1
|
Nonnast E, Mira E, Mañes S. The role of laminins in cancer pathobiology: a comprehensive review. J Transl Med 2025; 23:83. [PMID: 39825429 PMCID: PMC11742543 DOI: 10.1186/s12967-025-06079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented. In this article, we review the diverse functions of LMs in promoting cancer cell proliferation, adhesion, and migration-critical steps in cancer metastasis. Beyond their direct effects on tumor cells, LMs influence stromal interactions and modulate tumor microenvironment dynamics, affecting processes such as angiogenesis, immune cell infiltration, cancer-associated fibroblast activation, and immune evasion. Understanding the complex roles of LMs in cancer biology, as well as their differential expression patterns in malignancies, could provide new diagnostic tools for predicting disease outcomes and pave the way for innovative therapeutic strategies, such as targeting LM-receptor interactions or modulating ECM dynamics to impede tumor growth and metastasis.
Collapse
Affiliation(s)
- Elena Nonnast
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Emilia Mira
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Niland S, Eble JA. Decoding the MMP14 Integrin Link: Key Player in the Secretome Landscape. Matrix Biol 2025:S0945-053X(25)00010-1. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
3
|
Tshilate TS, Ishengoma E, Rhode C. Construction of a high-density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae). Anim Genet 2024; 55:744-760. [PMID: 38945682 DOI: 10.1111/age.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/23/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Haliotis midae is one of the most important molluscs in South African commercial aquaculture. In this study, a high-resolution integrated linkage map was constructed, and QTL identified using 2b-RADseq for genotyping SNPs in three families. The final integrated linkage map was composed by merging the individual family maps, resulting in 3290 informative SNPs mapping to 18 linkage groups, conforming to the known haploid chromosome number for H. midae. The total map spanned 1798.25 cM with an average marker interval of 0.55 cM, representing a genome coverage of 98.76%. QTL analysis, across all three families, resulted in a total of five QTL identified for growth-related traits, shell width, shell length, and total body weight. For shell width and total body weight, one QTL was identified for each trait respectively, whilst three QTL were identified for shell length. The identified QTL respectively explained between 7.20% and 11.40% of the observed phenotypic variance. All three traits were significantly correlated (r = 0.862-0.970; p < 0.01) and shared overlapping QTL. The QTL for growth traits were mapped back to the H. midae draft genome and BLAST searches revealed the identity of candidate genes, such as egf-1, megf10, megf6, tnx, sevp1, kcp, notch1, and scube2 with possible functional roles in H. midae growth. The constructed high-density linkage map and mapped QTL have given valuable insights regarding the genetic architecture of growth-related traits and will be important genetic resources for marker-assisted selection. It remains, however, important to validate causal variants through linkage disequilibrium fine mapping in future.
Collapse
Affiliation(s)
| | - Edson Ishengoma
- Department of Genetics, Stellenbosch University, Matieland, South Africa
- Mkwawa University College of Education, University of Dar es Salaam, Iringa, Tanzania
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
4
|
Funahashi N, Okada H, Kaneko R, Nio K, Yamashita T, Koshikawa N. Hepatocyte transformation is induced by laminin γ2 monomer. Cancer Sci 2024; 115:2972-2984. [PMID: 38951133 PMCID: PMC11462950 DOI: 10.1111/cas.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Serum laminin-γ2 monomer (Lm-γ2m) is a potent predictive biomarker for hepatocellular carcinoma (HCC) onset in patients with hepatitis C infection who achieve a sustained virologic response with liver cirrhosis (LC) and for the onset of extrahepatic metastases in early-stage HCC. Although Lm-γ2m involvement in late-stage cancer progression has been well investigated, its precise roles in HCC onset remain to be systematically investigated. Therefore, we analyzed an HCC model, human hepatocytes and cholangiocytes, and surgically resected liver tissues from patients with HCC to understand the roles of Lm-γ2m in HCC onset. Ck-19- and EpCAM-positive hepatic progenitor cells (HPCs) in the liver of pdgf-c transgenic HCC mouse model with ductular reaction showed ectopic expression of Lm-γ2m. Forced expression of Lm-γ2m in hepatocytes adjacent to HPCs resulted in enhanced tumorigenicity, cell proliferation, and migration in immortalized hepatocytes, but not in cholangiocytes in vitro. Further, pharmacological inhibition of epidermal growth factor receptor (EGFR) and c-Jun activator JNK suppressed Lm-γ2m-induced hepatocyte transformation, suggesting the involvement of EGFR/c-Jun signaling in the transformation, leading to HCC development. Finally, immunohistochemical staining of HCC tissues revealed a high level of Lm-γ2 expression in the HPCs of the liver with ductular reaction in normal liver adjacent to HCC tissues. Overall, HPC-derived Lm-γ2m in normal liver with ductular reaction acts as a paracrine growth factor on surrounding hepatocytes and promotes their cellular transformation through the EGFR/c-Jun signaling pathway. Furthermore, this is the first report on Lm-γ2m expression detected in the normal liver with ductular reaction, a human precancerous lesion of HCC.
Collapse
Affiliation(s)
- Nobuaki Funahashi
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Hikari Okada
- Department of Gastroenterology, Graduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Ryo Kaneko
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Kouki Nio
- Department of Gastroenterology, Graduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Taro Yamashita
- Department of Gastroenterology, Graduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Naohiko Koshikawa
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
- Clinical Cancer Proteomics LaboratoryKanagawa Cancer Center Research InstituteYokohamaKanagawaJapan
| |
Collapse
|
5
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
6
|
Tong D, Wang X, Liu L, Wen T, Chen Q, Huang C. LAMC2 promotes EGFR cell membrane localization and acts as a novel biomarker for tyrosine kinase inhibitors (TKIs) sensitivity in lung cancer. Cancer Gene Ther 2023; 30:1498-1512. [PMID: 37542131 PMCID: PMC10645587 DOI: 10.1038/s41417-023-00654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
The epidermal growth factor receptor (EGFR) is one of the first and most prominent driver genes known to promote malignant lung cancer. Investigating regulatory mechanisms beyond ligand-receptor binding, phosphorylation, and receptor kinase activation as means of EGFR signaling activation is important for improving EGFR-targeted therapy. Here, we report that Laminin-5γ-2 (LAMC2) retained high oncogenic capacity in lung cancer, silencing LAMC2 inhibited EGFR-induced cell proliferation and tumor growth in vivo. Deletion mutation experiments showed that both the EGF-Lam and LamB regions of LAMC2 are necessary for EGFR receptor binding, and that LAMC2 and EGFR were found to co-localize at the endoplasmic reticulum (ER) membrane. In addition, LAMC2 overexpression enhanced EGFR membrane deposition and promoted EGFR transport from the ER. Moreover, LAMC2 was necessary for preventing EGFR protein degradation via ubiquitination. Lastly, our study showed that high LAMC2 expression is positively associated with response to gefitinib (EGFR tyrosine kinase inhibitor) treatment. Overall, our study revealed a new regulatory mechanism of LAMC2 in promoting EGFR protein expression and stability by facilitating ER transport and preventing protein degradation via ubiquitination. Moreover, LAMC2 may serve as a stratifying biomarker for patients suitable for EGFR-TKI treatment.
