1
|
Wang J, Zhu X, Wang S, Zhang Y, Hua W, Liu Z, Zheng Y, Lu X. Phosphoproteomic and proteomic profiling in post-infarction chronic heart failure. Front Pharmacol 2023; 14:1181622. [PMID: 37405054 PMCID: PMC10315476 DOI: 10.3389/fphar.2023.1181622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Background: Post-infarction chronic heart failure is the most common type of heart failure. Patients with chronic heart failure show elevated morbidity and mortality with limited evidence-based therapies. Phosphoproteomic and proteomic analysis can provide insights regarding molecular mechanisms underlying post-infarction chronic heart failure and explore new therapeutic approaches. Methods and results: Global quantitative phosphoproteomic and proteomic analysis of left ventricular tissues from post-infarction chronic heart failure rats were performed. A total of 33 differentially expressed phosphorylated proteins (DPPs) and 129 differentially expressed proteins were identified. Bioinformatic analysis indicated that DPPs were enriched mostly in nucleocytoplasmic transport and mRNA surveillance pathway. Bclaf1 Ser658 was identified after construction of Protein-Protein Interaction Network and intersection with Thanatos Apoptosis Database. Predicted Upstream Kinases of DPPs based on kinase-substrate enrichment analysis (KSEA) app showed 13 kinases enhanced in heart failure. Proteomic analysis showed marked changes in protein expression related to cardiac contractility and metabolism. Conclusion: The present study marked phosphoproteomics and proteomics changes in post-infarction chronic heart failure. Bclaf1 Ser658 might play a critical role in apoptosis in heart failure. PRKAA1, PRKACA, and PAK1 might serve as potential therapeutic targets for post-infarction chronic heart failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Zheng
- *Correspondence: Yu Zheng, ; Xiao Lu,
| | - Xiao Lu
- *Correspondence: Yu Zheng, ; Xiao Lu,
| |
Collapse
|
2
|
Stress induced TDP-43 mobility loss independent of stress granules. Nat Commun 2022; 13:5480. [PMID: 36123343 PMCID: PMC9485239 DOI: 10.1038/s41467-022-32939-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is closely related to the pathogenesis of amyotrophic lateral sclerosis (ALS) and translocates to stress granules (SGs). The role of SGs as aggregation-promoting “crucibles” for TDP-43, however, is still under debate. We analyzed TDP-43 mobility and localization under different stress and recovery conditions using live cell single-molecule tracking and super-resolution microscopy. Besides reduced mobility within SGs, a stress induced decrease of TDP-43 mobility in the cytoplasm and the nucleus was observed. Stress removal led to a recovery of TDP-43 mobility, which strongly depended on the stress duration. ‘Stimulated-emission depletion microscopy’ (STED) and ‘tracking and localization microscopy’ (TALM) revealed not only TDP-43 substructures within stress granules but also numerous patches of slow TDP-43 species throughout the cytoplasm. This work provides insights into the aggregation of TDP-43 in living cells and provide evidence suggesting that TDP-43 oligomerization and aggregation takes place in the cytoplasm separate from SGs. Amyotrophic Lateral Sclerosis related TDP-43 protein translocates to stress granules with a concomitant reduction in mobility. Here, the authors use single molecule tracking and find a stress-induced reduction in TDP-43 mobility also in the cytoplasm potentially relevant for TDP-43 aggregation.
Collapse
|
3
|
Lester E, Ooi FK, Bakkar N, Ayers J, Woerman AL, Wheeler J, Bowser R, Carlson GA, Prusiner SB, Parker R. Tau aggregates are RNA-protein assemblies that mislocalize multiple nuclear speckle components. Neuron 2021; 109:1675-1691.e9. [PMID: 33848474 PMCID: PMC8141031 DOI: 10.1016/j.neuron.2021.03.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Tau aggregates contribute to neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease (AD). Although RNA promotes tau aggregation in vitro, whether tau aggregates in cells contain RNA is unknown. We demonstrate, in cell culture and mouse brains, that cytosolic and nuclear tau aggregates contain RNA with enrichment for small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). Nuclear tau aggregates colocalize with and alter the composition, dynamics, and organization of nuclear speckles, membraneless organelles involved in pre-mRNA splicing. Moreover, several nuclear speckle components, including SRRM2, mislocalize to cytosolic tau aggregates in cells, mouse brains, and brains of individuals with AD, frontotemporal dementia (FTD), and corticobasal degeneration (CBD). Consistent with these alterations, we observe that the presence of tau aggregates is sufficient to alter pre-mRNA splicing. This work identifies tau alteration of nuclear speckles as a feature of tau aggregation that may contribute to the pathology of tau aggregates.
