1
|
Uenaka E, Ojima K, Suzuki T, Kobayashi K, Muroya S, Nishimura T. Murf1 alters myosin replacement rates in cultured myotubes in a myosin isoform-dependent manner. In Vitro Cell Dev Biol Anim 2024; 60:748-759. [PMID: 38758432 DOI: 10.1007/s11626-024-00916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Skeletal muscle tissue increases or decreases its volume by synthesizing or degrading myofibrillar proteins. The ubiquitin-proteasome system plays a pivotal role during muscle atrophy, where muscle ring finger proteins (Murf) function as E3 ubiquitin ligases responsible for identifying and targeting substrates for degradation. Our previous study demonstrated that overexpression of Ozz, an E3 specific to embryonic myosin heavy chain (Myh3), precisely reduced the Myh3 replacement rate in the thick filaments of myotubes (E. Ichimura et al., Physiol Rep. 9:e15003, 2021). These findings strongly suggest that E3 plays a critical role in regulating myosin replacement. Here, we hypothesized that the Murf isoforms, which recognize Myhs as substrates, reduced the myosin replacement rates through the enhanced Myh degradation by Murfs. First, fluorescence recovery after a photobleaching experiment was conducted to assess whether Murf isoforms affected the GFP-Myh3 replacement. In contrast to Murf2 or Murf3 overexpression, Murf1 overexpression selectively facilitated the GFP-Myh3 myosin replacement. Next, to examine the effects of Murf1 overexpression on the replacement of myosin isoforms, Cherry-Murf1 was coexpressed with GFP-Myh1, GFP-Myh4, or GFP-Myh7 in myotubes. Intriguingly, Murf1 overexpression enhanced the myosin replacement of GFP-Myh4 but did not affect those of GFP-Myh1 or GFP-Myh7. Surprisingly, overexpression of Murf1 did not enhance the ubiquitination of proteins. These results indicate that Murf1 selectively regulated myosin replacement in a Myh isoform-dependent fashion, independent of enhanced ubiquitination. This suggests that Murf1 may have a role beyond functioning as a ubiquitin ligase E3 in thick filament myosin replacement.
Collapse
Affiliation(s)
- Emi Uenaka
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, 9 Kita, 9 Nishi, Sapporo, Hokkaido, 060-8589, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino, Tokyo, 180-8585, Japan
| | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Motooka 744, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Ken Kobayashi
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, 9 Kita, 9 Nishi, Sapporo, Hokkaido, 060-8589, Japan
| | - Susumu Muroya
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
- Laboratory of Meat Science and Production, Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
| | - Takanori Nishimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, 9 Kita, 9 Nishi, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
2
|
Ojima K, Ichimura E, Yasukawa Y, Wakamatsu JI, Nishimura T. Dynamics of myosin replacement in skeletal muscle cells. Am J Physiol Cell Physiol 2015; 309:C669-79. [PMID: 26377314 DOI: 10.1152/ajpcell.00170.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/06/2015] [Indexed: 01/04/2023]
Abstract
Highly organized thick filaments in skeletal muscle cells are formed from ~300 myosin molecules. Each thick-filament-associated myosin molecule is thought to be constantly exchanged. However, the mechanism of myosin replacement remains unclear, as does the source of myosin for substitution. Here, we investigated the dynamics of myosin exchange in the myofibrils of cultured myotubes by fluorescent recovery after photobleaching and found that myofibrillar myosin is actively replaced with an exchange half-life of ~3 h. Myosin replacement was not disrupted by the absence of the microtubule system or by actomyosin interactions, suggesting that known cytoskeletal systems are dispensable for myosin substitution. Intriguingly, myosin replacement was independent of myosin binding protein C, which links myosin molecules together to form thick filaments. This implies that an individual myosin molecule rather than a thick filament functions as an exchange unit. Furthermore, the myosin substitution rate was decreased by the inhibition of protein synthesis, suggesting that newly synthesized myosin, as well as preexisting cytosolic myosin, contributes to myosin replacement in myofibrils. Notably, incorporation and release of myosin occurred simultaneously in myofibrils, but rapid myosin release from myofibrils was observed without protein synthesis. Collectively, our results indicate that myosin shuttles between myofibrils and the nonmyofibrillar cytosol to maintain a dynamic equilibrium in skeletal muscle cells.