Collapse
Affiliation(s)
- Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaofei Wang
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liying Liu
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - QiaoYi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, China.
| |
Collapse
|
7
|
Tanaka N, Sakamoto T. MT1-MMP as a Key Regulator of Metastasis. Cells 2023; 12:2187. [PMID: 37681919 PMCID: PMC10486781 DOI: 10.3390/cells12172187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Membrane type1-matrix metalloproteinase (MT1-MMP) is a member of metalloproteinases that is tethered to the transmembrane. Its major function in cancer progression is to directly degrade the extracellular matrix components, which are mainly type I-III collagen or indirectly type IV collagen through the activation of MMP-2 with a cooperative function of the tissue inhibitor of metalloproteinase-2 (TIMP-2). MT1-MMP is expressed as an inactive form (zymogen) within the endoplasmic reticulum (ER) and receives truncation processing via furin for its activation. Upon the appropriate trafficking of MT1-MMP from the ER, the Golgi apparatus to the cell surface membrane, MT1-MMP exhibits proteolytic activities to the surrounding molecules such as extracellular matrix components and cell surface molecules. MT1-MMP also retains a non-proteolytic ability to activate hypoxia-inducible factor 1 alpha (HIF-1A) via factors inhibiting the HIF-1 (FIH-1)-Mint3-HIF-1 axis, resulting in the upregulation of glucose metabolism and oxygen-independent ATP production. Through various functions of MT1-MMP, cancer cells gain motility on migration/invasion, thus causing metastasis. Despite the long-time efforts spent on the development of MT1-MMP interventions, none have been accomplished yet due to the side effects caused by off-target effects. Recently, MT1-MMP-specific small molecule inhibitors or an antibody have been reported and these inhibitors could potentially be novel agents for cancer treatment.
Collapse
Affiliation(s)
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan;
| |
Collapse
|
8
|
A review on regulation of cell cycle by extracellular matrix. Int J Biol Macromol 2023; 232:123426. [PMID: 36708893 DOI: 10.1016/j.ijbiomac.2023.123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The extracellular matrix (ECM) is a network of structural proteins, glycoproteins and proteoglycans that assists independent cells in aggregating and forming highly organized functional structures. ECM serves numerous purposes and is an essential component of tissue structure and functions. Initially, the role of ECM was considered to be confined to passive functions like providing mechanical strength and structural identity to tissues, serving as barriers and platforms for cells. The doors to understanding ECM's proper role in tissue functioning opened with the discovery of cellular receptors, integrins to which ECM components binds and influences cellular activities. Understanding and utilizing ECM's potential to control cellular function has become a topic of much interest in recent decades, providing different outlooks to study processes involved in developmental programs, wound healing and tumour progression. On another front, the regulatory mechanisms operating to prevent errors in the cell cycle have been topics of a titanic amount of studies. This is expected as many diseases, most infamously cancer, are associated with defects in their functioning. This review focuses on how ECM, through different methods, influences the progression of the somatic cell cycle and provides deeper insights into molecular mechanisms of functional communication between adhesion complex, signalling pathways and cell cycle machinery.
Collapse
|
9
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
10
|
Scialpi R, Arrè V, Giannelli G, Dituri F. Laminin-332 γ2 Monomeric Chain Promotes Adhesion and Migration of Hepatocellular Carcinoma Cells. Cancers (Basel) 2023; 15:cancers15020373. [PMID: 36672323 PMCID: PMC9857196 DOI: 10.3390/cancers15020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Extracellular matrix (ECM) has a well-recognized impact on the progression of solid tumors, including hepatocellular carcinoma (HCC). Laminin 332 (Ln332) is a ECM molecule of epithelial basal lamina, composed of three polypeptide chains (α3, β3, and γ2), that is usually poorly expressed in the normal liver but is detected at high levels in HCC. This macromolecule was shown to promote the proliferation, epithelial-to-mesenchymal transition (EMT), and drug resistance of HCC cells. The monomeric γ2 chain is up-regulated and localized preferentially at the invasive edge of metastatic intrahepatic HCC nodules, suggesting its potential involvement in the acquisition of invasive properties of HCC cells. HCC cells were tested in in vitro adhesion, scattering, and transwell migration assays in response to fibronectin and the Ln332 and Ln332 γ2 chains, and the activation status of major signaling pathways involved was evaluated. Here, we show that the Ln332 γ2 chain promotes HCC the cell adhesion, migration, and scattering of HCC cells that express the Ln332 receptor α3β1 integrin, proving to be a causal factor of the EMT program achievement. Moreover, we found that efficient HCC cell adhesion and migration on γ2 require the activation of the small cytosolic GTPase Rac1 and ERKs signaling. These data suggest that the γ2 chain, independently from the full-length Ln332, can contribute to the pro-invasive potential of aggressive HCC cell subpopulations.
Collapse
|
11
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
12
|
Rhizoma Paridis saponins suppresses vasculogenic mimicry formation and metastasis in osteosarcoma through regulating miR-520d-3p/MIG-7 axis. J Pharmacol Sci 2022; 150:180-190. [DOI: 10.1016/j.jphs.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
|
13
|
Fu K, Zheng X, Chen Y, Wu L, Yang Z, Chen X, Song W. Role of matrix metalloproteinases in diabetic foot ulcers: Potential therapeutic targets. Front Pharmacol 2022; 13:1050630. [PMID: 36339630 PMCID: PMC9631429 DOI: 10.3389/fphar.2022.1050630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are pathological states of tissue destruction of the foot or lower extremity in diabetic patients and are one of the serious chronic complications of diabetes mellitus. Matrix metalloproteinases (MMPs) serve crucial roles in both pathogenesis and wound healing. The primary functions of MMPs are degradation, which involves removing the disrupted extracellular matrix (ECM) during the inflammatory phase, facilitating angiogenesis and cell migration during the proliferation phase, and contracting and rebuilding the tissue during the remodeling phase. Overexpression of MMPs is a feature of DFUs. The upregulated MMPs in DFUs can cause excessive tissue degradation and impaired wound healing. Regulation of MMP levels in wounds could promote wound healing in DFUs. In this review, we talk about the roles of MMPs in DFUs and list potential methods to prevent MMPs from behaving in a manner detrimental to wound healing in DFUs.
Collapse
Affiliation(s)
- Kang Fu
- School of Life Sciences, Hubei University, Wuhan, China
| | - Xueyao Zheng
- School of Life Sciences, Hubei University, Wuhan, China
| | - Yuhan Chen
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Liuying Wu
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Zhiming Yang
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Xu Chen
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Wei Song
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
- *Correspondence: Wei Song,
| |
Collapse
|
14
|
Walter V, DeGraff DJ, Yamashita H. Characterization of laminin-332 gene expression in molecular subtypes of human bladder cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:311-319. [PMID: 36313206 PMCID: PMC9605936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Human bladder cancer (BCa) exhibits morphological and molecular heterogeneity which can complicate treatment. Morphologically, more than 90% of BCa is classified as urothelial cell carcinoma (UCC). Among other histological variants, UCC with squamous differentiation (SqD) shows a worse prognosis than pure UCC. In addition, basal-squamous BCa is enriched for SqD, and these tumors have a poor prognosis. Therefore, it is critical to elucidate the mechanisms to drive the basal-squamous phenotype of human BCa. Laminin-332 is a major glycoprotein of the epithelial basement membrane. It is well known that laminin-332 is a favorable target for extracellular matrix proteases such as matrix metalloproteinases (MMPs) in various diseases. Accumulating evidence indicates the significant role of laminin-332 in tumorigenesis. Here, we analyzed the expression of laminin-332 genes (LAMA3, LAMB3, LAMC2) in molecular subtypes of human BCa using publicly available data from The Cancer Genome Atlas (TCGA). Additionally, we also used q-RT-PCR to characterize laminin-332 gene expression between distinct molecular subtypes of human BCa cell lines. Our analysis of publicly available data show that laminin-332 genes are highly expressed in the basal-squamous molecular subtype of human BCa. In addition, we show laminin-332 genes are highly expressed in basal-squamous human BCa cell lines. Moreover, the expression of both LAMA3 and LAMC2 are negatively correlated with expression of the luminal transcription factor (TF) FOXA1 in the TCGA data. We also demonstrate that laminin-332 genes are downregulated by the overexpression of FOXA1 in a human basal-squamous BCa cell line (5637). Taken together, these results suggest that laminin-332 gene expression may be a biomarker of BCa patients with basal-squamous disease.