Collapse
Affiliation(s)
- Evan Lester
- Department of Biochemistry, University of Colorado, Boulder, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Felicia K Ooi
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Nadine Bakkar
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Jacob Ayers
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Amanda L Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Joshua Wheeler
- Department of Biochemistry, University of Colorado, Boulder, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
4
|
Qiu C, Zhang Y, Fan YJ, Pang TL, Su Y, Zhan S, Xu YZ. HITS-CLIP reveals sex-differential RNA binding and alterative splicing regulation of SRm160 in Drosophila. J Mol Cell Biol 2020; 11:170-181. [PMID: 29750417 DOI: 10.1093/jmcb/mjy029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/20/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Serine/arginine (SR)-rich proteins are critical for the regulation of alternative splicing (AS), which generates multiple mRNA isoforms from one gene and provides protein diversity for cell differentiation and tissue development. Genetic evidence suggests that Drosophila genital-specific overexpression of SR-related nuclear matrix protein of 160 kDa (SRm160), an SR protein with a PWI RNA-binding motif, causes defective development only in male flies and results in abnormal male genital structures and abnormal testis. However, the molecular characterization of SRm160 is limited. Using the high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) method in two sex-specific embryonic cell lines, S2 from the male and Kc from the female, we first identified the genome-wide RNA-binding characteristics of SRm160, which preferred binding to the exonic tri-nucleotide repeats GCA and AAC. We then validated this binding through both in vitro gel-shift assay and in vivo splicing of minigenes and found that SRm160 level affects AS of many transcripts. Furthermore, we identified 492 differential binding sites (DBS) of SRm160 varying between the two sex-specific cell lines. Among these DBS-containing genes, splicing factors were highly enriched, including transformer, a key regulator in the sex determination cascade. Analyses of fly mutants demonstrated that the SRm160 level affects AS isoforms of transformer. These findings shed crucial light on SRm160's RNA-binding specificity and regulation of AS in Drosophila sex determination and development.
Collapse
Affiliation(s)
- Chen Qiu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jie Fan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ting-Lin Pang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Su
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Zhen Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Nobis M, Warren SC, Lucas MC, Murphy KJ, Herrmann D, Timpson P. Molecular mobility and activity in an intravital imaging setting - implications for cancer progression and targeting. J Cell Sci 2018; 131:131/5/jcs206995. [PMID: 29511095 DOI: 10.1242/jcs.206995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecular mobility, localisation and spatiotemporal activity are at the core of cell biological processes and deregulation of these dynamic events can underpin disease development and progression. Recent advances in intravital imaging techniques in mice are providing new avenues to study real-time molecular behaviour in intact tissues within a live organism and to gain exciting insights into the intricate regulation of live cell biology at the microscale level. The monitoring of fluorescently labelled proteins and agents can be combined with autofluorescent properties of the microenvironment to provide a comprehensive snapshot of in vivo cell biology. In this Review, we summarise recent intravital microscopy approaches in mice, in processes ranging from normal development and homeostasis to disease progression and treatment in cancer, where we emphasise the utility of intravital imaging to observe dynamic and transient events in vivo We also highlight the recent integration of advanced subcellular imaging techniques into the intravital imaging pipeline, which can provide in-depth biological information beyond the single-cell level. We conclude with an outlook of ongoing developments in intravital microscopy towards imaging in humans, as well as provide an overview of the challenges the intravital imaging community currently faces and outline potential ways for overcoming these hurdles.
