1
|
Taniguchi I. The SARS-CoV-2 ORF6 protein inhibits nuclear export of mRNA and spliceosomal U snRNA. PLoS One 2024; 19:e0312098. [PMID: 39480836 PMCID: PMC11527279 DOI: 10.1371/journal.pone.0312098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19). SARS-CoV-2 infection suppresses host innate immunity and impairs cell viability. Among the viral proteins, ORF6 exhibits potent interferon (IFN) antagonistic activity and cellular toxicity. It also interacts with the RNA export factor RAE1, which bridges the nuclear pore complex and nuclear export receptors, suggesting an effect on RNA export. Using the Xenopus oocyte microinjection system, I found that ORF6 blocked the export of not only mRNA but also spliceosomal U snRNA. I further demonstrated that ORF6 affects the interaction between RAE1 and nuclear export receptors and inhibits the RNA binding of RAE1. These effects of ORF6 may cumulatively block the export of several classes of RNA. I also found that ORF6 binds RNA and forms oligomers. These findings provide insights into the suppression of innate immune responses and the reduction in cell viability caused by SARS-CoV-2 infection, contributing to the development of antiviral drugs targeting ORF6.
Collapse
Affiliation(s)
- Ichiro Taniguchi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Sutjita P, Musalgaonkar S, Recchia-Rife J, Huang L, Xhemalce B, Johnson AW. The Ribosome Assembly Factor LSG1 Interacts with Vesicle-Associated Membrane Protein-Associated Proteins (VAPs). Mol Cell Biol 2024; 44:345-357. [PMID: 39133101 PMCID: PMC11376406 DOI: 10.1080/10985549.2024.2384600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024] Open
Abstract
LSG1 is a conserved GTPase involved in ribosome assembly. It is required for the eviction of the nuclear export adapter NMD3 from the pre-60S subunit in the cytoplasm. In human cells, LSG1 has also been shown to interact with vesicle-associated membrane protein-associated proteins (VAPs) that are found primarily on the endoplasmic reticulum. VAPs interact with a large host of proteins which contain FFAT motifs (two phenylalanines (FF) in an acidic tract) and are involved in many cellular functions including membrane traffic and regulation of lipid transport. Here, we show that human LSG1 binds to VAPs via a noncanonical FFAT-like motif. Deletion of this motif specifically disrupts the localization of LSG1 to the ER, without perturbing LSG1-dependent recycling of NMD3 in cells or modulation of LSG1 GTPase activity in vitro.
Collapse
Affiliation(s)
- Putri Sutjita
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas, USA
| | | | - Jeffrey Recchia-Rife
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Lisa Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Arlen W. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Yeh MC, Hsu NH, Chu HY, Yang CH, Hsu PH, Chou CC, Shie JT, Lee WM, Ho MC, Lo KY. Dual protection by Bcp1 and Rkm1 ensures incorporation of uL14 into pre-60S ribosomal subunits. J Cell Biol 2024; 223:e202306117. [PMID: 39007857 PMCID: PMC11248248 DOI: 10.1083/jcb.202306117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/13/2024] [Accepted: 04/19/2024] [Indexed: 07/16/2024] Open
Abstract
Eukaryotic ribosomal proteins contain extended regions essential for translation coordination. Dedicated chaperones stabilize the associated ribosomal proteins. We identified Bcp1 as the chaperone of uL14 in Saccharomyces cerevisiae. Rkm1, the lysine methyltransferase of uL14, forms a ternary complex with Bcp1 and uL14 to protect uL14. Rkm1 is transported with uL14 by importins to the nucleus, and Bcp1 disassembles Rkm1 and importin from uL14 simultaneously in a RanGTP-independent manner. Molecular docking, guided by crosslinking mass spectrometry and validated by a low-resolution cryo-EM map, reveals the correlation between Bcp1, Rkm1, and uL14, demonstrating the protection model. In addition, the ternary complex also serves as a surveillance point, whereas incorrect uL14 is retained on Rkm1 and prevented from loading to the pre-60S ribosomal subunits. This study reveals the molecular mechanism of how uL14 is protected and quality checked by serial steps to ensure its safe delivery from the cytoplasm until its incorporation into the 60S ribosomal subunit.
Collapse
Affiliation(s)
- Min-Chi Yeh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ning-Hsiang Hsu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hao-Yu Chu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, College of Life Science, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jing-Ting Shie
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wei-Ming Lee
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Çimen Mesutoğlu Ö. The use of artificial neural network for modelling adsorption of Congo red onto activated hazelnut shell. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:630. [PMID: 38896197 DOI: 10.1007/s10661-024-12797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Activated hazelnut shell (HSAC), an organic waste, was utilized for the adsorptive removal of Congo red (CR) dye from aqueous solutions, and a modelling study was conducted using artificial neural networks (ANNs). The structure and characteristic functional groups of the material were examined by the FTIR method. The BET surface area of the synthesized material, named HSAC, was 812 m2/g. Conducted in a batch system, the adsorption experiments resulted in a notable removal efficiency of 87% under optimal conditions. The kinetic data for hazelnut shell activated carbon (HSAC) removal of CR were most accurately represented by the pseudo-second-order kinetic model (R2 = 0.998). Furthermore, the equilibrium data demonstrated a strong agreement with the Freundlich model. The maximum adsorption capacity of HSAC for CR was determined to be 34.8 mg/g. The optimum adsorption parameters were determined to be pH 6, contact time of 60 min, 10 g/L of HSAC, and a concentration of 400 mg/L for CR. Considering the various experimental parameters influencing CR adsorption, an artificial neural network (ANN) model was constructed. The analysis of the ANN model revealed a correlation of 98%, indicating that the output parameter could be reliably predicted. Thus, it was concluded that ANN could be employed for the removal of CR from water using HSAC.
Collapse
|
5
|
Mitterer V, Hamze H, Kunowska N, Stelzl U, Henras A, Hurt E. The RNA helicase Dbp10 coordinates assembly factor association with PTC maturation during ribosome biogenesis. Nucleic Acids Res 2024; 52:1975-1987. [PMID: 38113283 PMCID: PMC10899779 DOI: 10.1093/nar/gkad1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
During ribosome biogenesis a plethora of assembly factors and essential enzymes drive the unidirectional maturation of nascent pre-ribosomal subunits. The DEAD-box RNA helicase Dbp10 is suggested to restructure pre-ribosomal rRNA of the evolving peptidyl-transferase center (PTC) on nucleolar ribosomal 60S assembly intermediates. Here, we show that point mutations within conserved catalytic helicase-core motifs of Dbp10 yield a dominant-lethal growth phenotype. Such dbp10 mutants, which stably associate with pre-60S intermediates, impair pre-60S biogenesis at a nucleolar stage prior to the release of assembly factor Rrp14 and stable integration of late nucleolar factors such as Noc3. Furthermore, the binding of the GTPase Nug1 to particles isolated directly via mutant Dbp10 bait proteins is specifically inhibited. The N-terminal domain of Nug1 interacts with Dbp10 and the methyltransferase Spb1, whose pre-60S incorporation is also reduced in absence of functional Dbp10 resulting in decreased methylation of 25S rRNA nucleotide G2922. Our data suggest that Dbp10's helicase activity generates the necessary framework for assembly factor docking thereby permitting PTC rRNA methylation and the progression of pre-60S maturation.