Collapse
Affiliation(s)
- Vonn Walter
- Department of Public Health Sciences, Pennsylvania State University College of MedicineHershey, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of MedicineHershey, PA, USA
| | - David J DeGraff
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of MedicineHershey, PA, USA
- Department of Urology, Pennsylvania State University College of MedicineHershey, PA, USA
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of MedicineHershey, PA, USA
| | - Hironobu Yamashita
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of MedicineHershey, PA, USA
| |
Collapse
|
15
|
Berndt A, Gaßler N, Franz M. Invasion-Associated Reorganization of Laminin 332 in Oral Squamous Cell Carcinomas: The Role of the Laminin γ2 Chain in Tumor Biology, Diagnosis, and Therapy. Cancers (Basel) 2022; 14:cancers14194903. [PMID: 36230826 PMCID: PMC9564360 DOI: 10.3390/cancers14194903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The destructive growth of carcinomas is associated with crossing the border between the epithelial and the connective tissue parts of an organ. One component of this borderline, the basement membrane, is the heterotrimeric laminin 332, which mediates the adhesion of basal epithelial cells. This protein, in particular its gamma 2 chain, is fundamentally reorganized during tumor cell invasion. Specific deposition patterns of laminin 332 are also present in oral squamous cell carcinomas and have been shown to be of high diagnostic and predictive value. Furthermore, laminin 332 restructuring is associated with important tumor biological processes, e.g., stromal activation, the development of a motile phenotype, and tumor spreading. In this review, current knowledge in the field is summarized and the recommendation to consider laminin 332 as a promising grading and monitoring parameter and as a potential therapeutic target is discussed. Abstract Invasion of the connective tissue by carcinoma cells is accompanied by disintegration and reorganization of the hemidesmosomes, which connect the basement membrane to the basal epithelial cells. In terms of mediating the basement membrane, i.e., basal cell interactions, the heterotrimeric laminin 332 is the most important bridging molecule. Due to this distinct function, laminin 332, especially its gamma 2 chain, came into the focus of cancer research. Specific de novo synthesis and deposition patterns of laminin 332 are evident upon development and progression of oral squamous cell carcinomas (OSCCs). Loss from the basement membrane, cytoplasmic accumulation, and extracellular deposition are associated with crucial processes such as stromal activation and immune response, epithelial to mesenchymal transition, and tumor cell budding. In networks with components of the tumor microenvironment, altered expression of laminin 332 chains, proteolytic processing, and interaction with integrin receptors seem to promote cancer cell migration. Indeed, reorganization patterns are shown to have a high diagnostic and prognostic value. Here, we summarize the current knowledge on laminin 332 reorganization in OSCCs with special focus on its gamma 2 chain and provide, based on the current literature, evidence on its promising role as a grading and monitoring parameter and as a potential therapeutic target.
Collapse
Affiliation(s)
- Alexander Berndt
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, 07747 Jena, Germany
- Correspondence: ; Tel.: +49-3641-939-70-61
| | - Nikolaus Gaßler
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, 07747 Jena, Germany
| | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
16
|
Itoh Y. Proteolytic modulation of tumor microenvironment signals during cancer progression. Front Oncol 2022; 12:935231. [PMID: 36132127 PMCID: PMC9483212 DOI: 10.3389/fonc.2022.935231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, the cellular microenvironment is optimized for the proper functioning of the tissues and organs. Cells recognize and communicate with the surrounding cells and extracellular matrix to maintain homeostasis. When cancer arises, the cellular microenvironment is modified to optimize its malignant growth, evading the host immune system and finding ways to invade and metastasize to other organs. One means is a proteolytic modification of the microenvironment and the signaling molecules. It is now well accepted that cancer progression relies on not only the performance of cancer cells but also the surrounding microenvironment. This mini-review discusses the current understanding of the proteolytic modification of the microenvironment signals during cancer progression.
Collapse
|
17
|
Recombinant mussel protein Pvfp5β enhances cell adhesion of poly(vinyl alcohol)/k-carrageenan hydrogel scaffolds. Int J Biol Macromol 2022; 211:639-652. [PMID: 35569680 DOI: 10.1016/j.ijbiomac.2022.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
Polymeric hydrogels are increasingly considered as scaffolds for tissue engineering due to their extraordinary resemblance with the extracellular matrix (ECM) of many tissues. As cell adhesion is a key factor in regulating important cell functions, hydrogel scaffolds are often functionalized or loaded with a variety of bioactive molecules that can promote adhesion. Interesting biomimetic approaches exploit the properties of mussel-inspired recombinant adhesive proteins. In this work, we prepared hydrogel scaffolds with a 50%w mixture of k-carrageenan (kC) and polyvinyl alcohol (PVA), by a two-step physical gelation process, and we coated them with Perna viridis foot protein-5β (Pvfp5β). The mechanical and morphological properties of hydrogels were investigated both after conditioning with typical cell culture media and also after coating with the Pvfp5β. The protein resulted strongly adsorbed onto the surface of the hydrogel and also able to penetrate in its interiors to a certain depth, mainly interacting with the kC component of the scaffold as resulted from the confocal analysis. Mouse embryonic fibroblasts NIH-3T3 were seeded on top of the hydrogels and cultured up to two weeks. The role of Pvfp5β in promoting cell adhesion, spreading and colonization of the scaffold was demonstrated.
Collapse
|
18
|
Kirtonia A, Pandey AK, Ramachandran B, Mishra DP, Dawson DW, Sethi G, Ganesan TS, Koeffler HP, Garg M. Overexpression of laminin-5 gamma-2 promotes tumorigenesis of pancreatic ductal adenocarcinoma through EGFR/ERK1/2/AKT/mTOR cascade. Cell Mol Life Sci 2022; 79:362. [PMID: 35699794 PMCID: PMC11073089 DOI: 10.1007/s00018-022-04392-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is correlated with poor outcomes because of limited therapeutic options. Laminin-5 gamma-2 (LAMC2) plays a critical role in key biological processes. However, the detailed molecular mechanism and potential roles of LAMC2 in PDAC stay unexplored. The present study examines the essential role and molecular mechanisms of LAMC2 in the tumorigenesis of PDAC. Here, we identified that LAMC2 is significantly upregulated in microarray cohorts and TCGA RNA sequencing data of PDAC patients compared to non-cancerous/normal tissues. Patients with higher transcript levels of LAMC2 were correlated with clinical stages; dismal overall, as well as, disease-free survival. Additionally, we confirmed significant upregulation of LAMC2 in a panel of PDAC cell lines and PDAC tumor specimens in contrast to normal pancreatic tissues and cells. Inhibition of LAMC2 significantly decreased cell growth, clonogenic ability, migration and invasion of PDAC cells, and tumor growth in the PDAC xenograft model. Mechanistically, silencing of LAMC2 suppressed expression of ZEB1, SNAIL, N-cadherin (CDH2), vimentin (VIM), and induced E-cadherin (CDH1) expression leading to a reversal of mesenchymal to an epithelial phenotype. Interestingly, co-immunoprecipitation experiments demonstrated LAMC2 interaction with epidermal growth factor receptor (EGFR). Further, stable knockdown of LAMC2 inhibited phosphorylation of EGFR, ERK1/2, AKT, mTOR, and P70S6 kinase signaling cascade in PDAC cells. Altogether, our findings suggest that silencing of LAMC2 inhibited PDAC tumorigenesis and metastasis through repression of epithelial-mesenchymal transition and modulation of EGFR/ERK1/2/AKT/mTOR axis and could be a potential diagnostic, prognostic, and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Balaji Ramachandran
