1
|
Goldhammer N, Kim J, Villadsen R, Rønnov-Jessen L, Petersen OW. Myoepithelial progenitors as founder cells of hyperplastic human breast lesions upon PIK3CA transformation. Commun Biol 2022; 5:219. [PMID: 35273332 PMCID: PMC8913783 DOI: 10.1038/s42003-022-03161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
The myoepithelial (MEP) lineage of human breast comprises bipotent and multipotent progenitors in ducts and terminal duct lobular units (TDLUs). We here assess whether this heterogeneity impacts on oncogenic PIK3CA transformation. Single cell RNA sequencing (scRNA-seq) and multicolor imaging reveal that terminal ducts represent the most enriched source of cells with ductal MEP markers including α-smooth muscle actin (α-SMA), keratin K14, K17 and CD200. Furthermore, we find neighboring CD200high and CD200low progenitors within terminal ducts. When sorted and kept in ground state conditions, their CD200low and CD200high phenotypes are preserved. Upon differentiation, progenitors remain multipotent and bipotent, respectively. Immortalized progenitors are transduced with mutant PIK3CA on an shp53 background. Upon transplantation, CD200low MEP progenitors distinguish from CD200high by the formation of multilayered structures with a hyperplastic inner layer of luminal epithelial cells. We suggest a model with spatially distributed MEP progenitors as founder cells of biphasic breast lesions with implications for early detection and prevention strategies. Breast myoepithelial cells are characterised using single cell sequencing, where they are distinguished by CD200 expression. Distinct properties of CD200-low and CD200-high are found, which suggest that CD200-low cells are multipotent, whereas CD200-high cells are bipotent.
Collapse
Affiliation(s)
- Nadine Goldhammer
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
2
|
Elaimy AL, Wang M, Sheel A, Brown CW, Walker MR, Amante JJ, Xue W, Chan A, Baer CE, Goel HL, Mercurio AM. Real-time imaging of integrin β4 dynamics using a reporter cell line generated by Crispr/Cas9 genome editing. J Cell Sci 2019; 132:jcs.231241. [PMID: 31262785 DOI: 10.1242/jcs.231241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/22/2019] [Indexed: 12/27/2022] Open
Abstract
The ability to monitor changes in the expression and localization of integrins is essential for understanding their contribution to development, tissue homeostasis and disease. Here, we pioneered the use of Crispr/Cas9 genome editing to tag an allele of the β4 subunit of the α6β4 integrin. A tdTomato tag was inserted with a linker at the C-terminus of integrin β4 in mouse mammary epithelial cells. Cells harboring this tagged allele were similar to wild-type cells with respect to integrin β4 surface expression, association with the α6 subunit, adhesion to laminin and consequent signaling. These integrin β4 reporter cells were transformed with YAP (also known as YAP1), which enabled us to obtain novel insight into integrin β4 dynamics in response to a migratory stimulus (scratch wound) by live-cell video microscopy. An increase in integrin β4 expression in cells proximal to the wound edge was evident, and a population of integrin β4-expressing cells that exhibited unusually rapid migration was identified. These findings could shed insight into integrin β4 dynamics during invasion and metastasis. Moreover, these integrin β4 reporter cells should facilitate studies on the contribution of this integrin to mammary gland biology and cancer.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA.,Medical Scientist Training Program, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Mengdie Wang
- Medical Scientist Training Program, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Ankur Sheel
- Medical Scientist Training Program, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA.,RNA Therapeutics Institute, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Caitlin W Brown
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Melanie R Walker
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Amanda Chan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA.,Sanderson Center for Optical Examination, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Bresson L, Faraldo MM, Di-Cicco A, Quintanilla M, Glukhova MA, Deugnier MA. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling. Development 2018; 145:dev.160382. [PMID: 29361573 DOI: 10.1242/dev.160382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/15/2018] [Indexed: 12/28/2022]
Abstract
Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/β-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of β-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/β-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/β-catenin signaling, a key pathway in mammary development and tumorigenesis.
Collapse
Affiliation(s)
- Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,Université Paris Sud, Université Paris-Saclay, F-91405, Orsay, France.,Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,INSERM, Paris, F-75013, France
| | - Amandine Di-Cicco
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Marina A Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,INSERM, Paris, F-75013, France
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France .,INSERM, Paris, F-75013, France
| |
Collapse
|
4
|
Abstract
We have devised a culture system with conditions that allow primary breast myoepithelial cells (MEPs) to be passaged in a manner that sustains either nonmyodifferentiated or myodifferentiated cell populations without permitting contaminating luminal cells to grow. We show that progenitor activity and potency of MEPs to generate luminal cells in culture and in vivo rely on maintenance of myodifferentiation. Specific isolation and propagation of topographically distinct MEPs reveal the existence of multipotent progenitors in terminal duct lobular units. These findings have important implications for our understanding of the emergence of candidate luminal precursor cells to human breast cancer. The human breast parenchyma consists of collecting ducts and terminal duct lobular units (TDLUs). The TDLU is the site of origin of most breast cancers. The reason for such focal susceptibility to cancer remains poorly understood. Here, we take advantage of a region-specific heterogeneity in luminal progenitors to interrogate the differentiation repertoire of candidate stem cells in TDLUs. We show that stem-like activity in serial passage culture and in vivo breast morphogenesis relies on the preservation of a myoepithelial phenotype. By enrichment for region-specific progenitors, we identify bipotent and multipotent progenitors in ducts and TDLUs, respectively. We propose that focal breast cancer susceptibility, at least in part, originates from region-specific myoepithelial progenitors.