Collapse
Affiliation(s)
- Valentin Mitterer
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Hussein Hamze
- Molecular, Cellular and Developmental Biology Unit (MCD), Center for Integrative Biology (CBI), CNRS, University of Toulouse, 31062 Toulouse, France
| | - Natalia Kunowska
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Center for Integrative Biology (CBI), CNRS, University of Toulouse, 31062 Toulouse, France
| | - Ed Hurt
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Wang X, Xu J, Li Q, Zhang Y, Lin Z, Zhai X, Wang F, Huang J, Gao Q, Wen J, Li L, Feng Y, Luo H, Li Q, Liu X, Li J, Zhao F, Zhang L, Niu T, Sun C, Zheng Y. RNA-binding protein hnRNPU regulates multiple myeloma resistance to selinexor. Cancer Lett 2024; 580:216486. [PMID: 37984724 DOI: 10.1016/j.canlet.2023.216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
Multiple myeloma (MM) is an incurable haematological cancer. Selinexor is the first-in-class selective inhibitor of nuclear export (SINE) and was newly approved for the treatment of MM. Until now, very few studies have investigated selinexor resistance in MM. Heterogeneous nuclear ribonucleoprotein U (hnRNPU) is an RNA-binding protein and a component of hnRNP complexes. Here we found that hnRNPU regulates MM sensitivity to selinexor. Cell apoptosis assays were performed to compare selinexor-induced cell death in control knockdown (CTR-KD) and hnRNPU knockdown (hnR-KD) MM cells. HnRNPU knockdown-induced nuclear protein retention was examined by proteomics array. HnRNPU-conferred mRNA translation regulation was evaluated by sucrose gradient assay, RNA electrophoresis mobility shift assay, and RNA pull-down assay. We found that hnR-KD MM cells were more sensitive to selinexor-induced cell death in vitro and in mouse model. MM patients who responded to selinexor had relatively low hnRNPU expression. In brief, hnRNPU comprehensively regulated MM sensitivity to selinexor by affecting the localization of LTV1 and NMD3, and mRNA translation of MDM2 and RAN, which were involved in XPO1-mediated nuclear export of ribosome subunits and tumor suppressors. Our discoveries indicate that hnRNPU might be a possible marker to categorize MM patients for the use of Selinexor.
Collapse
Affiliation(s)
- Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Juan Xu
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qun Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology China, China
| | - Yue Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, China; Department of Hematology, The Affiliated Hospital of Chengdu University, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qianwen Gao
- Department of Hematology, West China Hospital, Sichuan University, China; School of Life Science, Sichuan University, China
| | - Jingjing Wen
- Department of Hematology, West China Hospital, Sichuan University, China; Department of Hematology, Mian-yang Central Hospital, China
| | - Linfeng Li
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yu Feng
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qian Li
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xiang Liu
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Junying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology China, China
| | - Fei Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology China, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology China, China.
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, China.
| |
Collapse
|
7
|
Tang J, Li W, Chiu TY, Martínez-Peña F, Luo Z, Chong CT, Wei Q, Gazaniga N, West TJ, See YY, Lairson LL, Parker CG, Baran PS. Synthesis of portimines reveals the basis of their anti-cancer activity. Nature 2023; 622:507-513. [PMID: 37730997 PMCID: PMC10699793 DOI: 10.1038/s41586-023-06535-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.
Collapse
Affiliation(s)
- Junchen Tang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Tzu-Yuan Chiu
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Zengwei Luo
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Qijia Wei
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Thomas J West
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yi Yang See
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | | | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
8
|
Junod SL, Tingey M, Kelich JM, Goryaynov A, Herbine K, Yang W. Dynamics of nuclear export of pre-ribosomal subunits revealed by high-speed single-molecule microscopy in live cells. iScience 2023; 26:107445. [PMID: 37599825 PMCID: PMC10433129 DOI: 10.1016/j.isci.2023.107445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
We present a study on the nuclear export efficiency and time of pre-ribosomal subunits in live mammalian cells, using high-speed single-molecule tracking and single-molecule fluorescence resonance energy transfer techniques. Our findings reveal that pre-ribosomal particles exhibit significantly higher nuclear export efficiency compared to other large cargos like mRNAs, with around two-thirds of interactions between the pre-60S or pre-40S and the nuclear pore complexes (NPCs) resulting in successful export to the cytoplasm. We also demonstrate that nuclear transport receptor (NTR) chromosomal maintenance 1 (CRM1) plays a crucial role in nuclear export efficiency, with pre-60S and pre-40S particle export efficiency decreasing by 11-17-fold when CRM1 is inhibited. Our results suggest that multiple copies of CRM1 work cooperatively to chaperone pre-ribosomal subunits through the NPC, thus increasing export efficiency and decreasing export time. Significantly, this cooperative NTR mechanism extends beyond pre-ribosomal subunits, as evidenced by the enhanced nucleocytoplasmic transport of proteins.
Collapse
Affiliation(s)
- Samuel L. Junod
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, PA, USA
| | | | | | - Karl Herbine
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Li Z, Chen S, Zhao L, Huang G, Xu H, Yang X, Wang P, Gao N, Sui SF. Nuclear export of pre-60S particles through the nuclear pore complex. Nature 2023:10.1038/s41586-023-06128-y. [PMID: 37258668 DOI: 10.1038/s41586-023-06128-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The nuclear pore complex (NPC) is the bidirectional gate that mediates the exchange of macromolecules or their assemblies between nucleus and cytoplasm1-3. The assembly intermediates of the ribosomal subunits, pre-60S and pre-40S particles, are among the largest cargoes of the NPC and the export of these gigantic ribonucleoproteins requires numerous export factors4,5. Here we report the cryo-electron microscopy structure of native pre-60S particles trapped in the channel of yeast NPCs. In addition to known assembly factors, multiple factors with export functions are also included in the structure. These factors in general bind to either the flexible regions or subunit interface of the pre-60S particle, and virtually form many anchor sites for NPC binding. Through interactions with phenylalanine-glycine (FG) repeats from various nucleoporins of NPC, these factors collectively facilitate the passage of the pre-60S particle through the central FG repeat network of the NPC. Moreover, in silico analysis of the axial and radial distribution of pre-60S particles within the NPC shows that a single NPC can take up to four pre-60S particles simultaneously, and pre-60S particles are enriched in the inner ring regions close to the wall of the NPC with the solvent-exposed surface facing the centre of the nuclear pore. Our data suggest a translocation model for the export of pre-60S particles through the NPC.
Collapse
Affiliation(s)
- Zongqiang Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuaijiabin Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liang Zhao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guoqiang Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huiqin Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyun Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Peiyi Wang
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Sen-Fang Sui
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
10
|
Khan M, Hou S, Chen M, Lei H. Mechanisms of RNA export and nuclear retention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1755. [PMID: 35978483 DOI: 10.1002/wrna.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 05/13/2023]
Abstract
With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Tingey M, Li Y, Yu W, Young A, Yang W. Spelling out the roles of individual nucleoporins in nuclear export of mRNA. Nucleus 2022; 13:170-193. [PMID: 35593254 PMCID: PMC9132428 DOI: 10.1080/19491034.2022.2076965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022] Open
Abstract
The Nuclear Pore Complex (NPC) represents a critical passage through the nuclear envelope for nuclear import and export that impacts nearly every cellular process at some level. Recent technological advances in the form of Auxin Inducible Degron (AID) strategies and Single-Point Edge-Excitation sub-Diffraction (SPEED) microscopy have enabled us to provide new insight into the distinct functions and roles of nuclear basket nucleoporins (Nups) upon nuclear docking and export for mRNAs. In this paper, we provide a review of our recent findings as well as an assessment of new techniques, updated models, and future perspectives in the studies of mRNA's nuclear export.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Albert Young
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
A simple thermodynamic description of phase separation of Nup98 FG domains. Nat Commun 2022; 13:6172. [PMID: 36257947 PMCID: PMC9579204 DOI: 10.1038/s41467-022-33697-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
The permeability barrier of nuclear pore complexes (NPCs) controls nucleocytoplasmic transport. It retains inert macromolecules but allows facilitated passage of nuclear transport receptors that shuttle cargoes into or out of nuclei. The barrier can be described as a condensed phase assembled from cohesive FG repeat domains, including foremost the charge-depleted FG domain of Nup98. We found that Nup98 FG domains show an LCST-type phase separation, and we provide comprehensive and orthogonal experimental datasets for a quantitative description of this behaviour. A derived thermodynamic model correlates saturation concentration with repeat number, temperature, and ionic strength. It allows estimating the enthalpy, entropy, and ΔG (0.2 kJ/mol, 0.1 kB·T) contributions per repeat to phase separation and inter-repeat cohesion. While changing the cohesion strength strongly impacts the strictness of barrier, these numbers provide boundary conditions for in-depth modelling not only of barrier assembly but also of NPC passage.
