1
|
Borges KS, Little DW, Magalhães TDA, Ribeiro C, Dumontet T, Lapensee C, Basham KJ, Seth A, Azova S, Guagliardo NA, Barrett PQ, Berber M, O'Connell AE, Turcu AF, Lerario AM, Mohan DR, Rainey W, Carlone DL, Hirschhorn JN, Salic A, Breault DT, Hammer GD. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609423. [PMID: 39229119 PMCID: PMC11370552 DOI: 10.1101/2024.08.23.609423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The steroid hormone aldosterone, produced by the zona glomerulosa (zG) of the adrenal gland, is a master regulator of plasma electrolytes and blood pressure. While aldosterone control by the renin-angiotensin system is well understood, other key regulatory factors have remained elusive. Here, we replicated a prior association between a non-coding variant in WNT2B and an increased risk of primary aldosteronism, a prevalent and debilitating disease caused by excessive aldosterone production. We further show that in both mice and humans, WNT2B is expressed in the mesenchymal capsule surrounding the adrenal cortex, in close proximity to the zG. Global loss of Wnt2b in the mouse results in a dysmorphic and hypocellular zG, with impaired aldosterone production. Similarly, humans harboring WNT2B loss-of-function mutations develop a novel form of Familial Hyperreninemic Hypoaldosteronism, designated here as Type 4. Additionally, we demonstrate that WNT2B signals by activating the non-canonical Wnt/planar cell polarity pathway. Our findings identify WNT2B as a key regulator of zG function and aldosterone production with important clinical implications.
Collapse
Affiliation(s)
- Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald W Little
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chris Lapensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwarya Seth
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Svetlana Azova
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Mesut Berber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy E O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Adina F Turcu
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipika R Mohan
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Rainey
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Doddihal V, Mann FG, Ross EJ, McKinney MC, Guerrero-Hernández C, Brewster CE, McKinney SA, Sánchez Alvarado A. A PAK family kinase and the Hippo/Yorkie pathway modulate WNT signaling to functionally integrate body axes during regeneration. Proc Natl Acad Sci U S A 2024; 121:e2321919121. [PMID: 38713625 PMCID: PMC11098123 DOI: 10.1073/pnas.2321919121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/03/2024] [Indexed: 05/09/2024] Open
Abstract
Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/β-catenin signaling along the AP axis and, functions synergistically with the β-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.
Collapse
Affiliation(s)
- Viraj Doddihal
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Eric J. Ross
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | | | | | | | | |
Collapse
|
3
|
McLeod JJ, Rothschild SC, Francescatto L, Kim H, Tombes RM. Specific CaMKIIs mediate convergent extension cell movements in early zebrafish development. Dev Dyn 2024; 253:390-403. [PMID: 37860955 DOI: 10.1002/dvdy.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Noncanonical Wnts are morphogens that can elevate intracellular Ca2+, activate the Ca2+/calmodulin-dependent protein kinase, CaMKII, and promote cell movements during vertebrate gastrulation. RESULTS Zebrafish express seven CaMKII genes during embryogenesis; two of these, camk2b1 and camk2g1, are necessary for convergent extension (CE) cell movements. CaMKII morphant phenotypes were observed as early as epiboly. At the 1-3 somite stage, neuroectoderm and paraxial cells remained unconverged in both morphants. Later, somites lacked their stereotypical shape and were wider, more closely spaced, and body gap angles increased. At 24hpf, somite compression and notochord undulation coincided with a shorter and broader body axis. A camk2b1 crispant was generated which phenocopied the camk2b1 morphant. The levels of cell proliferation, apoptosis and paraxial and neuroectodermal markers were unchanged in morphants. Hyperactivation of CaMKII during gastrulation by transient pharmacological intervention (thapsigargin) also caused CE defects. Mosaically expressed dominant-negative CaMKII recapitulated these phenotypes and showed significant midline bifurcation. Finally, the introduction of CaMKII partially rescued Wnt11 morphant phenotypes. CONCLUSIONS Overall, these data support a model whereby cyclically activated CaMKII encoded from two genes enables cell migration during the process of CE.
Collapse
Affiliation(s)
- Jamie J McLeod
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah C Rothschild
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Haerin Kim
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert M Tombes
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
Paudel S, Yue M, Nalamalapu R, Saha MS. Deciphering the Calcium Code: A Review of Calcium Activity Analysis Methods Employed to Identify Meaningful Activity in Early Neural Development. Biomolecules 2024; 14:138. [PMID: 38275767 PMCID: PMC10813340 DOI: 10.3390/biom14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The intracellular and intercellular flux of calcium ions represents an ancient and universal mode of signaling that regulates an extensive array of cellular processes. Evidence for the central role of calcium signaling includes various techniques that allow the visualization of calcium activity in living cells. While extensively investigated in mature cells, calcium activity is equally important in developing cells, particularly the embryonic nervous system where it has been implicated in a wide variety array of determinative events. However, unlike in mature cells, where the calcium dynamics display regular, predictable patterns, calcium activity in developing systems is far more sporadic, irregular, and diverse. This renders the ability to assess calcium activity in a consistent manner extremely challenging, challenges reflected in the diversity of methods employed to analyze calcium activity in neural development. Here we review the wide array of calcium detection and analysis methods used across studies, limiting the extent to which they can be comparatively analyzed. The goal is to provide investigators not only with an overview of calcium activity analysis techniques currently available, but also to offer suggestions for future work and standardization to enable informative comparative evaluations of this fundamental and important process in neural development.
Collapse
Affiliation(s)
- Sudip Paudel
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Michelle Yue
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Rithvik Nalamalapu
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
5
|
Zhang C, Brunt L, Ono Y, Rogers S, Scholpp S. Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature 2024; 625:126-133. [PMID: 38123680 PMCID: PMC10764289 DOI: 10.1038/s41586-023-06850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Chemical signalling is the primary means by which cells communicate in the embryo. The underlying principle refers to a group of ligand-producing cells and a group of cells that respond to this signal because they express the appropriate receptors1,2. In the zebrafish embryo, Wnt5b binds to the receptor Ror2 to trigger the Wnt-planar cell polarity (PCP) signalling pathway to regulate tissue polarity and cell migration3,4. However, it remains unclear how this lipophilic ligand is transported from the source cells through the aqueous extracellular space to the target tissue. In this study, we provide evidence that Wnt5b, together with Ror2, is loaded on long protrusions called cytonemes. Our data further suggest that the active Wnt5b-Ror2 complexes form in the producing cell and are handed over from these cytonemes to the receiving cell. Then, the receiving cell has the capacity to initiate Wnt-PCP signalling, irrespective of its functional Ror2 receptor status. On the tissue level, we further show that cytoneme-dependent spreading of active Wnt5b-Ror2 affects convergence and extension in the zebrafish gastrula. We suggest that cytoneme-mediated transfer of ligand-receptor complexes is a vital mechanism for paracrine signalling. This may prompt a reevaluation of the conventional concept of characterizing responsive and non-responsive tissues solely on the basis of the expression of receptors.
Collapse
Affiliation(s)
- Chengting Zhang
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lucy Brunt
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
6
|
Wang R, Bialas AL, Goel T, Collins EMS. Mechano-Chemical Coupling in Hydra Regeneration and Patterning. Integr Comp Biol 2023; 63:1422-1441. [PMID: 37339912 DOI: 10.1093/icb/icad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
The freshwater cnidarian Hydra can regenerate from wounds, small tissue fragments and even from aggregated cells. This process requires the de novo development of a body axis and oral-aboral polarity, a fundamental developmental process that involves chemical patterning and mechanical shape changes. Gierer and Meinhardt recognized that Hydra's simple body plan and amenability to in vivo experiments make it an experimentally and mathematically tractable model to study developmental patterning and symmetry breaking. They developed a reaction-diffusion model, involving a short-range activator and a long-range inhibitor, which successfully explained patterning in the adult animal. In 2011, HyWnt3 was identified as a candidate for the activator. However, despite the continued efforts of both physicists and biologists, the predicted inhibitor remains elusive. Furthermore, the Gierer-Meinhardt model cannot explain de novo axis formation in cellular aggregates that lack inherited tissue polarity. The aim of this review is to synthesize the current knowledge on Hydra symmetry breaking and patterning. We summarize the history of patterning studies and insights from recent biomechanical and molecular studies, and highlight the need for continued validation of theoretical assumptions and collaboration across disciplinary boundaries. We conclude by proposing new experiments to test current mechano-chemical coupling models and suggest ideas for expanding the Gierer-Meinhardt model to explain de novo patterning, as observed in Hydra aggregates. The availability of a fully sequenced genome, transgenic fluorescent reporter strains, and modern imaging techniques, that enable unprecedented observation of cellular events in vivo, promise to allow the community to crack Hydra's secret to patterning.
Collapse
Affiliation(s)
- Rui Wang
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
| | - April L Bialas
- Department of Biology, Swarthmore College, 500 College Ave, Swarthmore, 19081 PA, USA
| | - Tapan Goel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, 500 College Ave, Swarthmore, 19081 PA, USA
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| |
Collapse
|
7
|
Zou J, Anai S, Ota S, Ishitani S, Oginuma M, Ishitani T. Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB. Nat Commun 2023; 14:7194. [PMID: 37938219 PMCID: PMC10632484 DOI: 10.1038/s41467-023-42963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
In vertebrate embryos, the canonical Wnt ligand primes the formation of dorsal organizers that govern dorsal-ventral patterns by secreting BMP antagonists. In contrast, in Drosophila embryos, Toll-like receptor (Tlr)-mediated NFκB activation initiates dorsal-ventral patterning, wherein Wnt-mediated negative feedback regulation of Tlr/NFκB generates a BMP antagonist-secreting signalling centre to control the dorsal-ventral pattern. Although both Wnt and BMP antagonist are conserved among species, the involvement of Tlr/NFκB and feedback regulation in vertebrate organizer formation remains unclear. By imaging and genetic modification, we reveal that a negative feedback loop between canonical and non-canonical Wnts and Tlr4/NFκB determines the size of zebrafish organizer, and that Tlr/NFκB and Wnts switch initial cue and feedback mediator roles between Drosophila and zebrafish. Here, we show that canonical Wnt signalling stimulates the expression of the non-canonical Wnt5b ligand, activating the Tlr4 receptor to stimulate NFκB-mediated transcription of the Wnt antagonist frzb, restricting Wnt-dependent dorsal organizer formation.