Collapse
|
5
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
6
|
Huang S, Yao B, Xie J, Fu X. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Acta Biomater 2016; 32:170-177. [PMID: 26747979 DOI: 10.1016/j.actbio.2015.12.039] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/10/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022]
Abstract
Sweat glands perform a vital thermoregulatory function in mammals. Like other skin appendages, they originate from epidermal progenitors. However, they have low regenerative potential in response to injury, and whether adult epidermal progenitors could be specified to differentiate to a sweat gland cell lineage remains largely unexplored. We used bioprinting technology to create a functional in vitro cell-laden 3D extracellular matrix mimics (3D-ECM) with composite hydrogels based on gelatin and sodium alginate because of chemical and structural similarity to ECM components. To achieve specific cell differentiation, mouse plantar dermis and epidermal growth factor were synchronously incorporated into the 3D-ECM mimics to create an inductive niche for epidermal progenitor cells obtained from mice. The biological 3D construct could maintain cell viability, thereby facilitating cell spreading and matrix formation. In vitro data by immunofluorescence and gene expression assay of key cell-surface markers demonstrated that the bioprinted 3D-ECM could effectively create a restrictive niche for epidermal progenitors that ensures unilateral differentiation into sweat gland cells. Furthermore, direct delivery of bioprinted 3D-ECM into burned paws of mice resulted in functional restoration of sweat glands. This study represents the rational design to enhance the specific differentiation of epidermal lineages using 3D bioprinting and may have clinical and translational implications in regenerating sweat glands. STATEMENT OF SIGNIFICANCE Sweat gland regeneration after injury is of clinical importance but remains largely unsolved because of low regenerative potential and lack of a definite niche. Some studies have shown sweat gland regeneration with gene-based interventions or cell-based induction via embryonic components, but translation to clinic is challenging. The novelty and significance of the work lies in the fact that we design a 3D bioprinted extracellular matrix that provides the spatial inductive cues for enhancing specific differentiation of epidermal lineages to regenerate sweat glands, which is critical for treating deep burns or other wounds. Our studies are encouraging given the overwhelming advantages of our designed 3D bioprinting construct over other cell delivery technology in maintaining high cell proliferation; another interesting finding is that adult tissue components retain a gland lineage-inductive power as embryonic tissue, which can facilitate translation.
Collapse
Affiliation(s)
- Sha Huang
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to General Hospital of PLA, Beijing 100048, PR China; Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853, PR China; Hainan Branch of the Chinese PLA General Hospital, Sanya 572014, PR China.
| | - Bin Yao
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to General Hospital of PLA, Beijing 100048, PR China; School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Jiangfan Xie
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to General Hospital of PLA, Beijing 100048, PR China; Graduate School of Tianjin Medical University, Tianjin 300052, PR China
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to General Hospital of PLA, Beijing 100048, PR China.
| |
Collapse
|
7
|
Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes. Oncotarget 2016; 6:9018-30. [PMID: 25940703 PMCID: PMC4496199 DOI: 10.18632/oncotarget.3379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/10/2015] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is classified into different subtypes that are associated with different patient survival outcomes, underscoring the importance of understanding the role of precursor cell and genetic alterations in determining tumor subtypes. In this study, we evaluated the oncogenic phenotype of two distinct mammary stem/progenitor cell types designated as K5+/K19− or K5+/K19+ upon introduction of identical combinations of oncogenes-mutant H-Ras (mRas) and mutant p53 (mp53), together with either wild-type ErbB2(wtErbB2) or wild-type EGFR (wtEGFR). We examined their tumor forming and metastasis potential, using both in-vitro and in-vivo assays. Both the combinations efficiently transformed K5+/K19− or K5+/K19+ cells. Xenograft tumors formed by these cells were histologically heterogeneous, with variable proportions of luminal, basal-like and claudin-low type components depending on the cell types and oncogene combinations. Notably, K5+/K19− cells transformed with mRas/mp53/wtEGFR combination had a significantly longer latency for primary tumor development than other cell lines but more lung metastasis incidence than same cells expressing mRas/mp53/wtErbB2. K5+/K19+ cells exhibit shorter overall tumor latency, and high metastatic potential than K5+/K19− cells, suggesting that these K19+ progenitors are more susceptible to oncogenesis and metastasis. Our results suggest that both genetic alterations and cell type of origin contribute to oncogenic phenotype of breast tumors.
Collapse
|
8
|
Mechanisms behind signet ring cell carcinoma formation. Biochem Biophys Res Commun 2014; 450:1231-3. [PMID: 25019985 DOI: 10.1016/j.bbrc.2014.07.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 02/07/2023]
Abstract
Signet ring cell carcinomas are highly malignant dedifferentiated adenocarcinomas. There are no cell-cell interactions between these round-shaped cells. They contain huge numbers of vacuoles, filled with mucins, which are secreted from the cells. The mechanism behind this phenotype has recently begun to be elucidated. In highly differentiated adenocarcinomas the ErbB2/ErbB3 complex is activated, which is followed by phosphatidylinositol 3-kinase (PI3K) activation. p38 MAP kinase is activated downstream of PI3K and adherens junctions are disrupted via Rac1 activation. Loss of adherens junctions leads to the disappearance of tight junctions, which results in a loss of cell-cell interactions. Secretion of mucin is enhanced by activation of PI3K. One of the mucins - Muc4 - can activate ErbB2. Under normal conditions Muc4 and ErbB2 are separated by adherens and tight junctions, however in signet ring cells they are able to interact, since these junctions have been lost. Therefore, an activation loop is formed, consisting of ERbB2/ErbB3-Muc4-ErbB2/ErbB3. As a result, the ErbB2/ErbB3 signaling pathway becomes constitutively activated, cell-cell interactions are lost, and signet ring carcinomas are formed. As a result of constitutive activation of the ErbB2/ErbB3 complex, cell growth is continuously enhanced. Some signet ring cell carcinomas have been found to have mutations in the E-cadherin gene, which fits the above hypothesis.
Collapse
|
9
|
Martín R, Cordova C, Nieto ML. Secreted phospholipase A2-IIA-induced a phenotype of activated microglia in BV-2 cells requires epidermal growth factor receptor transactivation and proHB-EGF shedding. J Neuroinflammation 2012; 9:154. [PMID: 22747893 PMCID: PMC3488565 DOI: 10.1186/1742-2094-9-154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/04/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Activation of microglia, the primary component of the innate immune response in the brain, is a hallmark of neuroinflammation in neurodegenerative disorders, including Alzheimer's disease (AD) and other pathological conditions such as stroke or CNS infection. In response to a variety of insults, microglial cells produce high levels of inflammatory cytokines that are often involved in neuronal injury, and play an important role in the recognition, engulfment, and clearance of apoptotic cells and/or invading microbes. Secreted phospholipase A2-IIA (sPLA2-IIA), an enzyme that interacts with cells involved in the systemic immune/inflammatory response, has been found up-regulated in the cerebrospinal fluid and brain of AD patients. However, despite several approaches, its functions in mediating CNS inflammation remain unknown. In the present study, the role of sPLA2-IIA was examined by investigating its direct effects on microglial cells. METHODS Primary and immortalized microglial cells were stimulated by sPLA2-IIA in order to characterize the cytokine-like actions of the phospholipase. The hallmarks of activated microglia analyzed include: mitogenic response, phagocytic capabilities and induction of inflammatory mediators. In addition, we studied several of the potential molecular mechanisms involved in those events. RESULTS The direct exposure of microglial cells to sPLA2-IIA stimulated, in a time- and dose-dependent manner, their phagocytic and proliferative capabilities. sPLA2-IIA also triggered the synthesis of the inflammatory proteins COX-2 and TNFα. In addition, EGFR phosphorylation and shedding of the membrane-anchored heparin-binding EGF-like growth factor (pro-HB-EGF) ectodomain, as well as a rapid activation/phosphorylation of the classical survival proteins ERK, P70S6K and rS6 were induced upon sPLA2-IIA treatment. We further demonstrated that the presence of an EGFR inhibitor (AG1478), a matrix metalloproteinase inhibitor (GM6001), an ADAM inhibitor (TAPI-1), and a HB-EGF neutralizing antibody abrogated the phenotype of activated microglia induced by the sPLA2-IIA. CONCLUSION These results support the hypothesis that sPLA2-IIA may act as a potent modulator of microglial functions through its ability to induce EGFR transactivation and HB-EGF release. Accordingly, pharmacological modulation of EGFR might be a useful tool for treating neuroinflammatory diseases characterized by sPLA2-IIA accumulation.
