caspases are frequently considered synonymous with apoptotic cell death. Increasing evidence demonstrates that these proteases may exert their activities in non-apoptotic functions. The non-apoptotic roles of caspases may include developmentally regulated autophagy during insect metamorphosis, as well as neuroblast self-renewal and the immune response. Here, we summarize the established knowledge and the recent advances in the multiple roles of insect caspases to highlight their relevance for physiological processes and survival.
Collapse
Affiliation(s)
- A Accorsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - D Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
5
|
Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3499-3506. [DOI: 10.1016/j.bbamcr.2013.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 12/24/2022]
|
6
|
Galindo KA, Lu WJ, Park JH, Abrams JM. The Bax/Bak ortholog in Drosophila, Debcl, exerts limited control over programmed cell death. Development 2008; 136:275-83. [PMID: 19088092 DOI: 10.1242/dev.019042] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bcl-2 family members are pivotal regulators of programmed cell death (PCD). In mammals, pro-apoptotic Bcl-2 family members initiate early apoptotic signals by causing the release of cytochrome c from the mitochondria, a step necessary for the initiation of the caspase cascade. Worms and flies do not show a requirement for cytochrome c during apoptosis, but both model systems express pro- and anti-apoptotic Bcl-2 family members. Drosophila encodes two Bcl-2 family members, Debcl (pro-apoptotic) and Buffy (anti-apoptotic). To understand the role of Debcl in Drosophila apoptosis, we produced authentic null alleles at this locus. Although gross development and lifespans were unaffected, we found that Debcl was required for pruning cells in the developing central nervous system. debcl genetically interacted with the ced-4/Apaf1 counterpart dark, but was not required for killing by RHG (Reaper, Hid, Grim) proteins. We found that debcl(KO) mutants were unaffected for mitochondrial density or volume but, surprisingly, in a model of caspase-independent cell death, heterologous killing by murine Bax required debcl to exert its pro-apoptotic activity. Therefore, although debcl functions as a limited effector of PCD during normal Drosophila development, it can be effectively recruited for killing by mammalian members of the Bcl-2 gene family.
Collapse
Affiliation(s)
- Kathleen A Galindo
- Department of Cell Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | | | |
Collapse
|
7
|
Escobar ML, Echeverría OM, Ortíz R, Vázquez-Nin GH. Combined apoptosis and autophagy, the process that eliminates the oocytes of atretic follicles in immature rats. Apoptosis 2008; 13:1253-66. [PMID: 18690537 DOI: 10.1007/s10495-008-0248-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We studied the alterations of dying oocytes in 1-28 days old rats using TUNEL method, immunolocalizations of active caspase 3, lamp1, localization of acid phosphatase, and DAPI staining. All procedures were performed in adjacent sections of each oocyte. In most dying oocytes exist simultaneously features of apoptosis as active caspase 3 and DNA breaks, and a large increase of lamp1 and acid phosphatase characteristic of autophagy. Large clumps of compact chromatin and membrane blebbing were absent. Electron microscope observations demonstrated the presence of small clear vesicles and autophagolysosomes. All these features indicate that a large number of oocytes are eliminated by a process sharing features of apoptosis and autophagy. In dying oocytes of new born rats the markers of apoptosis predominate over those of autophagy. However, fragmentation and apoptotic bodies were not found. These features suggest that in different cytophysiological conditions the processes of cell death may be differently modulated.
Collapse
Affiliation(s)
- M L Escobar
- Department of Cell Biology, Faculty of Sciences, National Autonomous University of Mexico UNAM, Mexico, DF, 04510, Mexico
| | | | | | | |
Collapse
|
8
|
Tseng YK, Wu MS, Hou RF. Induction of apoptosis in SF21 cell line by conditioned medium of the entomopathogenic fungus, Nomuraea rileyi, through Sf-caspase-1 signaling pathway. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 68:206-214. [PMID: 18395831 DOI: 10.1002/arch.20242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The apoptosis in SF-21 cell line can be induced by the conditioned medium (CM) of the entomopathogenic fungus, Nomuraea rileyi, based on changes in morphology and formation of apoptotic bodies in cultured cells, and with the onset of DNA fragmentation as shown by TUNEL staining and agarose electrophoresis. Moreover, the induction of apoptosis in SF-21 cells was inhibited by adding the inhibitor of effector caspase, viz. z-DEVD-fmk, to the CM, indicating that Sf-caspase-1 is involved in this apoptosis. Similarly, the inhibitor of initiator caspase, viz., z-VAD-fmk, inhibited apoptosis. Therefore, both initiator and effector caspases are possibly involved in the apoptosis of SF-21 cells. In addition, we detected Sf-caspase-1 activity in the process of apoptosis in SF-21 cells, suggesting that the effector caspase in SF-21 is similar to that found in mammalian cells. Our results also indicated that the apoptosis found in this line is accomplished through a Sf-caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Yu-Kai Tseng
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan 402, Republic of China
| | | | | |
Collapse
|
9
|
Mergliano J, Minden JS. Caspase-independent cell engulfment mirrors cell death pattern in Drosophila embryos. Development 2003; 130:5779-89. [PMID: 14534140 DOI: 10.1242/dev.00824] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Programmed cell death plays an essential role during Drosophila embryonic development. A stereotypic series of cellular changes occur during apoptosis, most of which are initiated by a caspase cascade that is triggered by a trio of proteins, RPR, HID and GRIM. The final step in apoptosis is engulfment of the cell corpse. To monitor cell engulfment in vivo, we developed a fluorogenic beta-galactosidase substrate that is cleaved by an endogenous, lysosomal beta-galactosidase activity. The pattern of cell engulfment in wild-type embryos correlated well with the known pattern of apoptosis. Surprisingly, the pattern of cell engulfment persisted in apoptosis-deficient embryos. We provide evidence for a caspase-independent engulfment process that affects the majority of cells expected to die in developing Drosophila embryos.