Collapse
Affiliation(s)
- Juqi Zou
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Satoshi Anai
- Yuuai Medical Center, Tomigusuku, Okinawa, 901-0224, Japan
| | - Satoshi Ota
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shizuka Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masayuki Oginuma
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Xue W, Cai L, Li S, Hou Y, Wang YD, Yang D, Xia Y, Nie X. WNT ligands in non-small cell lung cancer: from pathogenesis to clinical practice. Discov Oncol 2023; 14:136. [PMID: 37486552 PMCID: PMC10366069 DOI: 10.1007/s12672-023-00739-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the malignant tumor with the highest morbidity and leading cause of death worldwide, whereas its pathogenesis has not been fully elucidated. Although mutations in some crucial genes in WNT pathways such as β-catenin and APC are not common in NSCLC, the abnormal signal transduction of WNT pathways is still closely related to the occurrence and progression of NSCLC. WNT ligands (WNTs) are a class of secreted glycoproteins that activate WNT pathways through binding to their receptors and play important regulatory roles in embryonic development, cell differentiation, and tissue regeneration. Therefore, the abnormal expression or dysfunction of WNTs undoubtedly affects WNT pathways and thus participates in the pathogenesis of diseases. There are 19 members of human WNTs, WNT1, WNT2, WNT2b, WNT3, WNT3a, WNT4, WNT5a, WNT5b, WNT6, WNT7a, WNT7b, WNT8a, WNT8b, WNT9a, WNT9b, WNT10a, WNT10b, WNT11 and WNT16. The expression levels of WNTs, binding receptors, and activated WNT pathways are diverse in different tissue types, which endows the complexity of WNT pathways and multifarious biological effects. Although abundant studies have reported the role of WNTs in the pathogenesis of NSCLC, it still needs further study as therapeutic targets for lung cancer. This review will systematically summarize current research on human WNTs in NSCLC, from molecular pathogenesis to potential clinical practice.
Collapse
Affiliation(s)
- Wanting Xue
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Lihong Cai
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China
| | - Su Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yujia Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dongbin Yang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Hebi, 458030, China.
| | - Yubing Xia
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China.
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Shah R, Amador C, Chun ST, Ghiam S, Saghizadeh M, Kramerov AA, Ljubimov AV. Non-canonical Wnt signaling in the eye. Prog Retin Eye Res 2023; 95:101149. [PMID: 36443219 PMCID: PMC10209355 DOI: 10.1016/j.preteyeres.2022.101149] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | - Sean Ghiam
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Yoon J, Sun J, Lee M, Hwang YS, Daar IO. Wnt4 and ephrinB2 instruct apical constriction via Dishevelled and non-canonical signaling. Nat Commun 2023; 14:337. [PMID: 36670115 PMCID: PMC9860048 DOI: 10.1038/s41467-023-35991-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Apical constriction is a cell shape change critical to vertebrate neural tube closure, and the contractile force required for this process is generated by actin-myosin networks. The signaling cue that instructs this process has remained elusive. Here, we identify Wnt4 and the transmembrane ephrinB2 protein as playing an instructive role in neural tube closure as members of a signaling complex we termed WERDS (Wnt4, EphrinB2, Ror2, Dishevelled (Dsh2), and Shroom3). Disruption of function or interaction among members of the WERDS complex results in defects of apical constriction and neural tube closure. The mechanism of action involves an interaction of ephrinB2 with the Dsh2 scaffold protein that enhances the formation of the WERDS complex, which in turn, activates Rho-associated kinase to induce apical constriction. Moreover, the ephrinB2/Dsh2 interaction promotes non-canonical Wnt signaling and shows how cross-talk between two major signal transduction pathways, Eph/ephrin and Wnt, coordinate morphogenesis of the neural tube.
Collapse
Affiliation(s)
- Jaeho Yoon
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Jian Sun
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Moonsup Lee
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
11
|
Concha ML, Reig G. Origin, form and function of extraembryonic structures in teleost fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210264. [PMID: 36252221 PMCID: PMC9574637 DOI: 10.1098/rstb.2021.0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
Teleost eggs have evolved a highly derived early developmental pattern within vertebrates as a result of the meroblastic cleavage pattern, giving rise to a polar stratified architecture containing a large acellular yolk and a small cellular blastoderm on top. Besides the acellular yolk, the teleost-specific yolk syncytial layer (YSL) and the superficial epithelial enveloping layer are recognized as extraembryonic structures that play critical roles throughout embryonic development. They provide enriched microenvironments in which molecular feedback loops, cellular interactions and mechanical signals emerge to sculpt, among other things, embryonic patterning along the dorsoventral and left-right axes, mesendodermal specification and the execution of morphogenetic movements in the early embryo and during organogenesis. An emerging concept points to a critical role of extraembryonic structures in reinforcing early genetic and morphogenetic programmes in reciprocal coordination with the embryonic blastoderm, providing the necessary boundary conditions for development to proceed. In addition, the role of the enveloping cell layer in providing mechanical, osmotic and immunological protection during early stages of development, and the autonomous nutritional support provided by the yolk and YSL, have probably been key aspects that have enabled the massive radiation of teleosts to colonize every ecological niche on the Earth. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Santiago 8380453, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile
| | - Germán Reig
- Escuela de Tecnología Médica y del Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 7800003, Chile
| |
Collapse
|
12
|
Vuong LT, Mlodzik M. Different strategies by distinct Wnt-signaling pathways in activating a nuclear transcriptional response. Curr Top Dev Biol 2022; 149:59-89. [PMID: 35606062 PMCID: PMC9870056 DOI: 10.1016/bs.ctdb.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Wnt family of secreted glycolipo-proteins signals through multiple signal transduction pathways and is essential for embryonic development and organ development and homeostasis. The Wnt-pathways are conserved and critical in all metazoans. Wnt signaling pathways comprise the canonical Wnt/β-catenin pathway and several non-canonical signaling branches, of which Wnt-Planar Cell Polarity (PCP) signaling and the Wnt/Calcium pathway have received the most attention and are best understood. nterestingly, all Wnt-pathways have a nuclear signaling branch and also can affect many cellular processes independent of its nuclear transcriptional regulation. Canonical Wnt/β-catenin signaling is the most critical for a nuclear transcriptional response, in both development and disease, yet the mechanism(s) on how the "business end" of the pathway, β-catenin, translocates to the nucleus to act as co-activator to the TCF/Lef transcription factor family still remains obscure. Here we discuss and compare the very different strategies on how the respective Wnt signaling pathways activate a nuclear transcriptional response. We also highlight some recent new insights into how β-catenin is translocated to the nucleus via an IFT-A, Kinesin-2, and microtubule dependent mechanism and how this aspect of canonical Wnt-signaling uses ciliary proteins in a cilium independent manner, conserved between Drosophila and mammalian cells.
Collapse
Affiliation(s)
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
13
|
Astudillo P. An emergent Wnt5a/YAP/TAZ regulatory circuit and its possible role in cancer. Semin Cell Dev Biol 2021; 125:45-54. [PMID: 34764023 DOI: 10.1016/j.semcdb.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Wnt5a is a ligand that plays several roles in development, homeostasis, and disease. A growing body of evidence indicates that Wnt5a is involved in cancer progression. Despite extensive research in this field, our knowledge about how Wnt5a is precisely involved in cancer is still incomplete. It is usually thought that certain combinations of Frizzled receptors and co-receptors might explain the observed effects of Wnt5a either as a tumor suppressor or by promoting migration and invasion. While accepting this 'receptor context' model, this review proposes that Wnt5a is integrated within a larger regulatory circuit involving β-catenin, YAP/TAZ, and LATS1/2. Remarkably, WNT5A and YAP1 are transcriptionally regulated by the Hippo and Wnt pathways, respectively, and might form a regulatory circuit acting through LATS kinases and secreted Wnt/β-catenin inhibitors, including Wnt5a itself. Therefore, understanding the precise role of Wnt5a and YAP in cancer requires a systems biology perspective.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
14
|
Bell IJ, Horn MS, Van Raay TJ. Bridging the gap between non-canonical and canonical Wnt signaling through Vangl2. Semin Cell Dev Biol 2021; 125:37-44. [PMID: 34736823 DOI: 10.1016/j.semcdb.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Non-canonical Wnt signaling (encompassing Wnt/PCP and WntCa2+) has a dual identity in the literature. One stream of research investigates its role in antagonizing canonical Wnt/β-catenin signaling in cancer, typically through Ca2+, while the other stream investigates its effect on polarity in development, typically through Vangl2. Rarely do these topics intersect or overlap. What has become clear is that Wnt5a can mobilize intracellular calcium stores to inhibit Wnt/β-catenin in cancer cells but there is no evidence that Vangl2 is involved in this process. Conversely, Wnt5a can independently activate Vangl2 to affect polarity and migration but the role of calcium in this process is also limited. Further, Vangl2 has also been implicated in inhibiting Wnt/β-catenin signaling in development. The consensus is that a cell can differentiate between canonical and non-canonical Wnt signaling when presented with a choice, always choosing non-canonical at the expense of canonical Wnt signaling. However, these are rare events in vivo. Given the shared resources between non-canonical and canonical Wnt signaling it is perplexing that there is not more in vivo evidence for cross talk between these two pathways. In this review we discuss the intersection of non-canonical Wnt, with a focus on Wnt/PCP, and Wnt/β-catenin signaling in an attempt to shed some light on pathways that rarely meet at a crossroads in vivo.