Collapse
Affiliation(s)
- Max Nobis
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
6
|
Zhang Q, Kota KP, Alam SG, Nickerson JA, Dickinson RB, Lele TP. Coordinated Dynamics of RNA Splicing Speckles in the Nucleus. J Cell Physiol 2015; 231:1269-75. [PMID: 26496460 DOI: 10.1002/jcp.25224] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/28/2022]
Abstract
Despite being densely packed with chromatin, nuclear bodies and a nucleoskeletal network, the nucleus is a remarkably dynamic organelle. Chromatin loops form and relax, RNA transcripts and transcription factors move diffusively, and nuclear bodies move. We show here that RNA splicing speckled domains (splicing speckles) fluctuate in constrained nuclear volumes and remodel their shapes. Small speckles move in a directed way toward larger speckles with which they fuse. This directed movement is reduced upon decreasing cellular ATP levels or inhibiting RNA polymerase II activity. The random movement of speckles is reduced upon decreasing cellular ATP levels, moderately reduced after inhibition of SWI/SNF chromatin remodeling and modestly increased upon inhibiting RNA polymerase II activity. To define the paths through which speckles can translocate in the nucleus, we generated a pressure gradient to create flows in the nucleus. In response to the pressure gradient, speckles moved along curvilinear paths in the nucleus. Collectively, our results demonstrate a new type of ATP-dependent motion in the nucleus. We present a model where recycling splicing factors return as part of small sub-speckles from distal sites of RNA processing to larger splicing speckles by a directed ATP-driven mechanism through interchromatin spaces.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Krishna P Kota
- Department of Cellular and Tissue Imaging, Perkin Elmer Inc., Waltham, Massachusetts
| | - Samer G Alam
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Multifunctional RNA processing protein SRm160 induces apoptosis and regulates eye and genital development in Drosophila. Genetics 2014; 197:1251-65. [PMID: 24907259 DOI: 10.1534/genetics.114.164434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
SRm160 is an SR-like protein implicated in multiple steps of RNA processing and nucleocytoplasmic export. Although its biochemical functions have been extensively described, its genetic interactions and potential participation in signaling pathways remain largely unknown, despite the fact that it is highly phosphorylated in both mammalian cells and Drosophila. To begin elucidating the functions of the protein in signaling and its potential role in developmental processes, we characterized mutant and overexpression SRm160 phenotypes in Drosophila and their interactions with the locus encoding the LAMMER protein kinase, Doa. SRm160 mutations are recessive lethal, while its overexpression generates phenotypes including roughened eyes and highly disorganized internal eye structure, which are due at least in part to aberrantly high levels of apoptosis. SRm160 is required for normal somatic sex determination, since its alleles strongly enhance a subtle sex transformation phenotype induced by Doa kinase alleles. Moreover, modification of SRm160 by DOA kinase appears to be necessary for its activity, since Doa alleles suppress phenotypes induced by SRm160 overexpression in the eye and enhance those in genital discs. Modification of SRm160 may occur through direct interaction because DOA kinase phosphorylates it in vitro. Remarkably, SRm160 protein was concentrated in the nuclei of precellular embryos but was very rapidly excluded from nuclei or degraded coincident with cellularization. Also of interest, transcripts are restricted almost exclusively to the developing nervous system in mature embryos.
Collapse
|
8
|
Quaresma AJC, Sievert R, Nickerson JA. Regulation of mRNA export by the PI3 kinase/AKT signal transduction pathway. Mol Biol Cell 2013; 24:1208-21. [PMID: 23427269 PMCID: PMC3623641 DOI: 10.1091/mbc.e12-06-0450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After inhibition of the PI3 kinase/AKT pathway, the binding of mRNA export proteins in nuclear complexes is reduced. The nuclear export of bulk poly(A) RNA and of a subset of specific mRNAs is increased after AKT inhibition. The results show that mRNA export can be regulated by the PI3 kinase/AKT pathway. UAP56, ALY/REF, and NXF1 are mRNA export factors that sequentially bind at the 5′ end of a nuclear mRNA but are also reported to associate with the exon junction complex (EJC). To screen for signal transduction pathways regulating mRNA export complex assembly, we used fluorescence recovery after photobleaching to measure the binding of mRNA export and EJC core proteins in nuclear complexes. The fraction of UAP56, ALY/REF, and NXF1 tightly bound in complexes was reduced by drug inhibition of the phosphatidylinositide 3-kinase (PI3 kinase)/AKT pathway, as was the tightly bound fraction of the core EJC proteins eIF4A3, MAGOH, and Y14. Inhibition of the mTOR mTORC1 pathway decreased the tight binding of MAGOH. Inhibition of the PI3 kinase/AKT pathway increased the export of poly(A) RNA and of a subset of candidate mRNAs. A similar effect of PI3 kinase/AKT inhibition was observed for mRNAs from both intron-containing and intronless histone genes. However, the nuclear export of mRNAs coding for proteins targeted to the endoplasmic reticulum or to mitochondria was not affected by the PI3 kinase/AKT pathway. These results show that the active PI3 kinase/AKT pathway can regulate mRNA export and promote the nuclear retention of some mRNAs.