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 610016, India
| | - H Phillip Koeffler
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore, 117600, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, School of Medicine, University of California, Los Angeles, CA, 90059, USA
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
19
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
20
|
Popova NV, Jücker M. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers (Basel) 2022; 14:238. [PMID: 35008401 PMCID: PMC8750014 DOI: 10.3390/cancers14010238] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
21
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
22
|
Daisuke H, Kato H, Fukumura K, Mayeda A, Miyagi Y, Seiki M, Koshikawa N. Novel LAMC2 fusion protein has tumor-promoting properties in ovarian carcinoma. Cancer Sci 2021; 112:4957-4967. [PMID: 34689384 PMCID: PMC8645749 DOI: 10.1111/cas.15149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Laminins are heterotrimeric ECM proteins composed of α, β, and γ chains. The γ2 chain (Lm-γ2) is a frequently expressed monomer and its expression is closely associated with cancer progression. Laminin-γ2 contains an epidermal growth factor (EGF)-like domain in its domain III (DIII or LEb). Matrix metalloproteinases can cleave off the DIII region of Lm-γ2 that retains the ligand activity for EGF receptor (EGFR). Herein, we show that a novel short form of Lm-γ2 (Lm-γ2F) containing DIII is generated without requiring MMPs and chromosomal translocation between LAMC2 on chromosome 1 and NR6A1 gene locus on chromosome 9 in human ovarian cancer SKOV3 cells. Laminin-γ2F is expressed as a truncated form lacking domains I and II, which are essential for its association with Lm-α3 and -β3 chains of Lm-332. Secreted Lm-γ2F can act as an EGFR ligand activating the EGFR/AKT pathways more effectively than does the Lm-γ2 chain, which in turn promotes proliferation, survival, and motility of ovarian cancer cells. LAMC2-NR6A1 translocation was detected using in situ hybridization, and fusion transcripts were expressed in ovarian cancer cell tissues. Overexpression and suppression of fusion transcripts significantly increased and decreased the tumorigenic growth of cells in mouse models, respectively. To the best of our knowledge, this is the first report regarding a fusion gene of ECM showing that translocation of LAMC2 plays a crucial role in the malignant growth and progression of ovarian cancer cells and that the consequent product is a promising therapeutic target against ovarian cancers.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cocarcinogenesis/genetics
- Cocarcinogenesis/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Laminin/genetics
- Laminin/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Nuclear Receptor Subfamily 6, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 6, Group A, Member 1/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA Interference
- Xenograft Model Antitumor Assays/methods
- Mice
Collapse
Affiliation(s)
- Hoshino Daisuke
- Division of Cancer Cell ResearchKanagawa Cancer Center Research InstituteYokohamaJapan
| | - Hisamori Kato
- Division of GynecologyKanagawa Cancer Center HospitalYokohamaJapan
| | - Kazuhiro Fukumura
- Division of Gene Expression MechanismInstitute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Akila Mayeda
- Division of Gene Expression MechanismInstitute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Yohei Miyagi
- Division of Molecular Pathology and GeneticsKanagawa Cancer Center Research InstituteYokohamaJapan
| | - Motoharu Seiki
- Division of Cancer Cell ResearchInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Naohiko Koshikawa
- Division of Cancer Cell ResearchKanagawa Cancer Center Research InstituteYokohamaJapan
- Division of Cancer Cell ResearchInstitute of Medical ScienceUniversity of TokyoTokyoJapan
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
23
|
Potential Therapeutic Significance of Laminin in Head and Neck Squamous Carcinomas. Cancers (Basel) 2021; 13:cancers13081890. [PMID: 33920762 PMCID: PMC8071176 DOI: 10.3390/cancers13081890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Head and neck cancers (HNC) account for approximately 500,000 new cases of tumors annually worldwide and are represented by upper aerodigestive tract malignant neoplasms, which particularly arise in oral cavity, larynx, and pharynx tissues. Thus, due to the biological diversity between the upper aerodigestive organs, and to the heterogeneity of risk factors associated with their malignant transformation, HNC behavior, and prognosis seem to strongly vary according to the tumor site. However, despite to the heterogeneity which characterizes head and neck tumors, squamous cell carcinomas (SCC) represent the predominant histopathologic HNC subtype. In this sense, it has been reported that SCC tumor biology is strongly associated with deregulations within the extracellular matrix compartment. Accordingly, it has been shown that laminin plays a remarkable role in the regulation of crucial events associated with head and neck squamous cell carcinomas (HNSCC) progression, which opens the possibility that laminin may represent a convergence point in HNSCC natural history. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the most common and lethal tumors worldwide, occurring mostly in oral cavity, pharynx, and larynx tissues. The squamous epithelia homeostasis is supported by the extracellular matrix (ECM), and alterations in this compartment are crucial for cancer development and progression. Laminin is a fundamental component of ECM, where it represents one of the main components of basement membrane (BM), and data supporting its contribution to HNSCC genesis and progression has been vastly explored in oral cavity squamous cell carcinoma. Laminin subtypes 111 (LN-111) and 332 (LN-332) are the main isoforms associated with malignant transformation, contributing to proliferation, adhesion, migration, invasion, and metastasis, due to its involvement in the regulation of several pathways associated with HNSCC carcinogenesis, including the activation of the EGFR/MAPK signaling pathway. Therefore, it draws attention to the possibility that laminin may represent a convergence point in HNSCC natural history, and an attractive potential therapeutic target for these tumors.
Collapse
|
24
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 733] [Impact Index Per Article: 146.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
25
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
26
|
Yang C, Liu Z, Zeng X, Wu Q, Liao X, Wang X, Han C, Yu T, Zhu G, Qin W, Peng T. Evaluation of the diagnostic ability of laminin gene family for pancreatic ductal adenocarcinoma. Aging (Albany NY) 2020; 11:3679-3703. [PMID: 31182680 PMCID: PMC6594799 DOI: 10.18632/aging.102007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
A poor outcome for pancreatic ductal adenocarcinoma (PDAC) patients is still a challenge worldwide. The aim of our study is to investigate the potential of key laminin subunits for being used both as a diagnostic and prognostic biomarker for PDAC patients. We evaluated the mRNA expression and prognostic value of laminin gene family in PDAC tissues using online public databases. Moreover, the relationship between key laminin subunits in PDAC blood cells and circulating tumor cells (CTCs) and the distinguishing ability of joint serum levels with carbohydrate antigen 19-9 (CA19-9) was analyzed. Two key differentially expressed subunits (LAMA3 and LAMC2) that are associated with prognosis of PDAC patients were found to show a potential for distinguishing between PDAC and non-tumor tissues. LAMA3 and LAMC2 expression were found to be positively related with CTC quantity in PDAC blood (R=0.628, p=0.029; R=0.776, p=0.003, respectively) using IgG chips. Furthermore, serum LAMC2 levels offered significant improvement over using CA19-9 alone for the discrimination of PDAC. Joint serum LAMC2 and CA19-9 levels increased the net benefit proportion in early stage/operational PDAC patients. Using integrated profiling, we identified LAMA3 and LAMC2 as potential therapeutic targets and prognostic markers for PDAC, for which further validation is warranted.