Collapse
Affiliation(s)
- Ian James Bell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Matthew Sheldon Horn
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Terence John Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
15
|
Perkins RS, Suthon S, Miranda-Carboni GA, Krum SA. WNT5B in cellular signaling pathways. Semin Cell Dev Biol 2021; 125:11-16. [PMID: 34635443 DOI: 10.1016/j.semcdb.2021.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The Wnt signaling ligand WNT5B is implicated in various developmental pathways, both in normal and pathological physiology. Most of the research on WNT5B has been associated with expression analysis and disease states, leaving the signaling pathways underexplored. Here, we review the current understandings of WNT5B's regulation of signal transduction, from receptors to downstream mediators and transcription factors. We also describe its roles in β-catenin-dependent and β-catenin-independent (Planar Cell Polarity and Wnt/Ca2+) Wnt signaling.
Collapse
Affiliation(s)
- Rachel S Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gustavo A Miranda-Carboni
- Department of Medicine, Division of Hematology and Oncology, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
16
|
Liu J, Wu J, Wang R, Zhong D, Qiu Y, Wang H, Song Z, Zhu Y. ANKRD22 Drives Rapid Proliferation of Lgr5 + Cells and Acts as a Promising Therapeutic Target in Gastric Mucosal Injury. Cell Mol Gastroenterol Hepatol 2021; 12:1433-1455. [PMID: 34217895 PMCID: PMC8488249 DOI: 10.1016/j.jcmgh.2021.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Rapid gastric epithelial progenitor cell (EPC) proliferation and inflammatory response inhibition play key roles in promoting the repair of gastric mucosal damage. However, specific targets inducing these effects are unknown. In this study, we explored the effects of a potential target, Ankyrin repeat domain 22 (ANKRD22). METHODS An acute gastric mucosal injury model was established with Ankrd22-/- and Ankrd22+/+ mice by intragastric administration of acidified ethanol. Organoid culture and flow cytometry were performed to evaluate the effects of ANKRD22 on leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) gastric EPC proliferation. The mechanisms by which ANKRD22 affects gastric EPC proliferation and inflammatory responses were explored by mitochondrial Ca2+ influx and immunoblotting. Candidate ANKRD22 inhibitors then were screened virtually and validated in vitro and in vivo. RESULTS After acute gastric mucosal injury, the number of Lgr5+ gastric EPCs was increased significantly in Ankrd22-/- mice compared with that in Ankrd22+/+ mice. Moreover, Ankrd22 knockout attenuated inflammatory cell infiltration into damaged gastric tissues. ANKRD22 deletion also reduced mitochondrial Ca2+ influx and cytoplasmic nuclear factor of activated T cells in gastric epithelial cells and macrophages, which further induced Lgr5+ gastric EPC proliferation and decreased macrophage release of tumor necrosis factor-α and interleukin 1α. In addition, a small molecule, AV023, was found to show similar effects to those produced by ANKRD22 deletion in vitro. Intraperitoneal injection of AV023 into the mouse model promoted the repair of gastric mucosal damage, with increased proliferation of Lgr5+ gastric EPCs and visible relief of inflammation. CONCLUSIONS ANKRD22 inhibition is a potential target-based therapeutic approach for promoting the repair of gastric mucosal damage.
Collapse
Affiliation(s)
- Jingwen Liu
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Rui Wang
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Dandan Zhong
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Yiqing Qiu
- Department of Urology Surgery, Hangzhou, Zhejiang, China
| | - Hongping Wang
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Zhenya Song
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhenya Song, MD, Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China. fax: (86)-571-87214404
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China,Key Laboratory of Tumor Microenviroment and Immune Therapy of Zhejiang Province, Hangzhou, Zhejiang, China,Correspondence Address correspondence to: Yongliang Zhu, PhD, Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
17
|
Astudillo P. A Non-canonical Wnt Signature Correlates With Lower Survival in Gastric Cancer. Front Cell Dev Biol 2021; 9:633675. [PMID: 33869179 PMCID: PMC8047116 DOI: 10.3389/fcell.2021.633675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/24/2021] [Indexed: 01/02/2023] Open
Abstract
Genetic evidence suggests a role for the Wnt/β-catenin pathway in gastric cancer. However, Wnt5a, regarded as a prototypical non-canonical Wnt ligand, has also been extensively associated with this disease. Therefore, the roles of the Wnt signaling pathway in gastric cancer initiation and progression, and particularly the precise mechanisms by which the non-canonical Wnt pathway might promote the development and progression of gastric cancer, are not entirely well understood. This article analyzes publicly available gene and protein expression data and reveals the existence of a WNT5A/FZD2/FZD7/ROR2 signature, which correlates with tumor-infiltrating and mesenchymal cell marker expression. High expression of FZD7 and ROR2 correlates with a shared gene and protein expression profile, which in turn correlates with poor prognosis. In summary, the findings presented in this article provide an updated view of the relative contributions of the Wnt/β-catenin and non-canonical Wnt pathways in gastric cancer.
Collapse
Affiliation(s)
- Pablo Astudillo
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
18
|
Astudillo P. Analysis in silico of the functional interaction between WNT5A and YAP/TEAD signaling in cancer. PeerJ 2021; 9:e10869. [PMID: 33643710 PMCID: PMC7896511 DOI: 10.7717/peerj.10869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/10/2021] [Indexed: 12/27/2022] Open
Abstract
To date, most data regarding the crosstalk between the Wnt signaling pathway and the YAP/TAZ transcriptional coactivators focuses on the Wnt/β-catenin branch of the pathway. In contrast, the relationship between the non-canonical Wnt pathway and YAP/TAZ remains significantly less explored. Wnt5a is usually regarded as a prototypical non-canonical Wnt ligand, and its expression has been related to cancer progression. On the other hand, YAP/TAZ transcriptional coactivators act in concert with TEAD transcription factors to control gene expression. Although one article has shown previously that WNT5A is a YAP/TEAD target gene, there is a need for further evidence supporting this regulatory relationship, because a possible YAP/Wnt5a regulatory circuit might have profound implications for cancer biology. This article analyzes publicly available ChIP-Seq, gene expression, and protein expression data to explore this relationship, and shows that WNT5A might be a YAP/TEAD target gene in several contexts. Moreover, Wnt5a and YAP expression are significantly correlated in specific cancer types, suggesting that the crosstalk between YAP/TAZ and the Wnt pathway is more intricate than previously thought.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
19
|
Cheong SS, Akram KM, Matellan C, Kim SY, Gaboriau DCA, Hind M, del Río Hernández AE, Griffiths M, Dean CH. The Planar Polarity Component VANGL2 Is a Key Regulator of Mechanosignaling. Front Cell Dev Biol 2020; 8:577201. [PMID: 33195213 PMCID: PMC7658195 DOI: 10.3389/fcell.2020.577201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/08/2020] [Indexed: 12/02/2022] Open
Abstract
VANGL2 is a component of the planar cell polarity (PCP) pathway, which regulates tissue polarity and patterning. The Vangl2 Lp mutation causes lung branching defects due to dysfunctional actomyosin-driven morphogenesis. Since the actomyosin network regulates cell mechanics, we speculated that mechanosignaling could be impaired when VANGL2 is disrupted. Here, we used live-imaging of precision-cut lung slices (PCLS) from Vangl2 Lp/+ mice to determine that alveologenesis is attenuated as a result of impaired epithelial cell migration. Vangl2 Lp/+ tracheal epithelial cells (TECs) and alveolar epithelial cells (AECs) exhibited highly disrupted actomyosin networks and focal adhesions (FAs). Functional assessment of cellular forces confirmed impaired traction force generation in Vangl2 Lp/+ TECs. YAP signaling in Vangl2 Lp airway epithelium was reduced, consistent with a role for VANGL2 in mechanotransduction. Furthermore, activation of RhoA signaling restored actomyosin organization in Vangl2 Lp/+ , confirming RhoA as an effector of VANGL2. This study identifies a pivotal role for VANGL2 in mechanosignaling, which underlies the key role of the PCP pathway in tissue morphogenesis.
Collapse
Affiliation(s)
- Sek-Shir Cheong
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Khondoker M. Akram
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carlos Matellan
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David C. A. Gaboriau
- Facility for Imaging by Light Microscopy, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- National Institute for Health Research, Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Armando E. del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Peri-Operative Medicine Department, St Bartholomew’s Hospital, London, United Kingdom
| | - Charlotte H. Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- MRC Harwell Institute, Harwell Campus, Oxfordshire, United Kingdom
| |
Collapse
|
20
|
Arisan ED, Rencuzogullari O, Keskin B, Grant GH, Uysal-Onganer P. Inhibition on JNK Mimics Silencing of Wnt-11 Mediated Cellular Response in Androgen-Independent Prostate Cancer Cells. BIOLOGY 2020; 9:biology9070142. [PMID: 32605008 PMCID: PMC7407974 DOI: 10.3390/biology9070142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers among men, and one of the leading causes of cancer death for men. The c-Jun N-terminal kinase (JNK) pathway is required for several cellular functions, such as survival, proliferation, differentiation, and migration. Wnt-11, a member of the Wnt family, has been identified for its upregulation in PCa; however, downstream signalling of Wnt-11 remains to be fully characterized. In this study, we investigated the role of the JNK pathway as a potential downstream factor for Wnt-11 signalling. For this purpose, LNCaP, DU145, and PC-3 PCa cells and normal epithelial PNT1A cells were treated with a specific JNK kinase inhibitor: JNKVIII. Our results showed that JNK inhibition decreased mitochondrial membrane potential and promoted cell death in a cell type-dependent manner. We found that JNK inhibition led to an increase in autophagy and prevented epithelial–mesenchymal transition (EMT) in independently growing androgen cells. JNK inhibition and the silencing of Wnt-11 showed similar responses in DU145 and PC-3 cells and decreased metastasis-related biomarkers, cell migration, and invasion. Overall, our results suggest that JNK signalling plays a significant role in the pathophysiology of PCa by mediating Wnt-11 induced signals. Our data highlights that both the JNK pathway and Wnt-11 could be a useful therapeutic target for the combinatory application of current PCa.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Gebze Technical University, Institute of Biotechnology, 41400 Gebze-Kocaeli, Turkey;
| | - Ozge Rencuzogullari
- Istanbul Kultur University, Department of Molecular Biology and Genetics, Atakoy Campus, 34156 Istanbul, Turkey; (O.R.); (B.K.)
| | - Buse Keskin
- Istanbul Kultur University, Department of Molecular Biology and Genetics, Atakoy Campus, 34156 Istanbul, Turkey; (O.R.); (B.K.)