Collapse
Affiliation(s)
- Rubén Martín
- Instituto de Biología y Genetica Molecular (IBGM), CSIC-UVa, Valladolid, Spain
- ICICOR, Hospital Clínico, Valladolid, Spain
| | - Claudia Cordova
- Instituto de Biología y Genetica Molecular (IBGM), CSIC-UVa, Valladolid, Spain
| | - Maria L Nieto
- Instituto de Biología y Genetica Molecular (IBGM), CSIC-UVa, Valladolid, Spain
| |
Collapse
|
10
|
Abstract
This Review outlines the understanding and management of triple-negative breast cancer (TNBC). TNBC shares morphological and genetic abnormalities with basal-like breast cancer (BLBC), a subgroup of breast cancer defined by gene-expression profiling. However, TNBC and BLBC tumors are heterogeneous and overlap is incomplete. Breast cancers found in BRCA1 mutation carriers are also frequently triple negative and basal like. TNBC and BLBC occur most frequently in young women, especially African Americans, and tend to exhibit aggressive, metastatic behavior. These tumors respond to conventional chemotherapy but relapse more frequently than hormone receptor-positive, luminal subtypes and have a worse prognosis. New systemic therapies are urgently needed as most patients with TNBC and/or BLBC relapse with distant metastases, and hormonal therapies and HER2-targeted agents are ineffective in this group of tumors. Poly (ADP-ribose) polymerase inhibitors, angiogenesis inhibitors, EGFR-targeted agents, and src kinase and mTOR inhibitors are among the therapeutic agents being actively investigated in clinical trials in patients with TNBC and/or BRCA1-associated tumors. Increased understanding of the genetic abnormalities involved in the pathogenesis of TNBC, BLBC and BRCA1-associated tumors is opening up new therapeutic possibilities for these hard-to-treat breast cancers.
Collapse
|
11
|
Triple negative breast carcinomas: similarities and differences with basal like carcinomas. Appl Immunohistochem Mol Morphol 2010; 17:483-94. [PMID: 19620842 DOI: 10.1097/pai.0b013e3181a725eb] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cDNA microarrays allows the classification of breast cancers into 6 groups: luminal A, luminal B, luminal C, normal breast-like, human epidermal growth factor receptor 2-positive, and basal-like. This latter is characterized by the expression of basal cytokeratins (CKs), and frequent negativity for hormone receptors and human epidermal growth factor receptor 2. There is a marked parallelism between triple negative breast carcinomas and basal-like carcinoma, but these are not equivalent terms. Estimated concordance is around 80%. CK5 seems to be the best marker for the identification of these tumors. Other good markers to identify these tumors are CK14, CK17, and epidermal growth factor receptor. A subset of triple negative breast carcinomas has myoepithelial differentiation, with positivities for smooth muscle actin, p63, S-100, and CD10 among others. Recent studies suggest that basal like carcinomas are originated from mammary stem cells.
Collapse
|
12
|
Berlato C, Doppler W. Selective response to insulin versus insulin-like growth factor-I and -II and up-regulation of insulin receptor splice variant B in the differentiated mouse mammary epithelium. Endocrinology 2009; 150:2924-33. [PMID: 19246539 DOI: 10.1210/en.2008-0668] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The terminal differentiation of the mouse mammary gland epithelium during lactation has been shown to require IGFs and/or superphysiological levels of insulin. It has been suggested that IGF receptor I (IGF-IR), in addition to its well-established role in the mammary gland during puberty and pregnancy, serves as the principal mediator of IGFs at this stage of development. However, our analysis of the expression levels of IGF-IR and the two insulin receptor (IR) splice variants, IR-A and IR-B, has revealed a 3- to 4-fold up-regulation of IR-B transcripts and a 6-fold down-regulation of IGF-IR transcripts and protein during terminal differentiation in the developing mammary gland. IR-B expression was also more than 10-fold up-regulated in murine mammary epithelial cell line HC11 during differentiation in vitro. As already described for the human form, murine IR-B cloned from HC11 exhibited selectivity for insulin as compared with IGFs. When differentiated HC11 cells were stimulated by 10 nm insulin, a concentration that is unable to activate IGF-IR, induction of milk protein and lipid synthetic enzyme gene expression, lactate production, and phosphorylation of Akt were observed. In contrast, on differentiated HC11 cells 10 nm IGF-I or 10 nm IGF-II were able to exert growth-promoting effects only. The lack of response of differentiated cells to low levels of IGFs could not be explained by inactivation of IGFs by IGF binding proteins. Our results suggest a previously unrecognized predominant role for IR-B in the differentiated mammary epithelium.
Collapse
Affiliation(s)
- Chiara Berlato
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
13
|
Li JX, Zhang Y, Ma LB, Sun JH, Yin BY. Isolation and culture of bovine mammary epithelial stem cells. J Vet Med Sci 2009; 71:15-9. [PMID: 19194071 DOI: 10.1292/jvms.71.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine mammary epithelial stem cells (MESCs) are very important in agricultural production and bioengineering. In the present study, we compared different isolation and culture methods for MESCs and observed their growth and differentiation characteristics. MESCs have an extremely weak proliferation capacity, and it is very difficult to obtain and prolong subculture of a bovine mammary epithelial stem cell line. We obtained some multipotent MESC aggregates that looked like spherical colonies. These colonies were only derived from suspension culture and were induced to differentiate into epithelial-like cells, myoepithelial-like cells and secretory cells and to establish a ductal-like structure. In contrast, MESCs cultured in adherent culture displayed low morphogenetic competence and only differentiated into epithelial-like cells. MESCs are often identified by testing their differentiation in vivo; however, herein, we have demonstrated the in vitro differentiation potential of bovine MESCs. In our study, beta 1-integrin and alpha 6-integrin which are expressed by human epidermal stem cells, were found in bovine, which shows that bovine MESCs share the same molecular signature as human MESCs.
