1
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Mayya C, Naveena AH, Sinha P, Wunder C, Johannes L, Bhatia D. The roles of dynein and myosin VI motor proteins in endocytosis. J Cell Sci 2022; 135:274777. [DOI: 10.1242/jcs.259387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ABSTRACT
Endocytosis is indispensable for multiple cellular processes, including signalling, cell adhesion, migration, as well as the turnover of plasma membrane lipids and proteins. The dynamic interplay and regulation of different endocytic entry routes requires multiple cytoskeletal elements, especially motor proteins that bind to membranes and transport vesicles along the actin and microtubule cytoskeletons. Dynein and kinesin motor proteins transport vesicles along microtubules, whereas myosins drive vesicles along actin filaments. Here, we present a brief overview of multiple endocytic pathways and our current understanding of the involvement of these motor proteins in the regulation of the different cellular entry routes. We particularly focus on structural and mechanistic details of the retrograde motor proteins dynein and myosin VI (also known as MYO6), along with their adaptors, which have important roles in the early events of endocytosis. We conclude by highlighting the key challenges in elucidating the involvement of motor proteins in endocytosis and intracellular membrane trafficking.
Collapse
Affiliation(s)
- Chaithra Mayya
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| | - A. Hema Naveena
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| | - Pankhuri Sinha
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| | - Christian Wunder
- Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, 26 rue d'Ulm, 75248 Paris CEDEX 05, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, 26 rue d'Ulm, 75248 Paris CEDEX 05, France
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| |
Collapse
|
3
|
Harasztosi C, Klenske E, Gummer AW. Vesicle traffic in the outer hair cell. Eur J Neurosci 2021; 54:4755-4767. [PMID: 34043848 DOI: 10.1111/ejn.15331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
The plasma-membrane marker FM1-43 was employed to reveal the relative significance of different types of endocytic and transcytic mechanisms in outer hair cells (OHCs) of the guinea-pig cochlea. A double-barrel local perfusion system was used to label independently the apical or synaptic pole of the isolated OHC to study mechanisms of vesicle uptake at the poles and of vesicle trafficking along and across the cell. Treatment with an inhibitor of macropino- and phagocytosis, phenylarsine oxide, or of clathrin-mediated endocytic activity, concanavalin A, significantly reduced the dye uptake at both the apical and the synaptic poles, indicating the presence of both clathrin-independent and clathrin-mediated processes at both poles. However, measurement of uptake speed in the presence of the inhibitors suggested that clathrin-independent processes contribute more extensively to endocytosis at the basal pole than the apical pole. Treatment with an inhibitor of myosin VI, 2,4,6-triiodophenol, significantly delayed both the apicobasal and the basoapical fluorescence signals. However, treatment with an inhibitor of kinesin, monastrol, or of dynein, ciliobrevin D, significantly delayed the signals only in the basoapical direction. The myosinVI inhibitor, but neither the kinesin nor dynein inhibitors, significantly delayed the signals to the subsurface cisternae. That is, myosin VI carries vesicles in both longitudinal directions as well as radially to the subsurface cisternae, whereas kinesin and dynein participate primarily in basoapical trafficking. This fundamental information is essential for elucidating recycling mechanisms of specific proteins involved in establishing, controlling and maintaining the electromechanical action of OHCs and, therefore, is vital for understanding auditory perception.
Collapse
Affiliation(s)
- Csaba Harasztosi
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Entcho Klenske
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anthony W Gummer
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Platenkamp A, Detmar E, Sepulveda L, Ritz A, Rogers SL, Applewhite DA. The Drosophila melanogaster Rab GAP RN-tre cross-talks with the Rho1 signaling pathway to regulate nonmuscle myosin II localization and function. Mol Biol Cell 2020; 31:2379-2397. [PMID: 32816624 PMCID: PMC7851959 DOI: 10.1091/mbc.e20-03-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
To identify novel regulators of nonmuscle myosin II (NMII) we performed an image-based RNA interference screen using stable Drosophila melanogaster S2 cells expressing the enhanced green fluorescent protein (EGFP)-tagged regulatory light chain (RLC) of NMII and mCherry-Actin. We identified the Rab-specific GTPase-activating protein (GAP) RN-tre as necessary for the assembly of NMII RLC into contractile actin networks. Depletion of RN-tre led to a punctate NMII phenotype, similar to what is observed following depletion of proteins in the Rho1 pathway. Depletion of RN-tre also led to a decrease in active Rho1 and a decrease in phosphomyosin-positive cells by immunostaining, while expression of constitutively active Rho or Rho-kinase (Rok) rescues the punctate phenotype. Functionally, RN-tre depletion led to an increase in actin retrograde flow rate and cellular contractility in S2 and S2R+ cells, respectively. Regulation of NMII by RN-tre is only partially dependent on its GAP activity as overexpression of constitutively active Rabs inactivated by RN-tre failed to alter NMII RLC localization, while a GAP-dead version of RN-tre partially restored phosphomyosin staining. Collectively, our results suggest that RN-tre plays an important regulatory role in NMII RLC distribution, phosphorylation, and function, likely through Rho1 signaling and putatively serving as a link between the secretion machinery and actomyosin contractility.