| | - Guy H. Grant
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5151 (ext. 64581)
| |
Collapse
|
21
|
Lai KKY, Nguyen C, Lee KS, Lee A, Lin DP, Teo JL, Kahn M. Convergence of Canonical and Non-Canonical Wnt Signal: Differential Kat3 Coactivator Usage. Curr Mol Pharmacol 2020; 12:167-183. [PMID: 30836930 PMCID: PMC6687580 DOI: 10.2174/1874467212666190304121131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The ancient and highly evolutionarily conserved Wnt signaling pathway is critical in nearly all tissues and organs for an organism to develop normally from embryo through adult. Wnt signaling is generally parsed into "canonical" or Wnt-β-catenin-dependent or "non-canonical" β-catenin-independent signaling. Even though designating Wnt signaling as either canonical or noncanonical allows for easier conceptual discourse about this signaling pathway, in fact canonical and non-canonical Wnt crosstalk regulates complex nonlinear networks. OBJECTIVE In this perspective, we discuss the integration of canonical and non-canonical Wnt signaling via differential Kat3 (CBP and p300) coactivator usage, thereby regulating and coordinating gene expression programs associated with both proliferation and cellular differentiation and morphogenesis. METHODS Pharmacologic inhibitors, cell culture, real-time PCR, chromatin immunoprecipitation, protein immunoprecipitation, Western blotting, reporter-luciferase, protein purification, site-directed mutagenesis, in vitro phosphorylation and binding assays, and immunofluorescence were utilized. CONCLUSION Coordinated integration between both canonical and non-canonical Wnt pathways appears to be crucial not only in the control of fundamental morphologic processes but also in the regulation of normal as well as pathologic events. Such integration between both canonical and non-canonical Wnt signaling is presumably effected via reversible phosphorylation mechanism (e.g., protein kinase C) to regulate differential β -catenin/Kat3 coactivator usage in order to coordinate proliferation with differentiation and adhesion.
Collapse
Affiliation(s)
- Keane K Y Lai
- Department of Pathology, City of Hope National Medical Center, Duarte, California, United States.,Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California, United States.,City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Cu Nguyen
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Kyung-Soon Lee
- Department of Pharmacology, University of Washington, Seattle, Washington, United States
| | - Albert Lee
- Children's Hospital Los Angeles, Los Angeles, California, United States
| | - David P Lin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Jia-Ling Teo
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California, United States.,City of Hope Comprehensive Cancer Center, Duarte, California, United States
| |
Collapse
|
22
|
Hung IC, Chen TM, Lin JP, Tai YL, Shen TL, Lee SJ. Wnt5b integrates Fak1a to mediate gastrulation cell movements via Rac1 and Cdc42. Open Biol 2020; 10:190273. [PMID: 32097584 PMCID: PMC7058935 DOI: 10.1098/rsob.190273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Focal adhesion kinase (FAK) mediates vital cellular pathways during development. Despite its necessity, how FAK regulates and integrates with other signals during early embryogenesis remains poorly understood. We found that the loss of Fak1a impaired epiboly, convergent extension and hypoblast cell migration in zebrafish embryos. We also observed a clear disturbance in cortical actin at the blastoderm margin and distribution of yolk syncytial nuclei. In addition, we investigated a possible link between Fak1a and a well-known gastrulation regulator, Wnt5b, and revealed that the overexpression of fak1a or wnt5b could cross-rescue convergence defects induced by a wnt5b or fak1a antisense morpholino (MO), respectively. Wnt5b and Fak1a were shown to converge in regulating Rac1 and Cdc42, which could synergistically rescue wnt5b and fak1a morphant phenotypes. Furthermore, we generated several alleles of fak1a mutants using CRISPR/Cas9, but those mutants only revealed mild gastrulation defects. However, injection of a subthreshold level of the wnt5b MO induced severe gastrulation defects in fak1a mutants, which suggested that the upregulated expression of wnt5b might complement the loss of Fak1a. Collectively, we demonstrated that a functional interaction between Wnt and FAK signalling mediates gastrulation cell movements via the possible regulation of Rac1 and Cdc42 and subsequent actin dynamics.
Collapse
Affiliation(s)
- I-Chen Hung
- Department of Life Science, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Tsung-Ming Chen
- Department of Life Science, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.,Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.,Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Jing-Ping Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Yu-Ling Tai
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Williams ML, Solnica-Krezel L. Cellular and molecular mechanisms of convergence and extension in zebrafish. Curr Top Dev Biol 2020; 136:377-407. [DOI: 10.1016/bs.ctdb.2019.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Rothschild SC, Tombes RM. Widespread Roles of CaMK-II in Developmental Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:519-535. [DOI: 10.1007/978-3-030-12457-1_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
25
|
Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: Therapeutic targets for obesity and type 2 diabetes. Pharmacol Res 2019; 152:104602. [PMID: 31846761 DOI: 10.1016/j.phrs.2019.104602] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/17/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Diabesity is the combination of type 2 diabetes and obesity characterized by chronic low-grade inflammation. The Wnt signaling act as an evolutionary pathway playing crucial role in regulating cellular homeostasis and energy balance from hypothalamus to metabolic organs. Aberrant activity of certain appendages in the canonical and non-canonical Wnt system deregulates metabolism and leads to adipose tissue expansion, this key event initiates metabolic stress causing metaflammation and obesity. Metaflammation induced obesity initiates abnormal development of adipocytes mediating through the non-canonical Wnt signaling inhibition of canonical Wnt pathway to fan the flames of adipogenesis. Moreover, activation of toll like receptor (TLR)-4 signaling in metabolic stress invites immune cells to release pro-inflammatory cytokines for recruitment of macrophages in adipose tissues, further causes polarization of macrophages into M1(classically activated) and M2 (alternatively activated) subtypes. These events end with chronic low-grade inflammation which interferes with insulin signaling in metabolic tissues to develop type 2 diabetes. However, there is a dearth in understanding the exact mechanism of Wnt-TLR axis during diabesity. This review dissects the molecular facets of Wnt and TLRs that modulates cellular components during diabesity and provides current progress, challenges and alternative therapeutic strategies at preclinical and clinical level.
Collapse
|
26
|
Wnt4 from the Niche Controls the Mechano-Properties and Quiescent State of Muscle Stem Cells. Cell Stem Cell 2019; 25:654-665.e4. [PMID: 31495781 DOI: 10.1016/j.stem.2019.08.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/19/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
Satellite cells (SCs) reside in a dormant state during tissue homeostasis. The specific paracrine agents and niche cells that maintain SC quiescence remain unknown. We find that Wnt4 produced by the muscle fiber maintains SC quiescence through RhoA. Using cell-specific inducible genetics, we find that a Wnt4-Rho signaling axis constrains SC numbers and activation during tissue homeostasis in adult mice. Wnt4 activates Rho in quiescent SCs to maintain mechanical strain, restrict movement in the niche, and repress YAP. The induction of YAP upon disruption of RhoA is essential for SC activation under homeostasis. In the context of injury, the loss of Wnt4 from the niche accelerates SC activation and muscle repair, whereas overexpression of Wnt4 transitions SCs into a deeper state of quiescence and delays muscle repair. In conclusion, the SC pool undergoes dynamic transitions during early activation with changes in mechano-properties and cytoskeleton signaling preceding cell-cycle entry.
Collapse
|
27
|
Gutzman JH, Graeden E, Brachmann I, Yamazoe S, Chen JK, Sive H. Basal constriction during midbrain-hindbrain boundary morphogenesis is mediated by Wnt5b and focal adhesion kinase. Biol Open 2018; 7:bio.034520. [PMID: 30305282 PMCID: PMC6262868 DOI: 10.1242/bio.034520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Basal constriction occurs at the zebrafish midbrain–hindbrain boundary constriction (MHBC) and is likely a widespread morphogenetic mechanism. 3D reconstruction demonstrates that MHBC cells are wedge-shaped, and initially constrict basally, with subsequent apical expansion. wnt5b is expressed in the MHB and is required for basal constriction. Consistent with a requirement for this pathway, expression of dominant negative Gsk3β overcomes wnt5b knockdown. Immunostaining identifies focal adhesion kinase (Fak) as active in the MHB region, and knockdown demonstrates Fak is a regulator of basal constriction. Tissue specific knockdown further indicates that Fak functions cell autonomously within the MHBC. Fak acts downstream of wnt5b, suggesting that Wnt5b signals locally as an early step in basal constriction and acts together with more widespread Fak activation. This study delineates signaling pathways that regulate basal constriction during brain morphogenesis. Summary: Focal adhesion kinase acts downstream of Wnt5b to mediate basal constriction of neuroepithelial cells during the formation of the midbrain–hindbrain boundary.