Collapse
Affiliation(s)
- Koichi Ojima
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Ibaraki, Japan; and
| | - Emi Ichimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Yuya Yasukawa
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Jun-Ichi Wakamatsu
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Takanori Nishimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
3
|
Takano K, Watanabe-Takano H, Suetsugu S, Kurita S, Tsujita K, Kimura S, Karatsu T, Takenawa T, Endo T. Nebulin and N-WASP Cooperate to Cause IGF-1–Induced Sarcomeric Actin Filament Formation. Science 2010; 330:1536-40. [DOI: 10.1126/science.1197767] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) induces skeletal muscle maturation and enlargement (hypertrophy). These responses require protein synthesis and myofibril formation (myofibrillogenesis). However, the signaling mechanisms of myofibrillogenesis remain obscure. We found that IGF-1–induced phosphatidylinositol 3-kinase–Akt signaling formed a complex of nebulin and N-WASP at the Z bands of myofibrils by interfering with glycogen synthase kinase-3β in mice. Although N-WASP is known to be an activator of the Arp2/3 complex to form branched actin filaments, the nebulin–N-WASP complex caused actin nucleation for unbranched actin filament formation from the Z bands without the Arp2/3 complex. Furthermore, N-WASP was required for IGF-1–induced muscle hypertrophy. These findings present the mechanisms of IGF-1–induced actin filament formation in myofibrillogenesis required for muscle maturation and hypertrophy and a mechanism of actin nucleation.
Collapse
|
4
|
Pappas CT, Krieg PA, Gregorio CC. Nebulin regulates actin filament lengths by a stabilization mechanism. ACTA ACUST UNITED AC 2010; 189:859-70. [PMID: 20498015 PMCID: PMC2878950 DOI: 10.1083/jcb.201001043] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The nebulin molecular ruler hypothesis is challenged as a truncated form of nebulin can stabilize actin filaments that are longer than the mini-nebulin itself. Efficient muscle contraction requires regulation of actin filament lengths. In one highly cited model, the giant protein nebulin has been proposed to function as a molecular ruler specifying filament lengths. We directly challenged this hypothesis by constructing a unique, small version of nebulin (mini-nebulin). When endogenous nebulin was replaced with mini-nebulin in skeletal myocytes, thin filaments extended beyond the end of mini-nebulin, an observation which is inconsistent with a strict ruler function. However, under conditions that promote actin filament depolymerization, filaments associated with mini-nebulin were remarkably maintained at lengths either matching or longer than mini-nebulin. This indicates that mini-nebulin is able to stabilize portions of the filament it has no contact with. Knockdown of nebulin also resulted in more dynamic populations of thin filament components, whereas expression of mini-nebulin decreased the dynamics at both filament ends (i.e., recovered loss of endogenous nebulin). Thus, nebulin regulates thin filament architecture by a mechanism that includes stabilizing the filaments and preventing actin depolymerization.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cell Biology and Anatomy and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
5
|
Isolation of nebulin from rabbit skeletal muscle and its interaction with actin. J Biomed Biotechnol 2010; 2010:108495. [PMID: 20467585 PMCID: PMC2868979 DOI: 10.1155/2010/108495] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/15/2010] [Indexed: 12/11/2022] Open
Abstract
Nebulin is about 800 kDa filamentous protein that binds the entire thin filament of vertebrate skeletal muscle sarcomeres. Nebulin cannot be isolated from muscle except in a completely denatured form by direct solubilization of myofibrils with SDS because nebulin is hardly soluble under salt conditions. In the present study, nebulin was solubilized by a salt solution containing 1 M urea and purified by DEAE-Toyopearl column chromatography via 4 M urea elution. Rotary-shadowed images of nebulin showed entangled knit-like particles, about 20 nm in diameter. The purified nebulin bound to actin filaments to form loose bundles. Nebulin was confirmed to bind actin, α-actinin, β-actinin, and tropomodulin, but not troponin or tropomyosin. The data shows that full-length nebulin can be also obtained in a functional and presumably native form, verified by data from experiments using recombinant subfragments.