Collapse
Affiliation(s)
| | - Elizabeth Detmar
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Liz Sepulveda
- Department of Biology, Reed College, Portland, OR 97202
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202
| | - Stephen L Rogers
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | |
Collapse
|
5
|
Unconventional Myosins: How Regulation Meets Function. Int J Mol Sci 2019; 21:ijms21010067. [PMID: 31861842 PMCID: PMC6981383 DOI: 10.3390/ijms21010067] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Unconventional myosins are multi-potent molecular motors that are assigned important roles in fundamental cellular processes. Depending on their mechano-enzymatic properties and structural features, myosins fulfil their roles by acting as cargo transporters along the actin cytoskeleton, molecular anchors or tension sensors. In order to perform such a wide range of roles and modes of action, myosins need to be under tight regulation in time and space. This is achieved at multiple levels through diverse regulatory mechanisms: the alternative splicing of various isoforms, the interaction with their binding partners, their phosphorylation, their applied load and the composition of their local environment, such as ions and lipids. This review summarizes our current knowledge of how unconventional myosins are regulated, how these regulatory mechanisms can adapt to the specific features of a myosin and how they can converge with each other in order to ensure the required tight control of their function.
Collapse
|
6
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
7
|
Hannan SB, Dräger NM, Rasse TM, Voigt A, Jahn TR. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models. J Neurochem 2016; 137:12-25. [PMID: 26756400 DOI: 10.1111/jnc.13532] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/14/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
Abnormal tau accumulations were observed and documented in post-mortem brains of patients affected by Alzheimer's disease (AD) long before the identification of mutations in the Microtubule-associated protein tau (MAPT) gene, encoding the tau protein, in a different neurodegenerative disease called Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the MAPT gene associated with FTDP-17 highlighted that dysfunctions in tau alone are sufficient to cause neurodegeneration. Invertebrate models have been diligently utilized in investigating tauopathies, contributing to the understanding of cellular and molecular pathways involved in disease etiology. An important discovery came with the demonstration that over-expression of human tau in Drosophila leads to premature mortality and neuronal dysfunction including neurodegeneration, recapitulating some key neuropathological features of the human disease. The simplicity of handling invertebrate models combined with the availability of a diverse range of experimental resources make these models, in particular Drosophila a powerful invertebrate screening tool. Consequently, several large-scale screens have been performed using Drosophila, to identify modifiers of tau toxicity. The screens have revealed not only common cellular and molecular pathways, but in some instances the same modifier has been independently identified in two or more screens suggesting a possible role for these modifiers in regulating tau toxicity. The purpose of this review is to discuss the genetic modifier screens on tauopathies performed in Drosophila and C. elegans models, and to highlight the common cellular and molecular pathways that have emerged from these studies. Here, we summarize results of tau toxicity screens providing mechanistic insights into pathological alterations in tauopathies. Key pathways or modifiers that have been identified are associated with a broad range of processes including, but not limited to, phosphorylation, cytoskeleton organization, axonal transport, regulation of cellular proteostasis, transcription, RNA metabolism, cell cycle regulation, and apoptosis. We discuss the utility and application of invertebrate models in elucidating the cellular and molecular functions of novel and uncharacterized disease modifiers identified in large-scale screens as well as for investigating the function of genes identified as risk factors in genome-wide association studies from human patients in the post-genomic era. In this review, we combined and summarized several large-scale modifier screens performed in invertebrate models to identify modifiers of tau toxicity. A summary of the screens show that diverse cellular processes are implicated in the modification of tau toxicity. Kinases and phosphatases are the most predominant class of modifiers followed by components required for cellular proteostasis and axonal transport and cytoskeleton elements.
Collapse
Affiliation(s)
- Shabab B Hannan
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany.,Graduate School of Cellular and Molecular Neuroscience, Graduate Training Center of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nina M Dräger
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Tobias M Rasse
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Aaron Voigt
- Department of Neurology at University Clinic Aachen, RWTH Aachen, Germany
| | - Thomas R Jahn
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
8
|
Beaven R, Dzhindzhev NS, Qu Y, Hahn I, Dajas-Bailador F, Ohkura H, Prokop A. Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system. Mol Biol Cell 2015; 26:1491-508. [PMID: 25694447 PMCID: PMC4395129 DOI: 10.1091/mbc.e14-06-1083] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/10/2015] [Indexed: 11/11/2022] Open
Abstract
Usually, CLIPs promote microtubule growth by binding their plus ends. However, in neurons, mouse CLIP-170 and fly CLIP-190 are weak end binders, instead forming actin/myosin VI–dependent patches in the center of growth cones. Total CLIP-190 loss, even together with four other plus end binders, reveals no role in neuronal MT regulation. Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.
