1
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
2
|
Nowak N, Czekanowska D, Gebarowski T, Wiglusz RJ. Highly cyto- and immune compatible new synthetic fluorapatite nanomaterials co-doped with rubidium(I) and europium(III) ions. BIOMATERIALS ADVANCES 2024; 156:213709. [PMID: 38039809 DOI: 10.1016/j.bioadv.2023.213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/16/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
In the present study, biocompatible luminescent of nanosized fluorapatite doped with rubidium(I) (Rb+ ion) and europium(III) (Eu3+ ion) ions were synthesized via hydrothermal method. It was investigated the influence of co-doped Rb+ and Eu3+ ions on the structural, and morphological characteristics of the obtained fluorapatite materials. The characterization techniques utilized included: X-ray powder diffraction (XRPD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). Moreover, to establish the influence of the co-doped Rb+ and Eu3+ ions on the luminescence properties of the lanthanide ion, emission excitation, emission spectrum and luminescence decays were measured. This confirmed a distinct red emission originating from Eu3+ ions and an increased emission lifetime. To determine the biocompatibility of the obtained fluorapatite compounds, in vitro studies using normal dermal human fibroblasts were performed. The results of these studies clearly demonstrate the remarkable biocompatibility of our compounds. This discovery opens exciting prospects for the use of synthetic fluorapatites doped with Eu3+ and Rb+ ions in various biomedical contexts. In particular, these materials hold great promise for potential applications in regenerative engineering, but also serve as innovative and practical solutions as bone scaffolds and dental implants containing nano-fluorapatite. Further discussion of these properties can be found in this article, along with a discussion of their importance and potential in the field of biomedical applications. However, according to our pervious study and based on our current investigations but also based on available scientific records, it was proposed potential molecular mechanism of Rb+ ions in the process of osteoclastogenesis.
Collapse
Affiliation(s)
- Nicole Nowak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, PL-50-375 Wroclaw, Poland.
| | - Dominika Czekanowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Tomasz Gebarowski
- Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, PL-50-375 Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
| |
Collapse
|
3
|
Hao S, Xinqi M, Weicheng X, Shiwei Y, Lumin C, Xiao W, Dong L, Jun H. Identification of key immune genes of osteoporosis based on bioinformatics and machine learning. Front Endocrinol (Lausanne) 2023; 14:1118886. [PMID: 37361541 PMCID: PMC10289263 DOI: 10.3389/fendo.2023.1118886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Immunity is involved in a variety of bone metabolic processes, especially osteoporosis. The aim of this study is to explore new bone immune-related markers by bioinformatics method and evaluate their ability to predict osteoporosis. Methods The mRNA expression profiles were obtained from GSE7158 in Gene expression Omnibus (GEO), and immune-related genes were obtained from ImmPort database (https://www.immport.org/shared/). immune genes related to bone mineral density(BMD) were screened out for differential analysis. protein-protein interaction (PPIs) networks were used to analyze the interrelationships between different immune-related genes (DIRGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DIRGs function were performed. A least absolute shrinkage and selection operation (LASSO) regression model and multiple Support Vector Machine-Recursive Feature Elimination (mSVM-RFE) model were constructed to identify the candidate genes for osteoporosis prediction The receiver operator characteristic (ROC) curves were used to validate the performances of predictive models and candidate genes in GEO database (GSE7158,GSE13850).Through the RT - qPCR verify the key genes differentially expressed in peripheral blood mononuclear cells Finally, we constructed a nomogram model for predicting osteoporosis based on five immune-related genes. CIBERSORT algorithm was used to calculate the relative proportion of 22 immune cells. Results A total of 1158 DEGs and 66 DIRGs were identified between high-BMD and low-BMD women. These DIRGs were mainly enriched in cytokine-mediated signaling pathway, positive regulation of response to external stimulus and the cellular components of genes are mostly localized to external side of plasma membrane. And the KEGG enrichment analysis were mainly involved in Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction,Natural killer cell mediated cytotoxicity. Then five key genes (CCR5, IAPP, IFNA4, IGHV3-73 and PTGER1) were identified and used as features to construct a predictive prognostic model for osteoporosis using the GSE7158 dataset. Conclusion Immunity plays an important role in the development of osteoporosis.CCR5, IAPP, IFNA4, IGHV3-73 and PTGER1were play an important role in the occurrences and diagnosis of OP.
Collapse
Affiliation(s)
- Song Hao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mao Xinqi
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Weicheng
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Shiwei
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cao Lumin
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wang Xiao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Jun
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Taylor AJ, Panzhinskiy E, Orban PC, Lynn FC, Schaeffer DF, Johnson JD, Kopp JL, Verchere CB. Islet amyloid polypeptide does not suppress pancreatic cancer. Mol Metab 2023; 68:101667. [PMID: 36621763 PMCID: PMC9938314 DOI: 10.1016/j.molmet.2023.101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Pancreatic cancer risk is elevated approximately two-fold in type 1 and type 2 diabetes. Islet amyloid polypeptide (IAPP) is an abundant beta-cell peptide hormone that declines with diabetes progression. IAPP has been reported to act as a tumour-suppressor in p53-deficient cancers capable of regressing tumour volumes. Given the decline of IAPP during diabetes development, we investigated the actions of IAPP in pancreatic ductal adenocarcinoma (PDAC; the most common form of pancreatic cancer) to determine if IAPP loss in diabetes may increase the risk of pancreatic cancer. METHODS PANC-1, MIA PaCa-2, and H1299 cells were treated with rodent IAPP, and the IAPP analogs pramlintide and davalintide, and assayed for changes in proliferation, death, and glycolysis. An IAPP-deficient mouse model of PDAC (Iapp-/-; Kras+/LSL-G12D; Trp53flox/flox; Ptf1a+/CreER) was generated for survival analysis. RESULTS IAPP did not impact glycolysis in MIA PaCa-2 cells, and did not impact cell death, proliferation, or glycolysis in PANC-1 cells or in H1299 cells, which were previously reported as IAPP-sensitive. Iapp deletion in Kras+/LSL-G12D; Trp53flox/flox; Ptf1a+/CreER mice had no effect on survival time to lethal tumour burden. CONCLUSIONS In contrast to previous reports, we find that IAPP does not function as a tumour suppressor. This suggests that loss of IAPP signalling likely does not increase the risk of pancreatic cancer in individuals with diabetes.
