1
|
Oliveira Souza RO, Yang C, Arrizabalaga G. Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii. PLoS Pathog 2024; 20:e1012127. [PMID: 39374269 PMCID: PMC11486366 DOI: 10.1371/journal.ppat.1012127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.
Collapse
Affiliation(s)
- Rodolpho Ornitz Oliveira Souza
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
2
|
Ornitz Oliveira Souza R, Yang C, Arrizabalaga G. Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585462. [PMID: 38562694 PMCID: PMC10983951 DOI: 10.1101/2024.03.18.585462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.
Collapse
Affiliation(s)
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| |
Collapse
|
3
|
Zohrabi T, Azimi-Resketi M, Talaei F, Yaghoubi M, Ganjalikhany MR, Mohamadi Farsani F, Eskandarian A. Knocking down the expression of the molecular motors, myosin A, C and F genes in Toxoplasma gondii to decrease the parasite virulence. Exp Parasitol 2023:108565. [PMID: 37331576 DOI: 10.1016/j.exppara.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Toxoplasmosis is a serious parasitic infection and novel therapeutic options are highly demanded to effectively eliminate it. In current study, Toxoplasma gondii myosin A, C and F genes were knocked down using small interference RNA (siRNA) method and the parasite survival and virulence was evaluated in vitro and in vivo. The parasites were transfected with specific siRNA, virtually designed for myosin mRNAs, and co-cultured with human foreskin fibroblasts. The transfection rate and the viability of the transfected parasites were measured using flow cytometry and methyl thiazole tetrazolium (MTT) assays, respectively. Finally, the survival of BALB/c mice infected with siRNAs-transfected T. gondii was assessed. It was demonstrated that a transfection rate of 75.4% existed for siRNAs, resulting in 70% (P = 0.032), 80.6% (P = 0.017) and 85.5% (P = 0.013) gene suppression for myosin A, C and F in affected parasites, respectively, which was subsequently confirmed by Western blot analysis. Moreover, lower parasite viability was observed in those with knocked down myosin C with 80% (P = 0.0001), followed by 86.15% (P = 0.004) for myosin F and 92.3% (P = 0.083) for myosin A. Considerably higher mouse survival (about 40 h) was, also, demonstrated in mice challenged with myosin siRNA-transfected T. gondii, in comparison with control group challenged with wild-type parasites. In conclusion, myosin proteins knock down proposes a promising therapeutic strategy to combat toxoplasmosis.
Collapse
Affiliation(s)
- Tayebeh Zohrabi
- Department of Biology, School of Sciences, Nourdanesh University of Meymeh, Meymeh, Isfahan, Iran
| | - Mojtaba Azimi-Resketi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Talaei
- Department of Biology, School of Sciences, Nourdanesh University of Meymeh, Meymeh, Isfahan, Iran
| | - Maryam Yaghoubi
- Department of Biology, School of Sciences, Nourdanesh University of Meymeh, Meymeh, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Farzaneh Mohamadi Farsani
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abbasali Eskandarian
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Back PS, Moon AS, Pasquarelli RR, Bell HN, Torres JA, Chen AL, Sha J, Vashisht AA, Wohlschlegel JA, Bradley PJ. IMC29 Plays an Important Role in Toxoplasma Endodyogeny and Reveals New Components of the Daughter-Enriched IMC Proteome. mBio 2023; 14:e0304222. [PMID: 36622147 PMCID: PMC9973257 DOI: 10.1128/mbio.03042-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
The Toxoplasma inner membrane complex (IMC) is a unique organelle that plays critical roles in parasite motility, invasion, egress, and replication. The IMC is delineated into the apical, body, and basal regions, defined by proteins that localize to these distinct subcompartments. The IMC can be further segregated by proteins that localize specifically to the maternal IMC, the daughter bud IMC, or both. While the function of the maternal IMC has been better characterized, the precise roles of most daughter IMC components remain poorly understood. Here, we demonstrate that the daughter protein IMC29 plays an important role in parasite replication. We show that Δimc29 parasites exhibit severe replication defects, resulting in substantial growth defects and loss of virulence. Deletion analyses revealed that IMC29 localization is largely dependent on the N-terminal half of the protein containing four predicted coiled-coil domains while IMC29 function requires a short C-terminal helical region. Using proximity labeling, we identify eight novel IMC proteins enriched in daughter buds, significantly expanding the daughter IMC proteome. We additionally report four novel proteins with unique localizations to the interface between two parasites or to the outer face of the IMC, exposing new subregions of the organelle. Together, this work establishes IMC29 as an important early daughter bud component of replication and uncovers an array of new IMC proteins that provides important insights into this organelle. IMPORTANCE The inner membrane complex (IMC) is a conserved structure across the Apicomplexa phylum, which includes obligate intracellular parasites that cause toxoplasmosis, malaria, and cryptosporidiosis. The IMC is critical for the parasite to maintain its intracellular lifestyle, particularly in providing a scaffold for daughter bud formation during parasite replication. While many IMC proteins in the later stages of division have been identified, components of the early stages of division remain unknown. Here, we focus on the early daughter protein IMC29, demonstrating that it is crucial for faithful parasite replication and identifying specific regions of the protein that are important for its localization and function. We additionally use proximity labeling to reveal a suite of daughter-enriched IMC proteins, which represent promising candidates to further explore this IMC subcompartment.
Collapse
Affiliation(s)
- Peter S. Back
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Andy S. Moon
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | | | - Hannah N. Bell
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Juan A. Torres
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Allan L. Chen
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peter J. Bradley
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| |
Collapse
|
5
|
Gubbels MJ, Ferguson DJP, Saha S, Romano JD, Chavan S, Primo VA, Michaud C, Coppens I, Engelberg K. Toxoplasma gondii's Basal Complex: The Other Apicomplexan Business End Is Multifunctional. Front Cell Infect Microbiol 2022; 12:882166. [PMID: 35573773 PMCID: PMC9103881 DOI: 10.3389/fcimb.2022.882166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The Apicomplexa are famously named for their apical complex, a constellation of organelles at their apical end dedicated to invasion of their host cells. In contrast, at the other end of the cell, the basal complex (BC) has been overshadowed since it is much less prominent and specific functions were not immediately obvious. However, in the past decade a staggering array of functions have been associated with the BC and strides have been made in understanding its structure. Here, these collective insights are supplemented with new data to provide an overview of the understanding of the BC in Toxoplasma gondii. The emerging picture is that the BC is a dynamic and multifunctional complex, with a series of (putative) functions. The BC has multiple roles in cell division: it is the site where building blocks are added to the cytoskeleton scaffold; it exerts a two-step stretch and constriction mechanism as contractile ring; and it is key in organelle division. Furthermore, the BC has numerous putative roles in 'import', such as the recycling of mother cell remnants, the acquisition of host-derived vesicles, possibly the uptake of lipids derived from the extracellular medium, and the endocytosis of micronemal proteins. The latter process ties the BC to motility, whereas an additional role in motility is conferred by Myosin C. Furthermore, the BC acts on the assembly and/or function of the intravacuolar network, which may directly or indirectly contribute to the establishment of chronic tissue cysts. Here we provide experimental support for molecules acting in several of these processes and identify several new BC proteins critical to maintaining the cytoplasmic bridge between divided parasites. However, the dispensable nature of many BC components leaves many questions unanswered regarding its function. In conclusion, the BC in T. gondii is a dynamic and multifunctional structure at the posterior end of the parasite.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Sudeshna Saha
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Suyog Chavan
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Vincent A. Primo
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Cynthia Michaud
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
6
|
Delgado ILS, Tavares A, Francisco S, Santos D, Coelho J, Basto AP, Zúquete S, Müller J, Hemphill A, Meissner M, Soares H, Leitão A, Nolasco S. Characterization of a MOB1 Homolog in the Apicomplexan Parasite Toxoplasma gondii. BIOLOGY 2021; 10:biology10121233. [PMID: 34943148 PMCID: PMC8698288 DOI: 10.3390/biology10121233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023]
Abstract
Simple Summary Monopolar spindle One Binder1 (MOB1) proteins regulate key cellular functions, namely cell multiplication and cell division. The unicellular parasite Toxoplasma gondii transitions between several morphological stages, with the need to control the number of parasites in its cellular environment. We hypothesized that MOB1 proteins could participate in the regulation of the T. gondii life cycle, having identified one MOB1 protein (TgMOB1) coded in its genome. However, this study shows that TgMOB1 presents divergent features. While in organisms studied to date the lack of MOB1 has led to cell division defects, this did not occur in T. gondii in vitro cultures where mob1 was not an essential gene. Additionally, the identification of TgMOB1 proximity interacting partners detected novel MOB1 interactors. Still, TgMOB1 localizes to the region between the new-forming nuclei during cell division, and T. gondii parasites multiply slower with TgMOB1 overexpression and faster when there is a lack of TgMOB1, indicating an intricate role for TgMOB1 in T. gondii. This study uncovers new features of the T. gondii biology, a zoonotic parasite and model organism for the phylum Apicomplexa, and highlights the complex roles MOB1 proteins may assume, with possible implications for disease processes. Abstract Monopolar spindle One Binder1 (MOB1) proteins are conserved components of the tumor-suppressing Hippo pathway, regulating cellular processes such as cytokinesis. Apicomplexan parasites present a life cycle that relies on the parasites’ ability to differentiate between stages and regulate their proliferation; thus, Hippo signaling pathways could play an important role in the regulation of the apicomplexan life cycle. Here, we report the identification of one MOB1 protein in the apicomplexan Toxoplasma gondii. To characterize the function of MOB1, we generated gain-of-function transgenic lines with a ligand-controlled destabilization domain, and loss-of-function clonal lines obtained through CRISPR/Cas9 technology. Contrary to what has been characterized in other eukaryotes, MOB1 is not essential for cytokinesis in T. gondii. However, this picture is complex since we found MOB1 localized between the newly individualized daughter nuclei at the end of mitosis. Moreover, we detected a significant delay in the replication of overexpressing tachyzoites, contrasting with increased replication rates in knockout tachyzoites. Finally, using the proximity-biotinylation method, BioID, we identified novel members of the MOB1 interactome, a probable consequence of the observed lack of conservation of some key amino acid residues. Altogether, the results point to a complex evolutionary history of MOB1 roles in apicomplexans, sharing properties with other eukaryotes but also with divergent features, possibly associated with their complex life cycle.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona, 1749-024 Lisboa, Portugal
| | - Alexandra Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Samuel Francisco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Dulce Santos
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - João Coelho
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Afonso P. Basto
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Sara Zúquete
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland; (J.M.); (A.H.)