Collapse
|
14
|
Mattola S, Aho V, Bustamante‐Jaramillo LF, Pizzioli E, Kann M, Vihinen‐Ranta M. Nuclear entry and egress of parvoviruses. Mol Microbiol 2022; 118:295-308. [PMID: 35974704 PMCID: PMC9805091 DOI: 10.1111/mmi.14974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 01/09/2023]
Abstract
Parvoviruses are small non-enveloped single-stranded DNA viruses, which depend on host cell nuclear transcriptional and replication machinery. After endosomal exposure of nuclear localization sequence and a phospholipase A2 domain on the capsid surface, and escape into the cytosol, parvovirus capsids enter the nucleus. Due to the small capsid diameter of 18-26 nm, intact capsids can potentially pass into the nucleus through nuclear pore complexes (NPCs). This might be facilitated by active nuclear import, but capsids may also follow an alternative entry pathway that includes activation of mitotic factors and local transient disruption of the nuclear envelope. The nuclear entry is followed by currently undefined events of viral genome uncoating. After genome release, viral replication compartments are initiated and infection proceeds. Parvoviral genomes replicate during cellular S phase followed by nuclear capsid assembly during virus-induced S/G2 cell cycle arrest. Nuclear egress of capsids occurs upon nuclear envelope degradation during apoptosis and cell lysis. An alternative pathway for nuclear export has been described using active transport through the NPC mediated by the chromosome region maintenance 1 protein, CRM1, which is enhanced by phosphorylation of the N-terminal domain of VP2. However, other alternative but not yet uncharacterized nuclear export pathways cannot be excluded.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | - Vesa Aho
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | | | - Edoardo Pizzioli
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Michael Kann
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden,Sahlgrenska AcademyGothenburgSweden,Department of Clinical MicrobiologyRegion Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Maija Vihinen‐Ranta
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| |
Collapse
|
15
|
Sending the message: specialized RNA export mechanisms in trypanosomes. Trends Parasitol 2022; 38:854-867. [PMID: 36028415 PMCID: PMC9894534 DOI: 10.1016/j.pt.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Export of RNA from the nucleus is essential for all eukaryotic cells and has emerged as a major step in the control of gene expression. mRNA molecules are required to complete a complex series of processing events and pass a quality control system to protect the cytoplasm from the translation of aberrant proteins. Many of these events are highly conserved across eukaryotes, reflecting their ancient origin, but significant deviation from a canonical pathway as described from animals and fungi has emerged in the trypanosomatids. With significant implications for the mechanisms that control gene expression and hence differentiation, responses to altered environments and fitness as a parasite, these deviations may also reveal additional, previously unsuspected, mRNA export pathways.
Collapse
|
16
|
Lucas BA, Zhang K, Loerch S, Grigorieff N. In situ single particle classification reveals distinct 60S maturation intermediates in cells. eLife 2022; 11:e79272. [PMID: 36005291 PMCID: PMC9444246 DOI: 10.7554/elife.79272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we showed that high-resolution template matching can localize ribosomes in two-dimensional electron cryo-microscopy (cryo-EM) images of untilted Mycoplasma pneumoniae cells with high precision (Lucas et al., 2021). Here, we show that comparing the signal-to-noise ratio (SNR) observed with 2DTM using different templates relative to the same cellular target can correct for local variation in noise and differentiate related complexes in focused ion beam (FIB)-milled cell sections. We use a maximum likelihood approach to define the probability of each particle belonging to each class, thereby establishing a statistic to describe the confidence of our classification. We apply this method in two contexts to locate and classify related intermediate states of 60S ribosome biogenesis in the Saccharomyces cerevisiae cell nucleus. In the first, we separate the nuclear pre-60S population from the cytoplasmic mature 60S population, using the subcellular localization to validate assignment. In the second, we show that relative 2DTM SNRs can be used to separate mixed populations of nuclear pre-60S that are not visually separable. 2DTM can distinguish related molecular populations without the need to generate 3D reconstructions from the data to be classified, permitting classification even when only a few target particles exist in a cell.
Collapse
Affiliation(s)
- Bronwyn A Lucas
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Kexin Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Sarah Loerch
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Nikolaus Grigorieff
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| |
Collapse
|
17
|
Micic J, Rodríguez-Galán O, Babiano R, Fitzgerald F, Fernández-Fernández J, Zhang Y, Gao N, Woolford JL, de la Cruz J. Ribosomal protein eL39 is important for maturation of the nascent polypeptide exit tunnel and proper protein folding during translation. Nucleic Acids Res 2022; 50:6453-6473. [PMID: 35639884 PMCID: PMC9226512 DOI: 10.1093/nar/gkac366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
During translation, nascent polypeptide chains travel from the peptidyl transferase center through the nascent polypeptide exit tunnel (NPET) to emerge from 60S subunits. The NPET includes portions of five of the six 25S/5.8S rRNA domains and ribosomal proteins uL4, uL22, and eL39. Internal loops of uL4 and uL22 form the constriction sites of the NPET and are important for both assembly and function of ribosomes. Here, we investigated the roles of eL39 in tunnel construction, 60S biogenesis, and protein synthesis. We show that eL39 is important for proper protein folding during translation. Consistent with a delay in processing of 27S and 7S pre-rRNAs, eL39 functions in pre-60S assembly during middle nucleolar stages. Our biochemical assays suggest the presence of eL39 in particles at these stages, although it is not visualized in them by cryo-electron microscopy. This indicates that eL39 takes part in assembly even when it is not fully accommodated into the body of pre-60S particles. eL39 is also important for later steps of assembly, rotation of the 5S ribonucleoprotein complex, likely through long range rRNA interactions. Finally, our data strongly suggest the presence of alternative pathways of ribosome assembly, previously observed in the biogenesis of bacterial ribosomal subunits.
Collapse
Affiliation(s)
- Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Fiona Fitzgerald
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Yunyang Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
18
|
Hiregange DG, Rivalta A, Yonath A, Zimmerman E, Bashan A, Yonath H. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan Anemia. FEBS Open Bio 2022; 12:1419-1434. [PMID: 35583751 PMCID: PMC9249338 DOI: 10.1002/2211-5463.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan Anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggests that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated >90% sequence identity with the wild type, hinting at its expression in cases of absent or truncated gene products.
Collapse
Affiliation(s)
| | - Andre Rivalta
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ada Yonath
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ella Zimmerman
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Anat Bashan
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Hagith Yonath
- Internal Medicine A and Genetics Institute Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
19
|
Najbauer EE, Ng SC, Griesinger C, Görlich D, Andreas LB. Atomic resolution dynamics of cohesive interactions in phase-separated Nup98 FG domains. Nat Commun 2022; 13:1494. [PMID: 35314668 PMCID: PMC8938434 DOI: 10.1038/s41467-022-28821-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/09/2022] [Indexed: 01/02/2023] Open
Abstract
Cohesive FG domains assemble into a condensed phase forming the selective permeability barrier of nuclear pore complexes. Nanoscopic insight into fundamental cohesive interactions has long been hampered by the sequence heterogeneity of native FG domains. We overcome this challenge by utilizing an engineered perfectly repetitive sequence and a combination of solution and magic angle spinning NMR spectroscopy. We map the dynamics of cohesive interactions in both phase-separated and soluble states at atomic resolution using TROSY for rotational correlation time (TRACT) measurements. We find that FG repeats exhibit nanosecond-range rotational correlation times and remain disordered in both states, although FRAP measurements show slow translation of phase-separated FG domains. NOESY measurements enable the direct detection of contacts involved in cohesive interactions. Finally, increasing salt concentration and temperature enhance phase separation and decrease local mobility of FG repeats. This lower critical solution temperature (LCST) behaviour indicates that cohesive interactions are driven by entropy. The permeability barrier of nuclear pores is formed by disordered and yet self-interacting FG repeat domains, whose sequence heterogeneity is a challenge for mechanistic insights. Here the authors overcome this challenge and characterize the protein’s dynamics by applying NMR techniques to an FG phase system that has been simplified to its essentials.