Collapse
Affiliation(s)
- Austin J Taylor
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, BC, Canada
| | - Evgeniy Panzhinskiy
- Life Sciences Institute, University of British Columbia, BC, Canada; Department of Biochemistry, University of British Columbia, BC, Canada
| | - Paul C Orban
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, BC, Canada
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, BC, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC, Canada; Pancreas Centre BC, Vancouver, BC, Canada
| | - James D Johnson
- Life Sciences Institute, University of British Columbia, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, BC, Canada
| | - Janel L Kopp
- Life Sciences Institute, University of British Columbia, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, BC, Canada
| | - C Bruce Verchere
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, BC, Canada; Department of Surgery, University of British Columbia, BC, Canada.
| |
Collapse
|
5
|
Fukumitsu K, Huang AJ, McHugh TJ, Kuroda KO. Role of Calcr expressing neurons in the medial amygdala in social contact among females. Mol Brain 2023; 16:10. [PMID: 36658598 PMCID: PMC9850531 DOI: 10.1186/s13041-023-00993-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Social animals become stressed upon social isolation, proactively engaging in affiliative contacts among conspecifics after resocialization. We have previously reported that calcitonin receptor (Calcr) expressing neurons in the central part of the medial preoptic area (cMPOA) mediate contact-seeking behaviors in female mice. Calcr neurons in the posterodorsal part of the medial amygdala (MeApd) are also activated by resocialization, however their role in social affiliation is still unclear. Here we first investigated the functional characteristics of MeApd Calcr + cells; these neurons are GABAergic and show female-biased Calcr expression. Next, using an adeno-associated virus vector expressing a short hairpin RNA targeting Calcr we aimed to identify its molecular role in the MeApd. Inhibiting Calcr expression in the MeApd increased social contacts during resocialization without affecting locomotor activity, suggesting that the endogenous Calcr signaling in the MeApd suppresses social contacts. These results demonstrate the distinct roles of Calcr in the cMPOA and MeApd for regulating social affiliation.
Collapse
Affiliation(s)
- Kansai Fukumitsu
- grid.474690.8Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Hirosawa 2-1, Wakoshi, Saitama 351-0198 Japan
| | - Arthur J. Huang
- grid.474690.8Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198 Japan
| | - Thomas J. McHugh
- grid.474690.8Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198 Japan
| | - Kumi O. Kuroda
- grid.474690.8Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Hirosawa 2-1, Wakoshi, Saitama 351-0198 Japan
| |
Collapse
|
6
|
Linking hIAPP misfolding and aggregation with type 2 diabetes mellitus: a structural perspective. Biosci Rep 2022; 42:231205. [PMID: 35475576 PMCID: PMC9118370 DOI: 10.1042/bsr20211297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
There are over 40 identified human disorders that involve certain proteins folding incorrectly, accumulating in the body causing damage to cells and organs and causing disease. Type 2 Diabetes Mellitus (T2DM) is one of these protein misfolding disorders (PMDs) and involves human islet amyloid polypeptide (hIAPP) misfolding and accumulating in parts of the body, primarily in the pancreas, causing damage to islet cells and affecting glucose regulation. In this review, we have summarised our current understanding of what causes hIAPP to misfold, what conformations are found in different parts of the body with a particular focus on what is known about the structure of hIAPP and how this links to T2DM. Understanding the molecular basis behind these misfolding events is essential for understanding the role of hIAPP to develop better therapeutics since type 2 diabetes currently affects over 4.9 million people in the United Kingdom alone and is predicted to increase as our population ages.
Collapse
|
7
|
Fukumitsu K, Kaneko M, Maruyama T, Yoshihara C, Huang AJ, McHugh TJ, Itohara S, Tanaka M, Kuroda KO. Amylin-Calcitonin receptor signaling in the medial preoptic area mediates affiliative social behaviors in female mice. Nat Commun 2022; 13:709. [PMID: 35136064 PMCID: PMC8825811 DOI: 10.1038/s41467-022-28131-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Social animals actively engage in contact with conspecifics and experience stress upon isolation. However, the neural mechanisms coordinating the sensing and seeking of social contacts are unclear. Here we report that amylin-calcitonin receptor (Calcr) signaling in the medial preoptic area (MPOA) mediates affiliative social contacts among adult female mice. Isolation of females from free social interactions first induces active contact-seeking, then depressive-like behavior, concurrent with a loss of Amylin mRNA expression in the MPOA. Reunion with peers induces physical contacts, activates both amylin- and Calcr-expressing neurons, and leads to a recovery of Amylin mRNA expression. Chemogenetic activation of amylin neurons increases and molecular knockdown of either amylin or Calcr attenuates contact-seeking behavior, respectively. Our data provide evidence in support of a previously postulated origin of social affiliation in mammals.