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland; (J.M.); (A.H.)
| | - Markus Meissner
- Institute for Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität Munich, D-82152 Munich, Germany;
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Alexandre Leitão
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Sofia Nolasco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Correspondence: or
| |
Collapse
|
7
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Morano AA, Dvorin JD. The Ringleaders: Understanding the Apicomplexan Basal Complex Through Comparison to Established Contractile Ring Systems. Front Cell Infect Microbiol 2021; 11:656976. [PMID: 33954122 PMCID: PMC8089483 DOI: 10.3389/fcimb.2021.656976] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
The actomyosin contractile ring is a key feature of eukaryotic cytokinesis, conserved across many eukaryotic kingdoms. Recent research into the cell biology of the divergent eukaryotic clade Apicomplexa has revealed a contractile ring structure required for asexual division in the medically relevant genera Toxoplasma and Plasmodium; however, the structure of the contractile ring, known as the basal complex in these parasites, remains poorly characterized and in the absence of a myosin II homolog, it is unclear how the force required of a cytokinetic contractile ring is generated. Here, we review the literature on the basal complex in Apicomplexans, summarizing what is known about its formation and function, and attempt to provide possible answers to this question and suggest new avenues of study by comparing the Apicomplexan basal complex to well-studied, established cytokinetic contractile rings and their mechanisms in organisms such as S. cerevisiae and D. melanogaster. We also compare the basal complex to structures formed during mitochondrial and plastid division and cytokinetic mechanisms of organisms beyond the Opisthokonts, considering Apicomplexan diversity and divergence.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, United States.,Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Cruz-Mirón R, Ramírez-Flores CJ, Lagunas-Cortés N, Mondragón-Castelán M, Ríos-Castro E, González-Pozos S, Aguirre-García MM, Mondragón-Flores R. Proteomic characterization of the pellicle of Toxoplasma gondii. J Proteomics 2021; 237:104146. [PMID: 33588107 DOI: 10.1016/j.jprot.2021.104146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Toxoplasma gondii is one of the most successful intracellular parasites in the world. The dynamic, adhesion, invasion, and even replication capabilities of Toxoplasma are based on dynamic machinery located in the pellicle, a three membrane complex that surrounds the parasite. Among the proteins that carry out these processes are inner membrane complex (IMC) proteins, gliding-associated proteins (GAP), diverse myosins, actin, tubulin, and SRS proteins. Despite the importance of the pellicle, the knowledge of its composition is limited. Broad protein identification from an enriched pellicle fraction was obtained by independent digestion with trypsin and chymotrypsin and quantified by mass spectrometry. By trypsin digestion, 548 proteins were identified, while by chymotrypsin digestion, additional 22 proteins were identified. Besides, a group of "sequences related to SAG1" proteins (SRS) were detected together with unidentified new proteins. From identified SRS proteins, SRS51 was chosen for analysis and modeling as its similarities with crystallized adhesion proteins, exhibiting the presence of a spatial groove that is apparently involved in adhesion and cell invasion. As SRS proteins have been reported to be involved in the activation of the host's immune response, further studies could consider them as targets in the design of vaccines or of drugs against Toxoplasma. SIGNIFICANCE: To date, the proteomic composition of the pellicle of Toxoplasma is unknown. Most proteins reported in Toxoplasma pellicle have been poorly studied, and many others remain unidentified. Herein, a group of new SRS proteins is described. Some SRS proteins previously described from pellicle fraction have adhesion properties to the host cell membrane, so their study would provide data related to invasion mechanism and to open possibilities for considering them as targets in the design of immunoprotective strategies or the design of new pharmacological treatments.
Collapse
Affiliation(s)
- Rosalba Cruz-Mirón
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Carlos J Ramírez-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Noé Lagunas-Cortés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | | | | | - M Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico.
| |
Collapse
|
10
|
Bajelan S, Bahreini MS, Asgari Q, Mikaeili F. Viability and infectivity of Toxoplasma gondii tachyzoites exposed to Butanedione monoxime. J Parasit Dis 2020; 44:822-828. [PMID: 32837055 PMCID: PMC7430933 DOI: 10.1007/s12639-020-01259-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
The most important pathogenesis factor in the Apicomplexa parasites is invasion to the host cell. Given the inhibitory role of Butanedione Monoxime (BDM) on myosin-actin interaction, this study aimed to investigate the effects of this molecule on the vitality and infectivity of Toxoplasma tachyzoites in order to provide a new option for vaccine development. The tachyzoites of the RH strain of Toxoplasma gondii were exposed to different concentrations (1, 2, 4, 8, 16, 32, 64, and 128 μg/mL) of BDM, and mortality effect was assessed by flow cytometry. Then, the penetration ability of the tachyzoites was investigated in HeLa and macrophage cell lines. The infectivity of exposed tachyzoites to BDM were also investigated in mice through following up and detecting the etiological factor. The highest percentage of mortality (72.69%) was seen in the tachyzoites exposed to 128 μg/mL of the compound. The tachyzoites exposed to 32, 64, and 128 μg/mL of BDM began the proliferation in HeLa cells after 48 h, while this proliferation was initiated within 24 h in macrophage cells. All the mice inoculated with the BDM-treated tachyzoites died after 13 days. The mean survival time of the mice receiving tachyzoites exposed to 128 μg/mL of BDM was 12.4 days, which was significantly different from the negative control group (p = 0.001). BDM, as the inhibitor of myosin-actin interaction, and other substances that block the entry of parasites into cells may be suitable candidates for vaccine production against Toxoplasma. Yet, future studies are required to be conducted on the issue.
Collapse
Affiliation(s)
- Sara Bajelan
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Qasem Asgari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fattaneh Mikaeili
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Calarco L, Ellis J. Species diversity and genome evolution of the pathogenic protozoan parasite, Neospora caninum. INFECTION GENETICS AND EVOLUTION 2020; 84:104444. [PMID: 32619639 DOI: 10.1016/j.meegid.2020.104444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/16/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023]
Abstract
Neospora caninum is a cyst-forming coccidian parasite of veterinary and economical significance, affecting dairy and beef cattle industries on a global scale. Comparative studies suggest that N. caninum consists of a globally dispersed, diverse population of lineages, distinguished by their geographical origin, broad host range, and phenotypic features. This viewpoint is however changing. While intraspecies diversity, and more specifically pathogenic variability, has been experimentally demonstrated in a myriad of studies, the underlying contributors and sources responsible for such diversity have remained nebulous. However, recent large-scale sequence and bioinformatics studies have aided in revealing intrinsic genetic differences distinguishing isolates of this species, that await further characterisation as causative links to virulence and pathogenicity. Furthermore, progress on N. caninum research as a non-model organism is hindered by a lack of robust, annotated genomic, transcriptomic, and proteomic data for the species, especially compared to other thoroughly studied Apicomplexa such as Toxoplasma gondii and Plasmodium species. This review explores the current body of knowledge on intra-species diversity within N. caninum. This includes the contribution of sequence variants in both coding and non-coding regions, the presence of genome polymorphic hotspots, and the identification of non-synonymous mutations. The implications of such diversity on important parasite phenotypes such as pathogenicity and population structure are also discussed. Lastly, the identification of potential virulence factors from both in-silico and next generation sequencing studies is examined, offering new insights into potential avenues for future research on neosporosis.