Collapse
Affiliation(s)
| | - Ellie Graeden
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Isabel Brachmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sayumi Yamazoe
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Moorer MC, Riddle RC. Regulation of Osteoblast Metabolism by Wnt Signaling. Endocrinol Metab (Seoul) 2018; 33:318-330. [PMID: 30112869 PMCID: PMC6145954 DOI: 10.3803/enm.2018.33.3.318] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/01/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022] Open
Abstract
Wnt/β-catenin signaling plays a critical role in the achievement of peak bone mass, affecting the commitment of mesenchymal progenitors to the osteoblast lineage and the anabolic capacity of osteoblasts depositing bone matrix. Recent studies suggest that this evolutionarily-conserved, developmental pathway exerts its anabolic effects in part by coordinating osteoblast activity with intermediary metabolism. These findings are compatible with the cloning of the gene encoding the low-density lipoprotein related receptor-5 (LRP5) Wnt co-receptor from a diabetes-susceptibility locus and the now well-established linkage between Wnt signaling and metabolism. In this article, we provide an overview of the role of Wnt signaling in whole-body metabolism and review the literature regarding the impact of Wnt signaling on the osteoblast's utilization of three different energy sources: fatty acids, glucose, and glutamine. Special attention is devoted to the net effect of nutrient utilization and the mode of regulation by Wnt signaling. Mechanistic studies indicate that the utilization of each substrate is governed by a unique mechanism of control with β-catenin-dependent signaling regulating fatty acid β-oxidation, while glucose and glutamine utilization are β-catenin-independent and downstream of mammalian target of rapamycin complex 2 (mTORC2) and mammalian target of rapamycin complex 1 (mTORC1) activation, respectively. The emergence of these data has provided a new context for the mechanisms by which Wnt signaling influences bone development.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| |
Collapse
|
29
|
Zhang P, Hu C, Li Y, Wang Y, Gao L, Lu K, Chang G, Li Y, Qin S, Zhang D. Vangl2 is essential for myocardial remodeling activated by Wnt/JNK signaling. Exp Cell Res 2018; 365:33-45. [PMID: 29454802 DOI: 10.1016/j.yexcr.2018.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 01/25/2023]
Abstract
The Wnt/JNK pathway, responsible for tissue polarity in cardiogenesis in vertebrates, has been shown to play numerous roles during differentiation and development of cardiac myocytes. Van Gogh-like-2 (Vangl2) is a core component that regulates the induction of polarized cellular and tissue morphology during animal development. However, little is known about Wnt/JNK signaling pathway in the process of myocardial remodeling. In present study, we found that activation of Wnt/JNK signaling by Wnt5a stimulates enlargement of cardiomyocyte surface area. The hypertrophic features were inhibited in Vangl2 depleted cells. Meanwhile, Wnt/JNK activation induced cytoskeleton rearrangement but failed to activate these effects in cells lacking Vangl2. Moreover, Wnt/JNK activation significantly increased the cell apoptosis by mediating the mitochondrial permeability transition pore (mPTP) dysfunction, whereas knockdown of Vangl2 partly reversed these effects. These results suggest that activation of Wnt/JNK signaling stimulates myocardial remodeling (cell morphological changes, apoptosis and mitochondrial dysfunction), in which Vangl2 may play an essential role.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China; Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Chunxiao Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Yongyong Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Ying Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Lei Gao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Kai Lu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Guanglei Chang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Yong Li
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Shu Qin
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Dongying Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| |
Collapse
|
30
|
Marsden AN, Derry SW, Schneider I, Scott CA, Westfall TA, Brastrom LK, Shea MA, Dawson DV, Slusarski DC. The Nkd EF-hand domain modulates divergent wnt signaling outputs in zebrafish. Dev Biol 2018; 434:63-73. [PMID: 29180104 DOI: 10.1016/j.ydbio.2017.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/29/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022]
Abstract
Wnt proteins regulate diverse biological responses by initiating two general outcomes: β-catenin-dependent transcription and β-catenin-independent activation of signaling cascades, the latter including modulation of calcium and regulation of cytoskeletal dynamics (Planar Cell Polarity, PCP). It has been difficult to elucidate the mechanisms by which Wnt signals are directed to effect one or the other outcome due to shared signaling proteins between the β-catenin-dependent and -independent pathways, such as the Dishevelled binding protein Naked. While all Naked paralogs contain a putative calcium-binding domain, the EF-Hand, Drosophila Naked does not bind calcium. Here we find a lineage-specific evolutionary change within the Drosophila Naked EF-hand that is not shared with other insects or vertebrates. We demonstrate the necessary role of the EF-hand for Nkd localization changes in calcium fluxing cells and using in vivo assays, we identify a role for the zebrafish Naked EF-hand in PCP but not in β-catenin antagonism. In contrast, Drosophila-like Nkd does not function in PCP, but is a robust antagonist of Wnt/β-catenin signaling. This work reveals that the zebrafish Nkd1 EF-hand is essential to balance Wnt signaling inputs and modulate the appropriate outputs, while the Drosophila-like EF-Hand primarily functions in β-catenin signaling.
Collapse
Affiliation(s)
- Autumn N Marsden
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah W Derry
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Drake University, Des Moines, IA 50311, USA
| | - Igor Schneider
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem 66075-110, Brazil
| | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Trudi A Westfall
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Lindy K Brastrom
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, UA 52242, USA
| | - Deborah V Dawson
- Departments of Pediatric Dentistry&Biostatistics, University of Iowa, Iowa City 52242, USA
| | - Diane C Slusarski
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
31
|
Chen J, Xia L, Bruchas MR, Solnica-Krezel L. Imaging early embryonic calcium activity with GCaMP6s transgenic zebrafish. Dev Biol 2017; 430:385-396. [PMID: 28322738 PMCID: PMC5835148 DOI: 10.1016/j.ydbio.2017.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Accepted: 03/11/2017] [Indexed: 12/02/2022]
Abstract
Intracellular Ca2+ signaling regulates cellular activities during embryogenesis and in adult organisms. We generated stable Tg[βactin2:GCaMP6s]stl351 and Tg[ubi:GCaMP6s]stl352 transgenic lines that combine the ubiquitously-expressed Ca2+ indicator GCaMP6s with the transparent characteristics of zebrafish embryos to achieve superior in vivo Ca2+ imaging. Using the Tg[βactin2:GCaMP6s]stl351 line featuring strong GCaMP6s expression from cleavage through gastrula stages, we detected higher frequency of Ca2+ transients in the superficial blastomeres during the blastula stages preceding the midblastula transition. Additionally, GCaMP6s also revealed that dorsal-biased Ca2+ signaling that follows the midblastula transition persisted longer during gastrulation, compared with earlier studies. We observed that dorsal-biased Ca2+ signaling is diminished in ventralized ichabod/β-catenin2 mutant embryos and ectopically induced in embryos dorsalized by excess β-catenin. During gastrulation, we directly visualized Ca2+ signaling in the dorsal forerunner cells, which form in a Nodal signaling dependent manner and later give rise to the laterality organ. We found that excess Nodal increases the number and the duration of Ca2+ transients specifically in the dorsal forerunner cells. The GCaMP6s transgenic lines described here enable unprecedented visualization of dynamic Ca2+ events from embryogenesis through adulthood, augmenting the zebrafish toolbox.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Li Xia
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
33
|
|
34
|
Mammary Development and Breast Cancer: A Wnt Perspective. Cancers (Basel) 2016; 8:cancers8070065. [PMID: 27420097 PMCID: PMC4963807 DOI: 10.3390/cancers8070065] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.
Collapse
|
35
|
Rochard L, Monica SD, Ling ITC, Kong Y, Roberson S, Harland R, Halpern M, Liao EC. Roles of Wnt pathway genes wls, wnt9a, wnt5b, frzb and gpc4 in regulating convergent-extension during zebrafish palate morphogenesis. Development 2016; 143:2541-7. [PMID: 27287801 DOI: 10.1242/dev.137000] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
Abstract
The Wnt signaling pathway is crucial for tissue morphogenesis, participating in cellular behavior changes, notably during the process of convergent-extension. Interactions between Wnt-secreting and receiving cells during convergent-extension remain elusive. We investigated the role and genetic interactions of Wnt ligands and their trafficking factors Wls, Gpc4 and Frzb in the context of palate morphogenesis in zebrafish. We describe that the chaperon Wls and its ligands Wnt9a and Wnt5b are expressed in the ectoderm, whereas juxtaposed chondrocytes express Frzb and Gpc4. Using wls, gpc4, frzb, wnt9a and wnt5b mutants, we genetically dissected the Wnt signals operating between secreting ectoderm and receiving chondrocytes. Our analysis delineates that non-canonical Wnt signaling is required for cell intercalation, and that wnt5b and wnt9a are required for palate extension in the anteroposterior and transverse axes, respectively.
Collapse
Affiliation(s)
- Lucie Rochard
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Stefanie D Monica
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Irving T C Ling
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Yawei Kong
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Sara Roberson
- Department of Embryology, Carnegie Institution for Science, and Department of Biology, Johns Hopkins University, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Richard Harland
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Marnie Halpern
- Department of Embryology, Carnegie Institution for Science, and Department of Biology, Johns Hopkins University, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| |
Collapse
|
36
|
Keller KC, Ding H, Tieu R, Sparks NRL, Ehnes DD, Zur Nieden NI. Wnt5a Supports Osteogenic Lineage Decisions in Embryonic Stem Cells. Stem Cells Dev 2016; 25:1020-32. [PMID: 26956615 DOI: 10.1089/scd.2015.0367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The specification of pluripotent stem cells into the bone-forming osteoblasts has been explored in a number of studies. However, the current body of literature has yet to adequately address the role of Wnt glycoproteins in the differentiation of pluripotent stem cells along the osteogenic lineage. During mouse embryonic stem cell (ESC) in vitro osteogenesis, the noncanonical WNT5a is expressed early on. Cells either sorted by their positive WNT5a expression or when supplemented with recombinant WNT5a (rWNT5a) during a 2-day window showed significantly enhanced osteogenic yield. Mechanistically, rWNT5a supplementation upregulated protein kinase C (PKC), calcium/calmodulin-dependent kinase II (CamKII) and c-Jun N-terminal kinase (JNK) activity while antagonizing the key effector of canonical Wnt signaling: β-catenin. Conversely, when recombinant WNT3a (rWNT3a) or other positive regulators of β-catenin were employed during this same time window there was a decrease in osteogenic marker expression. However, if rWNT3a was supplemented during a time window following rWNT5a treatment, osteogenic differentiation was enhanced both in murine and human ESCs. Elucidating the role of these WNT ligands in directing the early stages of osteogenesis has the potential to considerably improve tissue engineering protocols and applications for regenerative medicine.
