1
|
Rodriguez Garcia M, Schmeckpeper J, Landim-Vieira M, Coscarella IL, Fang X, Ma W, Spran PA, Yuan S, Qi L, Kahmini AR, Shoemaker MB, Atkinson JB, Kekenes-Huskey PM, Irving TC, Chase PB, Knollmann BC, Pinto JR. Disruption of Z-Disc Function Promotes Mechanical Dysfunction in Human Myocardium: Evidence for a Dual Myofilament Modulatory Role by Alpha-Actinin 2. Int J Mol Sci 2023; 24:14572. [PMID: 37834023 PMCID: PMC10572656 DOI: 10.3390/ijms241914572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.
Collapse
Affiliation(s)
| | - Jeffrey Schmeckpeper
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Xuan Fang
- Department of Cell & Molecular Physiology, Loyola University, Chicago, IL 60660, USA
| | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Payton A. Spran
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shengyao Yuan
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Lin Qi
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Aida Rahimi Kahmini
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - M. Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James B. Atkinson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Thomas C. Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Björn C. Knollmann
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jose Renato Pinto
- Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
2
|
Rajan S, Kudryashov DS, Reisler E. Actin Bundles Dynamics and Architecture. Biomolecules 2023; 13:450. [PMID: 36979385 PMCID: PMC10046292 DOI: 10.3390/biom13030450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Cells use the actin cytoskeleton for many of their functions, including their division, adhesion, mechanosensing, endo- and phagocytosis, migration, and invasion. Actin bundles are the main constituent of actin-rich structures involved in these processes. An ever-increasing number of proteins that crosslink actin into bundles or regulate their morphology is being identified in cells. With recent advances in high-resolution microscopy and imaging techniques, the complex process of bundles formation and the multiple forms of physiological bundles are beginning to be better understood. Here, we review the physiochemical and biological properties of four families of highly conserved and abundant actin-bundling proteins, namely, α-actinin, fimbrin/plastin, fascin, and espin. We describe the similarities and differences between these proteins, their role in the formation of physiological actin bundles, and their properties-both related and unrelated to their bundling abilities. We also review some aspects of the general mechanism of actin bundles formation, which are known from the available information on the activity of the key actin partners involved in this process.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Palani S, Ghosh S, Ivorra-Molla E, Clarke S, Suchenko A, Balasubramanian MK, Köster DV. Calponin-homology domain mediated bending of membrane-associated actin filaments. eLife 2021; 10:e61078. [PMID: 34269679 PMCID: PMC8315802 DOI: 10.7554/elife.61078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Actin filaments are central to numerous biological processes in all domains of life. Driven by the interplay with molecular motors, actin binding and actin modulating proteins, the actin cytoskeleton exhibits a variety of geometries. This includes structures with a curved geometry such as axon-stabilizing actin rings, actin cages around mitochondria and the cytokinetic actomyosin ring, which are generally assumed to be formed by short linear filaments held together by actin cross-linkers. However, whether individual actin filaments in these structures could be curved and how they may assume a curved geometry remains unknown. Here, we show that 'curly', a region from the IQGAP family of proteins from three different organisms, comprising the actin-binding calponin-homology domain and a C-terminal unstructured domain, stabilizes individual actin filaments in a curved geometry when anchored to lipid membranes. Although F-actin is semi-flexible with a persistence length of ~10 μm, binding of mobile curly within lipid membranes generates actin filament arcs and full rings of high curvature with radii below 1 μm. Higher rates of fully formed actin rings are observed in the presence of the actin-binding coiled-coil protein tropomyosin and when actin is directly polymerized on lipid membranes decorated with curly. Strikingly, curly induced actin filament rings contract upon the addition of muscle myosin II filaments and expression of curly in mammalian cells leads to highly curved actin structures in the cytoskeleton. Taken together, our work identifies a new mechanism to generate highly curved actin filaments, which opens a range of possibilities to control actin filament geometries, that can be used, for example, in designing synthetic cytoskeletal structures.
Collapse
Affiliation(s)
- Saravanan Palani
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical SciencesCoventryUnited Kingdom
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of ScienceBangaloreIndia
| | - Sayantika Ghosh
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical SciencesCoventryUnited Kingdom
| | - Esther Ivorra-Molla
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical SciencesCoventryUnited Kingdom
| | - Scott Clarke
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical SciencesCoventryUnited Kingdom
| | - Andrejus Suchenko
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical SciencesCoventryUnited Kingdom
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical SciencesCoventryUnited Kingdom
| | - Darius Vasco Köster
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical SciencesCoventryUnited Kingdom
| |
Collapse
|
4
|
Matsuda K, Sugawa M, Yamagishi M, Kodera N, Yajima J. Visualizing dynamic actin cross‐linking processes driven by the actin‐binding protein anillin. FEBS Lett 2019; 594:1237-1247. [DOI: 10.1002/1873-3468.13720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Kyohei Matsuda
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| | - Mitsuhiro Sugawa
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
- Komaba Institute for Science The University of Tokyo Japan
| | - Masahiko Yamagishi
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
- Komaba Institute for Science The University of Tokyo Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI‐NanoLSI) Kanazawa University Japan
| | - Junichiro Yajima
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
- Komaba Institute for Science The University of Tokyo Japan
- Research Center for Complex Systems Biology The University of Tokyo Japan
| |
Collapse
|
5
|
Guo YC, Wang YX, Ge YP, Yu LJ, Guo J. Analysis of subcellular structural tension in axonal growth of neurons. Rev Neurosci 2018; 29:125-137. [DOI: 10.1515/revneuro-2017-0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/05/2017] [Indexed: 01/08/2023]
Abstract
AbstractThe growth and regeneration of axons are the core processes of nervous system development and functional recovery. They are also related to certain physiological and pathological conditions. For decades, it has been the consensus that a new axon is formed by adding new material at the growth cone. However, using the existing technology, we have studied the structural tension of the nerve cell, which led us to hypothesize that some subcellular structural tensions contribute synergistically to axonal growth and regeneration. In this review, we classified the subcellular structural tension, osmotic pressure, microfilament and microtubule-dependent tension involved controllably in promoting axonal growth. A squeezing model was built to analyze the mechanical mechanism underlying axonal elongation, which may provide a new view of axonal growth and inspire further research.
Collapse
|
6
|
Sun LH, Yang FQ, Zhang CB, Wu YP, Liang JS, Jin S, Wang Z, Wang HJ, Bao ZS, Yang ZX, Jiang T. Overexpression of Paxillin Correlates with Tumor Progression and Predicts Poor Survival in Glioblastoma. CNS Neurosci Ther 2016; 23:69-75. [PMID: 27637748 DOI: 10.1111/cns.12606] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/25/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022] Open
Abstract
AIMS To explore the prognostic and clinicopathological features of glioma with Paxillin (PXN) expression based on a large number of samples. METHODS RNA sequencing data of 325 glioma samples from Chinese Glioma Genome Atlas (CGGA) database were obtained as discovery set. Three additional datasets were further obtained as validation sets. The protein expression pattern of PXN in glioma was measured by IHC. Kaplan-Meier survival and multivariate Cox analysis were used to estimate the survival distributions. Moreover, the functional annotation of PXN was also analyzed. RESULTS In the discovery set, PXN overexpression was significantly associated with high-grade glioma as well as the higher mortality in survival analysis (log-rank test, P < 0.01). The results of the other validation datasets showed similar findings. PXN also served as an independent prognostic biomarker in glioblastoma patients. Functional assays showed that PXN contributed to glioma cell proliferation and invasion. CONCLUSION PXN plays as an oncogene in glioma progression and suggests a new potential biotarget for therapy.