Collapse
Affiliation(s)
- Robin Beaven
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nikola S Dzhindzhev
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Yue Qu
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ines Hahn
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
9
|
Kisiel M, McKenzie K, Stewart B. Localization and mobility of synaptic vesicles in Myosin VI mutants of Drosophila. PLoS One 2014; 9:e102988. [PMID: 25062032 PMCID: PMC4111356 DOI: 10.1371/journal.pone.0102988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/26/2014] [Indexed: 11/25/2022] Open
Abstract
Background At the Drosophila neuromuscular junction (NMJ), synaptic vesicles are mobile; however, the mechanisms that regulate vesicle traffic at the nerve terminal are not fully understood. Myosin VI has been shown to be important for proper synaptic physiology and morphology at the NMJ, likely by functioning as a vesicle tether. Here we investigate vesicle dynamics in Myosin VI mutants of Drosophila. Results In Drosophila, Myosin VI is encoded by the gene, jaguar (jar). To visualize active vesicle cycling we used FM dye loading and compared loss of function alleles of jar with controls. These studies revealed a differential distribution of vesicles at the jar mutant nerve terminal, with the newly endocytosed vesicles observed throughout the mutant boutons in contrast to the peripheral localization visualized at control NMJs. This finding is consistent with a role for Myosin VI in restraining vesicle mobility at the synapse to ensure proper localization. To further investigate regulation of vesicle dynamics by Myosin VI, FRAP analysis was used to analyze movement of GFP-labeled synaptic vesicles within individual boutons. FRAP revealed that synaptic vesicles are moving more freely in the jar mutant boutons, indicated by changes in initial bleach depth and rapid recovery of fluorescence following photobleaching. Conclusion This data provides insights into the role for Myosin VI in mediating synaptic vesicle dynamics at the nerve terminal. We observed mislocalization of actively cycling vesicles and an apparent increase in vesicle mobility when Myosin VI levels are reduced. These observations support the notion that a major function of Myosin VI in the nerve terminal is tethering synaptic vesicles to proper sub-cellular location within the bouton.
Collapse
Affiliation(s)
- Marta Kisiel
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Kristopher McKenzie
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
10
|
Zhang W, Gao SJ. Exploitation of Cellular Cytoskeletons and Signaling Pathways for Cell Entry by Kaposi's Sarcoma-Associated Herpesvirus and the Closely Related Rhesus Rhadinovirus. Pathogens 2012; 1:102-27. [PMID: 23420076 PMCID: PMC3571711 DOI: 10.3390/pathogens1020102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As obligate intracellular pathogens, viruses depend on the host cell machinery to complete their life cycle. Kaposi’s sarcoma-associated herpes virus (KSHV) is an oncogenicvirus causally linked to the development of Kaposi’s sarcoma and several other lymphoproliferative malignancies. KSHV entry into cells is tightly regulated by diverse viral and cellular factors. In particular, KSHV actively engages cellular integrins and ubiquitination pathways for successful infection. Emerging evidence suggests that KSHV hijacks both actin and microtubule cytoskeletons at different phases during entry into cells. Here, we review recent findings on the early events during primary infection of KSHV and its closely related primate homolog rhesus rhadinovirus with highlights on the regulation of cellular cytoskeletons and signaling pathways that are important for this phase of virus life cycle.
Collapse
Affiliation(s)
| | - Shou-Jiang Gao
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-323-442-8028; Fax: +1-323-442-1721
| |
Collapse
|
11
|
Sakurai K, Hirata M, Yamaguchi H, Nakamura Y, Fukami K. Phospholipase Cδ3 is a novel binding partner of myosin VI and functions as anchoring of myosin VI on plasma membrane. ACTA ACUST UNITED AC 2011; 51:171-81. [DOI: 10.1016/j.advenzreg.2010.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
|
12
|
Filamin-A and Myosin VI colocalize with fibrillary Tau protein in Alzheimer's disease and FTDP-17 brains. Brain Res 2010; 1345:182-9. [DOI: 10.1016/j.brainres.2010.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/01/2010] [Indexed: 11/17/2022]
|
13
|
Sugimoto Y, Sato O, Watanabe S, Ikebe R, Ikebe M, Wakabayashi K. Reverse conformational changes of the light chain-binding domain of myosin V and VI processive motor heads during and after hydrolysis of ATP by small-angle X-ray solution scattering. J Mol Biol 2009; 392:420-35. [PMID: 19607837 DOI: 10.1016/j.jmb.2009.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/04/2009] [Accepted: 07/07/2009] [Indexed: 11/19/2022]
Abstract
We used small-angle X-ray solution scattering (SAXS) technique to investigate the nucleotide-mediated conformational changes of the head domains [subfragment 1 (S1)] of myosin V and VI processive motors that govern their directional preference for motility on actin. Recombinant myosin V-S1 with two IQ motifs (MV-S1IQ2) and myosin VI-S1 (MVI-S1) were engineered from Sf9 cells using a baculovirus expression system. The radii of gyration (R(g)) of nucleotide-free MV-S1IQ2 and MVI-S1 were 48.6 and 48.8 A, respectively. In the presence of ATP, the R(g) value of MV-S1IQ2 decreased to 46.7 A, while that of MVI-S1 increased to 51.7 A, and the maximum chord length of the molecule decreased by ca 9% for MV-S1IQ2 and increased by ca 6% for MVI-S1. These opposite directional changes were consistent with those occurring in S1s with ADP and Vi or AlF(4)(-2) bound (i.e., in states mimicking the ADP/Pi-bound state of ATP hydrolysis). Binding of AMPPNP induced R(g) changes of both constructs similar to those in the presence of ATP, suggesting that the timing of the structural changes for their motion on actin is upon binding of ATP (the pre-hydrolysis state) during the ATPase cycle. Binding of ADP to MV-S1IQ2 and MVI-S1 caused their R(g) values to drop below those in the nucleotide-free state. Thus, upon the release of Pi, the reverse conformational change could occur, coupling to drive the directional motion on actin. The amount of R(g) change upon the release of Pi was ca 6.4 times greater in MVI-S1 than in MV-S1IQ2, relating to the production of the large stroke of the MVI motor during its translocation on actin. Atomic structural models for these S1s based upon the ab initio shape reconstruction from X-ray scattering data were constructed, showing that MVI-S1 has the light-chain-binding domain positioned in the opposite direction to MV-S1IQ2 in both the pre- and post-powerstroke transition. The angular change between the light chain-binding domains of MV-S1IQ2 in the pre- to post-powerstroke transition was approximately 50 degrees, comparable to that of MII-S1. On the other hand, that of MVI-S1 was approximately 100 degrees or approximately 130 degrees much less than the currently postulated changes to allow the maximal stroke size of myosin VI-S1 but still significantly larger than those of other myosins reported so far. The results suggest that some additional alterations or elements are required for MVI-S1 to take maximal working strokes along the actin filament.