Collapse
Affiliation(s)
- Ji-Xia Li
- Institute of Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
14
|
Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH, Radisky DC, Ferrone S, Knutson KL. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res 2009; 69:2887-95. [PMID: 19276366 DOI: 10.1158/0008-5472.can-08-3343] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The breast cancer stem cell (BCSC) hypotheses suggest that breast cancer is derived from a single tumor-initiating cell with stem-like properties, but the source of these cells is unclear. We previously observed that induction of an immune response against an epithelial breast cancer led in vivo to the T-cell-dependent outgrowth of a tumor, the cells of which had undergone epithelial to mesenchymal transition (EMT). The resulting mesenchymal tumor cells had a CD24(-/lo)CD44(+) phenotype, consistent with BCSCs. In the present study, we found that EMT was induced by CD8 T cells and the resulting tumors had characteristics of BCSCs, including potent tumorigenicity, ability to reestablish an epithelial tumor, and enhanced resistance to drugs and radiation. In contrast to the hierarchal cancer stem cell hypothesis, which suggests that breast cancer arises from the transformation of a resident tissue stem cell, our results show that EMT can produce the BCSC phenotype. These findings have several important implications related to disease progression and relapse.
Collapse
Affiliation(s)
- Marta Santisteban
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The human breast consists of lobes with a luminal glandular and a basal myoepithelial layer. Immunofluorescence studies have shown that the breast epithelium contains cytokeratin (CK)5/14-positive precursor cells which give rise to CK8/18-positive glandular or sm-actin-positive myoepithelial cells. Only some of the glandular cells contain estrogen receptors. The luminal epithelium of the lobules shows a much higher glandular differentiation than the ductal system. Diagnostically important cytokeratins of normal breast epithelium and its proliferative epithelial processes include luminal cytokeratins (CK7, CK8 and CK18) as markers of glandular differentiation and basal cytokeratins (CK5, CK14 and CK17) as markers of progenitor cells and early cells of the glandular and myoepithelial differentiation pathway. The most important myoepithelial markers are currently CD10, SMA, SMM-HC and Calponin.
Collapse
Affiliation(s)
- W Böcker
- Gerhard-Domagk-Institut für Pathologie, Domagk-Str. 17, 48159, Münster, Deutschland.
| | | | | |
Collapse
|
16
|
Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol 2008; 10:716-22. [PMID: 18469806 DOI: 10.1038/ncb1734] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/17/2008] [Indexed: 01/03/2023]
Abstract
The mammary gland epithelium comprises two major cell types: basal and luminal. Basal cells interact directly with the extracellular matrix (ECM) and express higher levels of the ECM receptors, integrins, than luminal cells. We show that deletion of beta1 integrin from basal cells abolishes the regenerative potential of the mammary epithelium and affects mammary gland development. The mutant epithelium was characterized by an abnormal ductal branching pattern and aberrant morphogenesis in pregnancy, although at the end of gestation, the secretory alveoli developed from beta1 integrin-positive progenitors. Lack of beta1 integrin altered the orientation of the basal-cell division axis and in mutant epithelium, in contrast to control tissue, the progeny of beta1 integrin-null basal cells, identified by a genetic marker, was found in the luminal compartment. These results reveal, for the first time, the essential role of the basal mammary epithelial cell-ECM interactions mediated by beta1 integrins in the maintenance of a functional stem cell population, mammary morphogenesis and segregation of the two major mammary cell lineages.
Collapse
|
17
|
Deugnier MA, Petit V, Taddéi-De La Hosseraye I, Faraldo M, Glukhova MA. Vers la caractérisation des cellules souches de la glande mammaire murine adulte. Med Sci (Paris) 2007; 23:1125-31. [DOI: 10.1051/medsci/200723121125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Widelitz RB, Veltmaat JM, Mayer JA, Foley J, Chuong CM. Mammary glands and feathers: comparing two skin appendages which help define novel classes during vertebrate evolution. Semin Cell Dev Biol 2007; 18:255-66. [PMID: 17382566 PMCID: PMC4382004 DOI: 10.1016/j.semcdb.2007.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 02/05/2023]
Abstract
It may appear counter-intuitive to compare feathers and mammary glands. However, through this Evo-Devo analysis, we appreciate how species interact with the environment, requiring different ectodermal organs. Novel ectodermal organs help define evolutionary directions, leading to new organism classes as exemplified by feathers for Aves and mammary glands for Mammals. Here, we review their structure, function, morphogenesis and regenerative cycling. Interestingly, both organs undergo extensive branching for different reasons; feather branching is driven by mechanical advantage while mammary glands nourish young. Besides natural selection, both are regulated by sex hormones and acquired a secondary function for attracting mates, contributing to sexual selection.
Collapse
Affiliation(s)
- Randall B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
19
|
Brozova M, Kleibl Z, Netikova I, Sevcik J, Scholzova E, Brezinova J, Chaloupkova A, Vesely P, Dundr P, Zadinova M, Krasna L, Matouskova E. Establishment, growth and in vivo differentiation of a new clonal human cell line, EM-G3, derived from breast cancer progenitors. Breast Cancer Res Treat 2006; 103:247-57. [PMID: 17063277 DOI: 10.1007/s10549-006-9358-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 07/31/2006] [Indexed: 11/27/2022]
Abstract
A new clonal cell line, EM-G3, was derived from a primary lesion of human infiltrating ductal breast carcinoma. The line consisted of cuboidal cells with occasional appearance of more differentiated branched cells apparently involved in cell-to-cell communication. The EM-G3 cells, population doubling time 34 h, are dependent on the epidermal growth factor. Multicolor fluorescence in situ hybridization (mFISH) analysis demonstrated a stable diploid genome with several genetic changes. Immunocytochemical analysis of EM-G3 in vitro revealed positivity for keratins (K) K5, K14, K18, nuclear protein p63, epithelial membrane antigen (EMA) and other proteins indicative of a pattern of mammary epithelium bipotent progenitors. Detection of integrins alpha-6, beta-1, and protein CD44 by cDNA array also pointed to the character of basal/stem cells. In contrast, dominant cells in the human original tumor showed the luminal character (K18+, K19+, K5-, K14-, and p63-). However, cells with the immunocytochemical profile similar to that of cultured EM-G3 cells were found in minor clusters in the patient's tumor sections. The EM-G3 cells formed limited tumors in nu/nu mice. The cells in mouse tumors were organized in primitive ductal-like structures consisting of 1-3 large central luminal-like cells (EMA+) surrounded by peripheral myoepithelial-like cells (p63+/EMA-). The large central cells gradually disintegrated, forming a pseudolumen. Apparently, EM-G3 cells are able to partially differentiate in vivo as well as in vitro. Our results indicate that EM-G3 cells were derived from a premalignant population of common progenitors of luminal and myoepithelial cells that were immortalized in an early stage of tumorigenesis.