Collapse
Affiliation(s)
- Li-Hua Sun
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Fu-Qiang Yang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuan-Bao Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yi-Ping Wu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jing-Shan Liang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shuai Jin
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hong-Jun Wang
- Department of Neurosurgery, 2nd affiliated hospital of Harbin Medical University, Harbin, China
| | - Zhao-Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng-Xiang Yang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
7
|
Shang Y, Wang H, Jia P, Zhao H, Liu C, Liu W, Song Z, Xu Z, Yang L, Wang Y, Li W. Autophagy regulates spermatid differentiation via degradation of PDLIM1. Autophagy 2016; 12:1575-92. [PMID: 27310465 DOI: 10.1080/15548627.2016.1192750] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spermiogenesis is a complex and highly ordered spermatid differentiation process that requires reorganization of cellular structures. We have previously found that Atg7 is required for acrosome biogenesis. Here, we show that autophagy regulates the round and elongating spermatids. Specifically, we found that Atg7 is required for spermatozoa flagella biogenesis and cytoplasm removal during spermiogenesis. Spermatozoa motility of atg7-null mice dropped significantly with some extra-cytoplasm retained on the mature sperm head. These defects are associated with an impairment of the cytoskeleton organization. Functional screening revealed that the negative cytoskeleton organization regulator, PDLIM1 (PDZ and LIM domain 1 [elfin]), needs to be degraded by the autophagy-lysosome-dependent pathway to facilitate the proper organization of the cytoskeleton. Our results thus provide a novel mechanism showing that autophagy regulates cytoskeleton organization mainly via degradation of PDLIM1 to facilitate the differentiation of spermatids.
Collapse
Affiliation(s)
- Yongliang Shang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Hongna Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Pengfei Jia
- c State Key Laboratory of Molecular Developmental Biology and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Haichao Zhao
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Chao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Weixiao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Zhenhua Song
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Zhiliang Xu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Lin Yang
- c State Key Laboratory of Molecular Developmental Biology and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Yanfang Wang
- d State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing , China
| | - Wei Li
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
8
|
Li Y, Christensen JR, Homa KE, Hocky GM, Fok A, Sees JA, Voth GA, Kovar DR. The F-actin bundler α-actinin Ain1 is tailored for ring assembly and constriction during cytokinesis in fission yeast. Mol Biol Cell 2016; 27:1821-33. [PMID: 27075176 PMCID: PMC4884072 DOI: 10.1091/mbc.e16-01-0010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction.
Collapse
Affiliation(s)
- Yujie Li
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637
| | - Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Glen M Hocky
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, IL 60637
| | - Alice Fok
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jennifer A Sees
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, IL 60637
| | - David R Kovar
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637 Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
9
|
Hou Y, Crossman DJ, Rajagopal V, Baddeley D, Jayasinghe I, Soeller C. Super-resolution fluorescence imaging to study cardiac biophysics: α-actinin distribution and Z-disk topologies in optically thick cardiac tissue slices. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:328-39. [PMID: 25042577 DOI: 10.1016/j.pbiomolbio.2014.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
A major motivation for the use of super-resolution imaging methods in the investigation of cardiac biophysics has been the insight from biophysical considerations and detailed mathematical modeling that the spatial structure and protein organisation at the scale of nanometres can have enormous implications for calcium signalling in cardiac muscle. We illustrate the use of dSTORM based super-resolution in optically thick (∼10 μm) tissue slices of rat ventricular tissue to visualize proteins at the cardiac Z-disk and compare those images with confocal (diffraction-limited) as well as electron microscopy (EM) data which still provides a benchmark in terms of resolution. α-actinin is an abundant protein target that effectively defines the Z-disk in striated muscle and provides a reference structure for other proteins at the Z-line and the transverse tubules. Using super-resolution imaging α-actinin labelling provides very detailed outlines of the contractile machinery which we have used to study the properties of Z-disks and the distribution of α-actinin itself. We determined the local diameters of the myo-fibrillar and non-myofibrillar space using α-actinin labelling. Comparison between confocal and super-resolution based myofibrillar masks suggested that super-resolution data was able to segment myofibrils accurately while confocal approaches were not always able to distinguish neighbouring myofibrillar bundles which resulted in overestimated diameters. The increased resolution of super-resolution methods provides qualitatively new information to improve our understanding of cardiac biophysics. Nevertheless, conventional diffraction-limited imaging still has an important role to play which we illustrate with correlative confocal and super-resolution data.
Collapse
Affiliation(s)
- Yufeng Hou
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Vijay Rajagopal
- Dept. of Electrical and Electronic Engineering, University of Melbourne, Australia
| | - David Baddeley
- Department of Physiology, University of Auckland, Auckland, New Zealand; Department of Cell Biology, Yale University, New Haven, USA
| | | | - Christian Soeller
- Department of Physiology, University of Auckland, Auckland, New Zealand; Biomedical Physics, University of Exeter, UK.
| |
Collapse
|
10
|
Yu J, Lee AR, Lin WH, Lin CW, Wu YK, Tsai WB. Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng Part A 2014; 20:1896-907. [PMID: 24471778 PMCID: PMC4086675 DOI: 10.1089/ten.tea.2013.0008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/14/2014] [Indexed: 11/12/2022] Open
Abstract
Structural similarity of electrospun fibers (ESFs) to the native extracellular matrix provides great potential for the application of biofunctional ESFs in tissue engineering. This study aimed to synthesize biofunctionalized poly (L-lactide-co-glycolide) (PLGA) ESFs for investigating the potential for cardiac tissue engineering application. We developed a simple but novel strategy to incorporate adhesive peptides in PLGA ESFs. Two adhesive peptides derived from laminin, YIGSR, and RGD, were covalently conjugated to poly-L-lysine, and then mingled with PLGA solution for electrospinning. Peptides were uniformly distributed on the surface and in the interior of ESFs. PLGA ESFs incorporated with YIGSR or RGD or adsorbed with laminin significantly enhanced the adhesion of cardiomyocytes isolated from neonatal rats. Furthermore, the cells were found to adhere better on ESFs compared with flat substrates after 7 days of culture. Immunofluorescent staining of F-actin, vinculin, a-actinin, and N-cadherin indicated that cardiomyocytes adhered and formed striated α-actinin better on the laminin-coated ESFs and the YIGSR-incorporated ESFs compared with the RGD-incorporated ESFs. The expression of α-myosin heavy chain and β-tubulin on the YIGSR-incorporated ESFs was significantly higher compared with the expression level on PLGA and RGD-incorporated samples. Furthermore, the contraction of cardiomyocytes was faster and lasted longer on the laminin-coated ESFs and YIGSR-incorporated ESFs. The results suggest that aligned YIGSR-incorporated PLGA ESFs is a better candidate for the formation of cardiac patches. This study demonstrated the potential of using peptide-incorporated ESFs as designable-scaffold platform for tissue engineering.
Collapse
Affiliation(s)
- Jiashing Yu
- Department of Chemical Engineering, National Taiwan University , Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
11
|
Mavrakis M, Azou-Gros Y, Tsai FC, Alvarado J, Bertin A, Iv F, Kress A, Brasselet S, Koenderink GH, Lecuit T. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol 2014; 16:322-34. [PMID: 24633326 DOI: 10.1038/ncb2921] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 01/23/2014] [Indexed: 11/09/2022]
Abstract
Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.
Collapse
Affiliation(s)
- Manos Mavrakis
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Yannick Azou-Gros
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Feng-Ching Tsai
- 1] FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands [2]
| | - José Alvarado
- 1] FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands [2]
| | - Aurélie Bertin
- 1] Institut Curie, CNRS UMR 168, 75231 Paris, France [2]
| | - Francois Iv
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Alla Kress
- Institut Fresnel, CNRS UMR 7249, Aix-Marseille Université, Ecole Centrale Marseille, 13397 Marseille, France
| | - Sophie Brasselet
- Institut Fresnel, CNRS UMR 7249, Aix-Marseille Université, Ecole Centrale Marseille, 13397 Marseille, France
| | | | - Thomas Lecuit
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| |
Collapse
|
12
|
Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails. Proc Natl Acad Sci U S A 2013; 110:20521-6. [PMID: 24306931 DOI: 10.1073/pnas.1320155110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular bacterial pathogen Listeria monocytogenes is capable of remodelling the actin cytoskeleton of its host cells such that "comet tails" are assembled powering its movement within cells and enabling cell-to-cell spread. We used cryo-electron tomography to visualize the 3D structure of the comet tails in situ at the level of individual filaments. We have performed a quantitative analysis of their supramolecular architecture revealing the existence of bundles of nearly parallel hexagonally packed filaments with spacings of 12-13 nm. Similar configurations were observed in stress fibers and filopodia, suggesting that nanoscopic bundles are a generic feature of actin filament assemblies involved in motility; presumably, they provide the necessary stiffness. We propose a mechanism for the initiation of comet tail assembly and two scenarios that occur either independently or in concert for the ensuing actin-based motility, both emphasizing the role of filament bundling.