Collapse
|
20
|
Transcriptomic analysis reveals process of autolysis of Kluyveromyces marxianus in vacuum negative pressure and the higher temperature. Int Microbiol 2022; 25:515-529. [DOI: 10.1007/s10123-022-00240-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
|
21
|
Lemière J, Real-Calderon P, Holt LJ, Fai TG, Chang F. Control of nuclear size by osmotic forces in Schizosaccharomyces pombe. eLife 2022; 11:76075. [PMID: 35856499 PMCID: PMC9410708 DOI: 10.7554/elife.76075] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The size of the nucleus scales robustly with cell size so that the nuclear-to-cell volume ratio (N/C ratio) is maintained during cell growth in many cell types. The mechanism responsible for this scaling remains mysterious. Previous studies have established that the N/C ratio is not determined by DNA amount but is instead influenced by factors such as nuclear envelope mechanics and nuclear transport. Here, we developed a quantitative model for nuclear size control based upon colloid osmotic pressure and tested key predictions in the fission yeast Schizosaccharomyces pombe. This model posits that the N/C ratio is determined by the numbers of macromolecules in the nucleoplasm and cytoplasm. Osmotic shift experiments showed that the fission yeast nucleus behaves as an ideal osmometer whose volume is primarily dictated by osmotic forces. Inhibition of nuclear export caused accumulation of macromolecules in the nucleoplasm, leading to nuclear swelling. We further demonstrated that the N/C ratio is maintained by a homeostasis mechanism based upon synthesis of macromolecules during growth. These studies demonstrate the functions of colloid osmotic pressure in intracellular organization and size control.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Paula Real-Calderon
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States,Centro Andaluz de Biología del DesarrolloSevillaSpain
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone HealthNew YorkUnited States
| | - Thomas G Fai
- Department of Mathematics and Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
22
|
Oborská-Oplová M, Fischer U, Altvater M, Panse VG. Eukaryotic Ribosome assembly and Nucleocytoplasmic Transport. Methods Mol Biol 2022; 2533:99-126. [PMID: 35796985 PMCID: PMC9761919 DOI: 10.1007/978-1-0716-2501-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The process of eukaryotic ribosome assembly stretches across the nucleolus, the nucleoplasm and the cytoplasm, and therefore relies on efficient nucleocytoplasmic transport. In yeast, the import machinery delivers ~140,000 ribosomal proteins every minute to the nucleus for ribosome assembly. At the same time, the export machinery facilitates translocation of ~2000 pre-ribosomal particles every minute through ~200 nuclear pore complexes (NPC) into the cytoplasm. Eukaryotic ribosome assembly also requires >200 conserved assembly factors, which transiently associate with pre-ribosomal particles. Their site(s) of action on maturing pre-ribosomes are beginning to be elucidated. In this chapter, we outline protocols that enable rapid biochemical isolation of pre-ribosomal particles for single particle cryo-electron microscopy (cryo-EM) and in vitro reconstitution of nuclear transport processes. We discuss cell-biological and genetic approaches to investigate how the ribosome assembly and the nucleocytoplasmic transport machineries collaborate to produce functional ribosomes.
Collapse
Affiliation(s)
- Michaela Oborská-Oplová
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ute Fischer
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
23
|
Birikmen M, Bohnsack KE, Tran V, Somayaji S, Bohnsack MT, Ebersberger I. Tracing Eukaryotic Ribosome Biogenesis Factors Into the Archaeal Domain Sheds Light on the Evolution of Functional Complexity. Front Microbiol 2021; 12:739000. [PMID: 34603269 PMCID: PMC8481954 DOI: 10.3389/fmicb.2021.739000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/17/2021] [Indexed: 01/23/2023] Open
Abstract
Ribosome assembly is an essential and carefully choreographed cellular process. In eukaryotes, several 100 proteins, distributed across the nucleolus, nucleus, and cytoplasm, co-ordinate the step-wise assembly of four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (RPs) into the mature ribosomal subunits. Due to the inherent complexity of the assembly process, functional studies identifying ribosome biogenesis factors and, more importantly, their precise functions and interplay are confined to a few and very well-established model organisms. Although best characterized in yeast (Saccharomyces cerevisiae), emerging links to disease and the discovery of additional layers of regulation have recently encouraged deeper analysis of the pathway in human cells. In archaea, ribosome biogenesis is less well-understood. However, their simpler sub-cellular structure should allow a less elaborated assembly procedure, potentially providing insights into the functional essentials of ribosome biogenesis that evolved long before the diversification of archaea and eukaryotes. Here, we use a comprehensive phylogenetic profiling setup, integrating targeted ortholog searches with automated scoring of protein domain architecture similarities and an assessment of when search sensitivity becomes limiting, to trace 301 curated eukaryotic ribosome biogenesis factors across 982 taxa spanning the tree of life and including 727 archaea. We show that both factor loss and lineage-specific modifications of factor function modulate ribosome biogenesis, and we highlight that limited sensitivity of the ortholog search can confound evolutionary conclusions. Projecting into the archaeal domain, we find that only few factors are consistently present across the analyzed taxa, and lineage-specific loss is common. While members of the Asgard group are not special with respect to their inventory of ribosome biogenesis factors (RBFs), they unite the highest number of orthologs to eukaryotic RBFs in one taxon. Using large ribosomal subunit maturation as an example, we demonstrate that archaea pursue a simplified version of the corresponding steps in eukaryotes. Much of the complexity of this process evolved on the eukaryotic lineage by the duplication of ribosomal proteins and their subsequent functional diversification into ribosome biogenesis factors. This highlights that studying ribosome biogenesis in archaea provides fundamental information also for understanding the process in eukaryotes.
Collapse
Affiliation(s)
- Mehmet Birikmen
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Vinh Tran
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Sharvari Somayaji
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University, Göttingen, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Center (S-BIK-F), Frankfurt, Germany.,LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| |
Collapse
|
24
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
25
|
Bagatelli FFM, de Luna Vitorino FN, da Cunha JPC, Oliveira CC. The ribosome assembly factor Nop53 has a structural role in the formation of nuclear pre-60S intermediates, affecting late maturation events. Nucleic Acids Res 2021; 49:7053-7074. [PMID: 34125911 PMCID: PMC8266606 DOI: 10.1093/nar/gkab494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic ribosome biogenesis is an elaborate process during which ribosomal proteins assemble with the pre-rRNA while it is being processed and folded. Hundreds of assembly factors (AF) are required and transiently recruited to assist the sequential remodeling events. One of the most intricate ones is the stepwise removal of the internal transcribed spacer 2 (ITS2), between the 5.8S and 25S rRNAs, that constitutes together with five AFs the pre-60S ‘foot’. In the transition from nucleolus to nucleoplasm, Nop53 replaces Erb1 at the basis of the foot and recruits the RNA exosome for the ITS2 cleavage and foot disassembly. Here we comprehensively analyze the impact of Nop53 recruitment on the pre-60S compositional changes. We show that depletion of Nop53, different from nop53 mutants lacking the exosome-interacting motif, not only causes retention of the unprocessed foot in late pre-60S intermediates but also affects the transition from nucleolar state E particle to subsequent nuclear stages. Additionally, we reveal that Nop53 depletion causes the impairment of late maturation events such as Yvh1 recruitment. In light of recently described pre-60S cryo-EM structures, our results provide biochemical evidence for the structural role of Nop53 rearranging and stabilizing the foot interface to assist the Nog2 particle formation.