Collapse
Affiliation(s)
- Marketa Brozova
- Department of Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vitolo D, Ciocci L, Deriu G, Spinelli S, Cortese S, Masuelli L, Morrone S, Filice MJ, Coloni GF, Natali PG, Baroni CD. Laminin alpha2 chain-positive vessels and epidermal growth factor in lung neuroendocrine carcinoma: a model of a novel cooperative role of laminin-2 and epidermal growth factor in vessel neoplastic invasion and metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:991-1003. [PMID: 16507913 PMCID: PMC1606521 DOI: 10.2353/ajpath.2006.041310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Capillaries expressing the laminin alpha2 chain in basement membranes may be considered early developing vessels in normal and neoplastic human tissues. Therefore, we investigated whether up-regulation of this extracellular matrix protein favors transendothelial migration of neoplastic cells and then metastasis. In lung small and large cell neuroendocrine carcinomas, which exhibit a stronger metastatic tendency among carcinomas, laminin alpha2 chain-positive vessels were more numerous than in carcinoid tumors and supraglottis, breast, and lung non-small cell carcinomas, suggesting a direct relationship between these vessels and metastasis. In vitro studies showed that epidermal growth factor (EGF) induced a more efficient migration of the AE-2 lung neuroendocrine carcinoma cell line through the purified laminin alpha2 chain rather than through the laminin beta1 chain and fibronectin. AE-2 cells constitutively expressed all EGF receptors and the alpha6beta1 integrin, which is one of the laminin alpha2 chain receptors. EGF up-regulated alpha6beta1 expression in several tumors. In this regard, we show that EGF increased the chemo-kinetic migration of AE-2 cells through EAHY endothelial monolayers, which was inhibited by the anti-alpha6 integrin chain monoclonal antibody. These data indicate that laminin alpha2 chain and alpha6beta1 may be mutually involved in EGF-dependent migration of AE-2 cells and that laminin alpha2 chain-positive vessels may favor metastasis of EGF-dependent tumors.
Collapse
Affiliation(s)
- Domenico Vitolo
- Department of Experimental Medicine and Pathology, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Deugnier MA, Faraldo MM, Teulière J, Thiery JP, Medina D, Glukhova MA. Isolation of mouse mammary epithelial progenitor cells with basal characteristics from the Comma-Dbeta cell line. Dev Biol 2006; 293:414-25. [PMID: 16545360 DOI: 10.1016/j.ydbio.2006.02.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 11/22/2022]
Abstract
A mouse mammary epithelial cell line with morphogenetic properties in vivo, Comma-Dbeta, was used to isolate and to characterize mammary progenitor cells. We found that a homogeneous cell population expressing high surface levels of stem cell antigen 1 (Sca-1) was able to give rise in vivo to ductal and alveolar structures comprising luminal secretory and basal myoepithelial cells. Unlike the Sca-1(high), the Sca-1(neg/low) cell population displayed a reduced morphogenetic potential. The Sca-1(high) cells presented moderate CD24, high CD44 and alpha6 integrin surface levels, expressed basal cell markers p63, keratins 5 and 14, but no luminal and myoepithelial lineage markers. In culture, the Sca-1(high) cells generated identical daughter cells that retained their in vivo developmental potential, indicating that these cells were maintained by self-renewal. Plated at clonogenic density in Matrigel, Sca-1(high) cells formed spheroids that included luminal and myoepithelial cells. Thus, the isolated Sca-1(high) basal cells possess several features of stem/progenitor cells, including specific markers, self-renewal capacity, and the ability to generate the two major mammary lineages, luminal and myoepithelial. These data provide evidence for the existence of basal-type mouse mammary progenitors able to participate in the morphogenetic processes characteristic of mammary gland development.
Collapse
|
22
|
Abstract
Mammary gland stem cells are a quiescent and self-renewing population within the mammary gland that are capable of giving rise to the differentiated ductal, alveolar and myoepithelial cells. To identify mammary gland stem cells, several investigators have employed a variety of methods including: non-adherent mammosphere cultures; 5-bromo-2-deoxy-uridine (BrdU) label-retention studies; cell-surface markers, such as Sca1 and CD49f; and Hoechst dye efflux. These methods have helped identify and further characterize signal transduction pathways such as the Notch, Wnt and Hedgehog pathways that may be important for the self-renewal and fate determination of mammary gland stem cells. Stem cells within the mammary gland have been proposed to underpin many types of breast cancer. A better understanding of the signal transduction pathways and the molecules that are responsible for the self-renewal and survival of these cells will be essential in the design of more effective therapies aimed at the eradication of both cancer-initiating cells and breast cancer stem cells.
Collapse
Affiliation(s)
- Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-3498, USA
| | | | | | | |
Collapse
|
23
|
Van Laere SJ, Van den Eynden GG, Van der Auwera I, Vandenberghe M, van Dam P, Van Marck EA, van Golen KL, Vermeulen PB, Dirix LY. Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat 2005; 95:243-55. [PMID: 16261404 DOI: 10.1007/s10549-005-9015-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2005] [Indexed: 01/21/2023]
Abstract
Inflammatory breast cancer (IBC) is an aggressive form of locally advanced breast cancer with high metastatic potential. Most patients have lymph node involvement at the time of diagnosis and 1/3 of the patients have distant metastases. In a previous study, we demonstrated that IBC is a distinct form of breast cancer in comparison with non-IBC. The aim of this study was to investigate the presence of the different molecular subtypes in our data set of 16 IBC and 18 non-IBC specimen. Therefore, we selected an 'intrinsic gene set' of 144 genes, present on our cDNA chips and common to the 'intrinsic gene set' described by Sorlie et al. [PNAS, 2003]. This set of genes was tested for performance in the Norway/Stanford data set by unsupervised hierarchical clustering. Expression centroids were then calculated for the core members of each of the five subclasses in the Norway/Stanford data set and used to classify our own specimens by calculating Spearman correlations between each sample and each centroid. We identified the same cell-of-origin subtypes in IBC as those already described in non-IBC. The classification was in good agreement with immunohistochemical data for estrogen receptor protein expression and cytokeratin 5/6 protein expression. Confirmation was done by an alternative unsupervised hierarchical clustering method. The robustness of this classification was assessed by an unsupervised hierarchical clustering with an alternative gene set of 141 genes related to the cell-of-origin subtypes, selected using a discriminating score and iterative random permutation testing. The contribution of the different cell-of-origin subtypes to the IBC phenotype was investigated by principal component analysis. Generally, the combined ErbB2-overexpressing and basal-like cluster was more expressed in IBC compared to non-IBC, whereas the combined luminal A, luminal B and normal-like cluster was more pronounced in non-IBC compared to IBC. The presence of the same molecular cell-of-origin subtypes in IBC as in non-IBC does not exclude the specific molecular nature of IBC, since gene lists that characterize IBC and non-IBC are entirely different from gene lists that define the different cell-of-origin subtypes, as evidenced by principal component analysis.