Collapse
Affiliation(s)
- Larissa Calarco
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
12
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Hunt A, Russell MRG, Wagener J, Kent R, Carmeille R, Peddie CJ, Collinson L, Heaslip A, Ward GE, Treeck M. Differential requirements for cyclase-associated protein (CAP) in actin-dependent processes of Toxoplasma gondii. eLife 2019; 8:e50598. [PMID: 31577230 PMCID: PMC6785269 DOI: 10.7554/elife.50598] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022] Open
Abstract
Toxoplasma gondii contains a limited subset of actin binding proteins. Here we show that the putative actin regulator cyclase-associated protein (CAP) is present in two different isoforms and its deletion leads to significant defects in some but not all actin dependent processes. We observe defects in cell-cell communication, daughter cell orientation and the juxtanuclear accumulation of actin, but only modest defects in synchronicity of division and no defect in the replication of the apicoplast. 3D electron microscopy reveals that loss of CAP results in a defect in formation of a normal central residual body, but parasites remain connected within the vacuole. This dissociates synchronicity of division and parasite rosetting and reveals that establishment and maintenance of the residual body may be more complex than previously thought. These results highlight the different spatial requirements for F-actin regulation in Toxoplasma which appear to be achieved by partially overlapping functions of actin regulators.
Collapse
Affiliation(s)
- Alex Hunt
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | | | - Jeanette Wagener
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Robyn Kent
- Department of Microbiology and Molecular GeneticsUniversity of Vermont Larner College of MedicineBurlingtonUnited States
| | - Romain Carmeille
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Aoife Heaslip
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Gary E Ward
- Department of Microbiology and Molecular GeneticsUniversity of Vermont Larner College of MedicineBurlingtonUnited States
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
14
|
Wall RJ, Zeeshan M, Katris NJ, Limenitakis R, Rea E, Stock J, Brady D, Waller RF, Holder AA, Tewari R. Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. Cell Microbiol 2019; 21:e13082. [PMID: 31283102 PMCID: PMC6851706 DOI: 10.1111/cmi.13082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 11/28/2022]
Abstract
The myosin superfamily comprises of actin-dependent eukaryotic molecular motors important in a variety of cellular functions. Although well studied in many systems, knowledge of their functions in Plasmodium, the causative agent of malaria, is restricted. Previously, six myosins were identified in this genus, including three Class XIV myosins found only in Apicomplexa and some Ciliates. The well characterized MyoA is a Class XIV myosin essential for gliding motility and invasion. Here, we characterize all other Plasmodium myosins throughout the parasite life cycle and show that they have very diverse patterns of expression and cellular location. MyoB and MyoE, the other two Class XIV myosins, are expressed in all invasive stages, with apical and basal locations, respectively. Gene deletion revealed that MyoE is involved in sporozoite traversal, MyoF and MyoK are likely essential in the asexual blood stages, and MyoJ and MyoB are not essential. Both MyoB and its essential light chain (MCL-B) are localised at the apical end of ookinetes but expressed at completely different time points. This work provides a better understanding of the role of actomyosin motors in Apicomplexan parasites, particularly in the motile and invasive stages of Plasmodium during sexual and asexual development within the mosquito.
Collapse
Affiliation(s)
- Richard J. Wall
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | | | | | - Edward Rea
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Jessica Stock
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Declan Brady
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Ross F. Waller
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Rita Tewari
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
15
|
Rudlaff RM, Kraemer S, Streva VA, Dvorin JD. An essential contractile ring protein controls cell division in Plasmodium falciparum. Nat Commun 2019; 10:2181. [PMID: 31097714 PMCID: PMC6522492 DOI: 10.1038/s41467-019-10214-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/23/2019] [Indexed: 11/09/2022] Open
Abstract
During the blood stage of human malaria, Plasmodium falciparum parasites divide by schizogony-a process wherein components for several daughter cells are produced within a common cytoplasm and then segmentation, a synchronized cytokinesis, produces individual invasive daughters. The basal complex is hypothesized to be required for segmentation, acting as a contractile ring to establish daughter cell boundaries. Here we identify an essential component of the basal complex which we name PfCINCH. Using three-dimensional reconstructions of parasites at electron microscopy resolution, we show that while parasite organelles form and divide normally, PfCINCH-deficient parasites develop inviable conjoined daughters that contain components for multiple cells. Through biochemical evaluation of the PfCINCH-containing complex, we discover multiple previously undescribed basal complex proteins. Therefore, this work provides genetic evidence that the basal complex is required for precise segmentation and lays the groundwork for a mechanistic understanding of how the parasite contractile ring drives cell division.
Collapse
Affiliation(s)
- Rachel M Rudlaff
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stephan Kraemer
- Center for Nanoscale Systems, Harvard University, Boston, MA, 02138, USA
| | - Vincent A Streva
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Abstract
Alternative splicing is a widespread, essential, and complex component of gene regulation. Apicomplexan parasites have long been recognized to produce alternatively spliced transcripts for some genes and can produce multiple protein products that are essential for parasite growth. Alternative splicing is a widespread, essential, and complex component of gene regulation. Apicomplexan parasites have long been recognized to produce alternatively spliced transcripts for some genes and can produce multiple protein products that are essential for parasite growth. Recent approaches are now providing more wide-ranging surveys of the extent of alternative splicing; some indicate that alternative splicing is less widespread than in other model eukaryotes, whereas others suggest levels comparable to those of previously studied groups. In many cases, apicomplexan alternative splicing events appear not to generate multiple alternative proteins but instead produce aberrant or noncoding transcripts. Nonetheless, appropriate regulation of alternative splicing is clearly essential in Plasmodium and Toxoplasma parasites, suggesting a biological role for at least some of the alternative splicing observed. Several studies have now disrupted conserved regulators of alternative splicing and demonstrated lethal effects in apicomplexans. This minireview discusses methods to accurately determine the extent of alternative splicing in Apicomplexa and discuss potential biological roles for this conserved process in a phylum of parasites with compact genomes.
Collapse
|
17
|
Attias M, Miranda K, De Souza W. Development and fate of the residual body of Toxoplasma gondii. Exp Parasitol 2018; 196:1-11. [PMID: 30476495 DOI: 10.1016/j.exppara.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023]
Abstract
As the tachyzoite form of Toxoplasma gondii divides inside the parasitophorous vacuole, the daughter cells remain attached to each other at the posterior end through the so-called residual body (RB). Here, we studied this process using field emission scanning electron microscopy of dry scraped infected cells, transmission electron microscopy of random ultrathin sections, X-ray microanalysis, and 3-D modelling of tomographic volumes and slice and view series obtained by FIB SEM at 7, 24, and 48 h post infection. Combining these methods of observation, we traced a timeline of events for the formation, development, and fate of the RB. The RB is formed as the first endodyogenic division is complete. Before that, finger-like invaginations at the posterior end of the tachyzoite secrete tubules from the intravacuolar network. The RB is roughly spherical and measures 1 μm in diameter at random. Its size does not vary considerably as the division cycles that form the rosette proceed. The contents of the RB are similar to the cytoplasm of the parasites. It contains ER membranous profiles and vacuolar structures identified as acidocalcisomes. This was confirmed by microanalysis. Mitochondrial profiles seen inside the RB are actually branches of mother cell mitochondrion not yet split between the two daughter cells. Acidocalcisomes of a mother cell are distributed between the two daughter cells, but as the rosette of parasites grow, acidocalcisomes seem to concentrate inside the RB where they are usually larger and tend to fuse to each other, filling most of the space in the RB. Here we hypothesize that, upon egress, the acidocalcisomes would ultimately fuse with the RB membrane liberating its contents inside the parasitophorous vacuole (PV) and, by doing so; the RB would disintegrate, releasing its contents in the PV.