Collapse
|
13
|
Lu S, Sun X, Hong T, Song K, Yang S, Wang C. Isolation and culture of smooth muscle cells from human acute type A aortic dissection. J Cardiothorac Surg 2013; 8:83. [PMID: 23587067 PMCID: PMC3639144 DOI: 10.1186/1749-8090-8-83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 03/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute type A aortic dissection (TAAD) is a life-threatening vascular disease. Smooth muscle cells (SMCs) are the main composition of aortic media and dysfunction of SMCs may lead to acute TAAD. The aim of this work was to investigate whether the SMCs of acute TAAD could be isolated and cultured for further research. METHODS TAAD tissues were obtained from acute TAAD patients who underwent emergent surgical treatment. A simple and economical technique of collagenase digestion method was used to isolate and culture human SMCs. Confocal laser scanning microscopy was applied to identify SMC phenotypes. Purity of isolated and cultured SMCs was analyzed with flow cytometry and fluorescence microscopy respectively. RESULTS The purity of isolated SMCs was 78.2%, including α-smooth muscle cell actin positive 13.9%, calponin positive 35.0% and double positive 29.3%. For cultured SMCs, abundant expression of α-smooth muscle cell actin was observed universally under fluorescence microscope. Confocal laser scanning microscope testified that cultured cells were double positive of α-smooth muscle actin and calponin. CONCLUSIONS This is the first report of successful culture of SMCs isolated from human acute TAAD tissues. Living human SMCs of acute TAAD provides us with a new method for studying formation of acute TAAD.
Collapse
Affiliation(s)
- Shuyang Lu
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Fenglin Road 180, Xujiahui District, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
14
|
Burridge K, Wittchen ES. The tension mounts: stress fibers as force-generating mechanotransducers. ACTA ACUST UNITED AC 2013; 200:9-19. [PMID: 23295347 PMCID: PMC3542796 DOI: 10.1083/jcb.201210090] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress fibers (SFs) are often the most prominent cytoskeletal structures in cells growing in tissue culture. Composed of actin filaments, myosin II, and many other proteins, SFs are force-generating and tension-bearing structures that respond to the surrounding physical environment. New work is shedding light on the mechanosensitive properties of SFs, including that these structures can respond to mechanical tension by rapid reinforcement and that there are mechanisms to repair strain-induced damage. Although SFs are superficially similar in organization to the sarcomeres of striated muscle, there are intriguing differences in their organization and behavior, indicating that much still needs to be learned about these structures.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
15
|
Actin dynamics associated with focal adhesions. Int J Cell Biol 2012; 2012:941292. [PMID: 22505938 PMCID: PMC3312244 DOI: 10.1155/2012/941292] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/16/2011] [Indexed: 01/09/2023] Open
Abstract
Cell-matrix adhesion plays a major role during cell migration. Proteins from adhesion structures connect the extracellular matrix to the actin cytoskeleton, allowing the growing actin network to push the plasma membrane and the contractile cables (stress fibers) to pull the cell body. Force transmission to the extracellular matrix depends on several parameters including the regulation of actin dynamics in adhesion structures, the contractility of stress fibers, and the mechanosensitive response of adhesion structures. Here we highlight recent findings on the molecular mechanisms by which actin assembly is regulated in adhesion structures and the molecular basis of the mechanosensitivity of focal adhesions.
Collapse
|
16
|
Vishwasrao H, Trifilieff P, Kandel E. In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy. Biophys J 2012; 102:1204-14. [PMID: 22404943 PMCID: PMC3296026 DOI: 10.1016/j.bpj.2012.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 01/31/2023] Open
Abstract
Using two-photon fluorescence anisotropy imaging of actin-GFP, we have developed a method for imaging the actin polymerization state that is applicable to a broad range of experimental systems extending from fixed cells to live animals. The incorporation of expressed actin-GFP monomers into endogenous actin polymers enables energy migration FRET (emFRET, or homoFRET) between neighboring actin-GFPs. This energy migration reduces the normally high polarization of the GFP fluorescence. We derive a simple relationship between the actin-GFP fluorescence polarization anisotropy and the actin polymer fraction, thereby enabling a robust means of imaging the actin polymerization state with high spatiotemporal resolution and providing what to the best of our knowledge are the first direct images of the actin polymerization state in live, adult brain tissue and live, intact Drosophila larvae.
Collapse
Affiliation(s)
- Harshad D. Vishwasrao
- Department of Neuroscience, Columbia University, New York, New York
- Howard Hughes Medical Institute, New York, New York
| | - Pierre Trifilieff
- Department of Neuroscience, Columbia University, New York, New York
- New York State Psychiatric Institute, New York, New York
- Research Foundation for Mental Hygiene, New York, New York
| | - Eric R. Kandel
- Department of Neuroscience, Columbia University, New York, New York
- Howard Hughes Medical Institute, New York, New York
- Kavli Institute for Brain Science, New York, New York
| |
Collapse
|
17
|
Actin filament tracking in electron tomograms of negatively stained lamellipodia using the localized radon transform. J Struct Biol 2012; 178:19-28. [PMID: 22387240 DOI: 10.1016/j.jsb.2012.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 02/02/2012] [Accepted: 02/16/2012] [Indexed: 11/20/2022]
Abstract
The aim of this work was to develop a protocol for automated tracking of actin filaments in electron tomograms of lamellipodia embedded in negative stain. We show that a localized version of the Radon transform for the detection of filament directions enables three-dimensional visualizations of filament network architecture, facilitating extraction of statistical information including orientation profiles. We discuss the requirements for parameter selection set by the raw image data in the context of other, similar tracking protocols.
Collapse
|
18
|
Ogura Y, Naito H, Kakigi R, Ichinoseki-Sekine N, Kurosaka M, Yoshihara T, Akema T. Effects of ageing and endurance exercise training on alpha-actinin isoforms in rat plantaris muscle. Acta Physiol (Oxf) 2011; 202:683-90. [PMID: 21518265 DOI: 10.1111/j.1748-1716.2011.02284.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM We recently reported that α-actinin adaptation occurs at the isoform level. This study was undertaken to clarify the effects of: (1) ageing-induced shift of myosin heavy chain (MyHC) composition and (2) endurance exercise training on α-actinin isoforms in rat plantaris muscle. METHODS Adult (18 mo) and old (28 mo) male Fischer 344 rats were assigned to either sedentary control or endurance exercise training groups. Animals in the training groups ran on a treadmill for 8 week with training intensity adjusted to be equal for adult and old groups. After the training was completed, the plantaris muscles were taken for analyses of α-actinin-2, α-actinin-3, and MyHC composition and metabolic enzyme activities. RESULTS The proportion of type IIb MyHC was lower, and that of type I MyHC was higher in old animals than in adult animals. α-actinin-3 was significantly lower in old animals than in adult animals. No significant difference was found in α-actinin-2 and citrate synthase (CS) activity between adult and old animals. Citrate synthase activity was higher in trained animals than in sedentary animals. Endurance training produced a fast-to-slow shift within type II MyHC isoforms in both adult and old animals. α-actinin-2 was significantly higher in trained animals than in sedentary animals. No significant difference was found in α-actinin-3 between trained and sedentary animals. CONCLUSION These results support the α-actinin adaptation at the isoform level and show that the α-actinin-3 expression depends on the amount of type II MyHC, whereas α-actinin-2 expression is associated with improvement of muscular aerobic capacity.