Collapse
Affiliation(s)
- Kansai Fukumitsu
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
| | - Misato Kaneko
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.,Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Teppo Maruyama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.,Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Minoru Tanaka
- Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
| |
Collapse
|
8
|
Corrigan RR, Piontkivska H, Casadesus G. Amylin Pharmacology in Alzheimer's Disease Pathogenesis and Treatment. Curr Neuropharmacol 2022; 20:1894-1907. [PMID: 34852745 PMCID: PMC9886804 DOI: 10.2174/1570159x19666211201093147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
The metabolic peptide hormone amylin, in concert with other metabolic peptides like insulin and leptin, has an important role in metabolic homeostasis and has been intimately linked to Alzheimer's disease (AD). Interestingly, this pancreatic amyloid peptide is known to self-aggregate much like amyloid-beta and has been reported to be a source of pathogenesis in both Type II diabetes mellitus (T2DM) and Alzheimer's disease. The traditional "gain of toxic function" properties assigned to amyloid proteins are, however, contrasted by several reports highlighting neuroprotective effects of amylin and a recombinant analog, pramlintide, in the context of these two diseases. This suggests that pharmacological therapies aimed at modulating the amylin receptor may be therapeutically beneficial for AD development, as they already are for T2DMM. However, the nature of amylin receptor signaling is highly complex and not well studied in the context of CNS function. Therefore, to begin to address this pharmacological paradox in amylin research, the goal of this review is to summarize the current research on amylin signaling and CNS functions and critically address the paradoxical nature of this hormone's signaling in the context of AD pathogenesis.
Collapse
Affiliation(s)
| | | | - Gemma Casadesus
- Address correspondence to this author at the Department of Pharmacology and Therapeutics, University of Florida, PO Box 100495. Gainesville, FL32610 USA; Tel: 352-294-5346; E-mail:
| |
Collapse
|
9
|
McMullan P, Maye P, Yang Q, Rowe DW, Germain‐Lee EL. Parental Origin of
Gsα
Inactivation Differentially Affects Bone Remodeling in a Mouse Model of Albright Hereditary Osteodystrophy. JBMR Plus 2021; 6:e10570. [PMID: 35079678 PMCID: PMC8771002 DOI: 10.1002/jbm4.10570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
Albright hereditary osteodystrophy (AHO) is caused by heterozygous inactivation of GNAS, a complex locus that encodes the alpha‐stimulatory subunit of heterotrimeric G proteins (Gsα) in addition to NESP55 and XLαs due to alternative first exons. AHO skeletal manifestations include brachydactyly, brachymetacarpia, compromised adult stature, and subcutaneous ossifications. AHO patients with maternally‐inherited GNAS mutations develop pseudohypoparathyroidism type 1A (PHP1A) with resistance to multiple hormones that mediate their actions through G protein‐coupled receptors (GPCRs) requiring Gsα (eg, parathyroid hormone [PTH], thyroid‐stimulating hormone [TSH], growth hormone–releasing hormone [GHRH], calcitonin) and severe obesity. Paternally‐inherited GNAS mutations cause pseudopseudohypoparathyroidism (PPHP), in which patients have AHO skeletal features but do not develop hormonal resistance or marked obesity. These differences between PHP1A and PPHP are caused by tissue‐specific reduction of paternal Gsα expression. Previous reports in mice have shown loss of Gsα causes osteopenia due to impaired osteoblast number and function and suggest that AHO patients could display evidence of reduced bone mineral density (BMD). However, we previously demonstrated PHP1A patients display normal‐increased BMD measurements without any correlation to body mass index or serum PTH. Due to these observed differences between PHP1A and PPHP, we utilized our laboratory's AHO mouse model to address whether Gsα heterozygous inactivation differentially affects bone remodeling based on the parental inheritance of the mutation. We identified fundamental distinctions in bone remodeling between mice with paternally‐inherited (GnasE1+/−p) versus maternally‐inherited (GnasE1+/−m) mutations, and these findings were observed predominantly in female mice. Specifically, GnasE1+/−p mice exhibited reduced bone parameters due to impaired bone formation and enhanced bone resorption. GnasE1+/−m mice, however, displayed enhanced bone parameters due to both increased osteoblast activity and normal bone resorption. These in vivo distinctions in bone remodeling between GnasE1+/−p and GnasE1+/−m mice could potentially be related to changes in the bone microenvironment driven by calcitonin‐resistance within GnasE1+/−m osteoclasts. Further studies are warranted to assess how Gsα influences osteoblast–osteoclast coupling. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Patrick McMullan
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - Peter Maye
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - Qingfen Yang
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - David W. Rowe
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - Emily L. Germain‐Lee
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
- Albright Center, Division of Pediatric Endocrinology Connecticut Children's Farmington CT USA
| |
Collapse
|
10
|
Li Q, Duan Z, Sun C, Zheng J, Xu G, Yang N. Genetic variations for the eggshell crystal structure revealed by genome-wide association study in chickens. BMC Genomics 2021; 22:786. [PMID: 34727889 PMCID: PMC8565016 DOI: 10.1186/s12864-021-08103-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Eggshell is a bio-ceramic material comprising columnar calcite (CaCO3) crystals and organic proteinaceous matrix. The size, shape and orientation of the CaCO3 crystals influence the microstructural properties of chicken eggshells. However, the genetic architecture underlying eggshell crystal polymorphism remains to be elucidated. Results The integral intensity of the nine major diffraction peaks, total integral intensity and degree of orientation of the crystals were measured followed by a genome-wide association study in 839 F2 hens. The results showed that the total integral intensity was positively correlated with the eggshell strength, eggshell thickness, eggshell weight, mammillary layer thickness and effective layer thickness. The SNP-based heritabilities of total integral intensity and degree of orientation were 0.23 and 0.06, respectively. The 621 SNPs located in the range from 55.6 to 69.1 Mb in GGA1 were significantly associated with TA. PLCZ1, ABCC9, ITPR2, KCNJ8, CACNA1C and IAPP, which are involved in the biological process of regulating cytosolic calcium ion concentration, can be suggested as key genes regulating the total integral intensity. Conclusions The findings greatly advance the understanding of the genetic basis underlying the crystal ultrastructure of eggshell quality and thus will have practical significance in breeding programs for improving eggshell quality. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08103-1.