Collapse
Affiliation(s)
- Marcia Attias
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Brazil.
| | - Kildare Miranda
- Instituto de Biofísica Carlos Chagas Filho, Biologia Celular, Laboratório de Ultraestrutura Celular Hertha Meyer, Brazil
| | - Wanderley De Souza
- Instituto de Biofísica Carlos Chagas Filho, Biologia Celular, Laboratório de Ultraestrutura Celular Hertha Meyer, Brazil
| |
Collapse
|
18
|
Mueller C, Graindorge A, Soldati-Favre D. Functions of myosin motors tailored for parasitism. Curr Opin Microbiol 2017; 40:113-122. [DOI: 10.1016/j.mib.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023]
|
19
|
Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLoS Pathog 2017; 13:e1006379. [PMID: 28475612 PMCID: PMC5435356 DOI: 10.1371/journal.ppat.1006379] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/17/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion. One of the most common motifs that binds calcium to transduce intracellular signals is called an EF hand- named after the globular domain structure first characterized in ovalbumin. A conserved cluster of four EF hands, each of which that binds one calcium atom, is a conserved feature of calmodulin, centrins, and calmodulin-like proteins, including myosin light chains. Although the presence of EF hands is predictive of calcium binding, it alone does not allow classification of biological function as this set of conserved proteins have very diverse functions. Here we used modified editing procedures based on CRISPR/Cas9 combined with a plant-like degradation system to define the roles of three calmodulin-like proteins in T. gondii. These proteins all localized to a specialized apical structure called the conoid where they overlap with the motor protein called MyoH. Additionally, biochemical and genetic studies suggest they coordinately regulate cell invasion. These new genomic editing tools, combined with an efficient system for protein degradation, expand the functional tool kit for an analysis of essential genes and proteins in T. gondii.
Collapse
|
20
|
Kissmehl R, Sehring IM, Wagner E, Plattner H. Immunolocalization of Actin in Paramecium Cells. J Histochem Cytochem 2016; 52:1543-59. [PMID: 15557210 DOI: 10.1369/jhc.4a6379.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have selected a conserved immunogenic region from several actin genes of Paramecium, recently cloned in our laboratory, to prepare antibodies for Western blots and immunolocalization. According to cell fractionation analysis, most actin is structure-bound. Immunofluorescence shows signal enriched in the cell cortex, notably around ciliary basal bodies (identified by anti-centrin antibodies), as well as around the oral cavity, at the cytoproct and in association with vacuoles (phagosomes) up to several μm in size. Subtle strands run throughout the cell body. Postembedding immunogold labeling/EM analysis shows that actin in the cell cortex emanates, together with the infraciliary lattice, from basal bodies to around trichocyst tips. Label was also enriched around vacuoles and vesicles of different size including “discoidal” vesicles that serve the formation of new phagosomes. By all methods used, we show actin in cilia. Although none of the structurally well-defined filament systems in Paramecium are exclusively formed by actin, actin does display some ordered, though not very conspicuous, arrays throughout the cell. F-actin may somehow serve vesicle trafficking and as a cytoplasmic scaffold. This is particularly supported by the postembedding/EM labeling analysis we used, which would hardly allow for any large-scale redistribution during preparation.
Collapse
Affiliation(s)
- Roland Kissmehl
- Department of Biology, University of Konstanz, PO Box 5560, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
21
|
Rivera Fernández N, Mondragón Castelán M, González Pozos S, Ramírez Flores CJ, Mondragón González R, Gómez de León CT, Castro Elizalde KN, Marrero Ponce Y, Arán VJ, Martins Alho MA, Mondragón Flores R. A new type of quinoxalinone derivatives affects viability, invasion, and intracellular growth of Toxoplasma gondii tachyzoites in vitro. Parasitol Res 2016; 115:2081-96. [PMID: 26888289 DOI: 10.1007/s00436-016-4953-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/04/2016] [Indexed: 12/11/2022]
Abstract
Quinoxalinone derivatives, identified as VAM2 compounds (7-nitroquinoxalin-2-ones), were evaluated against Toxoplasma gondii tachyzoites of the RH strain. The VAM2 compounds were previously synthesized based on the design obtained from an in silico prediction with the software TOMOCOMD-CARDD. From the ten VAM2 drugs tested, several showed a deleterious effect on tachyzoites. However, VAM2-2 showed the highest toxoplasmicidal activity generating a remarkable decrease in tachyzoite viability (in about 91 %) and a minimal alteration in the host cell. An evident inhibition of host cell invasion by tachyzoites previously treated with VAM2-2 was observed in a dose-dependent manner. In addition, remarkable alterations were observed in the pellicle parasite, such as swelling, roughness, and blebbing. Toxoplasma motility was inhibited, and subpellicular cytoskeleton integrity was altered, inducing a release of its components to the soluble fraction. VAM2-2 showed a clear and specific deleterious effect on tachyzoites viability, structural integrity, and invasive capabilities with limited effects in host cells morphology and viability. VAM2-2 minimum inhibitory concentration (MIC50) was determined as 3.3 μM ± 1.8. Effects of quinoxalinone derivatives on T. gondii provide the basis for a future therapeutical alternative in the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Norma Rivera Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, DF, México
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Avenida IPN No 2508 Delegación Gustavo A Madero, 07360, DF, México
| | - Mónica Mondragón Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Avenida IPN No 2508 Delegación Gustavo A Madero, 07360, DF, México
| | | | - Carlos J Ramírez Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Avenida IPN No 2508 Delegación Gustavo A Madero, 07360, DF, México
| | | | - Carmen T Gómez de León
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Avenida IPN No 2508 Delegación Gustavo A Madero, 07360, DF, México
| | - Kitzia N Castro Elizalde
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Avenida IPN No 2508 Delegación Gustavo A Madero, 07360, DF, México
| | - Yovani Marrero Ponce
- Edificio de Especialidades Médicas, Hospital de los Valles, Colegio de Ciencias de la Salud, Universidad de San Francisco de Quito, Av. Interoceánica Km 12 1/2 Cumbayá, Quito, Ecuador
| | - Vicente J Arán
- Instituto de Química Médica, CSIC, c/ Juan de la Cierva 3, 28006, Madrid, España
| | - Miriam A Martins Alho
- Instituto de Química Médica, CSIC, c/ Juan de la Cierva 3, 28006, Madrid, España
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR-CONICET), Departamento de Química Orgánica, FCEN y LabMOr - INTECIN, FI, UBA, Paseo Colón 850, 5to. Piso, CP C1063ACV, Buenos Aires, Argentina
| | - Ricardo Mondragón Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Avenida IPN No 2508 Delegación Gustavo A Madero, 07360, DF, México.
| |
Collapse
|
22
|
Gliding motility in apicomplexan parasites. Semin Cell Dev Biol 2015; 46:135-42. [DOI: 10.1016/j.semcdb.2015.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/25/2015] [Indexed: 11/22/2022]
|
23
|
Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites. Curr Genet 2015; 62:31-8. [PMID: 26194054 DOI: 10.1007/s00294-015-0506-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022]
Abstract
Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.
Collapse
|
24
|
Villanueva MA, Barnay-Verdier S, Priouzeau F, Furla P. Chloroplast and oxygen evolution changes in Symbiodinium sp. as a response to latrunculin and butanedione monoxime treatments under various light conditions. PHOTOSYNTHESIS RESEARCH 2015; 124:305-313. [PMID: 25904178 DOI: 10.1007/s11120-015-0142-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
The actin cytoskeleton is a dynamic structure that provides an interactive platform for organelles and cellular components. It also serves as track for membranes and vesicles that move via myosin. The actin cytoskeleton of Symbiodinium is a well-organized reticular structure suggestive of multiple membrane interactions, very likely including those of the chloroplast. The Symbiodinium chloroplast membrane network is, in turn, a highly organized structure, suggestive of being under the control of an organizing network. We visualized the chloroplast membranes of cultured Symbiodinium sp. under various light conditions and observed changes dependent on illumination intensity. Since we suspected interaction between these two organelles, and we knew that the Symbiodinium actin cytoskeleton collapses upon treatment with either latrunculin B, an actin microfilament-disrupting agent, or butanedione monoxime, a myosin function inhibitor, we tested the Symbiodinium sp. oxygen evolution in their presence. Upon latrunculin B addition, the oxygen production decreased compared to non-treated cells; however, this was not observed after a 24 h latrunculin treatment. On the contrary, butanedione monoxime treatment caused a non-recoverable dysfunction of the chloroplast causing a severe loss in oxygen production even after long-term exposure. Using electron microscopy, we observed an alteration of the Symbiodinium sp. chloroplast distribution after latrunculin B treatment, with respect to untreated cells. Furthermore, a thorough disorganization of the chloroplast grana was observed after butanedione monoxime treatment. These data suggest that an actomyosin system would be important for chloroplast organization and distribution, and critical for normal photosynthetic function of Symbiodinium sp.