Collapse
|
19
|
Nguyen LT, Hirst LS. Polymorphism of highly cross-linked F-actin networks: probing multiple length scales. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:031910. [PMID: 21517528 DOI: 10.1103/physreve.83.031910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/20/2010] [Indexed: 05/30/2023]
Abstract
The assembly properties of F-actin filaments in the presence of different biological cross-linker concentrations and types have been investigated using a combined approach of fluorescence confocal microscopy and coarse-grained molecular dynamics simulation. In particular for highly cross-linked regimes, new network morphologies are observed. Complex network formation and the details of the resulting structure are strongly dependent on the ratio of cross-linkers to actin monomers and cross-linker shape but only weakly dependent on overall actin concentration and filament length. The work presented here may help to provide some fundamental understanding of how excessive cross-linkers interact with the actin filament solution, creating different structures in the cell under high cross-linker concentrations. F-actin is not only of biological importance but also, as an example of a semiflexible polymer, has attracted significant interest in its physical behavior. In combination with different cross-linkers semiflexible filaments may provide new routes to bio-materials development and act as the inspiration for new hierarchical network-based materials.
Collapse
Affiliation(s)
- Lam T Nguyen
- Department of Physics & MARTECH, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
20
|
Courson DS, Rock RS. Actin cross-link assembly and disassembly mechanics for alpha-Actinin and fascin. J Biol Chem 2010; 285:26350-7. [PMID: 20551315 DOI: 10.1074/jbc.m110.123117] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Self-assembly of complex structures is commonplace in biology but often poorly understood. In the case of the actin cytoskeleton, a great deal is known about the components that include higher order structures, such as lamellar meshes, filopodial bundles, and stress fibers. Each of these cytoskeletal structures contains actin filaments and cross-linking proteins, but the role of cross-linking proteins in the initial steps of structure formation has not been clearly elucidated. We employ an optical trapping assay to investigate the behaviors of two actin cross-linking proteins, fascin and alpha-actinin, during the first steps of structure assembly. Here, we show that these proteins have distinct binding characteristics that cause them to recognize and cross-link filaments that are arranged with specific geometries. alpha-Actinin is a promiscuous cross-linker, linking filaments over all angles. It retains this flexibility after cross-links are formed, maintaining a connection even when the link is rotated. Conversely, fascin is extremely selective, only cross-linking filaments in a parallel orientation. Surprisingly, bundles formed by either protein are extremely stable, persisting for over 0.5 h in a continuous wash. However, using fluorescence recovery after photobleaching and fluorescence decay experiments, we find that the stable fascin population can be rapidly competed away by free fascin. We present a simple avidity model for this cross-link dissociation behavior. Together, these results place constraints on how cytoskeletal structures assemble, organize, and disassemble in vivo.
Collapse
Affiliation(s)
- David S Courson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60615, USA
| | | |
Collapse
|
21
|
The area composita of adhering junctions connecting heart muscle cells of vertebrates. VII. The different types of lateral junctions between the special cardiomyocytes of the conduction system of ovine and bovine hearts. Eur J Cell Biol 2010; 89:365-78. [DOI: 10.1016/j.ejcb.2009.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/29/2009] [Accepted: 11/09/2009] [Indexed: 11/19/2022] Open
|
22
|
Ogura Y, Naito H, Kakigi R, Akema T, Sugiura T, Katamoto S, Aoki J. Different adaptations of alpha-actinin isoforms to exercise training in rat skeletal muscles. Acta Physiol (Oxf) 2009; 196:341-9. [PMID: 19040707 DOI: 10.1111/j.1748-1716.2008.01945.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM Alpha (alpha)-actinins are located in the skeletal muscle Z-line and form actin-actin cross-links. Mammalian skeletal muscle has two isoforms: alpha-actinin-2 and alpha-actinin-3. However, the response of alpha-actinin to exercise training is little understood. Therefore, the current study examined the effects of exercise training on the expression level of two alpha-actinin isoforms in skeletal muscles. METHODS Twelve male Wistar rats were assigned randomly to a control (C; n = 6) or exercise training (T; n = 6) group. After T animals were trained on an animal treadmill for 9 weeks, alpha-actinin-2 and alpha-actinin-3 levels in the plantaris, white and red gastrocnemius muscles were analysed. In addition, changes in the myosin heavy chain (MyHC) composition were assessed, and muscle bioenergetic enzyme activities were measured. RESULTS Results show that exercise training increased alpha-actinin-2 expression levels in all muscles (P < 0.05). However, no significant difference was found in alpha-actinin-3 expression levels between C and T animals. Subsequent MyHC analyses of all muscle showed an MyHC shift with direction from IIb to IIa. Furthermore, enzymatic analysis revealed that exercise training improved enzyme activities related to aerobic metabolism. CONCLUSION The results of this study demonstrate that exercise training alters the expression level of alpha-actinin at the isoform level. Moreover, the increase in expression levels of alpha-actinin-2 is apparently related to alteration of skeletal muscle: its aerobic capacity is improved.
Collapse
Affiliation(s)
- Y Ogura
- Department of Physiology, St Marianna University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Hein S, Block T, Zimmermann R, Kostin S, Scheffold T, Kubin T, Klövekorn WP, Schaper J. Deposition of nonsarcomeric alpha-actinin in cardiomyocytes from patients with dilated cardiomyopathy or chronic pressure overload. Exp Clin Cardiol 2009; 14:e68-e75. [PMID: 20098571 PMCID: PMC2807780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 07/27/2009] [Indexed: 05/28/2023]
Abstract
Nonsarcomeric alpha-actinin (ACTN-1)-positive clusters have been detected in human myocardium structurally jeopardized by dilated cardiomyopathy, hypertrophy due to aortic stenosis, or chronic hibernation, but have never been detected in normal tissue. To systematically investigate these clusters, immunohistochemistry, electron microscopy, Northern blot and Western blot were performed in human myocardium, isolated rat cardiomyocytes and rabbit smooth muscle cells. ACTN-1-positive clusters were localized in the perinuclear area of cardiomyocytes surrounded by rough endoplasmic reticulum. Quantification of structures containing ACTN-1 showed that it was present in up to 10% of all myocytes in 60% of aortic stenosis patients with severely reduced ejection fraction and in 70% of patients with dilated cardiomyopathy, exclusively in myocytes from hearts with structural degeneration and reduced function. Ultrastructurally, clusters of medium electron density corresponding to the confocal microscopic accumulations were observed in the same tissue samples. The messenger RNA of ACTN-1 was unchanged compared with controls, but a Western blot revealed that the protein was significantly elevated in failing hearts. Because membranes of the endoplasmic reticulum surround the clusters, it was concluded that in the presence of undisturbed transcription, a post-translational malfunction of ACTN-1 glycosylation might lead to storage of this protein. Autophagic and ischemic cell death were observed, but a possible toxic effect of this storage product was excluded because markers of cell death rarely colocalized with ACTN-1. The occurrence of ACTN-1-positive clusters, however, appears to be a useful marker for structural degeneration in failing myocardium.