Collapse
Affiliation(s)
- Quanlin Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193, Beijing, China
| | - Zhongyi Duan
- National Animal Husbandry Service, 100125, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193, Beijing, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193, Beijing, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
11
|
Shin B, Hrdlicka HC, Delany AM, Lee SK. Inhibition of miR-29 Activity in the Myeloid Lineage Increases Response to Calcitonin and Trabecular Bone Volume in Mice. Endocrinology 2021; 162:bqab135. [PMID: 34192317 PMCID: PMC8328098 DOI: 10.1210/endocr/bqab135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/29/2022]
Abstract
The miR-29-3p family (miR-29a, miR-29b, miR-29c) of microRNAs is increased during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. In vivo, activation of a miR-29-3p tough decoy inhibitor in Cre recombinase under the control of the lysozyme 2 promoter-expressing cells (myeloid lineage) resulted in mice displaying enhanced trabecular and cortical bone volume because of decreased bone resorption. Calcitonin receptor (Calcr) is a miR-29 target that negatively regulates bone resorption. CALCR was significantly increased in RANKL-treated miR-29-decoy osteoclasts, and these cells were more responsive to the inhibitory effect of calcitonin on osteoclast formation. Further, cathepsin K (Ctsk), which is critical for resorption, was decreased in miR-29-decoy cells. CALCR is a Gs-coupled receptor and its activation raises cAMP levels. In turn, cAMP suppresses cathepsin K, and cAMP levels were increased in miR-29-decoy cells. siRNA-mediated knock-down of Calcr in miR-29 decoy osteoclasts allowed recovery of cathepsin K levels in these cells. Overall, using a novel knockin tough decoy mouse model, we identified a new role for miR-29-3p in bone homeostasis. In RANKL-driven osteoclastogenesis, as seen in normal bone remodeling, miR-29-3p promotes resorption. Consequently, inhibition of miR-29-3p activity in the myeloid lineage leads to increased trabecular and cortical bone. Further, this study documents an interrelationship between CALCR and CTSK in osteoclastic bone resorption, which is modulated by miR-29-3p.
Collapse
Affiliation(s)
- Bongjin Shin
- Center on Aging, UConn Health, Farmington, CT 06030, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - Sun-Kyeong Lee
- Center on Aging, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
12
|
Mice Lacking the Calcitonin Receptor Do Not Display Improved Bone Healing. Cells 2021; 10:cells10092304. [PMID: 34571953 PMCID: PMC8471896 DOI: 10.3390/cells10092304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Despite significant advances in surgical techniques, treatment options for impaired bone healing are still limited. Inadequate bone regeneration is not only associated with pain, prolonged immobilization and often multiple revision surgeries, but also with high socioeconomic costs, underlining the importance of a detailed understanding of the bone healing process. In this regard, we previously showed that mice lacking the calcitonin receptor (CTR) display increased bone formation mediated through the increased osteoclastic secretion of sphingosine-1-phosphate (S1P), an osteoanabolic molecule promoting osteoblast function. Although strong evidence is now available for the crucial role of osteoclast-to-osteoblast coupling in normal bone hemostasis, the relevance of this paracrine crosstalk during bone regeneration is unknown. Therefore, our study was designed to test whether increased osteoclast-to-osteoblast coupling, as observed in CTR-deficient mice, may positively affect bone repair. In a standardized femoral osteotomy model, global CTR-deficient mice displayed no alteration in radiologic callus parameters. Likewise, static histomorphometry demonstrated moderate impairment of callus microstructure and normal osseous bridging of osteotomy ends. In conclusion, bone regeneration is not accelerated in CTR-deficient mice, and contrary to its osteoanabolic action in normal bone turnover, osteoclast-to-osteoblast coupling specifically involving the CTR-S1P axis, may only be of minor relevance during bone healing.
Collapse
|
13
|
Yoshihara C, Tokita K, Maruyama T, Kaneko M, Tsuneoka Y, Fukumitsu K, Miyazawa E, Shinozuka K, Huang AJ, Nishimori K, McHugh TJ, Tanaka M, Itohara S, Touhara K, Miyamichi K, Kuroda KO. Calcitonin receptor signaling in the medial preoptic area enables risk-taking maternal care. Cell Rep 2021; 35:109204. [PMID: 34077719 DOI: 10.1016/j.celrep.2021.109204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Maternal mammals exhibit heightened motivation to care for offspring, but the underlying neuromolecular mechanisms have yet to be clarified. Here, we report that the calcitonin receptor (Calcr) and its ligand amylin are expressed in distinct neuronal populations in the medial preoptic area (MPOA) and are upregulated in mothers. Calcr+ MPOA neurons activated by parental care project to somatomotor and monoaminergic brainstem nuclei. Retrograde monosynaptic tracing reveals that significant modification of afferents to Calcr+ neurons occurs in mothers. Knockdown of either Calcr or amylin gene expression hampers risk-taking maternal care, and specific silencing of Calcr+ MPOA neurons inhibits nurturing behaviors, while pharmacogenetic activation prevents infanticide in virgin males. These data indicate that Calcr+ MPOA neurons are required for both maternal and allomaternal nurturing behaviors and that upregulation of amylin-Calcr signaling in the MPOA at least partially mediates risk-taking maternal care, possibly via modified connectomics of Calcr+ neurons postpartum.