Collapse
Affiliation(s)
- Steven J Van Laere
- Translational Cancer Research Group, Lab Pathology University of Antwerp and Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Le Jan C, Bellaton C, Greenland T, Mornex JF. Mammary transmission of caprine arthritis encephalitis virus: a 3D model for in vitro study. ACTA ACUST UNITED AC 2005; 45:513-23. [PMID: 16045898 DOI: 10.1051/rnd:2005035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transmission of Caprine Arthritis Encephalitis virus (CAEV) from the mother to offspring is principally mediated by infected cells from colostrum and milk. The infection of the dam is often sub-clinical, and results in increased cellularity of milk, sometimes exacerbated by bacterial co-infections. Although monocytes are the major viral host cells, several other cell types, including epithelial mammary cells, fibroblasts and endothelial cells show low levels of in vivo infection. In vitro, however, all phenotypes of mammary gland cells are individually highly sensitive to CAEV infection. This suggests that local mechanisms act to control viral expression. Our goal is to analyse the mechanisms regulating local virus infection, including the physiological status of the mammary gland and bacterial co-infections. In this work, we present the development of a model for the in vitro reconstitution of mammary gland tissue using 3D cultures in Matrigel. Mononuclear cells from the blood are added to the 3D cultures in vitro. In these experimental conditions, the mammary cells spontaneously organize into mammospheres. Blood leucocytes migrate into the culture gel, and localize particularly at the periphery of the mammospheres. Mammospheres were susceptible to infection in vitro by CAEV, as shown by a cytopathic effect and expression of late CAEV antigen p30. This model will allow the in vitro study of virus expression, transfer of infection to mammary gland cells and interactions between the mammary gland cells, infected monocytes and immunocompetent cells. It will allow the study of mechanisms participating in the control of passage of pathogens into milk, according to the physiological and CAEV-infection status of the animal, microenvironment and the presence of bacterial co-infections.
Collapse
Affiliation(s)
- Christian Le Jan
- UMR 754, Rétrovirus et Pathologie Comparée, INRA/ENVL/UCBL/EPHE, Université Claude Bernard Lyon 1, IFR 128 Biosciences Lyon Gerland, France.
| | | | | | | |
Collapse
|
25
|
Korsching E, Packeisen J, Liedtke C, Hungermann D, Wülfing P, van Diest PJ, Brandt B, Boecker W, Buerger H. The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 2005; 206:451-7. [PMID: 15906273 DOI: 10.1002/path.1797] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vimentin expression is a rather rare finding in invasive breast cancer, and is associated with high tumour invasiveness and chemoresistance. It is currently explained by two different biological theories: direct histogenetic derivation from myoepithelial cells, and epithelial-mesenchymal transition (EMT) reflecting the end-stage of breast cancer dedifferentiation. In this study we aimed to obtain further insights into the biological hallmarks of these vimentin-expressing breast cancers. We applied immunohistochemistry for vimentin and 15 other differentiation markers to a series of 364 invasive breast cancer cases, using tissue microarray technology. 7.7% of all tumours expressed vimentin. Almost all of these cases (19/21) were Grade 3 invasive ductal carcinomas, and the majority (13/21) of these were associated with a ductal in situ component. Vimentin expression was also seen in the respective in situ components and correlated positively with the expression of SMA, CD10, CK 5, p53, Mib-1 and EGFR. A negative correlation was seen for the expression of CK 8/18 and the oestrogen receptor. Vimentin-expressing carcinomas revealed a significantly higher average absolute number of cytogenetic alterations per case, but a significantly lower frequency of chromosome 16q losses compared to vimentin-negative cases. Our present results demonstrate that, despite analogies between vimentin-positive breast cancers and myoepithelial cells in their expression of differentiation-related proteins, neither myoepithelial histogenesis nor EMT can exclusively explain the biology of these distinct tumours. This is mainly supported by the significantly higher incidence of vimentin-expressing breast cancers compared to any other myoepithelial breast tumours and the fact that vimentin is already observed in ductal in situ components. We therefore propose the alternative hypothesis that vimentin-expressing breast carcinomas may derive from breast progenitor cells with bilinear (glandular and myoepithelial) differentiation potential.
Collapse
|
26
|
Parmar H, Melov S, Samper E, Ljung BM, Cunha GR, Benz CC. Hyperplasia, reduced E-cadherin expression, and developmental arrest in mammary glands oxidatively stressed by loss of mitochondrial superoxide dismutase. Breast 2005; 14:256-63. [PMID: 16085231 DOI: 10.1016/j.breast.2005.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Indexed: 10/25/2022] Open
Abstract
To investigate the dysregulating effect of excess oxidative stress on mammary gland development, mammary anlage from newborn female mice with normal (+/+) or absent (null, -/-) manganese superoxide dismutase (SOD2) were excised and implanted under the renal capsule of normal host female nude mice with/without concurrent estrogen supplementation. After 30 days the transplanted glands were excised for wholemount, microscopic and immunohistochemical evaluation. In contrast to the normal growth and maturation of transplanted SOD2+/+ glands, SOD2-/- glands showed arrested development, reduced ductal outgrowth and branching, and absent lumen. These hypomorphic SOD2-/- ducts contained hyperplastic epithelium with increased Ki-67 labelling, loss of E-cadherin expression, and disorganized p63 and cytokeratin (K)-14 expressing basal and myoepithelial components. Estrogen treatment failed to upregulate progesterone receptor or normalize development. These findings suggest that excess oxidative stress from loss of SOD2 function can arrest mammary gland maturation and induce hyperplastic epithelium with early premalignant features.