Collapse
|
9
|
Pliss A, Malyavantham KS, Bhattacharya S, Berezney R. Chromatin dynamics in living cells: Identification of oscillatory motion. J Cell Physiol 2012; 228:609-16. [DOI: 10.1002/jcp.24169] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 07/31/2012] [Indexed: 01/13/2023]
|
10
|
Wu J, Shekhar N, Lele PP, Lele TP. FRAP analysis: accounting for bleaching during image capture. PLoS One 2012; 7:e42854. [PMID: 22912750 PMCID: PMC3415426 DOI: 10.1371/journal.pone.0042854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022] Open
Abstract
The analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments involves mathematical modeling of the fluorescence recovery process. An important feature of FRAP experiments that tends to be ignored in the modeling is that there can be a significant loss of fluorescence due to bleaching during image capture. In this paper, we explicitly include the effects of bleaching during image capture in the model for the recovery process, instead of correcting for the effects of bleaching using reference measurements. Using experimental examples, we demonstrate the usefulness of such an approach in FRAP analysis.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
| | - Nandini Shekhar
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
| | - Pushkar P. Lele
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tanmay P. Lele
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Pockwinse SM, Kota KP, Quaresma AJC, Imbalzano AN, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Nickerson JA. Live cell imaging of the cancer-related transcription factor RUNX2 during mitotic progression. J Cell Physiol 2011; 226:1383-9. [PMID: 20945391 DOI: 10.1002/jcp.22465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nuclear matrix bound transcription factor RUNX2 is a lineage-specific developmental regulator that is linked to cancer. We have previously shown that RUNX2 controls transcription of both RNA polymerase II genes and RNA polymerase I-dependent ribosomal RNA genes. RUNX2 is epigenetically retained through mitosis on both classes of target genes in condensed chromosomes. We have used fluorescence recovery after photobleaching to measure the relative binding kinetics of enhanced green fluorescent protein (EGFP)-RUNX2 at transcription sites in the nucleus and nucleoli during interphase, as well as on mitotic chromosomes. RUNX2 becomes more strongly bound as cells go from interphase through prophase, with a doubling of the most tightly bound "immobile fraction." RUNX2 exchange then becomes much more facile during metaphase to telophase. During interphase the less tightly bound pool of RUNX2 exchanges more slowly at nucleoli than at subnuclear foci, and the non-exchanging immobile fraction is greater in nucleoli. These results are consistent with a model in which the molecular mechanism of RUNX2 binding is different at protein-coding and ribosomal RNA genes. The binding interactions of RUNX2 change as cells go through mitosis, with binding affinity increasing as chromosomes condense and then decreasing through subsequent mitotic phases. The increased binding affinity of RUNX2 at mitotic chromosomes may reflect its epigenetic function in "bookmarking" of target genes in cancer cells.
Collapse
Affiliation(s)
- Shirwin M Pockwinse
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The replication protein NS1 is essential for genome replication and protein production in parvoviral infection. Many of its functions, including recognition and site-specific nicking of the viral genome, helicase activity, and transactivation of the viral capsid promoter, are dependent on ATP. An ATP-binding pocket resides in the middle of the modular NS1 protein in a superfamily 3 helicase domain. Here we have identified key ATP-binding amino acid residues in canine parvovirus (CPV) NS1 protein and mutated amino acids from the conserved A motif (K406), B motif (E444 and E445), and positively charged region (R508 and R510). All mutations prevented the formation of infectious viruses. When provided in trans, all except the R508A mutation reduced infectivity in a dominant-negative manner, possibly by hindering genome replication. These results suggest that the conserved R510 residue, but not R508, is the arginine finger sensory element of CPV NS1. Moreover, fluorescence recovery after photobleaching (FRAP), complemented by computer simulations, was used to assess the binding properties of mutated fluorescent fusion proteins. These experiments identified ATP-dependent and -independent binding modes for NS1 in living cells. Only the K406M mutant had a single binding site, which was concluded to indicate ATP-independent binding. Furthermore, our data suggest that DNA binding of NS1 is dependent on its ability to both bind and hydrolyze ATP.
Collapse
|
13
|
Abstract
While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.