Collapse
Affiliation(s)
- Felipe F M Bagatelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Francisca N de Luna Vitorino
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, SP 05503-900, Brazil.,Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Julia P C da Cunha
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, SP 05503-900, Brazil.,Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
26
|
Khan M, Hou S, Azam S, Lei H. Sequence-dependent recruitment of SRSF1 and SRSF7 to intronless lncRNA NKILA promotes nuclear export via the TREX/TAP pathway. Nucleic Acids Res 2021; 49:6420-6436. [PMID: 34096602 PMCID: PMC8216466 DOI: 10.1093/nar/gkab445] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
The TREX-TAP pathway is vital for mRNA export. For spliced mRNA, the TREX complex is recruited during splicing; however, for intronless mRNA, recruitment is sequence dependent. However, the export of cytoplasmic long noncoding RNA (lncRNA) is poorly characterized. We report the identification of a cytoplasmic accumulation region (CAR-N) in the intronless lncRNA, NKILA. CAR-N removal led to strong nuclear retention of NKILA, and CAR-N insertion promoted the export of cDNA transcripts. In vitro RNP purification via CAR-N, mass spectrometry, and siRNA screening revealed that SRSF1 and SRSF7 were vital to NKILA export, and identified a cluster of SRSF1/7 binding sites within a 55 nucleotide sequence in CAR-N. Significant nuclear enrichment of NKILA was observed for NKILA lacking CAR-N or the cluster of binding sites in knock-in models. Depletion of TREX-TAP pathway components resulted in strong nuclear retention of NKILA. RNA and protein immunoprecipitation verified that SRSF1/7 were bound to NKILA and interacted with UAP56 and ALYREF. Moreover, NKILA lacking CAR-N was unable to inhibit breast cancer cell migration. We concluded that the binding of SRSF1/7 to clustered motifs in CAR-N facilitated TREX recruitment, promoting the export of NKILA, and confirmed the importance of NKILA localization to its function.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian 1160343, P.R. China
| | - Sikandar Azam
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, USA
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China
| |
Collapse
|
27
|
Ng SC, Güttler T, Görlich D. Recapitulation of selective nuclear import and export with a perfectly repeated 12mer GLFG peptide. Nat Commun 2021; 12:4047. [PMID: 34193851 PMCID: PMC8245513 DOI: 10.1038/s41467-021-24292-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
The permeability barrier of nuclear pore complexes (NPCs) controls nucleocytoplasmic transport. It retains inert macromolecules while allowing facilitated passage of importins and exportins, which in turn shuttle cargo into or out of cell nuclei. The barrier can be described as a condensed phase assembled from cohesive FG repeat domains. NPCs contain several distinct FG domains, each comprising variable repeats. Nevertheless, we now found that sequence heterogeneity is no fundamental requirement for barrier function. Instead, we succeeded in engineering a perfectly repeated 12mer GLFG peptide that self-assembles into a barrier of exquisite transport selectivity and fast transport kinetics. This barrier recapitulates RanGTPase-controlled importin- and exportin-mediated cargo transport and thus represents an ultimately simplified experimental model system. An alternative proline-free sequence forms an amyloid FG phase. Finally, we discovered that FG phases stain bright with ‘DNA-specific’ DAPI/ Hoechst probes, and that such dyes allow for a photo-induced block of nuclear transport. The permeability barrier of nuclear pore complexes blocks passage of inert macromolecules but allows rapid, receptor-mediated, and RanGTPase-driven transport of cargoes up to ribosome size. The authors now show that such a barrier can be faithfully recapitulated by an ultimately simplified FG phase assembled solely from a tandemly repeated 12mer GLFG peptide.
Collapse
Affiliation(s)
- Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Thomas Güttler
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
28
|
Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Sci Rep 2021; 11:2410. [PMID: 33510206 PMCID: PMC7844247 DOI: 10.1038/s41598-021-81610-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Arabidopsis REIL proteins are cytosolic ribosomal 60S-biogenesis factors. After shift to 10 °C, reil mutants deplete and slowly replenish non-translating eukaryotic ribosome complexes of root tissue, while controlling the balance of non-translating 40S- and 60S-subunits. Reil mutations respond by hyper-accumulation of non-translating subunits at steady-state temperature; after cold-shift, a KCl-sensitive 80S sub-fraction remains depleted. We infer that Arabidopsis may buffer fluctuating translation by pre-existing non-translating ribosomes before de novo synthesis meets temperature-induced demands. Reil1 reil2 double mutants accumulate 43S-preinitiation and pre-60S-maturation complexes and alter paralog composition of ribosomal proteins in non-translating complexes. With few exceptions, e.g. RPL3B and RPL24C, these changes are not under transcriptional control. Our study suggests requirement of de novo synthesis of eukaryotic ribosomes for long-term cold acclimation, feedback control of NUC2 and eIF3C2 transcription and links new proteins, AT1G03250, AT5G60530, to plant ribosome biogenesis. We propose that Arabidopsis requires biosynthesis of specialized ribosomes for cold acclimation.
Collapse
|
29
|
Mutational Analysis of the Nsa2 N-Terminus Reveals Its Essential Role in Ribosomal 60S Subunit Assembly. Int J Mol Sci 2020; 21:ijms21239108. [PMID: 33266193 PMCID: PMC7730687 DOI: 10.3390/ijms21239108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022] Open
Abstract
The ribosome assembly factor Nsa2 is part of the Rea1-Rsa4-Nsa2 interconnected relay on nuclear pre-60S particles that is essential for 60S ribosome biogenesis. Cryo-EM structures depict Nsa2 docked via its C-terminal β-barrel domain to nuclear pre-60S particles, whereas the extended N-terminus, consisting of three α-helical segments, meanders between various 25S rRNA helices with the extreme N-terminus in close vicinity to the Nog1 GTPase center. Here, we tested whether this unappreciated proximity between Nsa2 and Nog1 is of functional importance. Our findings demonstrate that a conservative mutation, Nsa2 Q3N, abolished cell growth and impaired 60S biogenesis. Subsequent genetic and biochemical analyses verified that the Nsa2 N-terminus is required to target Nsa2 to early pre-60S particles. However, overexpression of the Nsa2 N-terminus abolished cytoplasmic recycling of the Nog1 GTPase, and both Nog1 and the Nsa2-N (1-58) construct, but not the respective Nsa2-N (1-58) Q3N mutant, were found arrested on late cytoplasmic pre-60S particles. These findings point to specific roles of the different Nsa2 domains for 60S ribosome biogenesis.
Collapse
|
30
|
Guha S, Bhaumik SR. Viral regulation of mRNA export with potentials for targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194655. [PMID: 33246183 DOI: 10.1016/j.bbagrm.2020.194655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene expression begins with transcription in the nucleus to synthesize mRNA (messenger RNA), which is subsequently exported to the cytoplasm for translation to protein. Like transcription and translation, mRNA export is an important regulatory step of eukaryotic gene expression. Various factors are involved in regulating mRNA export, and thus gene expression. Intriguingly, some of these factors interact with viral proteins, and such interactions interfere with mRNA export of the host cell, favoring viral RNA export. Hence, viruses hijack host mRNA export machinery for export of their own RNAs from nucleus to cytoplasm for translation to proteins for viral life cycle, suppressing host mRNA export (and thus host gene expression and immune/antiviral response). Therefore, the molecules that can impair the interactions of these mRNA export factors with viral proteins could emerge as antiviral therapeutic agents to suppress viral RNA transport and enhance host mRNA export, thereby promoting host gene expression and immune response. Thus, there has been a number of studies to understand how virus hijacks mRNA export machinery in suppressing host gene expression and promoting its own RNA export to the cytoplasm for translation to proteins required for viral replication/assembly/life cycle towards developing targeted antiviral therapies, as concisely described here.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
31
|
Gales JP, Kubina J, Geldreich A, Dimitrova M. Strength in Diversity: Nuclear Export of Viral RNAs. Viruses 2020; 12:E1014. [PMID: 32932882 PMCID: PMC7551171 DOI: 10.3390/v12091014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Jón Pol Gales
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
- SVQV UMR-A 1131, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| |
Collapse
|
32
|
Jaramillo-Ramírez J, Marcial-Bazaldua N, Sánchez-Puig N. Characterisation of the interaction of guanine nucleotides with ribosomal GTPase Lsg1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140538. [PMID: 32916301 DOI: 10.1016/j.bbapap.2020.140538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/06/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Ribosome biogenesis in eukaryotes requires the participation of several transactivation factors that are involved in the modification, assembly, transport and quality control of the ribosomal subunits. One of these factors is the Large subunit GTPase 1 (Lsg1), a protein that acts as the release factor for the export adaptor named Nonsense-mediated mRNA decay 3 protein (Nmd3) and facilitates the incorporation of the last structural protein uL16 into the 60S subunit. Here, we characterised the recombinant yeast Lsg1 and studied its catalysis and binding properties for guanine nucleotides. We described the interaction of Lsg1 with guanine nucleotides alone and in the presence of the complex Nmd3•60S using fluorescence spectroscopy. Lsg1 has a greater affinity for GTP than for GDP suggesting that in the cell cytoplasm it exists mainly bound to the former. In the presence of 60S subunits loaded with Nmd3, the affinity of Lsg1 for both nucleotides increases but to a larger extent towards GTP. From this observation together with the excess of GTP present in the cytoplasm of exponentially growing cells over that of GDP, we can infer that the pre-ribosomal particle composed by Nmd3•60S acts as a GTP Stabilising Factor for Lsg1. Additionally, Lsg1 undergoes different conformational changes depending on its binding partner or the guanine nucleotides it interacts with. Steady-state kinetic analysis of free Lsg1 indicated slow GTP hydrolysis with values of kcat 1 min-1 and Km of 34 μM.