Collapse
Affiliation(s)
- Kevin C Keller
- 1 Department of Cell Biology & Neuroscience, Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside , Riverside, California
| | - Huawen Ding
- 2 Applied Stem Cell Technologies Unit, Department for Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology , Leipzig, Germany
| | - Rudy Tieu
- 1 Department of Cell Biology & Neuroscience, Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside , Riverside, California
| | - Nicole R L Sparks
- 1 Department of Cell Biology & Neuroscience, Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside , Riverside, California
| | - Devon D Ehnes
- 1 Department of Cell Biology & Neuroscience, Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside , Riverside, California
| | - Nicole I Zur Nieden
- 1 Department of Cell Biology & Neuroscience, Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside , Riverside, California.,2 Applied Stem Cell Technologies Unit, Department for Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology , Leipzig, Germany
| |
Collapse
|
37
|
Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+CD25−T cells by activation of the TGF-β/β-catenin pathway. Mol Hum Reprod 2016; 22:499-511. [DOI: 10.1093/molehr/gaw026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/18/2016] [Indexed: 11/15/2022] Open
|
38
|
Guo L, Yamashita H, Kou I, Takimoto A, Meguro-Horike M, Horike SI, Sakuma T, Miura S, Adachi T, Yamamoto T, Ikegawa S, Hiraki Y, Shukunami C. Functional Investigation of a Non-coding Variant Associated with Adolescent Idiopathic Scoliosis in Zebrafish: Elevated Expression of the Ladybird Homeobox Gene Causes Body Axis Deformation. PLoS Genet 2016; 12:e1005802. [PMID: 26820155 PMCID: PMC4731154 DOI: 10.1371/journal.pgen.1005802] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/21/2015] [Indexed: 11/23/2022] Open
Abstract
Previously, we identified an adolescent idiopathic scoliosis susceptibility locus near human ladybird homeobox 1 (LBX1) and FLJ41350 by a genome-wide association study. Here, we characterized the associated non-coding variant and investigated the function of these genes. A chromosome conformation capture assay revealed that the genome region with the most significantly associated single nucleotide polymorphism (rs11190870) physically interacted with the promoter region of LBX1-FLJ41350. The promoter in the direction of LBX1, combined with a 590-bp region including rs11190870, had higher transcriptional activity with the risk allele than that with the non-risk allele in HEK 293T cells. The ubiquitous overexpression of human LBX1 or either of the zebrafish lbx genes (lbx1a, lbx1b, and lbx2), but not FLJ41350, in zebrafish embryos caused body curvature followed by death prior to vertebral column formation. Such body axis deformation was not observed in transcription activator-like effector nucleases mediated knockout zebrafish of lbx1b or lbx2. Mosaic expression of lbx1b driven by the GATA2 minimal promoter and the lbx1b enhancer in zebrafish significantly alleviated the embryonic lethal phenotype to allow observation of the later onset of the spinal curvature with or without vertebral malformation. Deformation of the embryonic body axis by lbx1b overexpression was associated with defects in convergent extension, which is a component of the main axis-elongation machinery in gastrulating embryos. In embryos overexpressing lbx1b, wnt5b, a ligand of the non-canonical Wnt/planar cell polarity (PCP) pathway, was significantly downregulated. Injection of mRNA for wnt5b or RhoA, a key downstream effector of Wnt/PCP signaling, rescued the defective convergent extension phenotype and attenuated the lbx1b-induced curvature of the body axis. Thus, our study presents a novel pathological feature of LBX1 and its zebrafish homologs in body axis deformation at various stages of embryonic and subsequent growth in zebrafish. Scoliosis is the most common type of spinal deformity with a lateral spinal curvature of at least 10 degrees, affecting 2–4% of the population. Scoliosis caused by a primary problem related to the spine itself is classified into congenital scoliosis (CS) and idiopathic scoliosis (IS). Among these, adolescent idiopathic scoliosis (AIS), the most common form of scoliosis, is known as a common polygenic disease. Severe curving of the spine in scoliosis leads to profound psychological and social impacts, but etiology-based therapies have not been established since the precise pathological mechanisms of both IS and CS remain undefined. Previously, we identified an AIS susceptibility locus near human ladybird homeobox 1 (LBX1) by a genome-wide association study. Here, we report the functional characterization of the most significantly associated single nucleotide polymorphism (SNP), rs11190870 and LBX1 as well as its zebrafish homologues. Overexpression of LBX1 and zebrafish lbx genes caused lateral body curvature in association with the impairment of non-canonical Wnt/planar cell polarity signaling. Thus, our study presents a novel pathological feature of LBX1 in body axis deformation.
Collapse
Affiliation(s)
- Long Guo
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Yamashita
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ikuyo Kou
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Aki Takimoto
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Makiko Meguro-Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shin-ichi Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Shigenori Miura
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taiji Adachi
- Department of Biomechanics, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chisa Shukunami
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
39
|
The Wnt11 Signaling Pathway in Potential Cellular EMT and Osteochondral Differentiation Progression in Nephrolithiasis Formation. Int J Mol Sci 2015; 16:16313-29. [PMID: 26193266 PMCID: PMC4519952 DOI: 10.3390/ijms160716313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 11/17/2022] Open
Abstract
The molecular events leading to nephrolithiasis are extremely complex. Previous studies demonstrated that calcium and transforming growth factor-β1 (TGF-β1) may participate in the pathogenesis of stone formation, but the explicit mechanism has not been defined. Using a self-created genetic hypercalciuric stone-forming (GHS) rat model, we observed that the increased level of serous/uric TGF-β1 and elevated intracellular calcium in primary renal tubular epithelial cells (PRECs) was associated with nephrolithiasis progression in vivo. In the setting of high calcium plus high TGF-β1 in vitro, PRECs showed great potential epithelial to mesenchymal transition (EMT) progression and osteochondral differentiation properties, representing the multifarious increased mesenchymal and osteochondral phenotypes (Zeb1, Snail1, Col2A1, OPN, Sox9, Runx2) and decreased epithelial phenotypes (E-cadherin, CK19) bythe detection of mRNAs and corresponding proteins. Moreover, TGF-β-dependent Wnt11 knockdown and L-type Ca2+ channel blocker could greatly reverse EMT progression and osteochondral differentiation in PRECs. TGF-β1 alone could effectively promote EMT, but it had no effect on osteochondral differentiation in NRK cells (Rat kidney epithelial cell line). Stimulation with Ca2+ alone did not accelerate differentiation of NRK. Co-incubation of extracellular Ca2+ and TGF-β1 synergistically promotes EMT and osteochondral differentiation in NRK control cells. Our data supplied a novel view that the pathogenesis of calcium stone development may be associated with synergic effects of TGF-β1 and Ca2+, which promote EMT and osteochondral differentiation via Wnt11 and the L-type calcium channel.
Collapse
|
40
|
Yang J, Cusimano A, Monga JK, Preziosi ME, Pullara F, Calero G, Lang R, Yamaguchi TP, Nejak-Bowen KN, Monga SP. WNT5A inhibits hepatocyte proliferation and concludes β-catenin signaling in liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2194-205. [PMID: 26100214 DOI: 10.1016/j.ajpath.2015.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/09/2015] [Accepted: 04/07/2015] [Indexed: 02/08/2023]
Abstract
Activation of Wnt/β-catenin signaling during liver regeneration (LR) after partial hepatectomy (PH) is observed in several species. However, how this pathway is turned off when hepatocyte proliferation is no longer required is unknown. We assessed LR in liver-specific knockouts of Wntless (Wls-LKO), a protein required for Wnt secretion from a cell. When subjected to PH, Wls-LKO showed prolongation of hepatocyte proliferation for up to 4 days compared with littermate controls. This coincided with increased β-catenin-T-cell factor 4 interaction and cyclin-D1 expression. Wls-LKO showed decreased expression and secretion of inhibitory Wnt5a during LR. Wnt5a expression increased between 24 and 48 hours, and Frizzled-2 between 24 and 72 hours, after PH in normal mice. Treatment of primary mouse hepatocytes and liver tumor cells with Wnt5a led to a notable decrease in β-catenin-T-cell factor activity, cyclin-D1 expression, and cell proliferation. Intriguingly, Wnt5a-LKO did not display any prolongation of LR because of compensation by other cells. In addition, Wnt5a-LKO hepatocytes failed to respond to exogenous Wnt5a treatment in culture because of a compensatory decrease in Frizzled-2 expression. In conclusion, we demonstrate Wnt5a to be, by default, a negative regulator of β-catenin signaling and hepatocyte proliferation, both in vitro and in vivo. We also provide evidence that the Wnt5a/Frizzled-2 axis suppresses β-catenin signaling in hepatocytes in an autocrine manner, thereby contributing to timely conclusion of the LR process.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Antonella Cusimano
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Ri.MED Foundation, Palermo, Italy; Institute of Biomedicine and Molecular Immunology Alberto Monroy, National Research Council, Palermo, Italy
| | - Jappmann K Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Morgan E Preziosi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Filippo Pullara
- Ri.MED Foundation, Palermo, Italy; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Lang
- Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, Maryland
| | - Kari N Nejak-Bowen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
41
|
Kephart JJG, Tiller RGJ, Crose LES, Slemmons KK, Chen PH, Hinson AR, Bentley RC, Chi JTA, Linardic CM. Secreted Frizzled-Related Protein 3 (SFRP3) Is Required for Tumorigenesis of PAX3-FOXO1-Positive Alveolar Rhabdomyosarcoma. Clin Cancer Res 2015; 21:4868-80. [PMID: 26071485 DOI: 10.1158/1078-0432.ccr-14-1797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 05/25/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a five-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3-FOXO1. As PAX3-FOXO1 has proven chemically intractable, this study aims to identify targetable proteins that are downstream from or cooperate with PAX3-FOXO1 to support tumorigenesis. EXPERIMENTAL DESIGN Microarray analysis of the transcriptomes of human skeletal muscle myoblasts expressing PAX3-FOXO1 revealed alteration of several Wnt pathway gene members, including secreted frizzled related protein 3 (SFRP3), a secreted Wnt pathway inhibitor. Loss-of-function using shRNAs against SFRP3 was used to interrogate the role of SFRP3 in human aRMS cell lines in vitro and conditional murine xenograft systems in vivo. The combination of SFRP3 genetic suppression and the chemotherapeutic agent vincristine was also examined. RESULTS In vitro, suppression of SFRP3 inhibited aRMS cell growth, reduced proliferation accompanied by a G1 arrest and induction of p21, and induced apoptosis. In vivo, doxycycline-inducible suppression of SFRP3 reduced aRMS tumor growth and weight by more than three-fold, in addition to increasing myogenic differentiation and β-catenin signaling. The combination of SFRP3 suppression and vincristine was more effective at reducing aRMS cell growth in vitro than either treatment alone, and ablated tumorigenesis in vivo. CONCLUSIONS SFRP3 is necessary for the growth of human aRMS cells both in vitro and in vivo and is a promising new target for investigation in aRMS.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cluster Analysis
- Disease Models, Animal
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- G1 Phase Cell Cycle Checkpoints/drug effects
- G1 Phase Cell Cycle Checkpoints/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Glycoproteins/genetics
- Humans
- Intracellular Signaling Peptides and Proteins
- Mice
- Myoblasts/drug effects
- Myoblasts/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors/genetics
- RNA Interference
- RNA, Small Interfering/genetics
- Rhabdomyosarcoma, Alveolar/drug therapy
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/mortality
- Rhabdomyosarcoma, Alveolar/pathology
- Tumor Burden/drug effects
- Vincristine/pharmacology
- Wnt Proteins/antagonists & inhibitors
- Wnt Signaling Pathway/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Julie J G Kephart
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Rosanne G J Tiller
- School of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Lisa E S Crose
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Katherine K Slemmons
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Ashley R Hinson
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Rex C Bentley
- School of Medicine, Duke University Medical Center, Durham, North Carolina. Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Jen-Tsan Ashley Chi
- School of Medicine, Duke University Medical Center, Durham, North Carolina. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Corinne M Linardic
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina. School of Medicine, Duke University Medical Center, Durham, North Carolina. Department of Pediatrics, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
42
|
Wu BT, Wen SH, Hwang SPL, Huang CJ, Kuan YS. Control of Wnt5b secretion by Wntless modulates chondrogenic cell proliferation through fine-tuning fgf3 expression. J Cell Sci 2015; 128:2328-39. [PMID: 25934698 DOI: 10.1242/jcs.167403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/21/2015] [Indexed: 01/22/2023] Open
Abstract
Wnts and Fgfs regulate various tissues development in vertebrates. However, how regional Wnt or Fgf activities are established and how they interact in any given developmental event is elusive. Here, we investigated the Wnt-mediated craniofacial cartilage development in zebrafish and found that fgf3 expression in the pharyngeal pouches is differentially reduced along the anteroposterior axis in wnt5b mutants and wntless (wls) morphants, but its expression is normal in wnt9a and wnt11 morphants. Introducing fgf3 mRNAs rescued the cartilage defects in Wnt5b- and Wls-deficient larvae. In wls morphants, endogenous Wls expression is not detectable but maternally deposited Wls is present in eggs, which might account for the lack of axis defects in wls morphants. Secretion of endogenous Wnt5b but not Wnt11 was affected in the pharyngeal tissue of Wls morphants, indicating that Wls is not involved in every Wnt secretion event. Furthermore, cell proliferation but not apoptosis in the developing jaw was affected in Wnt5b- and Wls-deficient embryos. Therefore, Wnt5b requires Wls for its secretion and regulates the proliferation of chondrogenic cells through fine-tuning the expression of fgf3 during jaw cartilage development.