Collapse
Affiliation(s)
- Christopher M Austin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | |
Collapse
|
14
|
Zaidi SK, Medina RF, Pockwinse SM, Bakshi R, Kota KP, Ali SA, Young DW, Nickerson JA, Javed A, Montecino M, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Subnuclear localization and intranuclear trafficking of transcription factors. Methods Mol Biol 2010; 647:77-93. [PMID: 20694661 DOI: 10.1007/978-1-60761-738-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nuclear microenvironments are architecturally organized subnuclear sites where the regulatory machinery for gene expression, replication, and repair resides. This compartmentalization is necessary to attain required stoichiometry for organization and assembly of regulatory complexes for combinatorial control. Combined and methodical application of molecular, cellular, biochemical, and in vivo genetic approaches is required to fully understand complexities of biological control. Here we provide methodologies to characterize nuclear organization of regulatory machinery by in situ immunofluorescence microscopy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Johnson TA, Elbi C, Parekh BS, Hager GL, John S. Chromatin remodeling complexes interact dynamically with a glucocorticoid receptor-regulated promoter. Mol Biol Cell 2008; 19:3308-22. [PMID: 18508913 DOI: 10.1091/mbc.e08-02-0123] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Brahma (BRM) and Brahma-related gene 1 (BRG1) are the ATP-dependent catalytic subunits of the SWI/SNF family of chromatin-remodeling complexes. These complexes are involved in essential processes such as cell cycle, growth, differentiation, and cancer. Using imaging approaches in a cell line that harbors tandem repeats of stably integrated copies of the steroid responsive MMTV-LTR (mouse mammary tumor virus-long terminal repeat), we show that BRG1 and BRM are recruited to the MMTV promoter in a hormone-dependent manner. The recruitment of BRG1 and BRM resulted in chromatin remodeling and decondensation of the MMTV repeat as demonstrated by an increase in the restriction enzyme accessibility and in the size of DNA fluorescence in situ hybridization (FISH) signals. This chromatin remodeling event was concomitant with an increased occupancy of RNA polymerase II and transcriptional activation at the MMTV promoter. The expression of ATPase-deficient forms of BRG1 (BRG1-K-R) or BRM (BRM-K-R) inhibited the remodeling of local and higher order MMTV chromatin structure and resulted in the attenuation of transcription. In vivo photobleaching experiments provided direct evidence that BRG1, BRG1-K-R, and BRM chromatin-remodeling complexes have distinct kinetic properties on the MMTV array, and they dynamically associate with and dissociate from MMTV chromatin in a manner dependent on hormone and a functional ATPase domain. Our data provide a kinetic and mechanistic basis for the BRG1 and BRM chromatin-remodeling complexes in regulating gene expression at a steroid hormone inducible promoter.
Collapse
Affiliation(s)
- Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | | | | | | | | |
Collapse
|
16
|
In situ nuclear organization of regulatory machinery. Methods Mol Biol 2008. [PMID: 18463823 DOI: 10.1007/978-1-59745-104-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Regulatory machinery for gene expression, replication, and repair are architecturally organized in nuclear microenvironments. This compartmentalization provides threshold concentrations of macromolecules for the organization and assembly of regulatory complexes for combinatorial control. A mechanistic under standing of biological control requires the combined application of molecular, cellular, biochemical, and in vivo genetic approaches. This chapter provides methodologies to characterize nuclear organization of regulatory machinery by in situ immunofluorescence microscopy.
Collapse
|
17
|
Kota KP, Wagner SR, Huerta E, Underwood JM, Nickerson JA. Binding of ATP to UAP56 is necessary for mRNA export. J Cell Sci 2008; 121:1526-37. [PMID: 18411249 DOI: 10.1242/jcs.021055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The major-histocompatibility-complex protein UAP56 (BAT1) is a DEAD-box helicase that is deposited on mRNA during splicing. UAP56 is retained on spliced mRNA in an exon junction complex (EJC) or, alternatively, with the TREX complex at the 5' end, where it might facilitate the export of the spliced mRNA to the cytoplasm. Using confocal microscopy, UAP56 was found to be concentrated in RNA-splicing speckled domains of nuclei but was also enriched in adjacent nuclear regions, sites at which most mRNA transcription and splicing occur. At speckled domains, UAP56 was in complexes with the RNA-splicing and -export protein SRm160, and, as measured by FRAP, was in a dynamic binding equilibrium. The application of an in vitro FRAP assay, in which fluorescent nuclear proteins are photobleached in digitonin-extracted cells, revealed that the equilibrium binding of UAP56 in complexes at speckled domains was directly regulated by ATP binding. This was confirmed using a point mutant of UAP56 that did not bind ATP. Point mutation of UAP56 to eliminate ATP binding did not affect RNA splicing, but strongly inhibited the export of mRNA to the cytoplasm.