Collapse
Affiliation(s)
- Chengkun Yang
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Qiongyuan Wu
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Province, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
27
|
Harikrishnan K, Joshi O, Madangirikar S, Balasubramanian N. Cell Derived Matrix Fibulin-1 Associates With Epidermal Growth Factor Receptor to Inhibit Its Activation, Localization and Function in Lung Cancer Calu-1 Cells. Front Cell Dev Biol 2020; 8:522. [PMID: 32719793 PMCID: PMC7348071 DOI: 10.3389/fcell.2020.00522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) is a known promoter of tumor progression and is overexpressed in lung cancers. Growth factor receptors (including EGFR) are known to interact with extracellular matrix (ECM) proteins, which regulate their activation and function. Fibulin-1 (FBLN1) is a major component of the ECM in lung tissue, and its levels are known to be downregulated in non-small cell lung cancers (NSCLC). To test the possible role FBLN1 isoforms could have in regulating EGFR signaling and function in lung cancer, we performed siRNA mediated knockdown of FBLN1C and FBLN1D in NSCLC Calu-1 cells. Their loss significantly increased basal (with serum) and EGF (Epidermal Growth Factor) mediated EGFR activation without affecting net EGFR levels. Overexpression of FBLN1C and FBLN1D also inhibits EGFR activation confirming their regulatory crosstalk. Loss of FBLN1C and FBLN1D promotes EGFR-dependent cell migration, inhibited upon Erlotinib treatment. Mechanistically, both FBLN1 isoforms interact with EGFR, their association not dependent on its activation. Notably, cell-derived matrix (CDM) enriched FBLN1 binds EGFR. Calu-1 cells plated on CDM derived from FBLN1C and FBLN1D knockdown cells show a significant increase in EGF mediated EGFR activation. This promotes cell adhesion and spreading with active EGFR enriched at membrane ruffles. Both adhesion and spreading on CDMs is significantly reduced by Erlotinib treatment. Together, these findings show FBLN1C/1D, as part of the ECM, can bind and regulate EGFR activation and function in NSCLC Calu-1 cells. They further highlight the role tumor ECM composition could have in influencing EGFR dependent lung cancers.
Collapse
Affiliation(s)
| | - Omkar Joshi
- Indian Institute of Science Education and Research, Pune, India
| | | | | |
Collapse
|
28
|
Sylakowski K, Bradshaw A, Wells A. Mesenchymal Stem Cell/Multipotent Stromal Cell Augmentation of Wound Healing: Lessons from the Physiology of Matrix and Hypoxia Support. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1370-1381. [PMID: 32294456 PMCID: PMC7369572 DOI: 10.1016/j.ajpath.2020.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous wounds requiring tissue replacement are often challenging to treat and result in substantial economic burden. Many of the challenges inherent to therapy-mediated healing are due to comorbidities of disease and aging that render many wounds as chronic or nonhealing. Repeated failure to resolve chronic wounds compromises the reserve or functioning of localized reparative cells. Transplantation of mesenchymal stem cells/multipotent stromal cells (MSCs) has been proposed to augment the reparative capacity of resident cells within the wound bed to overcome stalled wound healing. However, MSCs face a variety of challenges within the wound micro-environment that curtail their survival after transplantation. MSCs are naturally pro-angiogenic and proreparative, and thus numerous techniques have been attempted to improve their survival and efficacy after transplantation, many with little impact. These setbacks have prompted researchers to re-examine the normal wound bed physiology, resulting in new approaches to MSC transplantation using extracellular matrix proteins and hypoxia preconditioning. These studies have also led to new insights on associated intracellular mechanisms, particularly autophagy, which play key roles in further regulating MSC survival and paracrine signaling. This review provides a brief overview of cutaneous wound healing with discussion on how extracellular matrix proteins and hypoxia can be utilized to improve MSC retention and therapeutic outcome.
Collapse
Affiliation(s)
- Kyle Sylakowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; R&D Service, VA Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Andrew Bradshaw
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; R&D Service, VA Pittsburgh Health System, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; R&D Service, VA Pittsburgh Health System, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
29
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Rousselle P, Scoazec JY. Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol 2020; 62:149-165. [PMID: 31639412 DOI: 10.1016/j.semcancer.2019.09.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Laminin 332 is crucial in the biology of epithelia. This large extracellular matrix protein consists of the heterotrimeric assembly of three subunits - α3, β3, and γ2 - and its multifunctionality relies on a number of extracellular proteolytic processing events. Laminin 332 is central to normal epithelium homeostasis by sustaining cell adhesion, polarity, proliferation, and differentiation. It also supports a major function in epithelial tissue formation, repair, and regeneration by buttressing cell migration and survival and basement membrane assembly. Interest in this protein increased after the discovery that its expression is perturbed in tumor cells, cancer-associated fibroblasts, and the tumor microenvironment. This review summarizes current knowledge regarding the established involvement of the laminin 332 γ2 chain in tumor invasiveness and discusses the role of its α3 and β3 subunits.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Jean Yves Scoazec
- Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805 Villejuif cedex, France; Université Paris Sud, Faculté de Médecine de Bicêtre, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
31
|
Madison MC, Kheradmand F. Taming Peptides with Peptides: Neutralizing Proline-Glycine-Proline with l-Arginine-Threonine-Arginine to Treat Cigarette Smoke-induced Emphysema. Am J Respir Cell Mol Biol 2020; 61:547-549. [PMID: 31046397 PMCID: PMC6827063 DOI: 10.1165/rcmb.2019-0145ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Matthew C Madison
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular MedicineBaylor College of MedicineHouston, Texasand
| | - Farrah Kheradmand
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular MedicineBaylor College of MedicineHouston, Texasand.,Michael E. DeBakey VA CenterU.S. Department of Veterans AffairsHouston, Texas
| |
Collapse
|
32
|
Esophageal Cancer Development: Crucial Clues Arising from the Extracellular Matrix. Cells 2020; 9:cells9020455. [PMID: 32079295 PMCID: PMC7072790 DOI: 10.3390/cells9020455] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, the extracellular matrix (ECM) has been reported as playing a relevant role in esophageal cancer (EC) development, with this compartment being related to several aspects of EC genesis and progression. This sounds very interesting due to the complexity of this highly incident and lethal tumor, which takes the sixth position in mortality among all tumor types worldwide. The well-established increase in ECM stiffness, which is able to trigger mechanotransduction signaling, is capable of regulating several malignant behaviors by converting alteration in ECM mechanics into cytoplasmatic biochemical signals. In this sense, it has been shown that some molecules play a key role in these events, particularly the different collagen isoforms, as well as enzymes related to its turnover, such as lysyl oxidase (LOX) and matrix metalloproteinases (MMPs). In fact, MMPs are not only involved in ECM stiffness, but also in other events related to ECM homeostasis, which includes ECM remodeling. Therefore, the crucial role of distinct MMPs isoform has already been reported, especially MMP-2, -3, -7, and -9, along EC development, thus strongly associating these proteins with the control of important cellular events during tumor progression, particularly in the process of invasion during metastasis establishment. In addition, by distinct mechanisms, a vast diversity of glycoproteins and proteoglycans, such as laminin, fibronectin, tenascin C, galectin, dermatan sulfate, and hyaluronic acid exert remarkable effects in esophageal malignant cells due to the activation of oncogenic signaling pathways mainly involved in cytoskeleton alterations during adhesion and migration processes. Finally, the wide spectrum of interactions potentially mediated by ECM may represent a singular intervention scenario in esophageal carcinogenesis natural history and, due to the scarce knowledge on the cellular and molecular mechanisms involved in EC development, the growing body of evidence on ECM’s role along esophageal carcinogenesis might provide a solid base to improve its management in the future.
Collapse
|
33
|
Rafaeva M, Erler JT. Framing cancer progression: influence of the organ- and tumour-specific matrisome. FEBS J 2020; 287:1454-1477. [PMID: 31972068 DOI: 10.1111/febs.15223] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) plays a crucial role in regulating organ homeostasis. It provides mechanical and biochemical cues directing cellular behaviour and, therefore, has control over the progression of diseases such as cancer. Recent efforts have greatly enhanced our knowledge of the protein composition of the ECM and its regulators, the so-called matrisome, in healthy and cancerous tissues; yet, an overview of the common signatures and organ-specific ECM in cancer is missing. Here, we address this by taking a detailed approach to review why cancer grows in certain organs, and focus on the influence of the matrisome at primary and metastatic tumour sites. Our in-depth and comprehensive review of the current literature and general understanding identifies important commonalities and distinctions, providing insight into the biology of metastasis, which could pave the way to improve future diagnostics and therapies.