Collapse
|
6
|
Panaviene Z, Moncman CL. Linker region of nebulin family members plays an important role in targeting these molecules to cellular structures. Cell Tissue Res 2006; 327:353-69. [PMID: 17177073 DOI: 10.1007/s00441-006-0305-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
The nebulin family of actin-binding proteins plays an essential role in cytoskeletal dynamics and actin filament stability. All of the family members are modular proteins with their key defining structural feature being the presence of the 35-residue nebulin modules. The family members now include nebulin, nebulette, N-RAP, LASP-1, and LIM-nebulette. Nebulin and nebulette are associated with the thin filament/Z-line junction of striated muscle. LASP-1 and LIM-nebulette are found within focal adhesions, and N-RAP is associated with muscle cellular junctions. Although much investigation has focused on the role of the interactions between nebulin modules and actin, each of these proteins contains other domains that are essential for their cellular targeting and functions. The serine-rich linker region of nebulette has previously been shown to serve just such a purpose by targeting the association of the nebulin modules to the cardiac Z-line in cultured cardiomyocytes. In this report, we analyze the targeting functions of the homologous regions of LASP-1 and LIM-nebulette in their incorporation into focal adhesions. We have found that the linker region of LASP-1 is indeed important for its cellular localization and that the shortened linker region of LIM-nebulette drives the association of nebulin modules to focal adhesions.
Collapse
Affiliation(s)
- Zivile Panaviene
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
7
|
McElhinny AS, Schwach C, Valichnac M, Mount-Patrick S, Gregorio CC. Nebulin regulates the assembly and lengths of the thin filaments in striated muscle. ACTA ACUST UNITED AC 2005; 170:947-57. [PMID: 16157704 PMCID: PMC2171443 DOI: 10.1083/jcb.200502158] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many tissues, actin monomers polymerize into actin (thin) filaments of precise lengths. Although the exact mechanisms involved remain unresolved, it is proposed that "molecular rulers" dictate the lengths of the actin filaments. The giant nebulin molecule is a prime candidate for specifying thin filament lengths in striated muscle, but this idea has never been proven. To test this hypothesis, we used RNA interference technology in rat cardiac myocytes. Live cell imaging and triple staining revealed a dramatic elongation of the preexisting thin filaments from their pointed ends upon nebulin knockdown, demonstrating its role in length maintenance; the barbed ends were unaffected. When the thin filaments were depolymerized with latrunculin B, myocytes with decreased nebulin levels reassembled them to unrestricted lengths, demonstrating its importance in length specification. Finally, knockdown of nebulin in skeletal myotubes revealed its involvement in myofibrillogenesis. These data are consistent with nebulin functioning as a thin filament ruler and provide insight into mechanisms dictating macromolecular assembly.
Collapse
MESH Headings
- Acetates
- Actins/metabolism
- Animals
- Antibodies, Monoclonal/metabolism
- Blotting, Western
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cells, Cultured
- Chromones
- Dose-Response Relationship, Drug
- Fluorescent Antibody Technique, Indirect
- Fluorescent Dyes
- Gene Expression Regulation, Developmental
- Microscopy, Fluorescence
- Muscle Development
- Muscle Proteins/analysis
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/embryology
- Myoblasts/cytology
- Myoblasts/metabolism
- Myocytes, Cardiac/chemistry
- RNA, Small Interfering/pharmacology
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Thiazoles/pharmacology
- Thiazolidines
- Transfection
- Xanthenes
Collapse
Affiliation(s)
- Abigail S McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
8
|
Ogut O, Hossain MM, Jin JP. Interactions between nebulin-like motifs and thin filament regulatory proteins. J Biol Chem 2003; 278:3089-97. [PMID: 12446728 DOI: 10.1074/jbc.m205853200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nebulin (600-900 kDa) and nebulette (107-109 kDa) are two homologous thin filament-associated proteins in skeletal and cardiac muscles, respectively. Both proteins are capped with a unique region at the amino terminus as well as a serine-rich linker domain and SH3 domains at the COOH terminus. Their significant size difference is attributed to the length of the central region wherein both proteins are primarily composed of approximately 35 amino acid repeats termed nebulin-like repeats or motifs. These motifs are marked by a conserved SXXXY sequence and high affinity binding to F-actin. To further characterize the effects that nebulin-like proteins may have on the striated muscle thin filament, we have cloned, expressed, and purified a five-motif chicken nebulette fragment and tested its interaction with the thin filament regulatory proteins. Both tropomyosin and troponin T individually bound the nebulette fragment, although the affinity of this interaction was significantly increased when tropomyosin-troponin T was tested as a binary complex. The addition of troponin I to the tropomyosin-troponin T complex decreased the binding to the nebulette fragment, indicating an involvement of the conserved T2 region of troponin T in this interaction. F-actin cosedimentation demonstrated that the nebulette fragment was able to significantly increase the affinity of the tropomyosin-troponin assembly for F-actin. The relationships provide a means for nebulin-like motifs to participate in the allosteric regulation of striated muscle contraction.