Collapse
Affiliation(s)
- Yasunobu Sugimoto
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Sun Y, Schroeder HW, Beausang JF, Homma K, Ikebe M, Goldman YE. Myosin VI walks "wiggly" on actin with large and variable tilting. Mol Cell 2008; 28:954-64. [PMID: 18158894 DOI: 10.1016/j.molcel.2007.10.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/18/2007] [Accepted: 10/15/2007] [Indexed: 10/21/2022]
Abstract
Myosin VI is an unconventional motor protein with unusual motility properties such as its direction of motion and path on actin and a large stride relative to its short lever arms. To understand these features, the rotational dynamics of the lever arm were studied by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy during processive motility of myosin VI along actin. The axial angle is distributed in two peaks, consistent with the hand-over-hand model. The changes in lever arm angles during discrete steps suggest that it exhibits large and variable tilting in the plane of actin and to the sides. These motions imply that, in addition to the previously suggested flexible tail domain, there is a compliant region between the motor domain and lever arm that allows myosin VI to accommodate the helical position of binding sites while taking variable step sizes along the actin filament.
Collapse
Affiliation(s)
- Yujie Sun
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
15
|
Lin HP, Chen HM, Wei SY, Chen LY, Chang LH, Sun YJ, Huang SY, Hsu JC. Cell adhesion molecule Echinoid associates with unconventional myosin VI/Jaguar motor to regulate cell morphology during dorsal closure in Drosophila. Dev Biol 2007; 311:423-33. [PMID: 17936269 DOI: 10.1016/j.ydbio.2007.08.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/10/2007] [Accepted: 08/23/2007] [Indexed: 11/24/2022]
Abstract
Echinoid (Ed) is a homophilic immunoglobulin domain-containing cell adhesion molecule (CAM) that localizes to adherens junctions (AJs) and cooperates with Drosophila melanogaster epithelial (DE)-cadherin to mediate cell adhesion. Here we show that Ed takes part in many processes of dorsal closure, a morphogenetic movement driven by coordinated cell shape changes and migration of epidermal cells to cover the underlying amnioserosa. Ed is differentially expressed, appearing in epidermis but not in amnioserosa cells. Ed functions independently from the JNK signaling pathway and is required to regulate cell morphology, and for assembly of actomyosin cable, filopodial protrusion and coordinated cell migration in dorsal-most epidermal cells. The effect of Ed on cell morphology requires the presence of the intracellular domain (Ed(intra)). Interestingly, Ed forms homodimers in vivo and Ed(intra) monomer directly associates with unconventional myosin VI/Jaguar (Jar) motor protein. We further show that ed genetically interacts with jar to control cell morphology. It has previously been shown that myosin VI is monomeric in vitro and that its dimeric form can associate with and travel processively along actin filaments. Thus, we propose that Ed mediates the dimerization of myosin VI/Jar in vivo which in turn regulates the reorganization and/or contraction of actin filaments to control changes in cell shape. Consistent with this, we found that ectopic ed expression in the amnioserosa induces myosin VI/Jar-dependent apical constriction of this tissue.
Collapse
Affiliation(s)
- Hui-Ping Lin
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yildiz A, Selvin PR. Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 2005; 38:574-82. [PMID: 16028892 DOI: 10.1021/ar040136s] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We introduce the technique of FIONA, fluorescence imaging with one nanometer accuracy. This is a fluorescence technique that is able to localize the position of a single dye within approximately 1 nm in the x-y plane. It is done simply by taking the point spread function of a single fluorophore excited with wide field illumination and locating the center of the fluorescent spot by a two-dimensional Gaussian fit. We motivate the development of FIONA by unraveling the walking mechanism of the molecular motors myosin V, myosin VI, and kinesin. We find that they all walk in a hand-over-hand fashion.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Center for Biophysics and Computational Biology and Department of Physics, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | | |
Collapse
|
17
|
Dance AL, Miller M, Seragaki S, Aryal P, White B, Aschenbrenner L, Hasson T. Regulation of myosin-VI targeting to endocytic compartments. Traffic 2005; 5:798-813. [PMID: 15355515 DOI: 10.1111/j.1600-0854.2004.00224.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myosin-VI has been implicated in endocytic trafficking at both the clathrin-coated and uncoated vesicle stages. The identification of alternative splice forms led to the suggestion that splicing defines the vesicle type to which myosin-VI is recruited. In contrast to this hypothesis, we find that in all cell types examined, myosin-VI is associated with uncoated endocytic vesicles, regardless of splice form. GIPC, a PDZ-domain containing adapter protein, co-assembles with myosin-VI on these vesicles. Myosin-VI is only recruited to clathrin-coated vesicles in cells that express high levels of Dab2, a clathrin-binding adapter protein. Overexpression of Dab2 is sufficient to reroute myosin-VI to clathrin-coated pits in cells where myosin-VI is normally associated with uncoated vesicles. In normal rat kidney (NRK) cells, which express high endogenous levels of Dab2, splicing of the globular tail domain further modulates targeting of ectopically expressed myosin-VI. Although myosin-VI can be recruited to clathrin-coated pits, we find no requirement for myosin-VI motor activity in endocytosis in NRK cells. Instead, our data suggest that myosin-VI recruitment to clathrin-coated pits may be an early step in the recruitment of GIPC to the vesicle surface.