Collapse
Affiliation(s)
- Juliana Jaramillo-Ramírez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Nancy Marcial-Bazaldua
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Nuria Sánchez-Puig
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico..
| |
Collapse
|
33
|
Abe T, Nagai R, Shimazaki S, Kondo S, Nishimura S, Sakaguchi Y, Suzuki T, Imataka H, Tomita K, Takeuchi-Tomita N. In vitro yeast reconstituted translation system reveals function of eIF5A for synthesis of long polypeptide. J Biochem 2020; 167:451-462. [PMID: 32053170 DOI: 10.1093/jb/mvaa022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
We have recently developed an in vitro yeast reconstituted translation system, which is capable of synthesizing long polypeptides. Utilizing the system, we examined the role of eIF5A and its hypusine modification in translating polyproline sequence within long open reading frames. We found that polyproline motif inserted at the internal position of the protein arrests translation exclusively at low Mg2+ concentrations, and peptidylpolyproline-tRNA intrinsically destabilizes 80S ribosomes. We demonstrate that unmodified eIF5A essentially resolves such ribosome stalling; however, the hypusine modification drastically stimulates ability of eIF5A to rescue polyproline-mediated ribosome stalling and is particularly important for the efficient translation of the N-terminal or long internal polyproline motifs.
Collapse
Affiliation(s)
- Taisho Abe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Riku Nagai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shunta Shimazaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shunta Kondo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Satoshi Nishimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Imataka
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Nono Takeuchi-Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| |
Collapse
|
34
|
From Snapshots to Flipbook-Resolving the Dynamics of Ribosome Biogenesis with Chemical Probes. Int J Mol Sci 2020; 21:ijms21082998. [PMID: 32340379 PMCID: PMC7215809 DOI: 10.3390/ijms21082998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
The synthesis of ribosomes is one of the central and most resource demanding processes in each living cell. As ribosome biogenesis is tightly linked with the regulation of the cell cycle, perturbation of ribosome formation can trigger severe diseases, including cancer. Eukaryotic ribosome biogenesis starts in the nucleolus with pre-rRNA transcription and the initial assembly steps, continues in the nucleoplasm and is finished in the cytoplasm. From start to end, this process is highly dynamic and finished within few minutes. Despite the tremendous progress made during the last decade, the coordination of the individual maturation steps is hard to unravel by a conventional methodology. In recent years small molecular compounds were identified that specifically block either rDNA transcription or distinct steps within the maturation pathway. As these inhibitors diffuse into the cell rapidly and block their target proteins within seconds, they represent excellent tools to investigate ribosome biogenesis. Here we review how the inhibitors affect ribosome biogenesis and discuss how these effects can be interpreted by taking the complex self-regulatory mechanisms of the pathway into account. With this we want to highlight the potential of low molecular weight inhibitors to approach the dynamic nature of the ribosome biogenesis pathway.
Collapse
|
35
|
Into the basket and beyond: the journey of mRNA through the nuclear pore complex. Biochem J 2020; 477:23-44. [DOI: 10.1042/bcj20190132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
The genetic information encoded in nuclear mRNA destined to reach the cytoplasm requires the interaction of the mRNA molecule with the nuclear pore complex (NPC) for the process of mRNA export. Numerous proteins have important roles in the transport of mRNA out of the nucleus. The NPC embedded in the nuclear envelope is the port of exit for mRNA and is composed of ∼30 unique proteins, nucleoporins, forming the distinct structures of the nuclear basket, the pore channel and cytoplasmic filaments. Together, they serve as a rather stationary complex engaged in mRNA export, while a variety of soluble protein factors dynamically assemble on the mRNA and mediate the interactions of the mRNA with the NPC. mRNA export factors are recruited to and dissociate from the mRNA at the site of transcription on the gene, during the journey through the nucleoplasm and at the nuclear pore at the final stages of export. In this review, we present the current knowledge derived from biochemical, molecular, structural and imaging studies, to develop a high-resolution picture of the many events that culminate in the successful passage of the mRNA out of the nucleus.
Collapse
|
36
|
Musalgaonkar S, Black JJ, Johnson AW. The L1 stalk is required for efficient export of nascent large ribosomal subunits in yeast. RNA (NEW YORK, N.Y.) 2019; 25:1549-1560. [PMID: 31439809 PMCID: PMC6795138 DOI: 10.1261/rna.071811.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 06/02/2023]
Abstract
The ribosomal protein Rpl1 (uL1 in universal nomenclature) is essential in yeast and constitutes part of the L1 stalk which interacts with E site ligands on the ribosome. Structural studies of nascent pre-60S complexes in yeast have shown that a domain of the Crm1-dependent nuclear export adapter Nmd3, binds in the E site and interacts with Rpl1, inducing closure of the L1 stalk. Based on this observation, we decided to reinvestigate the role of the L1 stalk in nuclear export of pre-60S subunits despite previous work showing that Rpl1-deficient ribosomes are exported from the nucleus and engage in translation. Large cargoes, such as ribosomal subunits, require multiple export factors to facilitate their transport through the nuclear pore complex. Here, we show that pre-60S subunits lacking Rpl1 or truncated for the RNA of the L1 stalk are exported inefficiently. Surprisingly, this is not due to a measurable defect in the recruitment of Nmd3 but appears to result from inefficient recruitment of the Mex67-Mtr2 heterodimer.
Collapse
Affiliation(s)
- Sharmishtha Musalgaonkar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
37
|
Pantazi A, Quintanilla A, Hari P, Tarrats N, Parasyraki E, Dix FL, Patel J, Chandra T, Acosta JC, Finch AJ. Inhibition of the 60S ribosome biogenesis GTPase LSG1 causes endoplasmic reticular disruption and cellular senescence. Aging Cell 2019; 18:e12981. [PMID: 31148378 PMCID: PMC6612703 DOI: 10.1111/acel.12981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/06/2019] [Accepted: 04/28/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence is triggered by diverse stimuli and is characterized by long-term growth arrest and secretion of cytokines and chemokines (termed the SASP-senescence-associated secretory phenotype). Senescence can be organismally beneficial as it can prevent the propagation of damaged or mutated clones and stimulate their clearance by immune cells. However, it has recently become clear that senescence also contributes to the pathophysiology of aging through the accumulation of damaged cells within tissues. Here, we describe that inhibition of the reaction catalysed by LSG1, a GTPase involved in the biogenesis of the 60S ribosomal subunit, leads to a robust induction of cellular senescence. Perhaps surprisingly, this was not due to ribosome depletion or translational insufficiency, but rather through perturbation of endoplasmic reticulum homeostasis and a dramatic upregulation of the cholesterol biosynthesis pathway. The underlying transcriptomic signature is shared with several other forms of senescence, and the cholesterol biosynthesis genes contribute to the cell cycle arrest in oncogene-induced senescence. Furthermore, targeting of LSG1 resulted in amplification of the cholesterol/ER signature and restoration of a robust cellular senescence response in transformed cells, suggesting potential therapeutic uses of LSG1 inhibition.
Collapse
Affiliation(s)
- Asimina Pantazi
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Andrea Quintanilla
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Priya Hari
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Nuria Tarrats
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Eleftheria Parasyraki
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Flora L. Dix
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Jaiyogesh Patel
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tamir Chandra
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Andrew J. Finch
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
38
|
Espinar-Marchena F, Rodríguez-Galán O, Fernández-Fernández J, Linnemann J, de la Cruz J. Ribosomal protein L14 contributes to the early assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:4715-4732. [PMID: 29788267 PMCID: PMC5961077 DOI: 10.1093/nar/gky123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
The contribution of most ribosomal proteins to ribosome synthesis has been quite well analysed in Saccharomyces cerevisiae. However, few yeast ribosomal proteins still await characterization. Herein, we show that L14, an essential 60S ribosomal protein, assembles in the nucleolus at an early stage into pre-60S particles. Depletion of L14 results in a deficit in 60S subunits and defective processing of 27SA2 and 27SA3 to 27SB pre-rRNAs. As a result, 27S pre-rRNAs are subjected to turnover and export of pre-60S particles is blocked. These phenotypes likely appear as the direct consequence of the reduced pre-60S particle association not only of L14 upon its depletion but also of a set of neighboring ribosomal proteins located at the solvent interface of 60S subunits and the adjacent region surrounding the polypeptide exit tunnel. These pre-60S intermediates also lack some essential trans-acting factors required for 27SB pre-rRNA processing but accumulate practically all factors required for processing of 27SA3 pre-rRNA. We have also analysed the functional interaction between the eukaryote-specific carboxy-terminal extensions of the neighboring L14 and L16 proteins. Our results indicate that removal of the most distal parts of these extensions cause slight translation alterations in mature 60S subunits.