Collapse
Affiliation(s)
- Marco A Villanueva
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México-UNAM, Prol. Avenida Niños Héroes S/N, 77580, Puerto Morelos, Quintana Roo, México,
| | | | | | | |
Collapse
|
25
|
Yeoh LM, Goodman CD, Hall NE, van Dooren GG, McFadden GI, Ralph SA. A serine-arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii. Nucleic Acids Res 2015; 43:4661-75. [PMID: 25870410 PMCID: PMC4482073 DOI: 10.1093/nar/gkv311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/27/2015] [Indexed: 11/12/2022] Open
Abstract
Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine–rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes.
Collapse
Affiliation(s)
- Lee M Yeoh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher D Goodman
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nathan E Hall
- Department of Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia
| | - Giel G van Dooren
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Gómez de León CT, Díaz Martín RD, Mendoza Hernández G, González Pozos S, Ambrosio JR, Mondragón Flores R. Proteomic characterization of the subpellicular cytoskeleton of Toxoplasma gondii tachyzoites. J Proteomics 2014; 111:86-99. [DOI: 10.1016/j.jprot.2014.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 01/09/2023]
|
27
|
Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D. Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion. PLoS Pathog 2014; 10:e1004504. [PMID: 25393004 PMCID: PMC4231161 DOI: 10.1371/journal.ppat.1004504] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 10/06/2014] [Indexed: 11/23/2022] Open
Abstract
The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMC-associated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Toxoplasma gondii can infect most warm-blooded animals, and is an important opportunistic pathogen for humans. This obligate intracellular parasite is able to invade virtually all nucleated cells, and as with most parasites of the Apicomplexa phylum, relies on a substrate-dependent gliding motility to actively penetrate into host cells and egress from infected cells. The conserved molecular machine (named glideosome) powering motility is located at the periphery of the parasite and involves the molecular motor, myosin A (MyoA). The glideosome exists in three flavors, exhibiting the same overall organization and sharing some common components while being spatially restricted to the central IMC, the apical cap and the basal pole of the parasite, respectively. The central and apical glideosomes are associated with MyoA (MyoA-glideosome) whereas the basal complex recruits myosin C (MyoC). Deleting components of the MyoC-glideosome uncovers the existence of complementary and compensatory mechanisms that ensure successful establishment of infection. This study highlights a higher degree of complexity and plasticity of the gliding machinery.
Collapse
Affiliation(s)
- Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Valérie Polonais
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Villanueva MA, Arzápalo-Castañeda G, Castillo-Medina RE. The actin cytoskeleton organization and disorganization properties of the photosynthetic dinoflagellate Symbiodinium kawagutii in culture. Can J Microbiol 2014; 60:767-75. [PMID: 25372347 DOI: 10.1139/cjm-2014-0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin cytoskeleton organization in symbiotic marine dinoflagellates is largely undescribed; most likely, due to their intense pigment autofluorescence and cell walls that block fluorescent probe access. Using a freeze-fracture and fixation procedure, we observed the actin cytoskeleton of Symbiodinium kawagutii cultured in vitro with fluorescently labeled phalloidin and by indirect immunofluorescence with monoclonal antibodies specific for actin. The cytoskeleton appeared as an organized network with interconnected cortical and cytoplasmic thick filaments, along with some intertwined fine filaments. It showed a grid-type, reticular pattern organized in a lattice-like structure within the cell and throughout the cytoplasm. This organization was similar when the observations were done with either fluorescein isothiocyanate (FITC)-phalloidin or anti-actin, although the latter showed a more evenly distributed fluorescence characteristic of nonpolymerized actin. The network organization collapsed upon treatment with latrunculin, resulting in bright foci and diffuse fluorescence. A similar effect was obtained upon butanedione monoxime treatment, except that no bright foci were observed. We have been able to successfully visualize the actin cytoskeleton of S. kawagutii cells using fluorescence-based procedures. This is the first report on the visualization of the organization of the actin cytoskeleton under various conditions in these walled, highly autofluorescent cells.
Collapse
Affiliation(s)
- Marco A Villanueva
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México-UNAM, Prol. Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo 77580, México
| | | | | |
Collapse
|
29
|
Salamun J, Kallio JP, Daher W, Soldati-Favre D, Kursula I. Structure of Toxoplasma gondii coronin, an actin-binding protein that relocalizes to the posterior pole of invasive parasites and contributes to invasion and egress. FASEB J 2014; 28:4729-47. [PMID: 25114175 DOI: 10.1096/fj.14-252569] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coronins are involved in the regulation of actin dynamics in a multifaceted way, participating in cell migration and vesicular trafficking. Apicomplexan parasites, which exhibit an actin-dependent gliding motility that is essential for traversal through tissues, as well as invasion of and egress from host cells, express only a single coronin, whereas higher eukaryotes possess several isoforms. We set out to characterize the 3-D structure, biochemical function, subcellular localization, and genetic ablation of Toxoplasma gondii coronin (TgCOR), to shed light on its biological role. A combination of X-ray crystallography, small-angle scattering of X-rays, and light scattering revealed the atomic structure of the conserved WD40 domain and the dimeric arrangement of the full-length protein. TgCOR binds to F-actin and increases the rate and extent of actin polymerization. In vivo, TgCOR relocalizes transiently to the posterior pole of motile and invading parasites, independent of actin dynamics, but concomitant to microneme secretory organelle discharge. TgCOR contributes to, but is not essential for, invasion and egress. Taken together, our data point toward a role for TgCOR in stabilizing newly formed, short filaments and F-actin cross-linking, as well as functions linked to endocytosis and recycling of membranes.
Collapse
Affiliation(s)
- Julien Salamun
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Juha P Kallio
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and
| | - Wassim Daher
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland;
| | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
30
|
Transcript maturation in apicomplexan parasites. Curr Opin Microbiol 2014; 20:82-7. [PMID: 24934558 DOI: 10.1016/j.mib.2014.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/21/2023]
Abstract
The complex life cycles of apicomplexan parasites are associated with dynamic changes of protein repertoire. In Toxoplasma gondii, global analysis of gene expression demonstrates that dynamic changes in mRNA levels unfold in a serial cascade during asexual replication and up to 50% of encoded genes are unequally expressed in development. Recent studies indicate transcription and mRNA processing have important roles in fulfilling the 'just-in-time' delivery of proteins to parasite growth and development. The prominence of post-transcriptional mechanisms in the Apicomplexa was demonstrated by mechanistic studies of the critical RNA-binding proteins and regulatory kinases. However, it is still early in our understanding of how transcription and post-transcriptional mechanisms are balanced to produce adequate numbers of specialized forms that is required to complete the parasite life cycle.
Collapse
|
31
|
Jacot D, Frénal K, Marq JB, Sharma P, Soldati-Favre D. Assessment of phosphorylation inToxoplasmaglideosome assembly and function. Cell Microbiol 2014; 16:1518-32. [DOI: 10.1111/cmi.12307] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/16/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Damien Jacot
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| | - Karine Frénal
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory; National Institute of Immunology; New Delhi 110067 India
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| |
Collapse
|
32
|
Egarter S, Andenmatten N, Jackson AJ, Whitelaw JA, Pall G, Black JA, Ferguson DJP, Tardieux I, Mogilner A, Meissner M. The toxoplasma Acto-MyoA motor complex is important but not essential for gliding motility and host cell invasion. PLoS One 2014; 9:e91819. [PMID: 24632839 PMCID: PMC3954763 DOI: 10.1371/journal.pone.0091819] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/13/2014] [Indexed: 12/23/2022] Open
Abstract
Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite's own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.