Collapse
Affiliation(s)
- Amber L Dance
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Dominik M, Kłopocka W, Pomorski P, Kocik E, Redowicz MJ. Characterization ofAmoeba proteus myosin VI immunoanalog. ACTA ACUST UNITED AC 2005; 61:172-88. [PMID: 15909304 DOI: 10.1002/cm.20075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amoeba proteus, the highly motile free-living unicellular organism, has been widely used as a model to study cell motility. However, molecular mechanisms underlying its unique locomotion and intracellular actin-based-only trafficking remain poorly understood. A search for myosin motors responsible for vesicular transport in these giant cells resulted in detection of 130-kDa protein interacting with several polyclonal antibodies against different tail regions of human and chicken myosin VI. This protein was binding to actin in the ATP-dependent manner, and immunoprecipitated with anti-myosin VI antibodies. In order to characterize its possible functions in vivo, its cellular distribution and colocalization with actin filaments and dynamin II during migration and pinocytosis were examined. In migrating amoebae, myosin VI immunoanalog localized to vesicular structures, particularly within the perinuclear and sub-plasma membrane areas, and colocalized with dynamin II immunoanalog and actin filaments. The colocalization was even more evident in pinocytotic cells as proteins concentrated within pinocytotic pseudopodia. Moreover, dynamin II and myosin VI immunoanalogs cosedimented with actin filaments, and were found on the same isolated vesicles. Blocking endogenous myosin VI immunoanalog with anti-myosin VI antibodies inhibited the rate of pseudopodia protrusion (about 19% decrease) and uroidal retraction (about 28% decrease) but did not affect cell morphology and the manner of cell migration. Treatment with anti-human dynamin II antibodies led to changes in directionality of amebae migration and affected the rate of only uroidal translocation (about 30% inhibition). These results indicate that myosin VI immunoanalog is expressed in protist Amoeba proteus and may be involved in vesicle translocation and cell locomotion.
Collapse
Affiliation(s)
- Magdalena Dominik
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
19
|
Okten Z, Churchman LS, Rock RS, Spudich JA. Myosin VI walks hand-over-hand along actin. Nat Struct Mol Biol 2004; 11:884-7. [PMID: 15286724 DOI: 10.1038/nsmb815] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 06/30/2004] [Indexed: 11/08/2022]
Abstract
Myosin VI is a molecular motor that can walk processively on actin filaments with a 36-nm step size. The walking mechanism of myosin VI is controversial because it takes very large steps without an apparent lever arm of required length. Therefore, myosin VI is argued to be the first exception to the widely established lever arm theory. It is therefore critical to directly demonstrate whether this motor walks hand-over-hand along actin despite its short lever arm. Here, we follow the displacement of a single myosin VI head during the stepping process. A single head is displaced 72 nm during stepping, whereas the center of mass previously has been shown to move 36 nm. The most likely explanation for this result is a hand-over-hand walking mechanism. We hypothesize the existence of a flexible element that would allow the motor to bridge the observed 72-nm distance.
Collapse
Affiliation(s)
- Zeynep Okten
- Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, California 94305-5307, USA
| | | | | | | |
Collapse
|
20
|
Altman D, Sweeney HL, Spudich JA. The mechanism of myosin VI translocation and its load-induced anchoring. Cell 2004; 116:737-49. [PMID: 15006355 DOI: 10.1016/s0092-8674(04)00211-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 11/25/2003] [Accepted: 01/14/2004] [Indexed: 11/17/2022]
Abstract
Myosin VI is thought to function as both a transporter and an anchor. While in vitro studies suggest possible mechanisms for processive stepping, a biochemical basis for anchoring has not been demonstrated. Using optical trapping, we observed myosin VI stepping against applied forces. Step size is not strongly affected by such loads. At saturating ATP, myosin VI kinetics shows little dependence on load until, at forces near stall, its stepping slows dramatically as load increases. At subsaturating ATP or in the presence of ADP, stepping kinetics is significantly inhibited by load. From our results, we propose a mechanism of myosin VI stepping that predicts a regulation through load of the motor's roles as transporter and anchor.