Collapse
Affiliation(s)
- Jaime Mergliano
- Department of Biological Sciences and Science and Technology Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
10
|
Varghese J, Sade H, Vandenabeele P, Sarin A. Head involution defective (Hid)-triggered apoptosis requires caspase-8 but not FADD (Fas-associated death domain) and is regulated by Erk in mammalian cells. J Biol Chem 2002; 277:35097-104. [PMID: 12122017 DOI: 10.1074/jbc.m206445200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular machinery of apoptosis is evolutionarily conserved with some exceptions. One such example is the Drosophila proapoptotic gene Head involution defective (Hid), whose mammalian homologue is not known. Hid is apoptotic to mammalian cells, and we have examined the mechanism by which Hid induces death. We demonstrate for the first time a role for the extracellular signal-related kinase-1/2 (Erk-1/2) in the regulation of Hid function in mammalian cells. Bcl-2 and an inhibitor of caspase-9 blocked apoptosis, indicative of a role for the mitochondrion in this pathway, and we provide evidence for a role for caspase-8 in Hid-induced apoptosis. Thus, apoptosis was blocked by an inhibitor of caspase-8, deletion of caspase-8 rendered cells resistant to Hid-induced apoptosis, and Hid associated with caspase-8 in cell lysates. The Fas-associated death domain (FADD) was dispensable for the apoptotic function of Hid, indicating that Hid does not require extracellular death receptor signaling for the activation of caspase-8. In activated T cells, the cytokine interleukin-2 blocked caspase-8 processing and apoptosis, suggesting that survival cues from trophic factors may target a Hid-like intermediate present in mammalian cells. Thus, this study shows that Hid engages with conserved components of cellular death machinery and suggests that apoptotic paradigms characterized by FADD-independent activation of caspase-8 may involve a Hid-like molecule in mammalian cells.
Collapse
Affiliation(s)
- Jishy Varghese
- National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore 560065, Karnataka, India
| | | | | | | |
Collapse
|
11
|
Brun S, Rincheval V, Gaumer S, Mignotte B, Guenal I. reaper and bax initiate two different apoptotic pathways affecting mitochondria and antagonized by bcl-2 in Drosophila. Oncogene 2002; 21:6458-70. [PMID: 12226749 DOI: 10.1038/sj.onc.1205839] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 06/07/2002] [Accepted: 06/28/2002] [Indexed: 11/08/2022]
Abstract
bcl-2 was the first regulator of apoptosis shown to be involved in oncogenesis. Subsequent studies in mammals, in the nematode and in Drosophila revealed wide evolutionary conservation of the regulation of apoptosis. Although dbok/debcl, a member of the bcl-2 gene family described in Drosophila, shows pro-apoptotic activities, no anti-apoptotic bcl-2 family gene has been studied in Drosophila. We have previously reported that the human anti-apoptotic gene bcl-2 is functional in Drosophila, suggesting that the fruit fly shares regulatory mechanisms with vertebrates and the nematode, involving anti-apoptotic members of the bcl-2 family. We now report that bcl-2 suppresses rpr-induced apoptosis in Drosophila. Additionally, we have compared features of bax- and rpr-induced apoptosis. Flow cytometry analysis of wing disc cells demonstrate that both killers trigger mitochondrial defects. Interestingly, bcl-2 suppresses both bax- and rpr-induced mitochondrial defects while the caspase-inhibitor p35 is specific to the rpr pathway. Finally, we show that the inhibition of apoptosis by bcl-2 is associated with the down-regulation of rpr expression.