Collapse
Affiliation(s)
- Francisco Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - Jan Linnemann
- Institut für Biochemie III, Universität Regensburg, 93053, Regensburg, Germany
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| |
Collapse
|
39
|
Kargas V, Castro-Hartmann P, Escudero-Urquijo N, Dent K, Hilcenko C, Sailer C, Zisser G, Marques-Carvalho MJ, Pellegrino S, Wawiórka L, Freund SMV, Wagstaff JL, Andreeva A, Faille A, Chen E, Stengel F, Bergler H, Warren AJ. Mechanism of completion of peptidyltransferase centre assembly in eukaryotes. eLife 2019; 8:e44904. [PMID: 31115337 PMCID: PMC6579518 DOI: 10.7554/elife.44904] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
During their final maturation in the cytoplasm, pre-60S ribosomal particles are converted to translation-competent large ribosomal subunits. Here, we present the mechanism of peptidyltransferase centre (PTC) completion that explains how integration of the last ribosomal proteins is coupled to release of the nuclear export adaptor Nmd3. Single-particle cryo-EM reveals that eL40 recruitment stabilises helix 89 to form the uL16 binding site. The loading of uL16 unhooks helix 38 from Nmd3 to adopt its mature conformation. In turn, partial retraction of the L1 stalk is coupled to a conformational switch in Nmd3 that allows the uL16 P-site loop to fully accommodate into the PTC where it competes with Nmd3 for an overlapping binding site (base A2971). Our data reveal how the central functional site of the ribosome is sculpted and suggest how the formation of translation-competent 60S subunits is disrupted in leukaemia-associated ribosomopathies.
Collapse
Affiliation(s)
- Vasileios Kargas
- Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust–Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Pablo Castro-Hartmann
- Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust–Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Norberto Escudero-Urquijo
- Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust–Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Kyle Dent
- Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust–Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Christine Hilcenko
- Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust–Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Carolin Sailer
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Gertrude Zisser
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Maria J Marques-Carvalho
- Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust–Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Simone Pellegrino
- Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust–Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Leszek Wawiórka
- Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust–Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Department of Molecular BiologyMaria Curie-Skłodowska UniversityLublinPoland
| | | | | | | | - Alexandre Faille
- Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust–Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Edwin Chen
- Faculty of Biological SciencesUniversity of LeedsLeedsUnited Kingdom
| | | | - Helmut Bergler
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Alan John Warren
- Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust–Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
40
|
Zhou Y, Musalgaonkar S, Johnson AW, Taylor DW. Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome. Nat Commun 2019; 10:958. [PMID: 30814529 PMCID: PMC6393466 DOI: 10.1038/s41467-019-08880-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/01/2019] [Indexed: 11/24/2022] Open
Abstract
The catalytic activity of the ribosome is mediated by RNA, yet proteins are essential for the function of the peptidyl transferase center (PTC). In eukaryotes, final assembly of the PTC occurs in the cytoplasm by insertion of the ribosomal protein Rpl10 (uL16). We determine structures of six intermediates in late nuclear and cytoplasmic maturation of the large subunit that reveal a tightly-choreographed sequence of protein and RNA rearrangements controlling the insertion of Rpl10. We also determine the structure of the biogenesis factor Yvh1 and show how it promotes assembly of the P stalk, a critical element for recruitment of GTPases that drive translation. Together, our structures provide a blueprint for final assembly of a functional ribosome. In eukaryotes, ribosome biogenesis culminates in the cytoplasm with the maturation of the peptidyl transfer center (PTC). Here the authors describe several structures of intermediates in late nuclear and cytoplasmic maturation of the large ribosomal subunit that reveal the tightly-choreographed sequence of protein and RNA rearrangements that lead to the completion of the PTC.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Arlen W Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA. .,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.,Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.,LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA
| |
Collapse
|
41
|
The path of pre-ribosomes through the nuclear pore complex revealed by electron tomography. Nat Commun 2019; 10:497. [PMID: 30700705 PMCID: PMC6353910 DOI: 10.1038/s41467-019-08342-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 12/17/2018] [Indexed: 01/24/2023] Open
Abstract
Determining the path of single ribonucleoprotein (RNP) particles through the 100 nm-wide nuclear pore complex (NPC) by fluorescence microscopy remains challenging due to resolution limitation and RNP labeling constraints. By using high-pressure freezing and electron tomography, here we captured snapshots of the translocation of native RNP particles through NPCs in yeast and analyzed their trajectory at nanometer-scale resolution. Morphological and functional analyses indicate that these particles mostly correspond to pre-ribosomes. They are detected in 5–6% of the NPCs, with no apparent bias for NPCs adjacent to the nucleolus. Their path closely follows the central axis of the NPC through the nuclear and inner rings, but diverges at the cytoplasmic ring, suggesting interactions with the cytoplasmic nucleoporins. By applying a probabilistic queueing model to our data, we estimated that the dwell time of pre-ribosomes in the yeast NPC is ~90 ms. These data reveal distinct steps of pre-ribosome translocation through the NPC. Large protein complexes and ribonucleoprotein particles (RNPs) such as pre-ribosomes are transported from the nucleus to the cytoplasm through the nuclear pore complex (NPC). Here the authors use ultrafast freezing and electron tomography to catch snapshots of native RNPs crossing the NPC and estimate their transit time using a probabilistic model.
Collapse
|
42
|
Abstract
Ribosomes, which synthesize the proteins of a cell, comprise ribosomal RNA and ribosomal proteins, which coassemble hierarchically during a process termed ribosome biogenesis. Historically, biochemical and molecular biology approaches have revealed how preribosomal particles form and mature in consecutive steps, starting in the nucleolus and terminating after nuclear export into the cytoplasm. However, only recently, due to the revolution in cryo-electron microscopy, could pseudoatomic structures of different preribosomal particles be obtained. Together with in vitro maturation assays, these findings shed light on how nascent ribosomes progress stepwise along a dynamic biogenesis pathway. Preribosomes assemble gradually, chaperoned by a myriad of assembly factors and small nucleolar RNAs, before they reach maturity and enter translation. This information will lead to a better understanding of how ribosome synthesis is linked to other cellular pathways in humans and how it can cause diseases, including cancer, if disturbed.
Collapse
Affiliation(s)
- Jochen Baßler
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; ,
| | - Ed Hurt
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; ,
| |
Collapse
|
43
|
Warren AJ. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv Biol Regul 2018; 67:109-127. [PMID: 28942353 PMCID: PMC6710477 DOI: 10.1016/j.jbior.2017.09.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Mutations that target the ubiquitous process of ribosome assembly paradoxically cause diverse tissue-specific disorders (ribosomopathies) that are often associated with an increased risk of cancer. Ribosomes are the essential macromolecular machines that read the genetic code in all cells in all kingdoms of life. Following pre-assembly in the nucleus, precursors of the large 60S and small 40S ribosomal subunits are exported to the cytoplasm where the final steps in maturation are completed. Here, I review the recent insights into the conserved mechanisms of ribosome assembly that have come from functional characterisation of the genes mutated in human ribosomopathies. In particular, recent advances in cryo-electron microscopy, coupled with genetic, biochemical and prior structural data, have revealed that the SBDS protein that is deficient in the inherited leukaemia predisposition disorder Shwachman-Diamond syndrome couples the final step in cytoplasmic 60S ribosomal subunit maturation to a quality control assessment of the structural and functional integrity of the nascent particle. Thus, study of this fascinating disorder is providing remarkable insights into how the large ribosomal subunit is functionally activated in the cytoplasm to enter the actively translating pool of ribosomes.
Collapse
MESH Headings
- Bone Marrow Diseases/metabolism
- Bone Marrow Diseases/pathology
- Cryoelectron Microscopy
- Exocrine Pancreatic Insufficiency/metabolism
- Exocrine Pancreatic Insufficiency/pathology
- Humans
- Lipomatosis/metabolism
- Lipomatosis/pathology
- Mutation
- Proteins/genetics
- Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Shwachman-Diamond Syndrome
Collapse
Affiliation(s)
- Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK; The Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Zander G, Krebber H. Quick or quality? How mRNA escapes nuclear quality control during stress. RNA Biol 2017; 14:1642-1648. [PMID: 28708448 PMCID: PMC5731798 DOI: 10.1080/15476286.2017.1345835] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022] Open
Abstract
Understanding the mechanisms for mRNA production under normal conditions and in response to cytotoxic stresses has been subject of numerous studies for several decades. The shutdown of canonical mRNA transcription, export and translation is required to have enough free resources for the immediate production of heat shock proteins that act as chaperones to sustain cellular processes. In recent work we uncovered a simple mechanism, in which the export block of regular mRNAs and a fast export of heat shock mRNAs is achieved by deactivation of the nuclear mRNA quality control mediated by the guard proteins. In this point of view we combine long known data with recently gathered information that support this novel model, in which cells omit quality control of stress responsive transcripts to ensure survival.