Collapse
Affiliation(s)
- Saskia Egarter
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nicole Andenmatten
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allison J. Jackson
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jamie A. Whitelaw
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gurman Pall
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Ann Black
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, Oxford University, Oxford, United Kingdom
| | - Isabelle Tardieux
- Institut Cochin, University of Paris Descartes, INSERM U-1016, CNRS UMR-8104, Paris, France
| | - Alex Mogilner
- Department of Neurobiology, Physiology, and Behavior and Department of Mathematics, University of California Davis, Davis, California, United States of America
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Hassan MA, Melo MB, Haas B, Jensen KDC, Saeij JPJ. De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs. BMC Genomics 2012; 13:696. [PMID: 23231500 PMCID: PMC3543268 DOI: 10.1186/1471-2164-13-696] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/04/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, Toxoplasma gondii, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in Toxoplasma gondii is unknown. In this study, we used de novo transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in Toxoplasma and to improve the current Toxoplasma gene annotations. RESULTS We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel Toxoplasma genes, and putative non-coding RNAs. CONCLUSION RNA-seq data and de novo transcript assembly provide a robust way to update incompletely annotated genomes, like the Toxoplasma genome. We have used RNA-seq to improve the annotation of several Toxoplasma genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.
Collapse
Affiliation(s)
- Musa A Hassan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
34
|
Lorestani A, Ivey FD, Thirugnanam S, Busby MA, Marth GT, Cheeseman IM, Gubbels MJ. Targeted proteomic dissection of Toxoplasma cytoskeleton sub-compartments using MORN1. Cytoskeleton (Hoboken) 2012; 69:1069-85. [PMID: 23027733 DOI: 10.1002/cm.21077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 12/25/2022]
Abstract
The basal complex in Toxoplasma functions as the contractile ring in the cell division process. Basal complex contraction tapers the daughter cytoskeleton toward the basal end and is required for daughter segregation. We have previously shown that the protein MORN1 is essential for basal complex assembly and likely acts as a scaffolding protein. To further our understanding of the basal complex, we combined subcellular fractionation with an affinity purification of the MORN1 complex and identified its protein composition. We identified two new components of the basal complex, one of which uniquely associated with the basal complex in mature parasites, the first of its kind. In addition, we identified several other novel cytoskeleton proteins with different spatiotemporal dynamics throughout cell division. Since many of these proteins are unique to Apicomplexa this study significantly contributes to the annotation of their unique cytoskeleton. Furthermore, we show that G-actin binding protein TgCAP is localized at the apical cap region in intracellular parasites, but quickly redistributes to a cytoplasmic localization pattern upon egress. © 2012 Wiley Periodicals, Inc.
Collapse
|
35
|
Ridzuan MAM, Moon RW, Knuepfer E, Black S, Holder AA, Green JL. Subcellular location, phosphorylation and assembly into the motor complex of GAP45 during Plasmodium falciparum schizont development. PLoS One 2012; 7:e33845. [PMID: 22479457 PMCID: PMC3316498 DOI: 10.1371/journal.pone.0033845] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/19/2012] [Indexed: 01/23/2023] Open
Abstract
An actomyosin motor complex assembled below the parasite's plasma membrane drives erythrocyte invasion by Plasmodium falciparum merozoites. The complex is comprised of several proteins including myosin (MyoA), myosin tail domain interacting protein (MTIP) and glideosome associated proteins (GAP) 45 and 50, and is anchored on the inner membrane complex (IMC), which underlies the plasmalemma. A ternary complex of MyoA, MTIP and GAP45 is formed that then associates with GAP50. We show that full length GAP45 labelled internally with GFP is assembled into the motor complex and transported to the developing IMC in early schizogony, where it accumulates during intracellular development until merozoite release. We show that GAP45 is phosphorylated by calcium dependent protein kinase 1 (CDPK1), and identify the modified serine residues. Replacing these serine residues with alanine or aspartate has no apparent effect on GAP45 assembly into the motor protein complex or its subcellular location in the parasite. The early assembly of the motor complex suggests that it has functions in addition to its role in erythrocyte invasion.
Collapse
Affiliation(s)
- Mohd A. Mohd Ridzuan
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
- Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Robert W. Moon
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Sally Black
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Judith L. Green
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Anderson-White B, Beck JR, Chen CT, Meissner M, Bradley PJ, Gubbels MJ. Cytoskeleton assembly in Toxoplasma gondii cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:1-31. [PMID: 22878103 PMCID: PMC4066374 DOI: 10.1016/b978-0-12-394309-5.00001-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell division across members of the protozoan parasite phylum Apicomplexa displays a surprising diversity between different species as well as between different life stages of the same parasite. In most cases, infection of a host cell by a single parasite results in the formation of a polyploid cell from which individual daughters bud in a process dependent on a final round of mitosis. Unlike other apicomplexans, Toxoplasma gondii divides by a binary process consisting of internal budding that results in only two daughter cells per round of division. Since T. gondii is experimentally accessible and displays the simplest division mode, it has manifested itself as a model for apicomplexan daughter formation. Here, we review newly emerging insights in the prominent role that assembly of the cortical cytoskeletal scaffold plays in the process of daughter parasite formation.
Collapse
Affiliation(s)
| | - Josh R. Beck
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Chun-Ti Chen
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| | - Markus Meissner
- Division of Infection and Immunity, Institute of Biomedical Life Sciences, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Peter J. Bradley
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Marc-Jan Gubbels
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| |
Collapse
|
37
|
Molecular characterization of Toxoplasma gondii formin 3, an actin nucleator dispensable for tachyzoite growth and motility. EUKARYOTIC CELL 2011; 11:343-52. [PMID: 22210829 DOI: 10.1128/ec.05192-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Toxoplasma gondii belongs to the phylum Apicomplexa, a group of obligate intracellular parasites that rely on gliding motility to enter host cells. Drugs interfering with the actin cytoskeleton block parasite motility, host cell invasion, and egress from infected cells. Myosin A, profilin, formin 1, formin 2, and actin-depolymerizing factor have all been implicated in parasite motility, yet little is known regarding the importance of actin polymerization and other myosins for the remaining steps of the parasite lytic cycle. Here we establish that T. gondii formin 3 (TgFRM3), a newly described formin homology 2 domain (FH2)-containing protein, binds to Toxoplasma actin and nucleates rabbit actin assembly in vitro. TgFRM3 expressed as a transgene exhibits a patchy localization at several distinct structures within the parasite. Disruption of the TgFRM3 gene by double homologous recombination in a ku80-ko strain reveals no vital function for tachyzoite propagation in vitro, which is consistent with its weak level of expression in this life stage. Conditional stabilization of truncated forms of TgFRM3 suggests that different regions of the molecule contribute to distinct localizations. Moreover, expression of TgFRM3 lacking the C-terminal domain severely affects parasite growth and replication. This work provides a first insight into how this specialized formin, restricted to the group of coccidia, completes its actin-nucleating activity.
Collapse
|
38
|
Targeted disruption of Toxoplasma gondii serine protease inhibitor 1 increases bradyzoite cyst formation in vitro and parasite tissue burden in mice. Infect Immun 2011; 80:1156-65. [PMID: 22202120 DOI: 10.1128/iai.06167-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an intracellular protozoan parasite, Toxoplasma gondii is likely to exploit proteases for host cell invasion, acquisition of nutrients, avoidance of host protective responses, escape from the parasitophorous vacuole, differentiation, and other activities. T. gondii serine protease inhibitor 1 (TgPI1) is the most abundantly expressed protease inhibitor in parasite tachyzoites. We show here that alternative splicing produces two TgPI1 isoforms, both of which are secreted via dense granules into the parasitophorous vacuole shortly after invasion, become progressively more abundant over the course of the infectious cycle, and can be detected in the infected host cell cytoplasm. To investigate TgPI1 function, the endogenous genomic locus was disrupted in the RH strain background. ΔTgPI1 parasites replicate normally as tachyzoites but exhibit increased bradyzoite gene transcription and labeling of vacuoles with Dolichos biflorus lectin under conditions promoting in vitro differentiation. The differentiation phenotype can be partially complemented by either TgPI1 isoform. Mice infected with the ΔTgPI1 mutant display ∼3-fold-increased parasite burden in the spleen and liver, and this in vivo phenotype is also complemented by either TgPI1 isoform. These results demonstrate that TgPI1 influences both parasite virulence and bradyzoite differentiation, presumably by inhibiting parasite and/or host serine proteases.
Collapse
|
39
|
Contribution of the residual body in the spatial organization of Toxoplasma gondii tachyzoites within the parasitophorous vacuole. J Biomed Biotechnol 2011; 2011:473983. [PMID: 22190852 PMCID: PMC3228691 DOI: 10.1155/2011/473983] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii proliferates and organizes within a parasitophorous vacuole in rosettes around a residual body and is surrounded by a membranous nanotubular network whose function remains unclear. Here, we characterized structure and function of the residual body in intracellular tachyzoites of the RH strain. Our data showed the residual body as a body limited by a membrane formed during proliferation of tachyzoites probably through the secretion of components and a pinching event of the membrane at the posterior end. It contributes in the intravacuolar parasite organization by the membrane connection between the tachyzoites posterior end and the residual body membrane to give place to the rosette conformation. Radial distribution of parasites in rosettes favors an efficient exteriorization. Absence of the network and presence of atypical residual bodies in a ΔGRA2-HXGPRT knock-out mutant affected the intravacuolar organization of tachyzoites and their exteriorization.