Collapse
Affiliation(s)
- Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Kenichi Tokita
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; The Institute of Natural Sciences, Senshu University, Tokyo 101-8425, Japan
| | - Teppo Maruyama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Misato Kaneko
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Yousuke Tsuneoka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Kansai Fukumitsu
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Eri Miyazawa
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Minoru Tanaka
- Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency, The University of Tokyo, Tokyo 113-8657, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
| | - Kazunari Miyamichi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan; Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan.
| |
Collapse
|
14
|
Al-Bari AA, Al Mamun A. Current advances in regulation of bone homeostasis. FASEB Bioadv 2020; 2:668-679. [PMID: 33205007 PMCID: PMC7655096 DOI: 10.1096/fba.2020-00058] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Bone homeostasis is securely controlled by the dynamic well‐balanced actions among osteoclasts, osteoblasts and osteocytes. Osteoclasts are large multinucleated cells that degrade bone matrix and involve in the bone remodelling in conjunction with other bone cells, osteoblasts and osteocytes, the completely matured form of osteoblasts. Disruption of this controlling balance among these cells or any disparity in bone remodelling caused by a higher rate of resorption by osteoclasts over construction of bone by osteoblasts results in a reduction of bone matrix including bone mineral density (BMD) and bone marrow cells (BMCs). The dominating effect of osteoclasts results in advanced risk of bone crack and joint destruction in several diseases including osteoporosis and rheumatoid arthritis (RA). However, the boosted osteoblastic activity produces osteosclerotic phenotype and weakened its action primes to osteomalacia or rickets. On the other hand, senescent osteocytes predominately progress the senescence associated secretory phenotype (SASP) and may contribute to age related bone loss. Here, we discuss an advanced level work on newly identified cellular mechanisms controlling the remodelling of bone and crosstalk among bone cells as these relate to the therapeutic targeting of the skeleton.
Collapse
Affiliation(s)
| | - Abdullah Al Mamun
- Department of Genetic Engineering and Biotechnology Shahjalal University of Science and Technology Sylhet Bangladesh
| |
Collapse
|
15
|
Bishoyi AK, Roham PH, Rachineni K, Save S, Hazari MA, Sharma S, Kumar A. Human islet amyloid polypeptide (hIAPP) - a curse in type II diabetes mellitus: insights from structure and toxicity studies. Biol Chem 2020; 402:133-153. [PMID: 33544470 DOI: 10.1515/hsz-2020-0174] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
The human islet amyloid polypeptide (hIAPP) or amylin, a neuroendocrine peptide hormone, is known to misfold and form amyloidogenic aggregates that have been observed in the pancreas of 90% subjects with Type 2 Diabetes Mellitus (T2DM). Under normal physiological conditions, hIAPP is co-stored and co-secreted with insulin; however, under chronic hyperglycemic conditions associated with T2DM, the overexpression of hIAPP occurs that has been associated with the formation of amyloid deposits; as well as the death and dysfunction of pancreatic β-islets in T2DM. Hitherto, various biophysical and structural studies have shown that during this process of aggregation, the peptide conformation changes from random structure to helix, then to β-sheet, subsequently to cross β-sheets, which finally form left-handed helical aggregates. The intermediates, formed during this process, have been shown to induce higher cytotoxicity in the β-cells by inducing cell membrane disruption, endoplasmic reticulum stress, mitochondrial dysfunction, oxidative stress, islet inflammation, and DNA damage. As a result, several research groups have attempted to target both hIAPP aggregation phenomenon and the destabilization of preformed fibrils as a therapeutic intervention for T2DM management. In this review, we have summarized structural aspects of various forms of hIAPP viz. monomer, oligomers, proto-filaments, and fibrils of hIAPP. Subsequently, cellular toxicity caused by toxic conformations of hIAPP has been elaborated upon. Finally, the need for performing structural and toxicity studies in vivo to fill in the gap between the structural and cellular aspects has been discussed.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Pratiksha H Roham
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Kavitha Rachineni
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Shreyada Save
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - M Asrafuddoza Hazari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| |
Collapse
|
16
|
Foll CL, Lutz TA. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr Physiol 2020; 10:811-837. [PMID: 32941692 DOI: 10.1002/cphy.c190034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article in the Neural and Endocrine Section of Comprehensive Physiology discusses the physiology and pathophysiology of the pancreatic hormone amylin. Shortly after its discovery in 1986, amylin has been shown to reduce food intake as a satiation signal to limit meal size. Amylin also affects food reward, sensitizes the brain to the catabolic actions of leptin, and may also play a prominent role in the development of certain brain areas that are involved in metabolic control. Amylin may act at different sites in the brain in addition to the area postrema (AP) in the caudal hindbrain. In particular, the sensitizing effect of amylin on leptin action may depend on a direct interaction in the hypothalamus. The concept of central pathways mediating amylin action became more complex after the discovery that amylin is also synthesized in certain hypothalamic areas but the interaction between central and peripheral amylin signaling remains currently unexplored. Amylin may also play a dominant pathophysiological role that is associated with the aggregation of monomeric amylin into larger, cytotoxic molecular entities. This aggregation in certain species may contribute to the development of type 2 diabetes mellitus but also cardiovascular disease. Amylin receptor pharmacology is complex because several distinct amylin receptor subtypes have been described, because other neuropeptides [e.g., calcitonin gene-related peptide (CGRP)] can also bind to amylin receptors, and because some components of the functional amylin receptor are also used for other G-protein coupled receptor (GPCR) systems. © 2020 American Physiological Society. Compr Physiol 10:811-837, 2020.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS. Insight into Evolution and Conservation Patterns of B1-Subfamily Members of GPCR. Int J Pept Res Ther 2020; 26:2505-2517. [PMID: 32421105 PMCID: PMC7223794 DOI: 10.1007/s10989-020-10043-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 11/25/2022]