Collapse
Affiliation(s)
- Sylvain Brun
- Laboratoire de Génétique et Biologie Cellulaire, CNRS UPRES-A 8087, et Laboratoire de Génétique Moléculaire et Physiologie de l'EPHE, Université de Versailles-St Quentin en Yvelines, 45 avenue des Etats-Unis, F-78035 Versailles cedex, France
| | | | | | | | | |
Collapse
|
12
|
Richardson H, Kumar S. Death to flies: Drosophila as a model system to study programmed cell death. J Immunol Methods 2002; 265:21-38. [PMID: 12072176 DOI: 10.1016/s0022-1759(02)00068-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Programmed cell death (PCD) is essential for the removal of unwanted cells and is critical for both restricting cell numbers and for tissue patterning during development. Components of the cell death machinery are remarkably conserved through evolution, from worms to mammals. Central to the PCD process is the family of cysteine proteases, known as caspases, which are activated by death-inducing signals. Comparisons between C. elegans and mammalian PCD have shown that there is additional complexity in the regulation of PCD in mammals. The fruitfly, Drosophila melanogaster, is proving an ideal genetically tractable model organism, of intermediary complexity between C. elegans and mammals, in which to study the intricacies of PCD. Here, we review the literature on PCD during Drosophila development, highlighting the methods used in these studies.
Collapse
Affiliation(s)
- Helena Richardson
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett St., Melbourne, Victoria, 8006, Australia.
| | | |
Collapse
|
13
|
Rodriguez A, Chen P, Oliver H, Abrams JM. Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, Dark. EMBO J 2002; 21:2189-97. [PMID: 11980716 PMCID: PMC125994 DOI: 10.1093/emboj/21.9.2189] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 02/08/2002] [Accepted: 03/15/2002] [Indexed: 11/14/2022] Open
Abstract
In mammals and Drosophila, apoptotic caspases are under positive control via the CED-4/Apaf-1/Dark adaptors and negative control via IAPs (inhibitor of apoptosis proteins). However, the in vivo genetic relationship between these opposing regulators is not known. In this study, we demonstrate that a dark mutation reverses catastrophic defects seen in Diap1 mutants and rescues cells specified for Diap1- regulated cell death in development and in response to genotoxic stress. We also find that dark function is required for hyperactivation of caspases which occurs in the absence of Diap1. Since the action of dark is epistatic to that of Diap1, these findings demonstrate that caspase-dependent cell death requires concurrent positive input through Apaf-1-like proteins together with disruption of IAP-caspase complexes.
Collapse
Affiliation(s)
| | | | - Holt Oliver
- Department of Cell Biology and
Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA Corresponding author e-mail:
| | - John M. Abrams
- Department of Cell Biology and
Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA Corresponding author e-mail:
| |
Collapse
|
14
|
Pru JK, Tilly JL. Programmed cell death in the ovary: insights and future prospects using genetic technologies. Mol Endocrinol 2001; 15:845-53. [PMID: 11376105 DOI: 10.1210/mend.15.6.0646] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Programmed cell death (PCD) plays a prominent role in development of the fetal ovaries and in the postnatal ovarian cycle. As is the case with other major organ systems, an evolutionarily conserved framework of genes and signaling pathways has been implicated in determining whether or not ovarian germ cells and somatic cells will die in response to either developmental cues or pathological insults. However, the identification of increasing numbers of potential ovarian cell death regulatory factors over the past several years has underscored the need for studies to now separate correlation (e.g. endogenous gene expression) from function (e.g. requirement of the gene product for the execution of PCD). In this regard, genetic technologies have recently been used to examine the functional significance of specific proteins and signaling molecules to the regulation of PCD in the female gonad in vivo. In addition to the more classic approaches, such as the use of genetic null and transgenic mice, methods that achieve cell lineage-selective and/or developmentally timed gene targeting are on the horizon for use by reproductive biologists to more accurately dissect the mechanisms by which PCD is controlled in the ovary. This minireview will highlight some of the advances that have already been made using gene knockout and transgenic mice, as well as provide an overview of the current and future status of cell lineage-selective gene disruption, in the context of PCD and ovarian function.
Collapse
Affiliation(s)
- J K Pru
- Vincent Center for Reproductive Biology Department of Obstetrics and Gynecology Massachusetts General Hospital/Harvard Medical School Boston, MA 02114, USA
| | | |
Collapse
|
15
|
Affiliation(s)
- N Matova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|
16
|
Abstract
Essential to the construction, maintenance and repair of tissues is the ability to induce suicide of supernumerary, misplaced or damaged cells with high specificity and efficiency. Study of three principal organisms--the nematode, fruitfly and mouse--indicate that cell suicide is implemented through the activation of an evolutionarily conserved molecular programme intrinsic to all metazoan cells. Dysfunctions in the regulation or execution of cell suicide are implicated in a wide range of developmental abnormalities and diseases.
Collapse
Affiliation(s)
- P Meier
- Signal Transduction Laboratory, Imperial Cancer Research Fund, London, UK.
| | | | | |
Collapse
|