Collapse
Affiliation(s)
- David Altman
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
21
|
Abstract
Given the unique biological requirements of sound transduction and the selective advantage conferred upon a species capable of sensitive sound detection, it is not surprising that up to 1% of the approximately 30,000 or more human genes are necessary for hearing. There are hundreds of monogenic disorders for which hearing loss is one manifestation of a syndrome or the only disorder and therefore is nonsyndromic. Herein we review the supporting evidence for identifying over 30 genes for dominantly and recessively inherited, nonsyndromic, sensorineural deafness. The state of knowledge concerning their biological roles is discussed in the context of the controversies within an evolving understanding of the intricate molecular machinery of the inner ear.
Collapse
Affiliation(s)
- Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
22
|
Hudson AM, Cooley L. Understanding the function of actin-binding proteins through genetic analysis of Drosophila oogenesis. Annu Rev Genet 2003; 36:455-88. [PMID: 12429700 DOI: 10.1146/annurev.genet.36.052802.114101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much of our knowledge of the actin cytoskeleton has been derived from biochemical and cell biological approaches, through which actin-binding proteins have been identified and their in vitro interactions with actin have been characterized. The study of actin-binding proteins (ABPs) in genetic model systems has become increasingly important for validating and extending our understanding of how these proteins function. New ABPs have been identified through genetic screens, and genetic results have informed the interpretation of in vitro experiments. In this review, we describe the molecular and ultrastructural characteristics of the actin cytoskeleton in the Drosophila ovary, and discuss recent genetic analyses of actin-binding proteins that are required for oogenesis.
Collapse
Affiliation(s)
- Andrew M Hudson
- Departments of Genetics Yale University School of Medicine, P.O. Box 208005, New Haven, Connecticut 06520-8005, USA.
| | | |
Collapse
|
23
|
Aschenbrenner L, Lee T, Hasson T. Myo6 facilitates the translocation of endocytic vesicles from cell peripheries. Mol Biol Cell 2003; 14:2728-43. [PMID: 12857860 PMCID: PMC165672 DOI: 10.1091/mbc.e02-11-0767] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Immunolocalization studies in epithelial cells revealed myo6 was associated with peripherally located vesicles that contained the transferrin receptor. Pulse-chase experiments after transferrin uptake showed that these vesicles were newly uncoated endocytic vesicles and that myo6 was recruited to these vesicles immediately after uncoating. GIPC, a putative myo6 tail binding protein, was also present. Myo6 was not present on early endosomes, suggesting that myo6 has a transient association with endocytic vesicles and is released upon early endosome fusion. Green fluorescent protein (GFP) fused to myo6 as well as the cargo-binding tail (M6tail) alone targeted to the nascent endocytic vesicles. Overexpression of GFP-M6tail had no effect on a variety of organelle markers; however, GFP-M6tail displaced the endogenous myo6 from nascent vesicles and resulted in a significant delay in transferrin uptake. Pulse-chase experiments revealed that transferrin accumulated in uncoated vesicles within the peripheries of transfected cells and that Rab5 was recruited to the surface of these vesicles. Given sufficient time, the transferrin did traffic to the perinuclear sorting endosome. These data suggest that myo6 is an accessory protein required for the efficient transportation of nascent endocytic vesicles from the actin-rich peripheries of epithelial cells, allowing for timely fusion of endocytic vesicles with the early endosome.
Collapse
Affiliation(s)
- Laura Aschenbrenner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
24
|
Abstract
In this review we describe the potential roles of the actin cytoskeleton in receptor-mediated endocytosis in mammalian cells and summarize the efforts of recent years in establishing a relationship between these two cellular functions. With molecules such as dynamin, syndapin, HIP1R, Abp1, synaptojanin, N-WASP, intersectin, and cortactin a set of molecular links is now available and it is likely that their further characterization will reveal the basic principles of a functional interconnection between the membrane cytoskeleton and the vesicle-budding machinery. We will therefore discuss proteins involved in endocytic clathrin coat formation and accessory factors to control and regulate coated vesicle formation but we will also focus on actin cytoskeletal components such as the Arp2/3 complex, spectrin, profilin, and motor proteins involved in actin dynamics and organization. Additionally, we will discuss how phosphoinositides, such as PI(4,5)P2, small GTPases thought to control the actin cytoskeleton, such as Rho, Rac, and Cdc42, or membrane trafficking, such as Rab GTPases and ARF proteins, and different kinases may participate in the functional connection of actin and endocytosis. We will compare the concepts and different molecular mechanisms involved in mammalian cells with yeast as well as with specialized cells, such as epithelial cells and neurons, because different model organisms often offer complementary advantages for further studies in this thriving field of current cell biological research.
Collapse
Affiliation(s)
- Britta Qualmann
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | |
Collapse
|
25
|
Abstract
The actin cytoskeleton and associated myosin motor proteins are essential for the transport and steady-state localization of vesicles and organelles and for the dynamic remodeling of the plasma membrane as well as for the maintenance of differentiated cell-surface structures. Myosin VI may be expected to have unique cellular functions, because it moves, unlike almost all other myosins, towards the minus end of actin filaments. Localization and functional studies indicate that myosin VI plays a role in a variety of different intracellular processes, such as endocytosis and secretion as well as cell migration. These diverse functions of myosin VI are mediated by interaction with a range of different binding partners.