Abstract
The diverse, evolutionary architectures of proteins can be regarded as molecular fossils, tracing a historical path that marks important milestones across life. The B1-subfamily of GPCRs (G-protein-coupled receptors) are medically significant proteins that comprise 15 transmembrane receptor proteins in Homo sapiens. These proteins control the intracellular concentration of cyclic AMP as well as various vital processes in the body. However, little is known about the evolutionary correlation and conservational blueprint of this GPCR subfamily. We performed a comprehensive analysis to understand the evolutionary architecture among 13 members of the B1-subfamily. Multiple sequence alignment analysis exhibited six multiple sequence aligned blocks and five highly aligned blocks. Molecular phylogenetics indicated that CRHR1 and CRHR2 share a typical ancestral relationship and are siblings in 100% bootstrap replications with a total of 24 nodes observed in the cladogram. CRHR2 has the maximum number of extremely conserved amino acids followed by ADCYAP1R1. The longest continuous number sequence logos (74) were found between sequence location 349 and 423, and consequently, the maximum and minimum logo height recorded was 3.6 bits and 0.18 bits, respectively. Finally, to understand the model and pattern of evolutionary relatedness, the conservation blueprint, and the diversification among the members of a protein family, GPCR distribution from several species throughout the animal kingdom was analysed. Together, the study provides an evolutionary insight and offers a rapid method to explore the potential of depicting the evolutionary relationship, conservation blueprint, and diversification among the B1-subfamily of GPCRs using bioinformatics, algorithm analysis, and mathematical models.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Adamas University, North, 24 Parganas, Kolkata, 700126 West Bengal India
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| |
Collapse
|
18
|
Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa ESA, Sun Q. Calcitonin and Bone Physiology: In Vitro, In Vivo, and Clinical Investigations. Int J Endocrinol 2020; 2020:3236828. [PMID: 32963524 PMCID: PMC7501564 DOI: 10.1155/2020/3236828] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Calcitonin was discovered as a peptide hormone that was known to reduce the calcium levels in the systemic circulation. This hypocalcemic effect is produced due to multiple reasons such as inhibition of bone resorption or suppression of calcium release from the bone. Thus, calcitonin was said as a primary regulator of the bone resorption process. This is the reason why calcitonin has been used widely in clinics for the treatment of bone disorders such as osteoporosis, hypercalcemia, and Paget's disease. However, presently calcitonin usage is declined due to the development of efficacious formulations of new drugs. Calcitonin gene-related peptides and several other peptides such as intermedin, amylin, and adrenomedullin (ADM) are categorized in calcitonin family. These peptides are known for the structural similarity with calcitonin. Aside from having a similar structure, these peptides have few overlapping biological activities and signal transduction action through related receptors. However, several other activities are also present that are peptide specific. In vitro and in vivo studies documented the posttreatment effects of calcitonin peptides, i.e., positive effect on bone osteoblasts and their formation and negative effect on osteoclasts and their resorption. The recent research studies carried out on genetically modified mice showed the inhibition of osteoclast activity by amylin, while astonishingly calcitonin plays its role by suppressing osteoblast and bone turnover. This article describes the review of the bone, the activity of the calcitonin family of peptides, and the link between them.
Collapse
Affiliation(s)
- Jingbo Xie
- Department of Orthopedics, Fengcheng People's Hospital, Fengcheng, Jiangxi 331100, China
| | - Jian Guo
- Department of the Second Orthopedics, Hongdu Hospital of Traditional Chinese Medicine Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang Hongdu Traditional Chinese Medicine Hospital, Nanchang, Jiangxi 330008, China
| | | | - Mingzheng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiangyang Lv
- Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | | | - Ping Li
- Department of Orthopaedics, Ya'an People's Hospital, Ya'an, Sichuan 625000, China
| | | | | | - Qingshan Sun
- Department of Orthopedics, The Third Hospital of Shandong Province, Jinan, Shandong 250031, China
| |
Collapse
|
19
|
Ustulin M, Park SY, Choi H, Chon S, Woo JT, Rhee SY. Effect of Dipeptidyl Peptidase-4 Inhibitors on the Risk of Bone Fractures in a Korean Population. J Korean Med Sci 2019; 34:e224. [PMID: 31496139 PMCID: PMC6732257 DOI: 10.3346/jkms.2019.34.e224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/24/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND There have been equivocal results in studies of the effects of dipeptidyl peptidase-4 inhibitors (DPP-4i) on fractures. In this study, we analyzed the effect of DPP-4i on bone fracture risk in a Korean population. METHODS We extracted subjects (n = 11,164) aged 50 years or older from the National Health Insurance Service-National Sample Cohort 2.0 from 2009 to 2014. Our control group included subjects without diabetes (n = 5,582), and our treatment groups with diabetes included DPP-4i users (n = 1,410) and DPP-4i non-users (n = 4,172). The primary endpoint was the incidence of a composite outcome consisting of osteoporosis diagnosis, osteoporotic fractures, vertebral fractures, non-vertebral fractures, and femoral fractures. The secondary endpoint was the incidence of each individual component of the composite outcome. Survival analysis was performed with adjustment for age, gender, diabetes complications severity index, Charlson comorbidity index, hypertension medication, and dyslipidemia treatment. RESULTS The incidence of the composite outcome per 1,000 person-years was 0.089 in DPP-4i users, 0.099 in DPP-4i non-users, and 0.095 in controls. There was no significant difference in fracture risk between DPP-4i users and DPP-4i non-users or controls after the adjustments (P > 0.05). The incidences of osteoporosis diagnosis, osteoporotic fractures, vertebral fractures, non-vertebral fractures, and femoral fractures were not significantly different between DPP-4i users and non-users. The results of subgroup analyses by gender and age were consistent. CONCLUSION DPP-4i had no significant effect on the risk of fractures in a Korean population.