Collapse
Affiliation(s)
| | - Tim Block
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim
| | - René Zimmermann
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim
| | - Sawa Kostin
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim
| | - Thomas Scheffold
- Institute for Heart and Circulation Research, University of Witten/Herdecke, Witten, Germany
| | - Thomas Kubin
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim
| | | | - Jutta Schaper
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim
| |
Collapse
|
24
|
Hampton CM, Taylor DW, Taylor KA. Novel structures for alpha-actinin:F-actin interactions and their implications for actin-membrane attachment and tension sensing in the cytoskeleton. J Mol Biol 2007; 368:92-104. [PMID: 17331538 PMCID: PMC1919418 DOI: 10.1016/j.jmb.2007.01.071] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 01/22/2007] [Accepted: 01/25/2007] [Indexed: 01/25/2023]
Abstract
We have applied correspondence analysis to electron micrographs of 2-D rafts of F-actin cross-linked with alpha-actinin on a lipid monolayer to investigate alpha-actinin:F-actin binding and cross-linking. More than 8000 actin crossover repeats, each with one to five alpha-actinin molecules bound, were selected, aligned, and grouped to produce class averages of alpha-actinin cross-links with approximately 9-fold improvement in the stochastic signal-to-noise ratio. Measurements and comparative molecular models show variation in the distance separating actin-binding domains and the angle of the alpha-actinin cross-links. Rafts of F-actin and alpha-actinin formed predominantly polar 2-D arrays of actin filaments, with occasional insertion of filaments of opposite polarity. Unique to this study are the numbers of alpha-actinin molecules bound to successive crossovers on the same actin filament. These "monofilament"-bound alpha-actinin molecules may reflect a new mode of interaction for alpha-actinin, particularly in protein-dense actin-membrane attachments in focal adhesions. These results suggest that alpha-actinin is not simply a rigid spacer between actin filaments, but rather a flexible cross-linking, scaffolding, and anchoring protein. We suggest these properties of alpha-actinin may contribute to tension sensing in actin bundles.
Collapse
Affiliation(s)
| | | | - Kenneth A. Taylor
- *Corresponding Author Phone: (850)644-3357, Fax: (850)644-7244, e-mail:
| |
Collapse
|
25
|
Abstract
Myosin–actin and kinesin–microtubule linear protein motor systems and their application in hybrid nanodevices are reviewed. Research during the past several decades has provided a wealth of understanding about the fundamentals of protein motors that continues to be pursued. It has also laid the foundations for a new branch of investigation that considers the application of these motors as key functional elements in laboratory-on-a-chip and other micro/nanodevices. Current models of myosin and kinesin motors are introduced and the effects of motility assay parameters, including temperature, toxicity, and in particular, surface effects on motor protein operation, are discussed. These parameters set the boundaries for gliding and bead motility assays. The review describes recent developments in assay motility confinement and unidirectional control, using micro- and nano-fabricated structures, surface patterning, microfluidic flow, electromagnetic fields, and self-assembled actin filament/microtubule tracks. Current protein motor assays are primitive devices, and the developments in governing control can lead to promising applications such as sensing, nano-mechanical drivers, and biocomputation.
Collapse
|
26
|
Schoffstall B, Brunet NM, Williams S, Miller VF, Barnes AT, Wang F, Compton LA, McFadden LA, Taylor DW, Seavy M, Dhanarajan R, Chase PB. Ca2+ sensitivity of regulated cardiac thin filament sliding does not depend on myosin isoform. J Physiol 2006; 577:935-44. [PMID: 17008370 PMCID: PMC1890378 DOI: 10.1113/jphysiol.2006.120105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Myosin heavy chain (MHC) isoforms in vertebrate striated muscles are distinguished functionally by differences in chemomechanical kinetics. These kinetic differences may influence the cross-bridge-dependent co-operativity of thin filament Ca(2+) activation. To determine whether Ca(2+) sensitivity of unloaded thin filament sliding depends upon MHC isoform kinetics, we performed in vitro motility assays with rabbit skeletal heavy meromyosin (rsHMM) or porcine cardiac myosin (pcMyosin). Regulated thin filaments were reconstituted with recombinant human cardiac troponin (rhcTn) and alpha-tropomyosin (rhcTm) expressed in Escherichia coli. All three subunits of rhcTn were coexpressed as a functional complex using a novel construct with a glutathione S-transferase (GST) affinity tag at the N-terminus of human cardiac troponin T (hcTnT) and an intervening tobacco etch virus (TEV) protease site that allows purification of rhcTn without denaturation, and removal of the GST tag without proteolysis of rhcTn subunits. Use of this highly purified rhcTn in our motility studies resulted in a clear definition of the regulated motility profile for both fast and slow MHC isoforms. Maximum sliding speed (pCa 5) of regulated thin filaments was roughly fivefold faster with rsHMM compared with pcMyosin, although speed was increased by 1.6- to 1.9-fold for regulated over unregulated actin with both MHC isoforms. The Ca(2+) sensitivity of regulated thin filament sliding speed was unaffected by MHC isoform. Our motility results suggest that the cellular changes in isoform expression that result in regulation of myosin kinetics can occur independently of changes that influence thin filament Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Brenda Schoffstall
- Institute of Molecular Biophysics, Department of Biological Science, Bio Unit One, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Janssen MEW, Kim E, Liu H, Fujimoto LM, Bobkov A, Volkmann N, Hanein D. Three-dimensional structure of vinculin bound to actin filaments. Mol Cell 2006; 21:271-81. [PMID: 16427016 DOI: 10.1016/j.molcel.2005.11.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/11/2005] [Accepted: 11/17/2005] [Indexed: 11/18/2022]
Abstract
Vinculin plays a pivotal role in cell adhesion and migration by providing the link between the actin cytoskeleton and the transmembrane receptors, integrin and cadherin. We used a combination of electron microscopy, computational docking, and biochemistry to provide an atomic model of how the vinculin tail binds actin filaments. The vinculin tail actin binding site comprises two distinct regions. One of these regions is exposed in the full-length autoinhibited conformation of vinculin, whereas the second site is sterically occluded by vinculin's N-terminal domain. The partial accessibility of the F-actin binding site in the autoinhibited full-length vinculin structure suggests that F-actin can act as part of a combinatorial input framework with other binding partners such as alpha-catenin or talin to induce vinculin head-tail dissociation, thus promoting vinculin activation. Furthermore, binding to F-actin potentiates a local rearrangement in the vinculin tail that in turn promotes vinculin dimerization and, hence, formation of actin bundles.
Collapse
Affiliation(s)
- Mandy E W Janssen
- Program on Cell Adhesion, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kelly DF, Taylor DW, Bakolitsa C, Bobkov AA, Bankston L, Liddington RC, Taylor KA. Structure of the alpha-actinin-vinculin head domain complex determined by cryo-electron microscopy. J Mol Biol 2006; 357:562-73. [PMID: 16430917 DOI: 10.1016/j.jmb.2005.12.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 12/21/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
The vinculin binding site on alpha-actinin was determined by cryo-electron microscopy of 2D arrays formed on phospholipid monolayers doped with a nickel chelating lipid. Chicken smooth muscle alpha-actinin was cocrystallized with the beta1-integrin cytoplasmic domain and a vinculin fragment containing residues 1-258 (vinculin(D1)). Vinculin(D1) was located at a single site on alpha-actinin with 60-70% occupancy. In these arrays, alpha-actinin lacks molecular 2-fold symmetry and the two ends of the molecule, which contain the calmodulin-like and actin binding domains, are held in distinctly different environments. The vinculin(D1) difference density has a shape very suggestive of the atomic structure. The atomic model of the complex juxtaposes the alpha-actinin binding site on vinculin(D1) with the N-terminal lobe of the calmodulin-like domain on alpha-actinin. The results show that the interaction between two species with weak affinity can be visualized in a membrane-like environment.