Collapse
Affiliation(s)
- Krishna P Kota
- Department of Cell Biology S7-214, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
18
|
Ishihama Y, Tadakuma H, Tani T, Funatsu T. The dynamics of pre-mRNAs and poly(A)+ RNA at speckles in living cells revealed by iFRAP studies. Exp Cell Res 2007; 314:748-62. [PMID: 18053984 DOI: 10.1016/j.yexcr.2007.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 11/19/2022]
Abstract
Speckles are subnuclear domains where pre-mRNA splicing factors accumulate in the interchromatin space. To investigate the dynamics of mRNAs at speckles, fluorescently labeled Drosophila Fushitarazu (ftz) pre-mRNAs were microinjected into the nuclei of Cos7 cells and the dissociation kinetics of pre-mRNAs from speckles was analyzed using photobleaching techniques. The microinjected ftz pre-mRNAs accumulated in speckles in an intron-dependent manner and were spliced and exported to the cytoplasm with a half-time of about 10 min. Dissociation of the accumulated pre-mRNAs in speckles exhibited rapid diffusion and slow-dissociation of about 100 s. The slow-dissociation required metabolic energy of ATP. Two types of splice-defective mutated mRNAs dissociated from the speckle with a time constant similar to that of wild-type mRNA, indicating that slow-dissociation was not coupled to the splicing reaction. Furthermore, some pre-mRNAs shuttled between speckles and nucleoplasm, suggesting that pre-mRNAs repeatedly associated with and dissociated from speckles until introns were removed. Next, endogenous poly(A)+ RNA was visualized by injecting Cy3-labeled 2'O-methyl oligo(U)22 probes. Some poly(A)+ RNA distributed diffusely within the nucleus, but some of them accumulated in speckles and dissociated at time constant of about 100 s.
Collapse
Affiliation(s)
- Yo Ishihama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | |
Collapse
|
19
|
Abstract
Leukotrienes are lipid messengers involved in autocrine and paracrine cellular signaling. They are synthesized from arachidonic acid by the 5-lipoxygenase pathway. Current models of this enzymatic pathway recognize that a key step in initiating leukotriene synthesis is the calcium-mediated movement of enzymes, including 5-lipoxygenase, to intracellular membranes. However, 5-lipoxygenase can be imported into or exported from the nucleus before calcium activation. As a result, its subcellular localization will affect its ability to be activated by calcium, as well as the membrane to which it binds and its interaction with other enzymes. This commentary focuses on the role of 5-lipoxygenase compartmentation in determining its regulation and, ultimately, leukotriene synthesis.
Collapse
Affiliation(s)
- Thomas G Brock
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
20
|
Louvet E, Junéra HR, Berthuy I, Hernandez-Verdun D. Compartmentation of the nucleolar processing proteins in the granular component is a CK2-driven process. Mol Biol Cell 2006; 17:2537-46. [PMID: 16540521 PMCID: PMC1474808 DOI: 10.1091/mbc.e05-10-0923] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To analyze the compartmentation of nucleolar protein complexes, the mechanisms controlling targeting of nucleolar processing proteins onto rRNA transcription sites has been investigated. We studied the reversible disconnection of transcripts and processing proteins using digitonin-permeabilized cells in assays capable of promoting nucleolar reorganization. The assays show that the dynamics of nucleolar reformation is ATP/GTP-dependent, sensitive to temperature, and CK2-driven. We further demonstrate the role of CK2 on the rRNA-processing protein B23. Mutation of the major CK2 site on B23 induces reorganization of nucleolar components that separate from each other. This was confirmed in assays using extracts containing B23 mutated in the CK2-binding sites. We propose that phosphorylation controls the compartmentation of the rRNA-processing proteins and that CK2 is involved in this process.