Collapse
Affiliation(s)
- Maria Rafaeva
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Denmark
| |
Collapse
|
34
|
Prostaglandin F 2α-PTGFR signaling promotes proliferation of endometrial epithelial cells of cattle through cell cycle regulation. Anim Reprod Sci 2020; 213:106276. [PMID: 31987327 DOI: 10.1016/j.anireprosci.2020.106276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/14/2019] [Accepted: 01/07/2020] [Indexed: 01/28/2023]
Abstract
There is production of prostaglandin F2α (PGF2α) and there is PGF2α receptor (PTGFR) mRNA transcript in endometrial epithelial cells of cattle. The aims of the present study were to (1) determine whether PGF2α-PTGFR signaling modulates the proliferation of endometrial epithelial cells and (2) increase knowledge of PGF2α-PTGFR signaling on the physiological and pharmacological processes in the endometrium of cattle. Amount of cellular proliferation was determined using real-time cell analysis and cell proliferation reagent WST-1 procedures. Abundance of cyclins, cyclin-dependent kinases (CDKs), cyclin-kinase inhibitors, proliferating cell nuclear antigen (PCNA), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), PTGFR, epidermal growth factor (EGF) mRNA and protein abundances were evaluated using real-time RT-PCR and western blot analyses. The PGF2α-PTGFR signaling promoted the proliferation of endometrial epithelial cells by inducing changes in abundance of mRNA transcript and protein that resulted in an increase in the abundance for the cyclins (A, B1, D1, D3), CDKs (1, 2, 4, 6), and PCNA; decrease in abundance for p21; and increase in abundance for EGF, COX-1, COX-2, and PTGFR. There was a direct molecular association between PGF2α-PTGFR signaling and cell cycle regulation in endometrial epithelial cells of cattle. In addition, findings improve the understanding of PGF2α-PTGFR signaling in the physiological and pharmacological processes of the endometrium of cattle.
Collapse
|
35
|
Yap L, Tay HG, Nguyen MT, Tjin MS, Tryggvason K. Laminins in Cellular Differentiation. Trends Cell Biol 2019; 29:987-1000. [DOI: 10.1016/j.tcb.2019.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
|
36
|
Zhan S, Wang T, Wang M, Li J, Ge W. In-Depth Proteomics Analysis to Identify Biomarkers of Papillary Thyroid Cancer Patients Older Than 45 Years with Different Degrees of Lymph Node Metastases. Proteomics Clin Appl 2019; 13:e1900030. [PMID: 31148369 DOI: 10.1002/prca.201900030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Investigations of the molecular mechanisms underlying the metastatic phenotype of papillary thyroid cancer (PTC) and identification of novel candidate biomarkers to better predict PTC metastasis are urgently required. EXPERIMENTAL DESIGN Tandem mass tag-based quantitative proteomics approach is used to identify differentially expressed proteins (DEPs) in PTC tumorous tissues with different degrees of lymph node metastases (LNMs). Furthermore, DEPs and their clinical significance are analyzed in another independent Cancer Genome Atlas dataset. RESULTS The protein profiles among tumorous tissues with different degrees of LNMs are clearly distinguished, while the protein profiles in normal tissues are remarkably similar. DEPs in tumorous tissues are mostly enriched in the categories associated with pathological hallmarks of cancer, including extracellular matrix, metabolism, and cell growth. The expression patterns of six DEPs (LAMC2, LAMB3, ATP5A1, MYO1G, S100A4, and FAS) are confirmed by the Cancer Genome Atlas dataset. Additionally, the elevated expression of LAMC2 and MYO1G mRNA levels in tumorous tissues show a positive relationship with unfavorable variables, including larger tumor size, LNMs, high AJCC staging, BRAFV600E mutation, and poor prognosis. CONCLUSIONS AND CLINICAL RELEVANCE LAMC2 and MYO1G are identified as potential candidate biomarkers for the prediction of PTC metastasis and prognosis.
Collapse
Affiliation(s)
- Shaohua Zhan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, No. 5 Dongdan Santiao, Dongcheng, Beijing, 100005, China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Tianxiao Wang
- Key Laboratory of Carcinogenesis and Translational Research Department of Head and Neck Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Meng Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Wei Ge
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, No. 5 Dongdan Santiao, Dongcheng, Beijing, 100005, China.,Affiliated Hospital of Hebei University, No. 212, Yu Hua East Road, Nan Shi, Baoding, Hebei, 071000, China
| |
Collapse
|
37
|
Hu Q, Liu F, Yan T, Wu M, Ye M, Shi G, Lv S, Zhu X. MicroRNA‑576‑3p inhibits the migration and proangiogenic abilities of hypoxia‑treated glioma cells through hypoxia‑inducible factor‑1α. Int J Mol Med 2019; 43:2387-2397. [PMID: 31017266 PMCID: PMC6488173 DOI: 10.3892/ijmm.2019.4157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
The most common and aggressive type of brain cancer in adults is glioblastoma multiforme (GBM), and hypoxia is a common feature of glioblastoma. As the histological features of glioma include capillary endothelial cell proliferation, they are highly prone to invading the surrounding normal brain tissue, which is often one of the reasons for the failure of treatment. However, the mechanisms involved in this process are not fully understood. MicroRNAs (miRs) are a class of non‑coding RNA that are able to inhibit the malignant progression of tumor cells through the regulation of downstream genes. In the present study, the low expression of miR‑576‑3p was detected in glioma samples and hypoxia‑treated glioma cells using a reverse transcription‑quantitative polymerase chain reaction. The present study focused on the effects of miR‑576‑3p on hypoxia‑induced glioma. The results of the functional experiments revealed that the overexpression of miR‑576‑3p significantly inhibited the migration and pro‑angiogenic abilities of the glioma cells under hypoxic conditions (P<0.05) compared with in the lentivirus‑miR‑negative control group. Furthermore, luciferase reporter gene assays were used to validate the hypothesis that miR‑576‑3p interacts with the 3'‑untranslated region of hypoxia‑inducible factor‑1α (HIF‑1α) and induces a reduction in the protein levels of matrix metalloproteinase‑2 and vascular endothelial growth factor. Rescue experiments demonstrated that the restoration of HIF‑1α expression attenuated the effect of miR‑576‑3p on the migration and proangiogenic abilities of glioma cells. In conclusion, the present study confirms that miR‑576‑3p is a novel GBM inhibitor and its inhibition of the migration and proangiogenic capacity of hypoxia‑induced glioma cells is mediated by HIF‑1α.
Collapse
Affiliation(s)
- Qing Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| | - Feng Liu
- Department of Neurosurgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| | - Guangyao Shi
- Queen Mary School, Medical College, Nanchang University School of Medicine, Nanchang, Jiangxi 330031, P.R. China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
38
|
Soluble matrix protein is a potent modulator of mesenchymal stem cell performance. Proc Natl Acad Sci U S A 2019; 116:2042-2051. [PMID: 30659152 DOI: 10.1073/pnas.1812951116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair.
Collapse
|
39
|
Unique Biological Activity and Potential Role of Monomeric Laminin-γ2 as a Novel Biomarker for Hepatocellular Carcinoma: A Review. Int J Mol Sci 2019; 20:ijms20010226. [PMID: 30626121 PMCID: PMC6337480 DOI: 10.3390/ijms20010226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Laminin (Ln)-332 consists of α3, β3, and γ2 chains, which mediate epithelial cell adhesion to the basement membrane. Ln-γ2, a component of Ln-332, is frequently expressed as a monomer in the invasion front of several types of malignant tissues without simultaneous expression of Ln-α3 and/or Ln-β3 chains. Moreover, monomeric Ln-γ2 induces tumor cell proliferation and migration in vitro. These unique biological activities indicate that monomeric Ln-γ2 could be a candidate biomarker for early cancer surveillance. However, the present immune method for monomeric Ln-γ2 detection can only predict its expression, since no antibody that specifically reacts with monomeric γ2, but not with heterotrimeric γ2 chain, is commercially available. We have, therefore, developed monoclonal antibodies to specifically detect monomeric Ln-γ2, and devised a highly sensitive method to measure serum monomeric Ln-γ2 levels using a fully automated chemiluminescent immunoassay (CLIA). We evaluated its diagnostic value in sera from patients with several digestive cancers, including hepatocellular carcinoma (HCC), and found serum monomeric Ln-γ2 to be a clinically available biomarker for HCC surveillance. The combination of monomeric Ln-γ2 and prothrombin induced by Vitamin K Absence II (PIVKA-II) may be more sensitive for clinical diagnosis of HCC than any currently used combination.