Collapse
Affiliation(s)
- Ozgur Ogut
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | |
Collapse
|
9
|
Wallgren-Pettersson C, Donner K, Sewry C, Bijlsma E, Lammens M, Bushby K, Giovannucci Uzielli ML, Lapi E, Odent S, Akcoren Z, Topaloğlu H, Pelin K. Mutations in the nebulin gene can cause severe congenital nemaline myopathy. Neuromuscul Disord 2002; 12:674-9. [PMID: 12207937 DOI: 10.1016/s0960-8966(02)00065-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previously, we reported results indicating that nebulin was the gene causing the typical form of autosomal recessive nemaline (rod) myopathy. Here we describe the identification of mutations in the nebulin gene in seven offspring of five families affected by the severe congenital form of nemaline myopathy. One pregnancy was terminated on the grounds of foetal abnormality, while six affected infants died at ages ranging from the first day of life to 19 months. Only three of the six neonates were able to establish spontaneous respiration. Three had arthrogryposis. In three of the five families, the mutations were located in exon 184. These mutations are predicted to cause absence of the C-terminal part of nebulin.
Collapse
|
10
|
Pelin K, Donner K, Holmberg M, Jungbluth H, Muntoni F, Wallgren-Pettersson C. Nebulin mutations in autosomal recessive nemaline myopathy: an update. Neuromuscul Disord 2002; 12:680-6. [PMID: 12207938 DOI: 10.1016/s0960-8966(02)00066-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report mutational analysis of the last 42 exons of the nebulin gene (NEB) in 77 patients with various forms of nemaline myopathy. In addition to the previously described six mutations in five families, we identified 12 novel recessive mutations in 13 families. Affected individuals were homozygous for the mutations in five families and compound heterozygous in two, while in the remaining cases only one heterozygous mutation was identified. The majority of the mutations were frameshifts due to small deletions or insertions; also common were point mutations causing premature stop codons or abnormal splicing, while missense mutations appeared rare. There were no obvious mutational hotspots, although four unrelated patients showed mutations in the differentially expressed exon 177d, and another three showed mutations in exon 184. Most of the mutations are predicted to result in truncated or internally deleted proteins. Mutations in the differentially expressed exons are expected to reduce the nebulin isoform diversity necessary for normal muscle development.