Collapse
Affiliation(s)
- Hema Parmar
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
27
|
Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Cervera N, Tarpin C, Nguyen C, Xerri L, Houlgatte R, Jacquemier J, Viens P, Birnbaum D. Gene Expression Profiling Identifies Molecular Subtypes of Inflammatory Breast Cancer. Cancer Res 2005; 65:2170-8. [PMID: 15781628 DOI: 10.1158/0008-5472.can-04-4115] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is a heterogeneous disease. Comprehensive gene expression profiles obtained using DNA microarrays have revealed previously indistinguishable subtypes of noninflammatory breast cancer (NIBC) related to different features of mammary epithelial biology and significantly associated with survival. Inflammatory breast cancer (IBC) is a rare, particular, and aggressive form of disease. Here we have investigated whether the five molecular subtypes described for NIBC (luminal A and B, basal, ERBB2 overexpressing, and normal breast-like) were also present in IBC. We monitored the RNA expression of approximately 8,000 genes in 83 breast tissue samples including 37 IBC, 44 NIBC, and 2 normal breast samples. Hierarchical clustering identified the five subtypes of breast cancer in both NIBC and IBC samples. These subtypes were highly similar to those defined in previous studies and associated with similar histoclinical features. The robustness of this classification was confirmed by the use of both alternative gene set and analysis method, and the results were corroborated at the protein level. Furthermore, we show that the differences in gene expression between NIBC and IBC and between IBC with and without pathologic complete response that we have recently reported persist in each subtype. Our results show that the expression signatures defining molecular subtypes of NIBC are also present in IBC. Obtained using different patient series and different microarray platforms, they reinforce confidence in the expression-based molecular taxonomy but also give evidence for its universality in breast cancer, independently of a specific clinical form.
Collapse
Affiliation(s)
- François Bertucci
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes and UMR599 Institut National de la Santé et de la Recherche Médicale, IFR137, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Transcription and mRNA splicing of the human lactoferrin gene controlled by the regulatory region of the bovine ? S1 casein gene in the mammary gland of transgenic mice and in mouse embryonic stem cells. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0077-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Fridriksdottir AJR, Villadsen R, Gudjonsson T, Petersen OW. Maintenance of cell type diversification in the human breast. J Mammary Gland Biol Neoplasia 2005; 10:61-74. [PMID: 15886887 DOI: 10.1007/s10911-005-2541-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent genome-wide expression analysis of breast cancer has brought new life to the classical idea of tumors as caricatures of the process of tissue renewal as envisioned by Pierce and Speers (Cancer Res 1988;48:1996-2004) more than a decade ago. The search for a cancer founder cell or different cancer founder cells is only possible if a hierarchy of differentiation has been established for the particular tissue in question. In the human breast, the luminal epithelial and myoepithelial lineages have been characterized extensively in situ by increasingly elaborate panel of markers, and methods to isolate, culture, and clone different subpopulations have improved dramatically. Comparisons have been made with the mouse mammary gland in physiological three-dimensional culture assays of morphogenesis, and the plasticity of breast epithelial cells has been challenged by immortalization and transformation. As a result of these efforts, several candidate progenitor cells have been proposed independently of each other, and some of their features have been compared. This research has all been done to better understand breast tissue homeostasis, cell-type diversification in general and breast cancer evolution in particular. The present review discusses the current approaches to address these issues and the measures taken to unravel and maintain cell type diversification for further investigation.
Collapse
|
30
|
Teulière J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze'ev A, Thiery JP, Glukhova MA. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 2004; 132:267-77. [PMID: 15590737 DOI: 10.1242/dev.01583] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt/beta-catenin signaling pathway is involved in the maintenance of the progenitor cell population in the skin, intestine and other tissues, and its aberrant activation caused by stabilization of beta-catenin contributes to tumorigenesis. In the mammary gland, constitutive activation of Wnt/beta-catenin signaling in luminal secretory cells results in precocious lobuloalveolar differentiation and induces adenocarcinomas, whereas the impact of this signaling pathway on the function of the second major mammary epithelial cell lineage, the basal myoepithelial cells, has not been analyzed. We have used the keratin (K) 5 promoter to target the expression of stabilized N-terminally truncated beta-catenin to the basal cell layer of mouse mammary epithelium. The transgenic mice presented an abnormal mammary phenotype: precocious lateral bud formation, increased proliferation and premature differentiation of luminal epithelium in pregnancy, persistent proliferation in lactation and accelerated involution. Precocious development in pregnancy was accompanied by increased Myc and cyclin D1 transcript levels, and a shift in p63 variant expression towards the DeltaNp63 form. The expression of ECM-degrading proteinases and their inhibitors was altered in pregnancy and involution. Nulliparous transgenic females developed mammary hyperplasia that comprised undifferentiated basal (K5/14-positive, K8- and alpha-smooth muscle-actin-negative) cells. Multiparous mice, in addition, developed invasive basal-type carcinomas. Thus, activation of beta-catenin signaling in basal mammary epithelial cells affects the entire process of mammary gland development and induces amplification of basal-type cells that lack lineage markers, presumably, a subpopulation of mammary progenitors able to give rise to tumors.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Animals
- Blotting, Southern
- Blotting, Western
- Cell Differentiation
- Cell Lineage
- Cell Proliferation
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- DNA Primers/chemistry
- Epithelial Cells/metabolism
- Epithelium/pathology
- Female
- Gene Expression Regulation, Developmental
- Hyperplasia/metabolism
- Immunohistochemistry
- In Situ Nick-End Labeling
- Mammary Glands, Animal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Phosphoproteins/genetics
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- beta Catenin
Collapse
Affiliation(s)
- Jérôme Teulière
- UMR 144 CNRS-Institut Curie, Institut Curie, Section de Recherche, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Foulkes WD, Akslen LA. RESPONSE: Re: Germline BRCA1 Mutations and a Basal Epithelial Phenotype in Breast Cancer. J Natl Cancer Inst 2004. [DOI: 10.1093/jnci/djh116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Lamote I, Meyer E, Massart-Leën AM, Burvenich C. Sex steroids and growth factors in the regulation of mammary gland proliferation, differentiation, and involution. Steroids 2004; 69:145-59. [PMID: 15072917 DOI: 10.1016/j.steroids.2003.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 12/10/2003] [Accepted: 12/16/2003] [Indexed: 11/23/2022]
Abstract
The mammary gland is subjected to major morphological and biochemical changes during the lactation cycle. It is therefore not surprising that this dynamic process is strictly controlled. The importance of the sex steroid hormones 17beta-estradiol and progesterone for normal development of the mammary gland was recognized several decades ago and has been unequivocally confirmed since. Furthermore, it is now also established that the influence of sex steroids is not restricted to mammogenesis, but that these hormones also control involution. Another important regulatory role is played by growth factors that have been shown to modulate survival (epidermal growth factor, amphiregulin, transforming growth factor alpha, insulin like growth factor, and tumor necrosis factor alpha) or apoptosis (tumor necrosis factor alpha, transforming growth factor beta) of mammary cells. However, the molecular mechanism underlying the influence of sex steroid hormones and/or growth factors on the development and function of the mammary gland remains largely unknown to date. Also scarce is information on the interaction between both groups of modulators. Nevertheless, based on the current indications compiled in this review, an important functional role for sex steroid hormones in the lactation cycle in co-operation with growth factors can be suggested.