Collapse
|
40
|
Ngai D, Lino M, Bendeck MP. Cell-Matrix Interactions and Matricrine Signaling in the Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2018; 5:174. [PMID: 30581820 PMCID: PMC6292870 DOI: 10.3389/fcvm.2018.00174] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is a complex pathological process occurring in patients with atherosclerosis, type 2 diabetes, and chronic kidney disease. The extracellular matrix, via matricrine-receptor signaling plays important roles in the pathogenesis of calcification. Calcification is mediated by osteochondrocytic-like cells that arise from transdifferentiating vascular smooth muscle cells. Recent advances in our understanding of the plasticity of vascular smooth muscle cell and other cells of mesenchymal origin have furthered our understanding of how these cells transdifferentiate into osteochondrocytic-like cells in response to environmental cues. In the present review, we examine the role of the extracellular matrix in the regulation of cell behavior and differentiation in the context of vascular calcification. In pathological calcification, the extracellular matrix not only provides a scaffold for mineral deposition, but also acts as an active signaling entity. In recent years, extracellular matrix components have been shown to influence cellular signaling through matrix receptors such as the discoidin domain receptor family, integrins, and elastin receptors, all of which can modulate osteochondrocytic differentiation and calcification. Changes in extracellular matrix stiffness and composition are detected by these receptors which in turn modulate downstream signaling pathways and cytoskeletal dynamics, which are critical to osteogenic differentiation. This review will focus on recent literature that highlights the role of cell-matrix interactions and how they influence cellular behavior, and osteochondrocytic transdifferentiation in the pathogenesis of cardiovascular calcification.
Collapse
Affiliation(s)
- David Ngai
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Marsel Lino
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Engineered systems to study the synergistic signaling between integrin-mediated mechanotransduction and growth factors (Review). Biointerphases 2018; 13:06D302. [DOI: 10.1116/1.5045231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Gu BH, Madison MC, Corry D, Kheradmand F. Matrix remodeling in chronic lung diseases. Matrix Biol 2018; 73:52-63. [PMID: 29559389 PMCID: PMC6141350 DOI: 10.1016/j.matbio.2018.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/08/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
Multicellular organisms synthesize and renew components of their subcellular and scaffolding proteins, collectively known as the extracellular matrix molecules (ECMs). In the lung, ECMs maintain tensile strength, elasticity, and dictate the specialized function of multiple cell lineages. These functions are critical in lung homeostatic processes including cellular migration and proliferation during morphogenesis or in response to repair. Alterations in lung ECMs that expose cells to new cryptic fragments, generated in response to endogenous proteinases or exogenous toxins, are associated with the development of several common respiratory diseases. How lung ECMs provide or relay vital signals to epithelial and mesenchymal cells has shed new light on development and progression of several common chronic respiratory diseases. This review will consider how ECMs regulate lung homeostasis and their reorganization under pathological conditions that can modulate the inflammatory diseases asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Better understanding of changes in the distribution of lung ECM could provide novel therapeutic approaches to treat chronic lung diseases.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Madison
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA
| | - David Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Wells A, Wiley HS. A systems perspective of heterocellular signaling. Essays Biochem 2018; 62:607-617. [PMID: 30139877 PMCID: PMC6309864 DOI: 10.1042/ebc20180015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
Signal exchange between different cell types is essential for development and function of multicellular organisms, and its dysregulation is causal in many diseases. Unfortunately, most cell-signaling work has employed single cell types grown under conditions unrelated to their native context. Recent technical developments have started to provide the tools needed to follow signaling between multiple cell types, but gaps in the information they provide have limited their usefulness in building realistic models of heterocellular signaling. Currently, only targeted assays have the necessary sensitivity, selectivity, and spatial resolution to usefully probe heterocellular signaling processes, but these are best used to test specific, mechanistic models. Decades of systems biology research with monocultures has provided a solid foundation for building models of heterocellular signaling, but current models lack a realistic description of regulated proteolysis and the feedback processes triggered within and between cells. Identification and understanding of key regulatory processes in the extracellular environment and of recursive signaling patterns between cells will be essential to building predictive models of heterocellular systems.
Collapse
Affiliation(s)
- Alan Wells
- Departments of Pathology and Computational and Systems Biology, University of Pittsburgh, Pittsburg, PA 15261, U.S.A
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
| |
Collapse
|
44
|
Bradshaw A, Sylakowski K, Wells A. The Pro-reparative Engine: Stem Cells Aid Healing by Dampening Inflammation. CURRENT PATHOBIOLOGY REPORTS 2018; 6:109-115. [PMID: 30271682 DOI: 10.1007/s40139-018-0167-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose of Review Stem cells have been proposed as sources for tissue replacement when healing does not occur. These cells could contribute directly to skin structures via differentiation, or via producing trophic factors that would 'educate' the micro-environment to encourage tissue repair. Studies in animals have supported both mechanisms, but translation to humans has been challenged by poor cell survival after transplantation. However, the improvement noted with even transient existence suggests another new possibility, that of suppressing the inflammatory response that limits regenerative healing. Herein, we will propose that this immunomodulatory aspect holds promise for promoting skin healing. Recent Findings We have found that stem cell transplantation into wounds can dampen both acute and chronic inflammation, leading to more regenerative-like healing and diminished scarring. Summary Wound healing could be improved by dampening inflammation both initially to allow for tissue replacement to proceed and late to reduce scarring.