Collapse
Affiliation(s)
- Katarina Pelin
- Department of Medical Genetics, University of Helsinki and the Folkhälsan Institute of Genetics, P.O. Box 211, FIN-00251, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
11
|
Moncman CL, Wang K. Targeted disruption of nebulette protein expression alters cardiac myofibril assembly and function. Exp Cell Res 2002; 273:204-18. [PMID: 11822876 DOI: 10.1006/excr.2001.5423] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate nebulette's role in cardiac myofibrils, cardiomyocytes expressing green fluorescent protein (GFP)-nebulette constructs were monitored for their ability to contract and myofilament protein distribution was analyzed. Cells expressing full-length GFP-nebulette appear unaffected and exhibit normal beating frequencies. Expression of the GFP linker and SH3 results in loss of the endogenous nebulette and tropomyosin; however, Z-line and thick filaments are undisturbed. Cells expressing either of these domains have dramatically reduced beating frequencies, consistent with the loss of thin filament proteins. This loss was inhibited by the addition of protease inhibitors during culturing. The GFP repeat domain disrupts both myofibrillogenesis and contraction in spreading cardiomyocytes, whereas introduction of this protein into well-spread cardiomyocytes results in localization at the Z-line and a 50% reduction in beating frequency. Ultimately, these cells form bundles containing the GFP repeat and many myofilament proteins. Interestingly, butanedione monoxime inhibition of contraction inhibited the formation of these bundles. These results show that the GFP-nebulette domains have a dominant-negative effect on the distribution and function of the sarcomeric proteins. Taken together with the observation that nebulette colocalizes with alpha-actinin in the pre-, nascent, and mature myofibrils, our data demonstrate the importance of this cardiac-specific nebulin isoform in myofibril organization and function.
Collapse
Affiliation(s)
- Carole L Moncman
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
12
|
Bang ML, Gregorio C, Labeit S. Molecular dissection of the interaction of desmin with the C-terminal region of nebulin. J Struct Biol 2002; 137:119-27. [PMID: 12064939 DOI: 10.1006/jsbi.2002.4457] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vertebrate skeletal muscle, ultrastructural studies have suggested that the Z-line and extracellular intermediate filaments are linked, although a structural basis for this has remained elusive. We searched for potential novel ligands of the Z-line portion of nebulin by a yeast two-hybrid (Y2H) approach. This identified that the nebulin modules M160 to M170 interact with desmin. In desmin, deletion series experiments assigned a 19-kDa central coiled-coil domain as the nebulin-binding site. The specific interactions of nebulin and desmin were confirmed in vitro by GST pull-down experiments. In situ, the nebulin modules M176 to M181 colocalize with desmin in a Z-line-associated, striated pattern as shown by immunofluorescence studies. Our data are consistent with a model that desmin attaches directly to the Z-line through its interaction with the nebulin repeats M163-M170. This interaction may link myofibrillar Z-discs to the intermediate filament system, thereby forming a lateral linkage system which contributes to maintain adjacent Z-lines in register.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Department of Anesthesiology and Intensive Operative Care, Universitätsklinikum Mannheim, Mannheim, Germany
| | | | | |
Collapse
|
13
|
Carroll SL, Herrera AH, Horowits R. Targeting and functional role of N-RAP, a nebulin-related LIM protein, during myofibril assembly in cultured chick cardiomyocytes. J Cell Sci 2001; 114:4229-38. [PMID: 11739655 DOI: 10.1242/jcs.114.23.4229] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeting and functional effects of N-RAP domains were studied by expression as GFP-tagged fusion proteins in cultured embryonic chick cardiomyocytes. GFP-tagged N-RAP was targeted to myofibril precursors, myofibril ends and cell contacts, expression patterns that are similar to endogenous N-RAP. The GFP-tagged N-RAP LIM domain (GFP-N-RAP-LIM) was targeted to the membrane in cells with myofibril precursors and cell-cell contacts. The GFP-tagged super repeats (N-RAP-SR) and the GFP-tagged domain normally found in between the super repeats and the LIM domain (N-RAP-IB) were each observed at sites of myofibril assembly, incorporating into myofibril precursors in a manner similar to full length N-RAP. However, unlike full-length N-RAP, N-RAP-SR and N-RAP-IB were also found in mature myofibrils, associating with the sarcomeric actin filaments and the Z-lines, respectively. N-RAP-IB was also colocalized with α-actinin at cell contacts. Each of the N-RAP constructs could inhibit the formation of mature myofibrils in cultured cardiomyocytes, with the effects of N-RAP-SR and N-RAP-IB depending on the time of transfection. The results show that each region of N-RAP is crucial for myofibril assembly. Combining the targeting and functional effects of N-RAP domains with information in the literature, we propose a new model for initiation of myofibrillogenesis.