Collapse
Affiliation(s)
- Gesa Zander
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| |
Collapse
|
45
|
Preribosomes escaping from the nucleus are caught during translation by cytoplasmic quality control. Nat Struct Mol Biol 2017; 24:1107-1115. [PMID: 29083413 DOI: 10.1038/nsmb.3495] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/04/2017] [Indexed: 12/28/2022]
Abstract
Assembly of fully functional ribosomes is a prerequisite for failsafe translation. This explains why maturing preribosomal subunits have to pass through an array of quality-control checkpoints, including nuclear export, to ensure that only properly assembled ribosomes engage in translation. Despite these safeguards, we found that nuclear pre-60S particles unable to remove a transient structure composed of ITS2 pre-rRNA and associated assembly factors, termed the 'foot', escape to the cytoplasm, where they can join with mature 40S subunits to catalyze protein synthesis. However, cells harboring these abnormal ribosomes show translation defects indicated by the formation of 80S ribosomes poised with pre-60S subunits carrying tRNAs in trapped hybrid states. To overcome this translational stress, the cytoplasmic surveillance machineries RQC and Ski-exosome target these malfunctioning ribosomes. Thus, pre-60S subunits that escape nuclear quality control can enter translation, but are caught by cytoplasmic surveillance mechanisms.
Collapse
|
46
|
Eukaryotic ribosome assembly, transport and quality control. Nat Struct Mol Biol 2017; 24:689-699. [PMID: 28880863 DOI: 10.1038/nsmb.3454] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
Abstract
Eukaryotic ribosome synthesis is a complex, energy-consuming process that takes place across the nucleolus, nucleoplasm and cytoplasm and requires more than 200 conserved assembly factors. Here, we discuss mechanisms by which the ribosome assembly and nucleocytoplasmic transport machineries collaborate to produce functional ribosomes. We also highlight recent cryo-EM studies that provided unprecedented snapshots of ribosomes during assembly and quality control.
Collapse
|
47
|
Ishikawa H, Yoshikawa H, Izumikawa K, Miura Y, Taoka M, Nobe Y, Yamauchi Y, Nakayama H, Simpson RJ, Isobe T, Takahashi N. Poly(A)-specific ribonuclease regulates the processing of small-subunit rRNAs in human cells. Nucleic Acids Res 2017; 45:3437-3447. [PMID: 27899605 PMCID: PMC5389690 DOI: 10.1093/nar/gkw1047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 11/14/2022] Open
Abstract
Ribosome biogenesis occurs successively in the nucleolus, nucleoplasm, and cytoplasm. Maturation of the ribosomal small subunit is completed in the cytoplasm by incorporation of a particular class of ribosomal proteins and final cleavage of 18S-E pre-rRNA (18S-E). Here, we show that poly(A)-specific ribonuclease (PARN) participates in steps leading to 18S-E maturation in human cells. We found PARN as a novel component of the pre-40S particle pulled down with the pre-ribosome factor LTV1 or Bystin. Reverse pull-down analysis revealed that PARN is a constitutive component of the Bystin-associated pre-40S particle. Knockdown of PARN or exogenous expression of an enzyme-dead PARN mutant (D28A) accumulated 18S-E in both the cytoplasm and nucleus. Moreover, expression of D28A accumulated 18S-E in Bystin-associated pre-40S particles, suggesting that the enzymatic activity of PARN is necessary for the release of 18S-E from Bystin-associated pre-40S particles. Finally, RNase H-based fragmentation analysis and 3΄-sequence analysis of 18S-E species present in cells expressing wild-type PARN or D28A suggested that PARN degrades the extended regions encompassing nucleotides 5-44 at the 3΄ end of mature 18S rRNA. Our results reveal a novel role for PARN in ribosome biogenesis in human cells.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Keiichi Izumikawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yutaka Miura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Richard J Simpson
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,La Trobe Institute for Molecular Science (LIMS), LIMS Building 1, Room 412 La Trobe University, Bundoora, Victoria 3086, Australia
| | - Toshiaki Isobe
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
48
|
Patchett S, Musalgaonkar S, Malyutin AG, Johnson AW. The T-cell leukemia related rpl10-R98S mutant traps the 60S export adapter Nmd3 in the ribosomal P site in yeast. PLoS Genet 2017; 13:e1006894. [PMID: 28715419 PMCID: PMC5536393 DOI: 10.1371/journal.pgen.1006894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/31/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in the ribosomal protein Rpl10 (uL16) can be drivers of T-cell acute lymphoblastic leukemia (T-ALL). We previously showed that these T-ALL mutations disrupt late cytoplasmic maturation of the 60S ribosomal subunit, blocking the release of the trans-acting factors Nmd3 and Tif6 in S. cerevisiae. Consequently, these mutant ribosomes do not efficiently pass the cytoplasmic quality control checkpoint and are blocked from engaging in translation. Here, we characterize suppressing mutations of the T-ALL-related rpl10-R98S mutant that bypass this block and show that the molecular defect of rpl10-R98S is a failure to release Nmd3 from the P site. Suppressing mutations were identified in Nmd3 and Tif6 that disrupted interactions between Nmd3 and the ribosome, or between Nmd3 and Tif6. Using an in vitro system with purified components, we found that Nmd3 inhibited Sdo1-stimulated Efl1 activity on mutant rpl10-R98S but not wild-type 60S subunits. Importantly, this inhibition was overcome in vitro by mutations in Nmd3 that suppressed rpl10-R98S in vivo. These results strongly support a model that Nmd3 must be dislodged from the P site to allow Sdo1 activation of Efl1, and define a failure in the removal of Nmd3 as the molecular defect of the T-ALL-associated rpl10-R98S mutation. The ribosome is a large and structurally complex macromolecular machine, responsible for synthesizing proteins in all living cells, across all domains of life. The correct assembly of ribosomes is important for their ability to faithfully decode messenger RNAs and synthesize proteins. The insertion of the ribosomal protein Rpl10 into the ribosome completes the catalytic center of the large subunit and is necessary for the removal of the assembly factors Nmd3 and Tif6, which allows the subunit to participate in translation. The insertion of Rpl10 is monitored by proteins that mimic translation factors during a quality control check for ribosome function. Ribosomes containing mutations in Rpl10 associated with pediatric T-cell leukemia fail in this quality control check and prevent the removal of Tif6 and Nmd3. However, it was not known how these mutations in Rpl10 block the quality control check. We recently presented the structure of Nmd3 and Tif6 on the large ribosomal subunit from yeast. In this work, we take advantage of our recent structural work and use a combination of genetic and biochemical techniques to delineate the molecular defect in the ribosome when Rpl10 is mutated.
Collapse
Affiliation(s)
- Stephanie Patchett
- Depatment of Molecular Biosciences, the University of Texas at Austin, Austin, Texas, United States of America
| | - Sharmishtha Musalgaonkar
- Depatment of Molecular Biosciences, the University of Texas at Austin, Austin, Texas, United States of America
| | - Andrey G Malyutin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Arlen W Johnson
- Depatment of Molecular Biosciences, the University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
49
|
Espinar-Marchena FJ, Babiano R, Cruz J. Placeholder factors in ribosome biogenesis: please, pave my way. MICROBIAL CELL 2017; 4:144-168. [PMID: 28685141 PMCID: PMC5425277 DOI: 10.15698/mic2017.05.572] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Jesús Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| |
Collapse
|
50
|
Malyutin AG, Musalgaonkar S, Patchett S, Frank J, Johnson AW. Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis. EMBO J 2017; 36:854-868. [PMID: 28179369 PMCID: PMC5376978 DOI: 10.15252/embj.201696012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo-electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin-ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1.
Collapse
Affiliation(s)
- Andrey G Malyutin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Stephanie Patchett
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|