Collapse
Affiliation(s)
- Emilie Louvet
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris VI and Paris VII, 75251 Paris Cedex 05, France
| | - Henriette Roberte Junéra
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris VI and Paris VII, 75251 Paris Cedex 05, France
| | - Isabelle Berthuy
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris VI and Paris VII, 75251 Paris Cedex 05, France
| | - Danièle Hernandez-Verdun
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University Paris VI and Paris VII, 75251 Paris Cedex 05, France
- Address correspondence to: D. Hernandez-Verdun (
)
| |
Collapse
|
21
|
Schmidt U, Richter K, Berger AB, Lichter P. In vivo BiFC analysis of Y14 and NXF1 mRNA export complexes: preferential localization within and around SC35 domains. ACTA ACUST UNITED AC 2006; 172:373-81. [PMID: 16431928 PMCID: PMC2063647 DOI: 10.1083/jcb.200503061] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bimolecular fluorescence complementation (BiFC) assay, which allows the investigation of interacting molecules in vivo, was applied to study complex formation between the splicing factor Y14 and nuclear export factor 1 (NXF1), which evidence indicates are functionally associated with nuclear mRNA. Y14 linked to the COOH terminus of yellow fluorescent protein (YFP; YC-Y14), and NXF1 fused to the NH2 terminus of YFP (YN-NXF1) expressed in MCF7 cells yielded BiFC upon specific binding. Fluorescence accumulated within and around nuclear speckles, suggesting the involvement of speckles in mRNA processing and export. Accordingly, BiFC depended on transcription and full-length NXF1. Coimmunoprecipitation of YC-Y14 with YN-NXF1, NXF1, Y14, and RNA indicated that YC-Y14 and YN-NXF1 functionally associate with RNA. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching revealed that roughly half of the accumulated BiFC complexes were immobile in vivo. This immobile fraction was readily depleted by adenosine triphosphate (ATP) administration in permeabilized cells. These results suggest that a fraction of RNA, which remains in the nucleus for several hours despite its association with splicing and export proteins, accumulates in speckles because of an ATP-dependent mechanism.
Collapse
Affiliation(s)
- Ute Schmidt
- Division Molecular Genetics, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
22
|
Chen Y, Hu J, Song P, Gong W. The identification and characterization of a testis-specific cDNA during spermatogenesis. Cell Mol Biol Lett 2006; 11:80-9. [PMID: 16847751 PMCID: PMC6275928 DOI: 10.2478/s11658-006-0008-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 12/16/2005] [Indexed: 11/20/2022] Open
Abstract
Using bioinformatics and experimental validation, we obtained a cDNA (named srsf) which was exclusively expressed in the mouse testes. RT-PCR analysis showed that srsf mRNA was not expressed in the gonad during the sex determination period or during embryogenesis. In developing mouse testis, srsf expression was first detected on post-natal day 10, reached its highest level on day 23, and then reduced to and remained at a moderate level throughout adulthood. In situ hybridization analysis demonstrated that srsf mRNA was expressed in pachytene spermatocytes and round spermatids in the testes. The predicted protein contains one RNA-binding domain (RBD) and a serine-arginine rich domain (RS), which are characterized by some splicing factors of SR family members. These findings indicate that srsf may play a role during spermatogenesis.
Collapse
Affiliation(s)
- Ying Chen
- Laboratory of Molecular Genetics and Developmental Biology, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Jiarui Hu
- Department of Gynecology and obstetrics, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| | - Ping Song
- Laboratory of Molecular Genetics and Developmental Biology, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Wuming Gong
- Laboratory of Molecular Genetics and Developmental Biology, College of Life Science, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
23
|
Vargas DY, Raj A, Marras SAE, Kramer FR, Tyagi S. Mechanism of mRNA transport in the nucleus. Proc Natl Acad Sci U S A 2005; 102:17008-13. [PMID: 16284251 PMCID: PMC1287982 DOI: 10.1073/pnas.0505580102] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanism of transport of mRNA-protein (mRNP) complexes from transcription sites to nuclear pores has been the subject of many studies. Using molecular beacons to track single mRNA molecules in living cells, we have characterized the diffusion of mRNP complexes in the nucleus. The mRNP complexes move freely by Brownian diffusion at a rate that assures their dispersion throughout the nucleus before they exit into the cytoplasm, even when the transcription site is located near the nuclear periphery. The diffusion of mRNP complexes is restricted to the extranucleolar, interchromatin spaces. When mRNP complexes wander into dense chromatin, they tend to become stalled. Although the movement of mRNP complexes occurs without the expenditure of metabolic energy, ATP is required for the complexes to resume their motion after they become stalled. This finding provides an explanation for a number of observations in which mRNA transport appeared to be an enzymatically facilitated process.