Collapse
Affiliation(s)
- Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| | | | | |
Collapse
|
26
|
Mazumdar A, Mazumdar M. How one becomes many: blastoderm cellularization in Drosophila melanogaster. Bioessays 2002; 24:1012-22. [PMID: 12386932 DOI: 10.1002/bies.10184] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Embryonic development in Drosophila melanogaster begins with a rapid series of mitotic nuclear divisions, unaccompanied by cytokinesis, to produce a multi-nucleated single cell embryo, the syncytial blastoderm. The syncytium then undergoes a process of cell formation, in which the individual nuclei become enclosed in individual cells. This process of cellularization involves integrating mechanisms of cell polarity, cell-cell adhesion and a specialized form of cytokinesis. The detailed molecular mechanism, however, is highly complex and, despite extensive analysis, remains poorly understood. Nevertheless, new insights are emerging from recent studies on aspects of membrane polarization and insertion, which show that membrane components from intracellular organelles are involved. In addition, actin and actin-associated proteins have been heavily implicated while new evidence shows that microtubule cytoskeletal elements are mechanistically involved in all aspects of cellularization. This review will draw on both the traditional models and the new data to provide a current perspective on the nature of cellular blastoderm formation in Drosophila melanogaster.
Collapse
Affiliation(s)
- Aveek Mazumdar
- National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | | |
Collapse
|
27
|
Abstract
The Golgi apparatus is a dynamic organelle through which nascent secretory and transmembrane proteins are transported, post-translationally modified and finally packaged into carrier vesicles for transport along the cytoskeleton to a variety of destinations. In the past decade, studies have shown that a number of 'molecular motors' are involved in maintaining the proper structure and function of the Golgi apparatus. Here, we review just some of the many functions performed by these mechanochemical enzymes - dyneins, kinesins, myosins and dynamin - in relation to the Golgi apparatus.
Collapse
Affiliation(s)
- Victoria J Allan
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
28
|
Biemesderfer D, Mentone SA, Mooseker M, Hasson T. Expression of myosin VI within the early endocytic pathway in adult and developing proximal tubules. Am J Physiol Renal Physiol 2002; 282:F785-94. [PMID: 11934687 DOI: 10.1152/ajprenal.00287.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myosin VI is a reverse-direction molecular motor implicated in membrane transport events. Because myosin VI is most highly expressed in the kidney, we investigated its renal localization by using high-resolution immunocytochemical and biochemical methods. Indirect immunofluorescence microscopy revealed myosin VI at the base of the brush border in proximal tubule cells. Horseradish peroxidase uptake studies, which labeled endosomes, and double staining for clathrin adapter protein-2 showed that myosin VI was closely associated with the intermicrovillar (IMV) coated-pit region of the brush border. Localization of myosin VI to the IMV region was confirmed at the electron microscopic level by colloidal gold labeling of ultrathin cryosections. In addition, antigen retrieval demonstrated a small but significant pool of myosin VI on the microvilli. To confirm the association of myosin VI with the IMV compartment, these membranes were separated from other membrane compartments by using 15-25% OptiPrep density gradients. Immunoblotting of the gradient fractions confirmed that myosin VI was enriched with markers for the IMV microdomain of the brush border, suggesting that myosin VI associates with proteins in this compartment. Finally, we examined the expression of myosin VI during nephron development. We found myosin VI present in a diffuse cytoplasmic pattern at stage II (S-shaped body phase) and that it was only redistributed fully to the brush border in the stage IV nephron. These studies support a model for myosin VI function in the endocytic process of the proximal tubule.
Collapse
Affiliation(s)
- Daniel Biemesderfer
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut 06520-8029, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
An important mechanism for the initiation and progression of atherosclerosis is the loss of endothelial integrity, which is required for normal blood vessel function. The important components of the endothelial cell cytoskeleton system that regulate endothelial integrity include actin microfilaments and microtubules, which are both associated with protein complexes that regulate cell-cell and cell-substratum adhesion. To date, studies have shown that microfilaments are essential in maintaining the structural integrity of the endothelium while microtubules regulate the directional cell migration during repair. When microtubules are disrupted at the onset of wounding, neither centrosome reorientation, which is essential for efficient endothelial cell wound repair, nor cell migration occurs. Disruption of microfilaments is also associated with inefficient endothelial cell migration and repair. How then might these systems be associated with one another? Linker proteins, which may facilitate interaction between microtubules and actin microfilaments, have recently been identified in nonendothelial systems. It is likely that microtubule-microfilament interactions are important in the complex regulation of endothelial integrity and repair especially as they relate to atherosclerotic plaque formation.
Collapse
Affiliation(s)
- J S Y Lee
- Department of Pathology, University Health Network, University of Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Abstract
Hereditary isolated hearing loss is genetically highly heterogeneous. Over 100 genes are predicted to cause this disorder in humans. Sixty loci have been reported and 24 genes underlying 28 deafness forms have been identified. The present epistemic stage in the realm consists in a preliminary characterization of the encoded proteins and the associated defective biological processes. Since for several of the deafness forms we still only have fuzzy notions of their pathogenesis, we here adopt a presentation of the various deafness forms based on the site of the primary defect: hair cell defects, nonsensory cell defects, and tectorial membrane anomalies. The various deafness forms so far studied appear as monogenic disorders. They are all rare with the exception of one, caused by mutations in the gene encoding the gap junction protein connexin26, which accounts for between one third to one half of the cases of prelingual inherited deafness in Caucasian populations.