Collapse
Affiliation(s)
- S L Carroll
- Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
Bang ML, Mudry RE, McElhinny AS, Trombitás K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 2001; 153:413-27. [PMID: 11309420 PMCID: PMC2169455 DOI: 10.1083/jcb.153.2.413] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2000] [Accepted: 02/27/2001] [Indexed: 02/06/2023] Open
Abstract
We describe here a novel sarcomeric 145-kD protein, myopalladin, which tethers together the COOH-terminal Src homology 3 domains of nebulin and nebulette with the EF hand motifs of alpha-actinin in vertebrate Z-lines. Myopalladin's nebulin/nebulette and alpha-actinin-binding sites are contained in two distinct regions within its COOH-terminal 90-kD domain. Both sites are highly homologous with those found in palladin, a protein described recently required for actin cytoskeletal assembly (Parast, M.M., and C.A. Otey. 2000. J. Cell Biol. 150:643-656). This suggests that palladin and myopalladin may have conserved roles in stress fiber and Z-line assembly. The NH(2)-terminal region of myopalladin specifically binds to the cardiac ankyrin repeat protein (CARP), a nuclear protein involved in control of muscle gene expression. Immunofluorescence and immunoelectron microscopy studies revealed that myopalladin also colocalized with CARP in the central I-band of striated muscle sarcomeres. Overexpression of myopalladin's NH(2)-terminal CARP-binding region in live cardiac myocytes resulted in severe disruption of all sarcomeric components studied, suggesting that the myopalladin-CARP complex in the central I-band may have an important regulatory role in maintaining sarcomeric integrity. Our data also suggest that myopalladin may link regulatory mechanisms involved in Z-line structure (via alpha-actinin and nebulin/nebulette) to those involved in muscle gene expression (via CARP).
Collapse
Affiliation(s)
| | - Ryan E. Mudry
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85721
| | - Abigail S. McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85721
| | - Karoly Trombitás
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164
| | - Adam J. Geach
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85721
| | - Rob Yamasaki
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164
| | - Hiroyuki Sorimachi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8654, Japan
| | - Henk Granzier
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164
| | - Carol C. Gregorio
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85721
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Siegfried Labeit
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Anaesthesiology and Intensive Surgical Medicine, University of Mannheim, Mannheim 68167, Germany
| |
Collapse
|
15
|
McElhinny AS, Kolmerer B, Fowler VM, Labeit S, Gregorio CC. The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J Biol Chem 2001; 276:583-92. [PMID: 11016930 DOI: 10.1074/jbc.m005693200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Strict regulation of actin thin filament length is critical for the proper functioning of sarcomeres, the basic contractile units of myofibrils. It has been hypothesized that a molecular template works with actin filament capping proteins to regulate thin filament lengths. Nebulin is a giant protein ( approximately 800 kDa) in skeletal muscle that has been proposed to act as a molecular ruler to specify the thin filament lengths characteristic of different muscles. Tropomodulin (Tmod), a pointed end thin filament capping protein, has been shown to maintain the final length of the thin filaments. Immunofluorescence microscopy revealed that the N-terminal end of nebulin colocalizes with Tmod at the pointed ends of thin filaments. The three extreme N-terminal modules (M1-M2-M3) of nebulin bind specifically to Tmod as demonstrated by blot overlay, bead binding, and solid phase binding assays. These data demonstrate that the N terminus of the nebulin molecule extends to the extreme end of the thin filament and also establish a novel biochemical function for this end. Two Tmod isoforms, erythrocyte Tmod (E-Tmod), expressed in embryonic and slow skeletal muscle, and skeletal Tmod (Sk-Tmod), expressed late in fast skeletal muscle differentiation, bind on overlapping sites to recombinant N-terminal nebulin fragments. Sk-Tmod binds nebulin with higher affinity than E-Tmod does, suggesting that the Tmod/nebulin interaction exhibits isoform specificity. These data provide evidence that Tmod and nebulin may work together as a linked mechanism to control thin filament lengths in skeletal muscle.
Collapse
Affiliation(s)
- A S McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|