Collapse
Affiliation(s)
- Diana Y Vargas
- Department of Molecular Genetics, Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
24
|
McNairn AJ, Okuno Y, Misteli T, Gilbert DM. Chinese hamster ORC subunits dynamically associate with chromatin throughout the cell-cycle. Exp Cell Res 2005; 308:345-56. [PMID: 15950218 PMCID: PMC1350721 DOI: 10.1016/j.yexcr.2005.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 05/02/2005] [Accepted: 05/03/2005] [Indexed: 12/11/2022]
Abstract
In yeast, the Origin Recognition Complex (ORC) is bound to replication origins throughout the cell-cycle, but in animal cells, there are conflicting data as to whether and when ORC is removed from chromatin. We find ORC1, 2 and ORC4 to be metabolically stable proteins that co-fractionate with chromatin throughout the cell-cycle in Chinese hamster fibroblasts. Since cellular extraction methods cannot directly examine the chromatin binding properties of proteins in vivo, we examined ORC:chromatin interactions in living cells. Fluorescence loss in photobleaching (FLIP) studies revealed ORC1 and ORC4 to be highly dynamic proteins during the cell-cycle with exchange kinetics similar to other regulatory chromatin proteins. In vivo interaction with chromatin was not significantly altered throughout the cell-cycle, including S-phase. These data support a model in which ORC subunits dynamically interact with chromatin throughout the cell-cycle.
Collapse
Affiliation(s)
- Adrian J. McNairn
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Yukiko Okuno
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Tom Misteli
- National Cancer Institute, NIH 41 Library Drive Bldg. 41, Bethesda, MD 20892, USA
| | - David M. Gilbert
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
25
|
Abstract
The latest development of imaging technology and fluorescent proteins has enabled us to visualize the dynamics of chromatin proteins in living cells. Particularly, photobleaching techniques like fluorescence recovery after photobleaching (FRAP) revealed the mobility of many nuclear proteins including histones. Although most nucleosomal histones are maintained over cell generations to maintain epigenetic marks on their tails, some exhibit dynamic exchange. In general, histone H3-H4 tetramers stably bind to DNA once assembled during DNA replication; in contrast, the H2A-H2B dimers exchange slowly in euchromatin and are evicted during transcription. Recent data further indicate that different histone variants have different localization and kinetics. The replacement H3 variant, H3.3, is incorporated into transcriptionally active chromatin independently of DNA replication, and the centromeric variant, CENP-A, appears to assemble into nucleosomes in centromeres during G2 phase by replacing canonical H3. Different behaviors of H2A variants are also demonstrated. Importantly, the mobility of histones, and other nuclear proteins, is altered in response to changes in cellular physiology and various stimuli. Whereas we know little about how these dynamics are regulated, distinct complexes that mediate assembly and exchange of specific variants have been isolated, thus future analyses will reveal the molecular mechanisms underlying the phenomena in living cells.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Nuclear Function and Dynamics Unit, HMRO, School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
26
|
Elbi C, Walker DA, Lewis M, Romero G, Sullivan WP, Toft DO, Hager GL, DeFranco DB. A novel in situ assay for the identification and characterization of soluble nuclear mobility factors. Sci Signal 2004; 2004:pl10. [PMID: 15213337 DOI: 10.1126/stke.2382004pl10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of green fluorescent protein (GFP) technology combined with live cell microscopy techniques have revealed the dynamic properties of GFP-tagged proteins in the nucleus. The mobility of a GFP-tagged protein can be assessed using a quantitative photobleaching technique, fluorescence recovery after photobleaching (FRAP) analysis. FRAP experiments demonstrate that many nuclear proteins are highly mobile within the nucleus. However, the factors within the nucleus that regulate this mobility are not known. This is partly due to an absence of protocols that can be used to identify such nuclear mobility factors. We developed a novel in situ assay that combines a biochemical permeabilization and extraction procedure with a quantitative FRAP technique, a method we used to uncover a new functional role for molecular chaperones in the nuclear mobility of steroid receptors. This assay can readily be adapted to identify and characterize other nuclear mobility factors.
Collapse
Affiliation(s)
- Cem Elbi
- Laboratory of Receptor Biology and Gene Expression, Building 41, Room B602, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | | | |
Collapse
|