Collapse
Affiliation(s)
- C Petit
- Unité de Génétique des Déficits Sensoriels, CNRS URA 1968, Institut Pasteur, 25 rue du Dr Roux, Paris cedex 15, 75724 France.
| | | | | |
Collapse
|
31
|
Lanzetti L, Di Fiore PP, Scita G. Pathways linking endocytosis and actin cytoskeleton in mammalian cells. Exp Cell Res 2001; 271:45-56. [PMID: 11697881 DOI: 10.1006/excr.2001.5369] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- L Lanzetti
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Ripamonti 435, Milan, 20141, Italy
| | | | | |
Collapse
|
32
|
Abstract
Melanosomes are morphologically and functionally unique organelles within which melanin pigments are synthesized and stored. Melanosomes share some characteristics with lysosomes, but can be distinguished from them in many ways. The biogenesis and intracellular movement of melanosomes and related organelles are disrupted in several genetic disorders in mice and humans. The recent characterization of genes defective in these diseases has reinvigorated interest in the melanosome as a model system for understanding the molecular mechanisms that underlie intracellular membrane dynamics.
Collapse
Affiliation(s)
- M S Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, USA.
| | | |
Collapse
|
33
|
Melchionda S, Ahituv N, Bisceglia L, Sobe T, Glaser F, Rabionet R, Arbones ML, Notarangelo A, Di Iorio E, Carella M, Zelante L, Estivill X, Avraham KB, Gasparini P. MYO6, the human homologue of the gene responsible for deafness in Snell's waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am J Hum Genet 2001; 69:635-40. [PMID: 11468689 PMCID: PMC1235492 DOI: 10.1086/323156] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Accepted: 06/28/2001] [Indexed: 11/03/2022] Open
Abstract
Mutations in the unconventional myosin VI gene, Myo6, are associated with deafness and vestibular dysfunction in the Snell's waltzer (sv) mouse. The corresponding human gene, MYO6, is located on chromosome 6q13. We describe the mapping of a new deafness locus, DFNA22, on chromosome 6q13 in a family affected by a nonsyndromic dominant form of deafness (NSAD), and the subsequent identification of a missense mutation in the MYO6 gene in all members of the family with hearing loss.
Collapse
Affiliation(s)
- Salvatore Melchionda
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Nadav Ahituv
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Luigi Bisceglia
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Tama Sobe
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Fabian Glaser
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Raquel Rabionet
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Maria Lourdes Arbones
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Angelo Notarangelo
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Enzo Di Iorio
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Massimo Carella
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Leopoldo Zelante
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Xavier Estivill
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Karen B. Avraham
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| | - Paolo Gasparini
- Servizio Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico—Ospedale “Casa Sollievo Sofferenza,” San Giovanni Rotondo, Italy; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv; Medical and Molecular Genetics Center—Institut Recerca Oncologica, Hospital Duran i Reynals, Barcelona; and Tigem, Naples, Italy
| |
Collapse
|
34
|
Abstract
Hair cells of the vertebrate inner ear are mechanosensors that detect sound, gravity and acceleration. They have a specialized cytoskeleton optimized for the transmission of mechanical force. Hair cell defects are a major cause of deafness. The cloning of disease genes and studies of model organisms have provided insights into the mechanisms that regulate the differentiation of hair cells and their cytoskeleton. The studies have also provided new insights into the function of receptors such as integrins and protocadherins, and cytoplasmic proteins such as Rho-type GTPases and unconventional myosins, in organizing the actin cytoskeleton.
Collapse
Affiliation(s)
- U Müller
- Friedrich Miescher Institute, Maulbeerstr. 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
35
|
Buss F, Arden SD, Lindsay M, Luzio J, Kendrick-Jones J. Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J 2001; 20:3676-84. [PMID: 11447109 PMCID: PMC125554 DOI: 10.1093/emboj/20.14.3676] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myosin VI is involved in membrane traffic and dynamics and is the only myosin known to move towards the minus end of actin filaments. Splice variants of myosin VI with a large insert in the tail domain were specifically expressed in polarized cells containing microvilli. In these polarized cells, endogenous myosin VI containing the large insert was concentrated at the apical domain co-localizing with clathrin- coated pits/vesicles. Using full-length myosin VI and deletion mutants tagged with green fluorescent protein (GFP) we have shown that myosin VI associates and co-localizes with clathrin-coated pits/vesicles by its C-terminal tail. Myosin VI, precipitated from whole cytosol, was present in a protein complex containing adaptor protein (AP)-2 and clathrin, and enriched in purified clathrin-coated vesicles. Over-expression of the tail domain of myosin VI containing the large insert in fibroblasts reduced transferrin uptake in transiently and stably transfected cells by >50%. Myosin VI is the first motor protein to be identified associated with clathrin-coated pits/vesicles and shown to modulate clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Folma Buss
- Department of Clinical Biochemistry and Wellcome Trust Centre for the Study of Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2XY and
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK Corresponding author e-mail:
| | | | | | | | - John Kendrick-Jones
- Department of Clinical Biochemistry and Wellcome Trust Centre for the Study of Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2XY and
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK Corresponding author e-mail:
| |
Collapse
|
36
|
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|