Collapse
|
40
|
Olguin-Lamas A, Madec E, Hovasse A, Werkmeister E, Callebaut I, Slomianny C, Delhaye S, Mouveaux T, Schaeffer-Reiss C, Van Dorsselaer A, Tomavo S. A novel Toxoplasma gondii nuclear factor TgNF3 is a dynamic chromatin-associated component, modulator of nucleolar architecture and parasite virulence. PLoS Pathog 2011; 7:e1001328. [PMID: 21483487 PMCID: PMC3068996 DOI: 10.1371/journal.ppat.1001328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 03/01/2011] [Indexed: 01/13/2023] Open
Abstract
In Toxoplasma gondii, cis-acting elements present in promoter sequences of genes that are stage-specifically regulated have been described. However, the nuclear factors that bind to these cis-acting elements and regulate promoter activities have not been identified. In the present study, we performed affinity purification, followed by proteomic analysis, to identify nuclear factors that bind to a stage-specific promoter in T. gondii. This led to the identification of several nuclear factors in T. gondii including a novel factor, designated herein as TgNF3. The N-terminal domain of TgNF3 shares similarities with the N-terminus of yeast nuclear FK506-binding protein (FKBP), known as a histone chaperone regulating gene silencing. Using anti-TgNF3 antibodies, HA-FLAG and YFP-tagged TgNF3, we show that TgNF3 is predominantly a parasite nucleolar, chromatin-associated protein that binds specifically to T. gondii gene promoters in vivo. Genome-wide analysis using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified promoter occupancies by TgNF3. In addition, TgNF3 has a direct role in transcriptional control of genes involved in parasite metabolism, transcription and translation. The ectopic expression of TgNF3 in the tachyzoites revealed dynamic changes in the size of the nucleolus, leading to a severe attenuation of virulence in vivo. We demonstrate that TgNF3 physically interacts with H3, H4 and H2A/H2B assembled into bona fide core and nucleosome-associated histones. Furthermore, TgNF3 interacts specifically to histones in the context of stage-specific gene silencing of a promoter that lacks active epigenetic acetylated histone marks. In contrast to virulent tachyzoites, which express the majority of TgNF3 in the nucleolus, the protein is exclusively located in the cytoplasm of the avirulent bradyzoites. We propose a model where TgNF3 acts essentially to coordinate nucleolus and nuclear functions by modulating nucleosome activities during the intracellular proliferation of the virulent tachyzoites of T. gondii. Apicomplexa including Toxoplasma gondii are responsible for a variety of deadly infections. These intracellular parasites have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression in response to different environments. However, to date, little is known about nuclear factors that regulate their gene expression. Here, we have characterized parasite nuclear factors that bind to a stage-specific promoter. We identified several nuclear factors including a novel factor, designated herein as TgNF3. The N-terminal domain of TgNF3 shares similarities with the N-terminus of yeast nuclear FK506-binding protein (FKBP), known as a histone chaperone regulating gene silencing. We show that TgNF3 is predominantly a nucleolar, chromatin-associated protein that specifically binds to T. gondii nucleosome-associated histones and promoters. Genome-wide analysis identified promoter occupancies by TgNF3 and we demonstrated a direct role for this factor in transcriptional control of genes involved in parasite metabolism, transcription and translation. Ectopic expression of TgNF3 induces dynamic changes in the size of the nucleolus, and a severe attenuation of parasite virulence in vivo. In avirulent bradyzoites, TgNF3 is found exclusively in the cytoplasm, suggesting a potential role in regulating nucleolar and nuclear functions in the virulent tachyzoites of T. gondii.
Collapse
Affiliation(s)
- Alejandro Olguin-Lamas
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Edwige Madec
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Agnes Hovasse
- Laboratoire de Spectrométrie de Masse Bioorganique, IPHC, CNRS UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Elisabeth Werkmeister
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Isabelle Callebaut
- Centre National de la Recherche Scientifique, Universités Pierre et Marie Curie-Paris 6 et Denis Diderot-Paris 7, UMR7590, Paris, France
| | - Christian Slomianny
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Université de Lille 1, Villeneuve d'Ascq, France
| | - Stephane Delhaye
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Thomas Mouveaux
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse Bioorganique, IPHC, CNRS UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bioorganique, IPHC, CNRS UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
41
|
Polonais V, Javier Foth B, Chinthalapudi K, Marq JB, Manstein DJ, Soldati-Favre D, Frénal K. Unusual anchor of a motor complex (MyoD-MLC2) to the plasma membrane of Toxoplasma gondii. Traffic 2011; 12:287-300. [PMID: 21143563 DOI: 10.1111/j.1600-0854.2010.01148.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)-like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.
Collapse
Affiliation(s)
- Valérie Polonais
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Bahl A, Davis PH, Behnke M, Dzierszinski F, Jagalur M, Chen F, Shanmugam D, White MW, Kulp D, Roos DS. A novel multifunctional oligonucleotide microarray for Toxoplasma gondii. BMC Genomics 2010; 11:603. [PMID: 20974003 PMCID: PMC3017859 DOI: 10.1186/1471-2164-11-603] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microarrays are invaluable tools for genome interrogation, SNP detection, and expression analysis, among other applications. Such broad capabilities would be of value to many pathogen research communities, although the development and use of genome-scale microarrays is often a costly undertaking. Therefore, effective methods for reducing unnecessary probes while maintaining or expanding functionality would be relevant to many investigators. RESULTS Taking advantage of available genome sequences and annotation for Toxoplasma gondii (a pathogenic parasite responsible for illness in immunocompromised individuals) and Plasmodium falciparum (a related parasite responsible for severe human malaria), we designed a single oligonucleotide microarray capable of supporting a wide range of applications at relatively low cost, including genome-wide expression profiling for Toxoplasma, and single-nucleotide polymorphism (SNP)-based genotyping of both T. gondii and P. falciparum. Expression profiling of the three clonotypic lineages dominating T. gondii populations in North America and Europe provides a first comprehensive view of the parasite transcriptome, revealing that ~49% of all annotated genes are expressed in parasite tachyzoites (the acutely lytic stage responsible for pathogenesis) and 26% of genes are differentially expressed among strains. A novel design utilizing few probes provided high confidence genotyping, used here to resolve recombination points in the clonal progeny of sexual crosses. Recent sequencing of additional T. gondii isolates identifies >620 K new SNPs, including ~11 K that intersect with expression profiling probes, yielding additional markers for genotyping studies, and further validating the utility of a combined expression profiling/genotyping array design. Additional applications facilitating SNP and transcript discovery, alternative statistical methods for quantifying gene expression, etc. are also pursued at pilot scale to inform future array designs. CONCLUSIONS In addition to providing an initial global view of the T. gondii transcriptome across major lineages and permitting detailed resolution of recombination points in a historical sexual cross, the multifunctional nature of this array also allowed opportunities to exploit probes for purposes beyond their intended use, enhancing analyses. This array is in widespread use by the T. gondii research community, and several aspects of the design strategy are likely to be useful for other pathogens.
Collapse
Affiliation(s)
- Amit Bahl
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Siden-Kiamos I, Schüler H, Liakopoulos D, Louis C. Arp1, an actin-related protein, in Plasmodium berghei. Mol Biochem Parasitol 2010; 173:88-96. [DOI: 10.1016/j.molbiopara.2010.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/23/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
|
44
|
Seeber F, Soldati-Favre D. Metabolic Pathways in the Apicoplast of Apicomplexa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:161-228. [DOI: 10.1016/s1937-6448(10)81005-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
45
|
Frénal K, Soldati-Favre D. Role of the parasite and host cytoskeleton in apicomplexa parasitism. Cell Host Microbe 2009; 5:602-11. [PMID: 19527887 DOI: 10.1016/j.chom.2009.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/22/2009] [Accepted: 05/28/2009] [Indexed: 11/25/2022]
Abstract
The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites that rely on actomyosin-based motility to migrate, enter host cells, and egress from infected cells. To ensure their intracellular survival and replication, the apicomplexans have evolved sophisticated strategies for subversion of the host cytoskeleton. Given the properties in common between the host and parasite cytoskeleton, dissecting their individual contribution to the establishment of parasitic infection has been challenging. Nevertheless, recent studies have provided new insights into the mechanisms by which parasites subvert the dynamic properties of host actin and tubulin to promote their entry, development, and egress.