Collapse
Affiliation(s)
- Andrew Bradshaw
- Departments of Pathology and Bioengineering, and the McGowan, Institute for Regenerative Medicine, University of Pittsburgh, and VA Pittsburgh Health System, Pittsburgh PA 15213 USA
| | - Kyle Sylakowski
- Departments of Pathology and Bioengineering, and the McGowan, Institute for Regenerative Medicine, University of Pittsburgh, and VA Pittsburgh Health System, Pittsburgh PA 15213 USA
| | - Alan Wells
- Departments of Pathology and Bioengineering, and the McGowan, Institute for Regenerative Medicine, University of Pittsburgh, and VA Pittsburgh Health System, Pittsburgh PA 15213 USA
| |
Collapse
|
45
|
|
46
|
|
47
|
Li Y, Sun B, Zhao X, Wang X, Zhang D, Gu Q, Liu T. MMP-2 and MMP-13 affect vasculogenic mimicry formation in large cell lung cancer. J Cell Mol Med 2017; 21:3741-3751. [PMID: 28766880 PMCID: PMC5706571 DOI: 10.1111/jcmm.13283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 05/23/2017] [Indexed: 11/30/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have critical functions in tumour vasculogenic mimicry (VM). This study explored the mechanisms underlying MMP-13 and MMP-2 regulation of tumour VM formation in large cell lung cancer (LCLC). In our study, laminin5 (Ln-5) fragments cleaved by MMP-2 promoted tubular structure formation by the LCLC cell lines H460 and H661 in three-dimensional (3D) cultures. Transient up-regulation of MMP-13 or treatment with recombinant MMP-13 protein abrogated tubular structure formation of H460 cells in 3D culture. Treated cells with Ln-5 fragments cleaved by MMP-2 stimulated EGFR and F-actin expression. Ln-5 fragments cleaved by MMP-13 decreased EGFR/F-actin expression and disrupted VM formation. MMP-13 expression was negatively correlated with VM, Ln-5 and EGFR in LCLC tissues and xenograft. In vivo experiments revealed that VM was decreased when the number of endothelium-dependent vessels (EDVs) increased during xenograft tumour growth, whereas MMP-13 expression was progressively increased. In conclusion, MMP-2 promoted and MMP-13 disrupted VM formation in LCLC by cleaving Ln-5 to influence EGFR signal activation. MMP-13 may regulate VM and EDV formation.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/pathology
- Carcinoma, Large Cell/therapy
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/pharmacology
- Cell Culture Techniques
- Cell Line, Tumor
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Matrix Metalloproteinase 13/genetics
- Matrix Metalloproteinase 13/metabolism
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Mimicry
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Signal Transduction
- Transfection
- Tumor Burden
- Xenograft Model Antitumor Assays
- Kalinin
Collapse
Affiliation(s)
- Yanlei Li
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Baocun Sun
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Cancer HospitalTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin General HospitalTianjin Medical UniversityTianjinChina
| | - Xiulan Zhao
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin General HospitalTianjin Medical UniversityTianjinChina
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngology Head and Neck SurgeryTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Danfang Zhang
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin General HospitalTianjin Medical UniversityTianjinChina
| | - Qiang Gu
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin General HospitalTianjin Medical UniversityTianjinChina
| | - Tieju Liu
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin General HospitalTianjin Medical UniversityTianjinChina
| |
Collapse
|
48
|
Oh KH, Choi J, Woo JS, Baek SK, Jung KY, Koh MJ, Kim YS, Kwon SY. Role of laminin 332 in lymph node metastasis of papillary thyroid carcinoma. Auris Nasus Larynx 2017; 44:729-734. [PMID: 28238469 DOI: 10.1016/j.anl.2017.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/02/2017] [Accepted: 01/26/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The invasiveness of papillary thyroid carcinoma (PTC), including the occurrence of cervical lymph node metastasis, is the main determining factors contributing to recurrence and poor prognosis. Laminin 332 is a glycoprotein involved in cell migration and cancer cell invasion into surrounding tissues and is therefore related to poor prognosis in many cancers. Here, we investigated the expression and role of laminin 332 in PTC and examine the possibility that laminin 332 could be involved in the invasiveness of PTC. METHODS Laminin 332 expression was determined by immunohistochemical staining in all 40 patients. The correlations between laminin 332 expression and clinical factors were investigated. We examined the expression of the laminin 332 γ2 chain using reverse transcription polymerase chain reaction and western blotting in PTC cells and determined the relationship between the expression of laminin 332 and the invasiveness of these cell lines using cell invasion assays. RESULTS Laminin 332 was expressed specifically within tumor tissue. The frequency of laminin 332 γ2 chain expression was significantly correlated with cervical lymph node metastasis (p=0.003). Invasiveness increased as the expression of laminin 332 γ2 increased in the tested PTC cell lines. CONCLUSION Laminin 332 expression may be a useful marker for predicting lymph node metastasis in papillary thyroid carcinoma, and could increase the ability of cancer cells to invade, which would influence the prognosis of patients with PTC.
Collapse
Affiliation(s)
- Kyoung Ho Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Soo Woo
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung Kuk Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwang Yoon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | | | - Young-Sik Kim
- Department of pathology, College of Medicine, Korea University, Ansan Hospital, Ansan, Republic of Korea
| | - Soon Young Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Wei Z, Shaikh ZA. Cadmium stimulates metastasis-associated phenotype in triple-negative breast cancer cells through integrin and β-catenin signaling. Toxicol Appl Pharmacol 2017; 328:70-80. [PMID: 28527916 DOI: 10.1016/j.taap.2017.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is a carcinogenic heavy metal which is implicated in breast cancer development. While the mechanisms of Cd-induced breast cancer initiation and promotion have been studied, the molecular processes involved in breast cancer progression remain to be investigated. The purpose of the present study was to evaluate the influence of Cd on metastasis-associated phenotypes, such as cell adhesion, migration, and invasion in triple-negative breast cancer cells. Treatment of MDA-MB-231 cells with 1μM Cd increased cell spreading and cell migration. This was associated with the activation of integrin β1, FAK, Src, and Rac1. Treatment with Cd also inhibited GSK3β activity and induced T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription, indicating the involvement of β-catenin signaling. Furthermore, treatment with 3μM Cd for 4weeks increased the expression of β-catenin and enhanced TCF/LEF-mediated transcription. Furthermore, enhanced expressions of integrins α5 and β1, paxillin, and vimentin indicated that prolonged Cd treatment reorganized the cytoskeleton, which aided malignancy, as evidenced by enhanced matrix metalloprotease 2/9 (MMP2/9) secretion and cell invasion. Prolonged Cd treatment also caused an increase in cell growth. Together, these results indicate that Cd alters key signaling processes involved in the regulation of cytoskeleton to enhance cancer cell migration, invasion, adhesion, and proliferation.
Collapse
Affiliation(s)
- Zhengxi Wei
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Zahir A Shaikh
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
50
|
Tsuji S, Washimi K, Kageyama T, Yamashita M, Yoshihara M, Matsuura R, Yokose T, Kameda Y, Hayashi H, Morohoshi T, Tsuura Y, Yusa T, Sato T, Togayachi A, Narimatsu H, Nagasaki T, Nakamoto K, Moriwaki Y, Misawa H, Hiroshima K, Miyagi Y, Imai K. HEG1 is a novel mucin-like membrane protein that serves as a diagnostic and therapeutic target for malignant mesothelioma. Sci Rep 2017; 7:45768. [PMID: 28361969 PMCID: PMC5374711 DOI: 10.1038/srep45768] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/02/2017] [Indexed: 12/24/2022] Open
Abstract
The absence of highly specific markers for malignant mesothelioma (MM) has served an obstacle for its diagnosis and development of molecular-targeting therapy against MM. Here, we show that a novel mucin-like membrane protein, sialylated protein HEG homolog 1 (HEG1), is a highly specific marker for MM. A monoclonal antibody against sialylated HEG1, SKM9-2, can detect even sarcomatoid and desmoplastic MM. The specificity and sensitivity of SKM9-2 to MM reached 99% and 92%, respectively; this antibody did not react with normal tissues. This accurate discrimination by SKM9-2 was due to the recognition of a sialylated O-linked glycan with HEG1 peptide. We also found that gene silencing of HEG1 significantly suppressed the survival and proliferation of mesothelioma cells; this result suggests that HEG1 may be a worthwhile target for function-inhibition drugs. Taken together, our results indicate that sialylated HEG1 may be useful as a diagnostic and therapeutic target for MM.
Collapse
Affiliation(s)
- Shoutaro Tsuji
- Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Kota Washimi
- Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | | | | | | | - Rieko Matsuura
- Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoichi Kameda
- Department of Pathology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Hiroyuki Hayashi
- Department of Pathology, Yokohama Municipal Citizen's Hospital, Yokohama, Japan
| | - Takao Morohoshi
- Division of General Thoracic Surgery, Yokosuka-Kyosai Hospital, Yokosuka, Japan
| | - Yukio Tsuura
- Division of Pathology, Yokosuka-Kyosai Hospital, Yokosuka, Japan
| | - Toshikazu Yusa
- Department of General Thoracic Surgery and Asbestos Disease Center, Chiba Rosai Hospital, Ichihara, Japan
| | - Takashi Sato
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Akira Togayachi
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Toshinori Nagasaki
- Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Kotaro Nakamoto
- Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yasuhiro Moriwaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University, Yachiyo Medical Center, Yachiyo, Japan
| | - Yohei Miyagi
- Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Kohzoh Imai
- Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|