Collapse
Affiliation(s)
- I Lamote
- Department of Physiology, Biochemistry, and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
33
|
Konecny GE, Wilson CA, Slamon DJ. Is there a role for epidermal growth factor receptor inhibitors in breast cancer prevention? J Natl Cancer Inst 2004; 95:1813-5. [PMID: 14679144 DOI: 10.1093/jnci/djg134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Petersen OW, Gudjonsson T, Villadsen R, Bissell MJ, Rønnov-Jessen L. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia. Cell Prolif 2003; 36 Suppl 1:33-44. [PMID: 14521514 PMCID: PMC2933221 DOI: 10.1046/j.1365-2184.36.s.1.4.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The majority of human breast carcinomas exhibit luminal characteristics and as such, are most probably derived from progenitor cells within the luminal epithelial compartment. This has been subdivided recently into at least three luminal subtypes based on gene expression patterns. The value of knowing the cellular origin of individual tumours is clear and should aid in designing effective therapies. To do this, however, we need strategies aimed at defining the nature of stem and progenitor cell populations in the normal breast. In this review, we will discuss our technical approach for delineating the origin of the epithelial cell types. A major step forward was the purification of each cell type by the application of immunomagnetic cell sorting based on expression of lineage-specific surface antigens. We then developed chemically defined media that could support either the luminal epithelial or the myoepithelial cell phenotype in primary cultures. Having succeeded in continuous propagation presumably without loss of markers, we could show that a subset of the luminal epithelial cells could convert to myoepithelial cells, signifying the possible existence of a progenitor cell population. By combining the information on marker expression and in situ localization with immunomagnetic sorting and subsequent immortalization, we have identified and isolated a cytokeratin 19-positive suprabasal putative precursor cell in the luminal epithelial compartment and established representative cell lines. This suprabasal-derived epithelial cell line is able to generate both itself and differentiated luminal epithelial and myoepithelial cells, and in addition, is able to form elaborate terminal duct lobular unit (TDLU)-like structures within a reconstituted basement membrane. As more than 90% of breast cancers arise in TDLUs and more than 90% are also cytokeratin 19-positive, we suggest that this cell population contains a breast-cancer progenitor.
Collapse
Affiliation(s)
- Ole William Petersen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
35
|
Taddei I, Faraldo MM, Teulière J, Deugnier MA, Thiery JP, Glukhova MA. Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia 2003; 8:383-94. [PMID: 14985635 DOI: 10.1023/b:jomg.0000017426.74915.b9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Integrins are major extracellular matrix (ECM) receptors that can also serve for some cell-cell interactions. They have been identified as important regulators of mammary epithelial cell growth and differentiation. Their ability to promote cell anchorage, proliferation, survival, migration, and the induction of active ECM-degrading enzymes suggests that they play an essential role in normal mammary morphogenesis, but, on the other hand, reveals their potential to promote tumor progression.
Collapse
Affiliation(s)
- Ilaria Taddei
- UMR 144 CNRS-Institut Curie, Section de Recherche, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
36
|
Boecker W, Buerger H. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept. Cell Prolif 2003; 36 Suppl 1:73-84. [PMID: 14521517 PMCID: PMC6495658 DOI: 10.1046/j.1365-2184.36.s.1.7.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2003] [Accepted: 05/22/2003] [Indexed: 11/20/2022] Open
Abstract
Although experimental data clearly confirm the existence of self-renewing mammary stem cells, the characteristics of such progenitor cells have never been satisfactorily defined. Using a double immunofluorescence technique for simultaneous detection of the basal cytokeratin 5, the glandular cytokeratins 8/18 and the myoepithelial differentiation marker smooth muscle actin (SMA), we were able to demonstrate the presence of CK5+ cells in human adult breast epithelium. These cells have the potential to differentiate to either glandular (CK8/18+) or myoepithelial cells (SMA+) through intermediary cells (CK5+ and CK8/18+ or SMA+). We therefore proceeded on the assumption that the CK5+ cells are phenotypically and behaviourally progenitor (committed adult stem) cells of human breast epithelium. Furthermore, we furnish evidence that most of these progenitor cells are located in the luminal epithelium of the ductal lobular tree. Based on data obtained in extensive analyses of proliferative breast disease lesions, we have come to regard usual ductal hyperplasia as a progenitor cell-derived lesion, whereas most breast cancers seem to evolve from differentiated glandular cells. Double immunofluorescence experiments provide a new tool to characterize phenotypically progenitor (adult stem) cells and their progenies. This model has been shown to be of great value for a better understanding not only of normal tissue regeneration but also of proliferative breast disease. Furthermore, this model provides a new tool for unravelling further the regulatory mechanisms that govern normal and pathological cell growth.
Collapse
Affiliation(s)
- Werner Boecker
- Gerhard-Domagk Institute of Pathology, University of Münster, Domagkstr 17, D-48149 Münster, Germany.
| | | |
Collapse
|
37
|
Vincent-Salomon A, Thiery JP. Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res 2003; 5:101-6. [PMID: 12631389 PMCID: PMC154156 DOI: 10.1186/bcr578] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2002] [Revised: 01/13/2003] [Accepted: 01/17/2003] [Indexed: 11/10/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a developmental mechanism of crucial importance in establishing the body plan in many multicellular organisms. Several transduction pathways controlling the various steps of the morphological transition have been identified by molecular analyses of this process in cell lines and in vivo. The newly formed mesenchymal cells can exhibit locomotory and invasive phenotypes, suggesting that EMTs contribute to the progression of carcinoma. Diverse evidence indicates that EMT subprograms are involved in the appearance of different breast carcinoma types. Several normal and malignant breast cell lines are currently being analyzed to define key steps in EMT and to identify candidate genes. DNA profiling technology is also being applied to uncover pathways that lead to a metastatic phenotype.
Collapse
|