Collapse
Affiliation(s)
- Deborah F Kelly
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kelly DF, Taylor KA. Identification of the beta1-integrin binding site on alpha-actinin by cryoelectron microscopy. J Struct Biol 2005; 149:290-302. [PMID: 15721583 DOI: 10.1016/j.jsb.2004.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 11/16/2004] [Indexed: 11/29/2022]
Abstract
Cell-matrix adhesions in migrating cells are usually mediated by integrins, alpha-beta heterodimeric transmembrane proteins that link extracellular matrix molecules such as fibronectin to the cytoskeleton. We have synthesized the cytoplasmic domain of the beta1-integrin (residues H738-K778) with a histidine tag at its N-terminus. The binding of this peptide to a lipid monolayer containing a chelated-nickel group (dimyristoylphosphatidyl choline-suberimide-nitriloacetic acid:nickel salt) mimics the native environment at the cytoplasmic leaflet of the plasma membrane. A Nanogold particle was covalently linked to cysteines introduced at the C-terminus and after residue T757 on the integrin peptide, and co-crystallized with chicken smooth muscle alpha-actinin. The 2-D arrays of the beta1-integrin-alpha-actinin complex were examined by cryoelectron microscopy, with and without the gold label. Averaged projections were calculated for each specimen along with a difference map to determine the relative position of the gold-labeled beta1-integrin peptide. The difference maps indicate that the beta1-integrin cytoplasmic domain binds alpha-actinin between the first and second, 3-helix motifs in the central rod domain.
Collapse
Affiliation(s)
- Deborah F Kelly
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | |
Collapse
|
30
|
Wahlström G, Lahti VP, Pispa J, Roos C, Heino TI. Drosophila non-muscle alpha-actinin is localized in nurse cell actin bundles and ring canals, but is not required for fertility. Mech Dev 2005; 121:1377-91. [PMID: 15454267 DOI: 10.1016/j.mod.2004.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 06/07/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
The single copy Drosophila alpha-actinin gene is alternatively spliced to generate three different isoforms that are expressed in larval muscle, adult muscle and non-muscle cells, respectively. We have generated novel alpha-actinin alleles, which specifically remove the non-muscle isoform. Homozygous mutant flies are viable and fertile with no obvious defects. Using a monoclonal antibody that recognizes all three splice variants, we compared alpha-actinin distribution in wild type and mutant embryos and ovaries. We found that non-muscle alpha-actinin was present in young embryos and in the embryonic central nervous system. In ovaries, non-muscle alpha-actinin was localized in the nurse cell subcortical cytoskeleton, cytoplasmic actin cables and ring canals. In the mutant, alpha-actinin expression remained in muscle tissues, but also in a subpopulation of epithelial cells in both embryos and ovaries. This suggests that various populations of non-muscle cells regulate alpha-actinin expression in different ways. We also show that ectopically expressed adult muscle-specific alpha-actinin localizes to all F-actin containing structures in the nurse cells in the absence of endogenous non-muscle alpha-actinin.
Collapse
Affiliation(s)
- Gudrun Wahlström
- Developmental Biology Program/Institute of Biotechnology, Viikki Biocenter, P.O. Box 56 (Viikinkaari 9), FIN-00014, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Spectrin family proteins represent an important group of actin-bundling and membrane-anchoring proteins found in diverse structures from yeast to man. Arising from a common ancestral alpha-actinin gene through duplications and rearrangements, the family has increased to include the spectrins and dystrophin/utrophin. The spectrin family is characterized by the presence of spectrin repeats, actin binding domains, and EF hands. With increasing divergence, new domains and functions have been added such that spectrin and dystrophin also contain specialized protein-protein interaction motifs and regions for interaction with membranes and phospholipids. The acquisition of new domains also increased the functional complexity of the family such that the proteins perform a range of tasks way beyond the simple bundling of actin filaments by alpha-actinin in S. pombe. We discuss the evolutionary, structural, functional, and regulatory roles of the spectrin family of proteins and describe some of the disease traits associated with loss of spectrin family protein function.
Collapse
Affiliation(s)
- M J F Broderick
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
32
|
Pompe T, Renner L, Werner C. Nanoscale features of fibronectin fibrillogenesis depend on protein-substrate interaction and cytoskeleton structure. Biophys J 2004; 88:527-34. [PMID: 15533920 PMCID: PMC1305030 DOI: 10.1529/biophysj.104.048074] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell-reorganized fibronectin layers on polymer films providing a gradation of the binding strength between protein and substrate were analyzed by combined fluorescence and scanning force microscopy. The nanoscale fibronectin patterns exhibited paired parallel fibrils with characteristic spacings of 156, 233, 304, and 373 nm. These spacings depend on the interaction of fibronectin with the substrate: at enhanced fibronectin-substrate anchorage the cells form larger stress fibers, which are assembled by alpha-actinin cross-linked pairs of actin filaments subunits at the focal adhesions. A ubiquitous repeating unit of approximately 71 nm was found within these characteristic distances. We conclude that the dimensions of the actin stress fibers reflect the binding strength of fibronectin to the polymer substrate and act--in turn--as a template for the reorganization of fibronectin into surface-bound nanofibrils with characteristic spacings. This explanation was confirmed by data showing the alpha-actinin/fibronectin colocalization.
Collapse
Affiliation(s)
- Tilo Pompe
- Institute of Polymer Research Dresden and Max Bergmann Center of Biomaterials Dresden, 01069 Dresden, Germany.
| | | | | |
Collapse
|
33
|
Makhov AM, Taylor DW, Griffith JD. Two-dimensional crystallization of herpes simplex virus type 1 single-stranded DNA-binding protein, ICP8, on a lipid monolayer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1701:101-8. [PMID: 15450179 DOI: 10.1016/j.bbapap.2004.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 06/14/2004] [Accepted: 06/17/2004] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus type 1 single-stranded DNA-binding protein (ICP8) has been crystallized on a positively charged lipid monolayer. The crystals belong to the planar group p2 with a=39 nm, b=23.2 nm and gamma=87.2 degrees. The projected map of ICP8 crystals calculated at a resolution of 3.9 nm shows four ICP8 monomers per unit cell with the crystals formed by a parallel arrangement of 16.2 nm helical ICP8 filaments. This novel filamentous form has not been reported before. The ICP8 monomers show different appearances in projection, suggesting that they may adopt different orientations, probably reflecting the strong intermolecular and lipid-filament interactions in the crystal. When the 23 nm diameter filaments formed by ICP8 in solution at low temperature in the presence of magnesium were generated and then layered on the phospholipid monolayer, highly ordered arrays of an 8.5 nm filament with a shallow 31.2 nm pitch were observed and reconstruction revealed a double-helical structure.
Collapse
Affiliation(s)
- Alexander M Makhov
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Campus Box 7295, Chapel Hill, NC 27599-7295, USA.
| | | | | |
Collapse
|
34
|
Liu J, Taylor DW, Taylor KA. A 3-D reconstruction of smooth muscle alpha-actinin by CryoEm reveals two different conformations at the actin-binding region. J Mol Biol 2004; 338:115-25. [PMID: 15050827 DOI: 10.1016/j.jmb.2004.02.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 02/05/2004] [Accepted: 02/11/2004] [Indexed: 11/20/2022]
Abstract
Cryoelectron microscopy was used to obtain a 3-D image at 2.0 nm resolution of 2-D arrays of smooth muscle alpha-actinin. The reconstruction reveals a well-resolved long central domain with 90 degrees of left-handed twist and near 2-fold symmetry. However, the molecular ends which contain the actin binding and calmodulin-like domains, have different structures oriented approximately 90 degrees to each other. Atomic structures for the alpha-actinin domains were built by homology modeling and assembled into an atomic model. Model building suggests that in the 2-D arrays, the two calponin homology domains that comprise the actin-binding domain have a closed conformation at one end and an open conformation at the other end due to domain swapping. The open and closed conformations of the actin-binding domain suggests flexibility that may underlie Ca2+ regulation. The approximately 90 degrees orientation difference at the molecular ends may underlie alpha-actinin's ability to crosslink actin filaments in nearly any orientation.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | |
Collapse
|
35
|
Klaavuniemi T, Kelloniemi A, Ylänne J. The ZASP-like motif in actinin-associated LIM protein is required for interaction with the alpha-actinin rod and for targeting to the muscle Z-line. J Biol Chem 2004; 279:26402-10. [PMID: 15084604 DOI: 10.1074/jbc.m401871200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Z-line is a specialized structure connecting adjacent sarcomeres in muscle cells. alpha-Actinin cross-links actin filaments in the Z-line. Several PDZ-LIM domain proteins localize to the Z-line and interact with alpha-actinin. Actinin-associated LIM protein (ALP), C-terminal LIM domain protein (CLP36), and Z band alternatively spliced PDZ-containing protein (ZASP) have a conserved region named the ZASP-like motif (ZM) between PDZ and LIM domains. To study the interactions and function of ALP we used purified recombinant proteins in surface plasmon resonance measurements. We show that ALP and alpha-actinin 2 have two interaction sites. The ZM motif was required for the interaction of ALP internal region with the alpha-actinin rod and for targeting of ALP to the Z-line. The PDZ domain of ALP bound to the C terminus of alpha-actinin. This is the first indication that the ZM motif would have a direct role in a protein-protein interaction. These results suggest that the two interaction sites of ALP would stabilize certain conformations of alpha-actinin 2 that would strengthen the Z-line integrity.