Collapse
Affiliation(s)
- Morena Ustulin
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Korea
| | - So Young Park
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
| | - Hangseok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Suk Chon
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Korea
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jeong Taek Woo
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Korea
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sang Youl Rhee
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Korea
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Wollenberg Valero KC, Marshall JC, Bastiaans E, Caccone A, Camargo A, Morando M, Niemiller ML, Pabijan M, Russello MA, Sinervo B, Werneck FP, Sites JW, Wiens JJ, Steinfartz S. Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes (Basel) 2019; 10:genes10090646. [PMID: 31455040 PMCID: PMC6769790 DOI: 10.3390/genes10090646] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
In this contribution, the aspects of reptile and amphibian speciation that emerged from research performed over the past decade are reviewed. First, this study assesses how patterns and processes of speciation depend on knowing the taxonomy of the group in question, and discuss how integrative taxonomy has contributed to speciation research in these groups. This study then reviews the research on different aspects of speciation in reptiles and amphibians, including biogeography and climatic niches, ecological speciation, the relationship between speciation rates and phenotypic traits, and genetics and genomics. Further, several case studies of speciation in reptiles and amphibians that exemplify many of these themes are discussed. These include studies of integrative taxonomy and biogeography in South American lizards, ecological speciation in European salamanders, speciation and phenotypic evolution in frogs and lizards. The final case study combines genomics and biogeography in tortoises. The field of amphibian and reptile speciation research has steadily moved forward from the assessment of geographic and ecological aspects, to incorporating other dimensions of speciation, such as genetic mechanisms and evolutionary forces. A higher degree of integration among all these dimensions emerges as a goal for future research.
Collapse
Affiliation(s)
| | - Jonathon C Marshall
- Department of Zoology, Weber State University, 1415 Edvalson Street, Dept. 2505, Ogden, UT 84401, USA
| | - Elizabeth Bastiaans
- Department of Biology, State University of New York, College at Oneonta, Oneonta, NY 13820, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Arley Camargo
- Centro Universitario de Rivera, Universidad de la República, Ituzaingó 667, Rivera 40000, Uruguay
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC, CENPAT-CONICET) Bv. Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Fernanda P Werneck
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060-000, Brazil
| | - Jack W Sites
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sebastian Steinfartz
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| |
Collapse
|
21
|
The role of GPCRs in bone diseases and dysfunctions. Bone Res 2019; 7:19. [PMID: 31646011 PMCID: PMC6804689 DOI: 10.1038/s41413-019-0059-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. Furthermore, deficiency in 6 GPCRs induced osteoporosis; 4 induced osteoarthritis; 3 delayed fracture healing; 3 reduced arthritis severity; and reduced bone strength, increased bone strength, and increased cortical thickness were each observed in 2 GPCR-deficiency models. The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis, population studies, and investigation of phenotype correlation with SNPs to elucidate GPCR function in human diseases.
Collapse
|
22
|
Lerner UH, Kindstedt E, Lundberg P. The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol 2019; 46 Suppl 21:33-51. [DOI: 10.1111/jcpe.13051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/05/2018] [Accepted: 12/01/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ulf H. Lerner
- Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition; Institute of Medicine; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
- Department of Odontology; Division of Molecular Periodontology; Umeå University; Umeå Sweden
| | - Elin Kindstedt
- Department of Odontology; Division of Molecular Periodontology; Umeå University; Umeå Sweden
| | - Pernilla Lundberg
- Department of Odontology; Division of Molecular Periodontology; Umeå University; Umeå Sweden
| |
Collapse
|
23
|
Naot D, Musson DS, Cornish J. The Activity of Peptides of the Calcitonin Family in Bone. Physiol Rev 2019; 99:781-805. [PMID: 30540227 DOI: 10.1152/physrev.00066.2017] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcitonin was discovered over 50 yr ago as a new hormone that rapidly lowers circulating calcium levels. This effect is caused by the inhibition of calcium efflux from bone, as calcitonin is a potent inhibitor of bone resorption. Calcitonin has been in clinical use for conditions of accelerated bone turnover, including Paget's disease and osteoporosis; although in recent years, with the development of drugs that are more potent inhibitors of bone resorption, its use has declined. A number of peptides that are structurally similar to calcitonin form the calcitonin family, which currently includes calcitonin gene-related peptides (αCGRP and βCGRP), amylin, adrenomedullin, and intermedin. Apart from being structurally similar, the peptides signal through related receptors and have some overlapping biological activities, although other activities are peptide specific. In bone, in vitro studies and administration of the peptides to animals generally found inhibitory effects on osteoclasts and bone resorption and positive effects on osteoblasts and bone formation. Surprisingly, studies in genetically modified mice have demonstrated that the physiological role of calcitonin appears to be the inhibition of osteoblast activity and bone turnover, whereas amylin inhibits osteoclast activity. The review article focuses on the activities of peptides of the calcitonin family in bone and the challenges in understanding the relationship between the pharmacological effects and the physiological roles of these peptides.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - David S Musson
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|
24
|