Collapse
Affiliation(s)
- Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
46
|
Agop-Nersesian C, Naissant B, Rached FB, Rauch M, Kretzschmar A, Thiberge S, Menard R, Ferguson DJP, Meissner M, Langsley G. Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 2009; 5:e1000270. [PMID: 19165333 PMCID: PMC2622761 DOI: 10.1371/journal.ppat.1000270] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 12/15/2008] [Indexed: 12/22/2022] Open
Abstract
The final step during cell division is the separation of daughter cells, a process that requires the coordinated delivery and assembly of new membrane to the cleavage furrow. While most eukaryotic cells replicate by binary fission, replication of apicomplexan parasites involves the assembly of daughters (merozoites/tachyzoites) within the mother cell, using the so-called Inner Membrane Complex (IMC) as a scaffold. After de novo synthesis of the IMC and biogenesis or segregation of new organelles, daughters bud out of the mother cell to invade new host cells. Here, we demonstrate that the final step in parasite cell division involves delivery of new plasma membrane to the daughter cells, in a process requiring functional Rab11A. Importantly, Rab11A can be found in association with Myosin-Tail-Interacting-Protein (MTIP), also known as Myosin Light Chain 1 (MLC1), a member of a 4-protein motor complex called the glideosome that is known to be crucial for parasite invasion of host cells. Ablation of Rab11A function results in daughter parasites having an incompletely formed IMC that leads to a block at a late stage of cell division. A similar defect is observed upon inducible expression of a myosin A tail-only mutant. We propose a model where Rab11A-mediated vesicular traffic driven by an MTIP-Myosin motor is necessary for IMC maturation and to deliver new plasma membrane to daughter cells in order to complete cell division. Apicomplexan parasites are unusual in that they replicate by assembling daughter parasites within the mother cell. This involves the ordered assembly of an Inner Membrane Complex (IMC), a scaffold consisting of flattened membrane cisternae and a subpellicular network made up of microtubules and scaffold proteins. The IMC begins to form at the onset of replication, but its maturation occurs at the final stage of cytokinesis (the last step during cell division) upon the addition of motor (glideosome) components such as GAP45 (Glideosome Associated Protein), Myosin A (MyoA), and Myosin-Tail-Interacting-Protein (MTIP, also known as Myosin Light Chain 1) that are necessary to drive the gliding motility required for parasite invasion. We demonstrate that Rab11A regulates not only delivery of new plasmamembrane to daughter cells, but, importantly, also correct IMC formation. We show that Rab11A physically interacts with MTIP/MLC1, implicating unconventional myosin(s) in both cytokinesis and IMC maturation, and, consistently, overexpression of a MyoA tail-only mutant generates a default similar to that which we observe upon Rab11A ablation. We propose a model where Rab11A-mediated vesicular traffic is required for the delivery of new plasma membrane to daughter cells and for the maturation of the IMC in order to complete cell division.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bernina Naissant
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Fathia Ben Rached
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Manuel Rauch
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Angelika Kretzschmar
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Thiberge
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
| | - Robert Menard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
| | - David J. P. Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Markus Meissner
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail: (MM); (GL)
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
- * E-mail: (MM); (GL)
| |
Collapse
|
47
|
The cell cycle and Toxoplasma gondii cell division: tightly knit or loosely stitched? Int J Parasitol 2008; 38:1343-58. [PMID: 18703066 DOI: 10.1016/j.ijpara.2008.06.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 01/20/2023]
Abstract
The flexibility displayed by apicomplexan parasites to vary their mode of replication has intrigued biologists since their discovery by electron microscopy in the 1960s and 1970s. Starting in the 1990s we began to understand the cell biology of the cytoskeleton elements driving cytokinesis. By contrast, the molecular mechanisms that regulate the various division modes and how they translate into the budding process that uniquely characterizes this parasite family are much less understood. Although growth mechanisms are a neglected area of study, it is an important pathogenic parameter as fast division rounds are associated with fulminant infection whereas slower growth attenuates virulence, as is exploited in some vaccine strains. In this review we summarize a recent body of cell biological experiments that are rapidly leading to an understanding of the events that yield successful mitosis and cytokinesis in Toxoplasma. We place these observations within a cell cycle context with comments on how these events may be regulated by known eukaryotic checkpoints active in fission and budding yeasts as well as mammalian cells. The presence of cell cycle control mechanisms in the Apicomplexa is supported by our findings that identify several cell cycle checkpoints in Toxoplasma. The progress of the cell cycle is ultimately controlled by cyclin-Cdk pair activities, which are present throughout the Apicomplexa. Although many of the known controllers of cyclin-Cdk activity are present, several key controls cannot readily be identified, suggesting that apicomplexan parasites deviate at these points from the higher eukaryotic models. Altogether, new insights in Toxoplasma replication are reciprocally applied to hypothesize how other division modes in the Toxoplasma life cycle and in other Apicomplexa species could be controlled in terms of cell cycle checkpoint regulation.
Collapse
|
48
|
Abstract
The protozoan phylum Apicomplexa encompasses approximately 5000 species of obligate intracellular parasites, including those responsible for malaria and toxoplasmosis. Rather than dividing by binary fission, apicomplexans use a remarkable mechanism for replication, assembling daughters de novo within the cytoplasm. Here, we exploit time-lapse microscopy of fluorescent markers targeted to various subcellular structures in Toxoplasma gondii tachyzoites to determine how these unicellular eukaryotes efficiently package a complete set of organelles, maintaining the highly polarized organization necessary for host cell invasion and pathogenesis. Golgi division and elongation of the apicoplast are among the first morphologically observable events, associated with an unusual pattern of centriolar migration. Daughter parasites are assembled on cytoskeletal scaffolding, whose growth proceeds from the apical end, first encapsulating the divided Golgi. Further extension of the cytoskeletal scaffold results in partitioning of the apicoplast, nucleus, endoplasmic reticulum, and finally the mitochondrion, which enters the developing daughters rapidly, but only very late during the division cycle. The specialized secretory organelles (micronemes and rhoptries) form de novo. This distinctive pattern of replication -- in which organellar segregation spans approximately 75% of the cell cycle, completely encompassing S phase -- suggests an unusual mechanism of cell cycle regulation.
Collapse
Affiliation(s)
- Manami Nishi
- Departments of Biology, and Cell and Developmental Biology, University of Pennsylvania, Philadelphia PA 19104, USA
| | | | - John M. Murray
- Departments of Biology, and Cell and Developmental Biology, University of Pennsylvania, Philadelphia PA 19104, USA
| | - David S. Roos
- Departments of Biology, and Cell and Developmental Biology, University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
49
|
Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, Schaeffer C, Van Dorsselaer A, Tomavo S. Proteomics and Glycomics Analyses of N-Glycosylated Structures Involved in Toxoplasma gondii-Host Cell Interactions. Mol Cell Proteomics 2008; 7:891-910. [DOI: 10.1074/mcp.m700391-mcp200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
50
|
A novel actin-related protein is associated with daughter cell formation in Toxoplasma gondii. EUKARYOTIC CELL 2008; 7:1500-12. [PMID: 18408052 DOI: 10.1128/ec.00064-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell division in Toxoplasma gondii occurs by an unusual budding mechanism termed endodyogeny, during which twin daughters are formed within the body of the mother cell. Cytokinesis begins with the coordinated assembly of the inner membrane complex (IMC), which surrounds the growing daughter cells. The IMC is compiled of both flattened membrane cisternae and subpellicular filaments composed of articulin-like proteins attached to underlying singlet microtubules. While proteins that comprise the elongating IMC have been described, little is known about its initial formation. Using Toxoplasma as a model system, we demonstrate that actin-like protein 1 (ALP1) is partially redistributed to the IMC at early stages in its formation. Immunoelectron microscopy localized ALP1 to a discrete region of the nuclear envelope, on transport vesicles, and on the nascent IMC of the daughter cells prior to the arrival of proteins such as IMC-1. The overexpression of ALP1 under the control of a strong constitutive promoter disrupted the formation of the daughter cell IMC, leading to delayed growth and defects in nuclear and apicoplast segregation. Collectively, these data suggest that ALP1 participates in the formation of daughter cell membranes during cell division in apicomplexan parasites.
Collapse
|