Collapse
Affiliation(s)
- Tuula Klaavuniemi
- Biocenter Oulu and Department of Biochemisty, University of Oulu, P. O. Box 3000, FIN-90014 Oulu, Finland
| | | | | |
Collapse
|
36
|
Yamagishi A, Masuda M, Ohki T, Onishi H, Mochizuki N. A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 2004; 279:14929-36. [PMID: 14752106 DOI: 10.1074/jbc.m309408200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin receptor tyrosine kinase substrate p53 (IRSp53) has been identified as an SH3 domain-containing adaptor that links Rac1 with a Wiskott-Aldrich syndrome family verprolin-homologous protein 2 (WAVE2) to induce lamellipodia or Cdc42 with Mena to induce filopodia. The recruitment of these SH3-binding partners by IRSp53 is thought to be crucial for F-actin rearrangements. Here, we show that the N-terminal predicted helical stretch of 250 amino acids of IRSp53 is an evolutionarily conserved F-actin bundling domain involved in filopodium formation. Five proteins including IRSp53 and missing in metastasis (MIM) protein share this unique domain and are highly conserved in vertebrates. We named the conserved domain IRSp53/MIM homology domain (IMD). The IMD has domain relatives in invertebrates but does not show obvious homology to any known actin interacting proteins. The IMD alone, derived from either IRSp53 or MIM, induced filopodia in HeLa cells and the formation of tightly packed parallel F-actin bundles in vitro. These results suggest that IRSp53 and MIM belong to a novel actin bundling protein family. Furthermore, we found that filopodium-inducing IMD activity in the full-length IRSp53 was regulated by active Cdc42 and Rac1. The SH3 domain was not necessary for IMD-induced filopodium formation. Our results indicate that IRSp53, when activated by small GTPases, participates in F-actin reorganization not only in an SH3-dependent manner but also in a manner dependent on the activity of the IMD.
Collapse
Affiliation(s)
- Akiko Yamagishi
- Department of Structural Analysis, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | | | | | | | | |
Collapse
|
37
|
Lener T, Burgstaller G, Gimona M. The role of calponin in the gene profile of metastatic cells: inhibition of metastatic cell motility by multiple calponin repeats. FEBS Lett 2004; 556:221-6. [PMID: 14706854 DOI: 10.1016/s0014-5793(03)01401-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metastasis of diseased cells is the basic event leading to death in individuals with cancer. Establishment of metastasis requires that tumour cells migrate from the site of the primary tumour into the circulation system, escape from the vasculature and form secondary tumours at novel sites. These processes depend to a large degree on cytoskeletal remodeling. We show here that multiple copies of the short actin-binding module CLIK(23) from human or Caenorhabditis elegans calponin proteins effectively inhibit cell motility on two dimensional matrices and suppress soft agar colony formation of metastatic melanoma and adenocarcinoma cells of murine and human origin. Ectopic expression of CLIK(23) modules for 30 days results in the formation of multinucleated cells. The repeat displays true modular behaviour, resulting in increased cytoskeletal effects in direct correlation with the increase in number of modules. Our results demonstrate that the role of calponin in the signature profile of metastasising cells is that of a mechanical stabiliser of the actin cytoskeleton, which interferes with actin turnover by binding at a unique interface along the actin filament.
Collapse
Affiliation(s)
- Thomas Lener
- Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020, Salzburg, Austria
| | | | | |
Collapse
|
38
|
Coghill ID, Brown S, Cottle DL, McGrath MJ, Robinson PA, Nandurkar HH, Dyson JM, Mitchell CA. FHL3 is an actin-binding protein that regulates alpha-actinin-mediated actin bundling: FHL3 localizes to actin stress fibers and enhances cell spreading and stress fiber disassembly. J Biol Chem 2003; 278:24139-52. [PMID: 12704194 DOI: 10.1074/jbc.m213259200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Four and a half LIM domain (FHL) proteins are members of the LIM protein superfamily. Several FHL proteins function as co-activators of CREM/CREB transcription factors and the androgen receptor. FHL3 is highly expressed in skeletal muscle, but its function is unknown. FHL3 localized to the nucleus in C2C12 myoblasts and, following integrin engagement, exited the nucleus and localized to actin stress fibers and focal adhesions. In mature skeletal muscle FHL3 was found at the Z-line. Actin was identified as a potential FHL3 binding partner in yeast two-hybrid screening of a skeletal muscle library. FHL3 complexed with actin both in vitro and in vivo as shown by glutathione S-transferase pull-down assays and co-immunoprecipitation of recombinant and endogenous proteins. FHL3 promoted cell spreading and when overexpressed in spread C2C12 cells disrupted actin stress fibers. Increased FHL3 expression was detected in highly motile cells migrating into an artificial wound, compared with non-motile cells. The molecular mechanism by which FHL3 induced actin stress fiber disassembly was demonstrated by low speed actin co-sedimentation assays and electron microscopy. FHL3 inhibited alpha-actinin-mediated actin bundling. These studies reveal FHL3 as a significant regulator of actin cytoskeletal dynamics in skeletal myoblasts.
Collapse
Affiliation(s)
- Imogen D Coghill
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tessier DJ, Komalavilas P, Panitch A, Joshi L, Brophy CM. The small heat shock protein (HSP) 20 is dynamically associated with the actin cross-linking protein actinin. J Surg Res 2003; 111:152-7. [PMID: 12842460 DOI: 10.1016/s0022-4804(03)00113-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The heat shock-related protein (HSP) 20 is associated with actin and modulates smooth-muscle relaxation. We hypothesized that HSP20 mediates vasorelaxation via dynamic interactions with cytoskeletal proteins, such as actin, or actin binding proteins, such as alpha-actinin. METHODS Physiological responses of strips of bovine carotid artery were analyzed with a muscle bath. In other experiments, the arteries were homogenized, and imunoprecipitations were performed. Immunohistochemistry with anti-HSP20 and anti-actinin antibodies was used to determine co-localization of the two proteins. RESULTS Bovine carotid arteries contracted in response to serotonin and rapidly relaxed in response to forskolin. HSP20 co-immunoprecipitated with both actin and alpha-actinin, but not with HSP27 or paxillin. Immunostaining with HSP20 and alpha-actinin antibodies demonstrated that HSP20 and alpha-actinin co-localized. The amount of HSP20 that immunoprecipitated with alpha -actinin was markedly diminished in muscles that were treated with the vasorelaxant forskolin. CONCLUSIONS HSP20 is associated with both actin and alpha-actinin. Activation of cyclic nucleotide-dependent signaling pathways leads to increases in the phosphorylation of HSP20 and a decrease in the association of HSP20 with alpha-actinin. These data suggest that phosphorylation of HSP20 may lead to relaxation of vascular smooth muscles through a dynamic association with cytoskeletal elements.