Collapse
Affiliation(s)
- Bo-Tsung Wu
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Hsien Wen
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng-Ping L Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-Jen Huang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yung-Shu Kuan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan Center for System Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
43
|
Andre P, Song H, Kim W, Kispert A, Yang Y. Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation. Development 2015; 142:1516-27. [PMID: 25813538 DOI: 10.1242/dev.119065] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/04/2015] [Indexed: 01/01/2023]
Abstract
Mesoderm formation and subsequent anterior-posterior (A-P) axis elongation are fundamental aspects of gastrulation, which is initiated by formation of the primitive streak (PS). Convergent extension (CE) movements and epithelial-mesenchymal transition (EMT) are important for A-P axis elongation in vertebrate embryos. The evolutionarily conserved planar cell polarity (PCP) pathway regulates CE, and Wnts regulate many aspects of gastrulation including CE and EMT. However, the Wnt ligands that regulate A-P axis elongation in mammalian development remain unknown. Wnt11 and Wnt5a regulate axis elongation in lower vertebrates, but only Wnt5a, not Wnt11, regulates mammalian PCP signaling and A-P axis elongation in development. Here, by generating Wnt5a; Wnt11 compound mutants, we show that Wnt11 and Wnt5a play redundant roles during mouse A-P axis elongation. Both genes regulate trunk notochord extension through PCP-controlled CE of notochord cells, establishing a role for Wnt11 in mammalian PCP. We show that Wnt5a and Wnt11 are required for proper patterning of the neural tube and somites by regulating notochord formation, and provide evidence that both genes are required for the generation and migration of axial and paraxial mesodermal precursor cells by regulating EMT. Axial and paraxial mesodermal precursors ectopically accumulate in the PS at late gastrula stages in Wnt5a(-/-); Wnt11(-/-) embryos and these cells ectopically express epithelial cell adhesion molecules. Our data suggest that Wnt5a and Wnt11 regulate EMT by inducing p38 (Mapk14) phosphorylation. Our findings provide new insights into the role of Wnt5a and Wnt11 in mouse early development and also in cancer metastasis, during which EMT plays a crucial role.
Collapse
Affiliation(s)
- Philipp Andre
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA
| | - Hai Song
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA
| | - Wantae Kim
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover D-30625, Germany
| | - Yingzi Yang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
44
|
Borcherding N, Kusner D, Kolb R, Xie Q, Li W, Yuan F, Velez G, Askeland R, Weigel RJ, Zhang W. Paracrine WNT5A Signaling Inhibits Expansion of Tumor-Initiating Cells. Cancer Res 2015; 75:1972-82. [PMID: 25769722 DOI: 10.1158/0008-5472.can-14-2761] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
It is not well understood how paracrine communication between basal and luminal cell populations in the mammary gland affects tumorigenesis. During ErbB2-induced mammary tumorigenesis, enriched mammary stem cells that represent a subpopulation of basal cells exhibit enhanced tumorigenic capacity compared with the corresponding luminal progenitors. Transcript profiling of tumors derived from basal and luminal tumor-initiating cells (TIC) revealed preferential loss of the noncanonical Wnt ligand WNT5A in basal TIC-derived tumors. Heterozygous loss of WNT5A was correlated with shorter survival of breast cancer patients. In a mouse model of ErbB2-induced breast cancer, Wnt5a heterozygosity promoted tumor multiplicity and pulmonary metastasis. As a TGFβ substrate, luminal cell-produced WNT5A induced a feed-forward loop to activate SMAD2 in a RYK and TGFβR1-dependent manner to limit the expansion of basal TIC in a paracrine fashion, a potential explanation for the suppressive effect of WNT5A in mammary tumorigenesis. Our results identify the WNT5A/RYK module as a spatial regulator of the TGFβ-SMAD signaling pathway in the context of mammary gland development and carcinogenesis, offering a new perspective on tumor suppression provided by basal-luminal cross-talk in normal mammary tissue.
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, Iowa. Medical Science Training Program, University of Iowa, College of Medicine, Iowa City, Iowa
| | - David Kusner
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, Iowa. Molecular and Cellular Biology Program, University of Iowa, College of Medicine, Iowa City, Iowa
| | - Ryan Kolb
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, Iowa. Immunology Program, University of Iowa, College of Medicine, Iowa City, Iowa
| | - Qing Xie
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, Iowa. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Wei Li
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, Iowa
| | - Fang Yuan
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, Iowa. Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Gabriel Velez
- Medical Science Training Program, University of Iowa, College of Medicine, Iowa City, Iowa
| | - Ryan Askeland
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, Iowa
| | - Ronald J Weigel
- Department of Surgery, University of Iowa, College of Medicine, Iowa City, Iowa. Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, Iowa
| | - Weizhou Zhang
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, Iowa. Medical Science Training Program, University of Iowa, College of Medicine, Iowa City, Iowa. Molecular and Cellular Biology Program, University of Iowa, College of Medicine, Iowa City, Iowa. Immunology Program, University of Iowa, College of Medicine, Iowa City, Iowa. Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, Iowa.
| |
Collapse
|
45
|
Choi SW, Song JK, Yim YS, Yun HG, Chun KH. Glucose deprivation triggers protein kinase C-dependent β-catenin proteasomal degradation. J Biol Chem 2015; 290:9863-73. [PMID: 25691573 PMCID: PMC4392283 DOI: 10.1074/jbc.m114.606756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 11/07/2022] Open
Abstract
Autophagy is a conserved process that contributes to cell homeostasis. It is well known that induction mainly occurs in response to nutrient starvation, such as starvation of amino acids and insulin, and its mechanisms have been extensively characterized. However, the mechanisms behind cellular glucose deprivation-induced autophagy are as of now poorly understood. In the present study, we determined a mechanism by which glucose deprivation induced the PKC-dependent proteasomal degradation of β-catenin, leading to autophagy. Glucose deprivation was shown to cause a sub-G1 transition and enhancement of the LC3-II protein levels, whereas β-catenin protein underwent degradation in a proteasome-dependent manner. Moreover, the inhibition of GSK3β was unable to abolish the glucose deprivation-mediated β-catenin degradation or up-regulation of LC3-II protein levels, which suggested GSK3β-independent protein degradation. Intriguingly, the inhibition of PKCα using a pharmacological inhibitor and transfection of siRNA for PKCα was observed to effectively block glucose deprivation-induced β-catenin degradation as well as the increase in LC3-II levels and the accumulation of a sub-G1 population. Together, our results demonstrated a molecular mechanism by which glucose deprivation can induce the GSK3β-independent protein degradation of β-catenin, leading to autophagy.