Collapse
Affiliation(s)
- Deron J Tessier
- Department of Surgery, Division of Vascular Surgery, Mayo Clinic Scottsdale, Scottsdale, AZ, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Structural advances in our understanding of the functions of the actin cytoskeleton have come from diverse sources. On the one hand, the determination of the structure of a bacterial actin-like protein MreB reveals the prokaryotic origins of the actin cytoskeleton, whereas on the other, cryo-electron microscopy and crystallography have yielded reconstructions of many actin crosslinking, regulatory and binding proteins in complex with F-actin. Not least, a high-resolution structure of the Arp2/3 complex and a reconstruction with F-actin provides considerable insight into the eukaryotic machinery, vital for the formation of new F-actin barbed ends, a prerequisite for rapid actin polymerisation involved in cell shape change and motility.
Collapse
Affiliation(s)
- Steven J Winder
- Institute of Biomedical and Life Sciences, Cell Biology Group, Davidson Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
41
|
Belot N, Rorive S, Doyen I, Lefranc F, Bruyneel E, Dedecker R, Micik S, Brotchi J, Decaestecker C, Salmon I, Kiss R, Camby I. Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 2001; 36:375-90. [PMID: 11746774 DOI: 10.1002/glia.1124] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glioma cell attachments to substratum play crucial roles in the invasion by glioma cells of normal brain tissue. These attachments are mediated through interactions between extracellular matrix (ECM) components, integrins, focal adhesion-linked molecules, and the actin cytoskeleton. In the present study, we investigate the molecular elements involved in cell substratum attachments in human glial tumors and their potential relationships to prognostic features. We used 10 human glioma cell lines, for which we characterized glial differentiation by means of quantitative RT-PCR for nestin, vimentin, and GFAP mRNA. We quantitatively determined the amounts of laminin, fibronectin, vitronectin, and thrombospondin secreted by these glioma cell lines in vitro, as well as the amount of each of the eight beta integrin subunits and the adhesion complex-related molecules, including talin, vinculin, profilin, zyxin, alpha-actinin, paxillin, and VASP. After quantification of the levels of migration and invasion of these 10 cell lines in vitro and, through grafts into the brains of nude mice, of their biological aggressiveness in vivo, it appeared that the levels of the beta 5 integrin subunit and alpha-actinin were directly related to biological aggressiveness. These experimental data were clinically confirmed because increasing immunohistochemical amounts of the beta 5 integrin subunit and alpha-actinin were directly related to dismal prognoses in the case of astrocytic tumors. In addition, we show that the beta 4 integrin subunit are expressed significantly more in oligodendrogliomas than in astrocytic tumors. A potential role for the beta 8 integrin subunit in glioma cell substratum attachments is also emphasized.
Collapse
Affiliation(s)
- N Belot
- Laboratory of Histopathology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tang J, Taylor DW, Taylor KA. The three-dimensional structure of alpha-actinin obtained by cryoelectron microscopy suggests a model for Ca(2+)-dependent actin binding. J Mol Biol 2001; 310:845-58. [PMID: 11453692 DOI: 10.1006/jmbi.2001.4789] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional structure of alpha-actinin from rabbit skeletal muscle was determined by cryoelectron microscopy in combination with homology modeling of the separate domain structures based on results previously determined by X-ray crystallography and nuclear magnetic resonance spectroscopy. alpha-Actinin was induced to form two-dimensional arrays on a positively charged lipid monolayer and micrographs were collected from unstained, frozen hydrated specimens at tilt angles from 0 degrees to 60 degrees. Interpretation of the 15 A-resolution three-dimensional structure was done by manually docking homologous models of the three key domains, actin-binding, three-helix motif and the C-terminal calmodulin-like domains. The initial model was refined quantitatively to improve its fit to the experimental reconstruction. The molecular model of alpha-actinin provides the first view of the overall structure of a complete actin cross-linking protein. The structure is characterized by close proximity of the C-terminal, calmodulin-like domain to the linker between the two calponin-homology domains that comprise the actin-binding domain. This location suggests a hypothesis to explain the involvement of the C-terminal domain in Ca(2+)-dependent actin binding of non-muscle isoforms.
Collapse
Affiliation(s)
- J Tang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | |
Collapse
|
43
|
Ylänne J, Scheffzek K, Young P, Saraste M. Crystal structure of the alpha-actinin rod reveals an extensive torsional twist. Structure 2001; 9:597-604. [PMID: 11470434 DOI: 10.1016/s0969-2126(01)00619-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alpha-actinin is a ubiquitously expressed protein found in numerous actin structures. It consists of an N-terminal actin binding domain, a central rod domain, and a C-terminal domain and functions as a homodimer to cross-link actin filaments. The rod domain determines the distance between cross-linked actin filaments and also serves as an interaction site for several cytoskeletal and signaling proteins. RESULTS We report here the crystal structure of the alpha-actinin rod. The structure is a twisted antiparallel dimer that contains a conserved acidic surface. CONCLUSIONS The novel features revealed by the structure allow prediction of the orientation of parallel and antiparallel cross-linked actin filaments in relation to alpha-actinin. The conserved acidic surface is a possible interaction site for several cytoplasmic tails of transmembrane proteins involved in the recruitment of alpha-actinin to the plasma membrane.
Collapse
Affiliation(s)
- J Ylänne
- European Molecular Biology Laboratory, EMBL, Structural and Computational Biology Programme, Meyerhofstrasse 1, D-69117, Heidelberg, Germany.
| | | | | | | |
Collapse
|
44
|
Volkmann N, DeRosier D, Matsudaira P, Hanein D. An atomic model of actin filaments cross-linked by fimbrin and its implications for bundle assembly and function. J Cell Biol 2001; 153:947-56. [PMID: 11381081 PMCID: PMC2174342 DOI: 10.1083/jcb.153.5.947] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2000] [Accepted: 04/13/2001] [Indexed: 11/23/2022] Open
Abstract
Actin bundles have profound effects on cellular shape, division, adhesion, motility, and signaling. Fimbrin belongs to a large family of actin-bundling proteins and is involved in the formation of tightly ordered cross-linked bundles in the brush border microvilli and in the stereocilia of inner ear hair cells. Polymorphism in these three-dimensional (3D) bundles has prevented the detailed structural characterization required for in-depth understanding of their morphogenesis and function. Here, we describe the structural characterization of two-dimensional arrays of actin cross-linked with human T-fimbrin. Structural information obtained by electron microscopy, x-ray crystallography, and homology modeling allowed us to build the first molecular model for the complete actin-fimbrin cross-link. The restriction of the arrays to two dimensions allowed us to deduce the spatial relationship between the components, the mode of fimbrin cross-linking, and the flexibility within the cross-link. The atomic model of the fimbrin cross-link, the cross-linking rules deduced from the arrays, and the hexagonal packing of actin bundles in situ were all combined to generate an atomic model for 3D actin-fimbrin bundles. Furthermore, the assembly of the actin-fimbrin arrays suggests coupling between actin polymerization, fimbrin binding, and crossbridge formation, presumably achieved by a feedback between conformational changes and changes in affinity.
Collapse
Affiliation(s)
| | - David DeRosier
- The Rosenstiel Basic Medical Sciences Research Center and The W.M. Keck Institute for Cellular Visualization, Brandeis University, Waltham, Massachusetts 02254
| | - Paul Matsudaira
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Dorit Hanein
- The Burnham Institute, La Jolla, California 92037
| |
Collapse
|
45
|
Taylor KA, Taylor DW. Structural studies of cytoskeletal protein arrays formed on lipid monolayers. J Struct Biol 1999; 128:75-81. [PMID: 10600562 DOI: 10.1006/jsbi.1999.4167] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipid monolayers have been widely used for the production of 2-D crystalline arrays of water-soluble proteins for structural analysis. Less well known is the utility of lipid layers for the assembly of multicomponent structures in two dimensions. This report summarizes current efforts and limitations to utilize a monolayer system composed of the quaternary ammonium surfactant didodecyldimethyammonium and dilaurylphosphatidylcholine to assemble 2-D complexes between actin and cytoskeletal proteins.
Collapse
Affiliation(s)
- K A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380, USA.
| | | |
Collapse
|