Collapse
Affiliation(s)
- Seung-Won Choi
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and
| | - Jun-Kyu Song
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Ye-Seal Yim
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Ho-Geun Yun
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Kyung-Hee Chun
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| |
Collapse
|
46
|
Bisson JA, Mills B, Paul Helt JC, Zwaka TP, Cohen ED. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Dev Biol 2014; 398:80-96. [PMID: 25482987 DOI: 10.1016/j.ydbio.2014.11.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/09/2023]
Abstract
Wnt proteins regulate cell behavior via a canonical signaling pathway that induces β-catenin dependent transcription. It is now appreciated that Wnt/β-catenin signaling promotes the expansion of the second heart field (SHF) progenitor cells that ultimately give-rise to the majority of cardiomyocytes. However, activating β-catenin can also cause the loss of SHF progenitors, highlighting the necessity of precise control over β-catenin signaling during heart development. We recently reported that two non-canonical Wnt ligands, Wnt5a and Wnt11, act cooperatively to attenuate canonical Wnt signaling that would otherwise disrupt the SHF. While these data reveal the essential role of this anti-canonical Wnt5a/Wnt11 signaling in SHF development, the mechanisms by which these ligands inhibit the canonical Wnt pathway are unclear. Wnt11 was previously shown to inhibit β-catenin and promote cardiomyocyte maturation by activating a novel apoptosis-independent function of Caspases. Consistent with these data, we now show that Wnt5a and Wnt11 are capable of inducing Caspase activity in differentiating embryonic stem (ES) cells and that hearts from Wnt5a(-/-); Wnt11(-/-) embryos have diminished Caspase 3 (Casp3) activity. Furthermore, SHF markers are reduced in Casp3 mutant ES cells while the treatment of wild type ES cells with Caspase inhibitors blocked the ability of Wnt5a and Wnt11 to promote SHF gene expression. This finding was in agreement with our in vivo studies in which injecting pregnant mice with Caspase inhibitors reduced SHF marker expression in their gestating embryos. Caspase inhibition also blocked other Wnt5a/Wnt11 induced effects, including the suppression of β-catenin protein expression and activity. Interestingly, Wnt5a/Wnt11 treatment of differentiating ES cells reduced both phosphorylated and total Akt through a Caspase-dependent mechanism and phosphorylated Akt levels were increased in the hearts Caspase inhibitor treated. Surprisingly, inhibition of either Akt or PI3K in ES cells was an equally effective means of increasing SHF markers compared to treatment with Wnt5a/Wnt11. Moreover, Akt inhibition restored SHF gene expression in Casp3 mutant ES cells. Taken together, these findings suggest that Wnt5a/Wnt11 inhibit β-catenin to promote SHF development through Caspase-dependent Akt degradation.
Collapse
Affiliation(s)
- Joseph A Bisson
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bradley Mills
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jay-Christian Paul Helt
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Thomas P Zwaka
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan David Cohen
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
47
|
Easter SL, Mitchell EH, Baxley SE, Desmond R, Frost AR, Serra R. Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors. PLoS One 2014; 9:e113247. [PMID: 25401739 PMCID: PMC4234660 DOI: 10.1371/journal.pone.0113247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/24/2014] [Indexed: 11/26/2022] Open
Abstract
Wnt5a is a non-canonical signaling Wnt that has been implicated in tumor suppression. We previously showed that loss of Wnt5a in MMTV-PyVmT tumors resulted in a switch in tumor phenotype resulting in tumors with increased basal phenotype and high Wnt/β-catenin signaling. The object of this study was to test the hypothesis that Wnt5a can act to inhibit tumors formed by activation of Wnt/β-catenin signaling. To this end, we characterized tumor and non-tumor mammary tissue from MMTV-Wnt1 and double transgenic MMTV-Wnt1;MMTV-Wnt5a mice. Wnt5a containing mice demonstrated fewer tumors with increased latency when compared to MMTV-Wnt1 controls. Expression of markers for basal-like tumors was down-regulated in the tumors that formed in the presence of Wnt5a indicating a phenotypic switch. Reduced canonical Wnt signaling was detected in double transgenic tumors as a decrease in active β-catenin protein and a decrease in Axin2 mRNA transcript levels. In non-tumor tissues, over-expression of Wnt5a in MMTV-Wnt1 mammary glands resulted in attenuation of phenotypes normally observed in MMTV-Wnt1 glands including hyperbranching and increased progenitor and basal cell populations. Even though Wnt5a could antagonize Wnt/β-catenin signaling in primary mammary epithelial cells in culture, reduced Wnt/β-catenin signaling was not detected in non-tumor MMTV-Wnt1;Wnt5a tissue in vivo. The data demonstrate that Wnt5a suppresses tumor formation and promotes a phenotypic shift in MMTV-Wnt1 tumors.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Fluorescent Antibody Technique
- Immunoenzyme Techniques
- Male
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phenotype
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt-5a Protein
- Wnt1 Protein/physiology
- beta Catenin
Collapse
Affiliation(s)
- Stephanie L. Easter
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Elizabeth H. Mitchell
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Sarah E. Baxley
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Renee Desmond
- Department of Medicine, Biostatistics and Bioinformatics Unit, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Andra R. Frost
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Rosa Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- * E-mail:
| |
Collapse
|
48
|
Young T, Poobalan Y, Tan EK, Tao S, Ong S, Wehner P, Schwenty-Lara J, Lim CY, Sadasivam A, Lovatt M, Wang ST, Ali Y, Borchers A, Sampath K, Dunn NR. The PDZ domain protein Mcc is a novel effector of non-canonical Wnt signaling during convergence and extension in zebrafish. Development 2014; 141:3505-16. [DOI: 10.1242/dev.114033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During vertebrate gastrulation, a complex set of mass cellular rearrangements shapes the embryonic body plan and appropriately positions the organ primordia. In zebrafish and Xenopus, convergence and extension (CE) movements simultaneously narrow the body axis mediolaterally and elongate it from head to tail. This process is governed by polarized cell behaviors that are coordinated by components of the non-canonical, β-catenin-independent Wnt signaling pathway, including Wnt5b and the transmembrane planar cell polarity (PCP) protein Vangl2. However, the intracellular events downstream of Wnt/PCP signals are not fully understood. Here, we show that zebrafish mutated in colorectal cancer (mcc), which encodes an evolutionarily conserved PDZ domain-containing putative tumor suppressor, is required for Wnt5b/Vangl2 signaling during gastrulation. Knockdown of mcc results in CE phenotypes similar to loss of vangl2 and wnt5b, whereas overexpression of mcc robustly rescues the depletion of wnt5b, vangl2 and the Wnt5b tyrosine kinase receptor ror2. Biochemical experiments establish a direct physical interaction between Mcc and the Vangl2 cytoplasmic tail. Lastly, CE defects in mcc morphants are suppressed by downstream activation of RhoA and JNK. Taken together, our results identify Mcc as a novel intracellular effector of non-canonical Wnt5b/Vangl2/Ror2 signaling during vertebrate gastrulation.
Collapse
Affiliation(s)
- Teddy Young
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Yogavalli Poobalan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Shijie Tao
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
| | - Sheena Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Peter Wehner
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, GZMB, University of Göttingen, Göttingen 37077, Germany
| | - Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg 35043, Germany
| | - Chin Yan Lim
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Akila Sadasivam
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Matthew Lovatt
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Siew Tein Wang
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Yusuf Ali
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Annette Borchers
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, GZMB, University of Göttingen, Göttingen 37077, Germany
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg 35043, Germany
| | - Karuna Sampath
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
- Division of Biomedical Cell Biology, B040, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - N. Ray Dunn
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| |
Collapse
|
49
|
Li Y, Ma C, Shi X, Wen Z, Li D, Sun M, Ding H. Effect of nitric oxide synthase on multiple drug resistance is related to Wnt signaling in non-small cell lung cancer. Oncol Rep 2014; 32:1703-8. [PMID: 25070480 DOI: 10.3892/or.2014.3351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/06/2014] [Indexed: 11/05/2022] Open
Abstract
Multiple drug resistance (MDR) is considered a major challenge in the clinical treatment of non-small cell lung cancer (NSCLC). Both nitric oxide synthase (iNOS) and Wnt signaling pathway participate in the regulation of drug resistance, but the interaction between them remains unclear. In the present study, we detected the activation of Wnt/β-catenin signaling in iNOS-induced drug-resistant lung cancer cells, and compared the effect of canonical and noncanonical Wnt pathway on the level of iNOS. Moreover, we investigated the expression of Wnt/β-catenin signaling downstream factors and its main inhibitors. The results indicated iNOS-induced drug resistance was possibly mediated by glutathione S-transferase-π (GST-π) and topoisomerase IIα (TOPO IIα), but not P-glycoprotein (P-gp), and this process was closely associated with the activation of canonical Wnt/β-catenin signaling, but less with noncanonical pathways. The mechanism of iNOS promoting Wnt/β-catenin pathway was mainly dependent on the inverse regulation of Dickkopf-1 (DKK-1) and secreted frizzled-related protein-1 (SFRP-1). Clarifying the relationship between iNOS and Wnt signaling may provide insight into a better understanding of the mechanism of drug resistance development in NSCLC.
Collapse
Affiliation(s)
- Yang Li
- Department of Respiration, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chengyuan Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xu Shi
- Department of Central Laboratory of the First Affiliated Hospital, and College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhongmei Wen
- Department of Respiration, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dan Li
- Department of Respiration, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Munan Sun
- Cancer Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin 130000, P.R. China
| | - Hui Ding
- Department of Respiration, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
50
|
Ye Z, Zhang C, Tu T, Sun M, Liu D, Lu D, Feng J, Yang D, Liu F, Yan X. Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension. Nat Commun 2014; 4:2803. [PMID: 24335906 DOI: 10.1038/ncomms3803] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/22/2013] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of Wnt signalling leads to developmental defects and diseases. Non-canonical Wnt signalling via planar cell polarity proteins regulates cell migration and convergent extension; however, the underlying mechanisms are poorly understood. Here we report that Wnt5a uses CD146 as a receptor to regulate cell migration and zebrafish embryonic convergent extension. CD146 binds to Wnt5a with the high affinity required for Wnt5a-induced activation of Dishevelled (Dvl) and c-jun amino-terminal kinase (JNK). The interaction between CD146 and Dvl2 is enhanced on Wnt5a treatment. Mutation of the Dvl2-binding region impairs its ability to activate JNK, promote cell migration and facilitate the formation of cell protrusions. Knockdown of Dvls impairs CD146-induced cell migration. Interestingly, CD146 inhibits canonical Wnt signalling by promoting β-catenin degradation. Our results suggest a model in which CD146 acts as a functional Wnt5a receptor in regulating cell migration and convergent extension, turning off the canonical Wnt signalling branch.
Collapse
Affiliation(s)
- Zhongde Ye
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunxia Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Tu
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Lu
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|