Kalaitzoglou E, Fowlkes JL, Popescu I, Thrailkill KM. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019; 35:e3100. [PMID: 30467957 PMCID: PMC6358500 DOI: 10.1002/dmrr.3100] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects. The sulfonylurea class of drugs, owing to its hypoglycemic potential, is thought to amplify the risk of fall-related fractures, particularly in the elderly. Other agents such as the biguanides may, in fact, be osteo-anabolic. In contrast, despite similarly expected anabolic properties of insulin, data suggests that insulin pharmacotherapy itself, particularly in type 2 diabetes, may be a risk factor for fracture, negatively associated with determinants of bone quality and bone strength. Finally, sodium-dependent glucose co-transporter 2 inhibitors have been associated with an increased risk of atypical fractures in select populations, and possibly with an increase in lower extremity amputation with specific SGLT2I drugs. The role of skeletal muscle, as a potential mediator and determinant of bone quality, is also a relevant area of exploration. Currently, data regarding the impact of glucose lowering medications on diabetes-related muscle atrophy is more limited, although preclinical studies suggest that various hypoglycemic agents may have either aggravating (sulfonylureas, glinides) or repairing (thiazolidinediones, biguanides, incretins) effects on skeletal muscle atrophy, thereby influencing bone quality. Hence, the therapeutic efficacy of each hypoglycemic agent must also be evaluated in light of its impact, alone or in combination, on musculoskeletal health, when determining an individualized treatment approach. Moreover, the effect of newer medications (potentially seeking expanded clinical indication into the pediatric age range) on the growing skeleton is largely unknown. Herein, we review the available literature regarding effects of diabetes pharmacotherapy, by drug class and/or by clinical indication, on the musculoskeletal health of persons with diabetes.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Iuliana Popescu
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
25
|
Kang IS, Kim C. Taurine Chloramine Inhibits Osteoclastic Differentiation and Osteoclast Marker Expression in RAW 264.7 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:61-70. [PMID: 31468386 DOI: 10.1007/978-981-13-8023-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Taurine is an abundant sulfur-containing amino acid in myeloid cells. It undergoes halogenation in activated phagocytes and is converted to taurine chloramine (TauCl) and taurine bromamine. Bone homeostasis is mediated by the balance between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoclasts are bone-resorbing multinucleated cells differentiated from monocyte/macrophage precursor cells in response to receptor activator of NF-κB ligand (RANKL). In this study, we investigated the effect of TauCl on RANKL-induced osteoclastogenesis from RAW 264.7 macrophages. TauCl inhibited the formation of multi-nucleated osteoclast and the activity of tartrate-resistant acid phosphatase (TRAP). TauCl decreased the mRNA expression of osteoclast markers, such as TRAP, cathepsin K, and calcitonin receptor. TauCl also inhibited expression of the transcription factors, c-Fos and nuclear factor of activated T cells, which are important for osteoclast differentiation. These results suggest that TauCl might be used as a therapeutic agent to treat bone diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- In Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, South Korea
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, South Korea.
| |
Collapse
|
26
|
Regulation of heteronuclear Pt–Ru complexes on the fibril formation and cytotoxicity of human islet amyloid polypeptide. J Inorg Biochem 2018; 189:7-16. [DOI: 10.1016/j.jinorgbio.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022]
|
27
|
Fazeli PK, Klibanski A. Effects of Anorexia Nervosa on Bone Metabolism. Endocr Rev 2018; 39:895-910. [PMID: 30165608 PMCID: PMC6226604 DOI: 10.1210/er.2018-00063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/21/2018] [Indexed: 01/14/2023]
Abstract
Anorexia nervosa is a psychiatric disease characterized by a low-weight state due to self-induced starvation. This disorder, which predominantly affects women, is associated with hormonal adaptations that minimize energy expenditure in the setting of low nutrient intake. These adaptations include GH resistance, functional hypothalamic amenorrhea, and nonthyroidal illness syndrome. Although these adaptations may be beneficial to short-term survival, they contribute to the significant and often persistent morbidity associated with this disorder, including bone loss, which affects >85% of women. We review the hormonal adaptions to undernutrition, review hormonal treatments that have been studied for both the underlying disorder as well as for the associated decreased bone mass, and discuss the important challenges that remain, including the lack of long-term treatments for bone loss in this chronic disorder and the fact that despite recovery, many individuals who experience bone loss as adolescents have chronic deficits and an increased risk of fracture in adulthood.
Collapse
Affiliation(s)
- Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Brennan RS, Healy TM, Bryant HJ, La MV, Schulte PM, Whitehead A. Integrative Population and Physiological Genomics Reveals Mechanisms of Adaptation in Killifish. Mol Biol Evol 2018; 35:2639-2653. [PMID: 30102365 PMCID: PMC11325861 DOI: 10.1093/molbev/msy154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adaptive divergence between marine and freshwater (FW) environments is important in generating phyletic diversity within fishes, but the genetic basis of this process remains poorly understood. Genome selection scans can identify adaptive loci, but incomplete knowledge of genotype-phenotype connections makes interpreting their significance difficult. In contrast, association mapping (genome-wide association mapping [GWAS], random forest [RF] analyses) links genotype to phenotype, but offer limited insight into the evolutionary forces shaping variation. Here, we combined GWAS, RF, and selection scans to identify loci important in adaptation to FW environments. We utilized FW-native and brackish water (BW)-native populations of Atlantic killifish (Fundulus heteroclitus) as well as a naturally admixed population between the two. We measured morphology and multiple physiological traits that differ between populations and may contribute to osmotic adaptation (salinity tolerance, hypoxia tolerance, metabolic rate, body shape) and used a reduced representation approach for genome-wide genotyping. Our results show patterns of population divergence in physiological capabilities that are consistent with local adaptation. Population genomic scans between BW-native and FW-native populations identified genomic regions evolving by natural selection, whereas association mapping revealed loci that contribute to variation for each trait. There was substantial overlap in the genomic regions putatively under selection and loci associated with phenotypic traits, particularly for salinity tolerance, suggesting that these regions and genes are important for adaptive divergence between BW and FW environments. Together, these data provide insight into the mechanisms that enable diversification of fishes across osmotic boundaries.
Collapse
Affiliation(s)
- Reid S Brennan
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
- Department of Biology, University of Vermont, Burlington, VT
| | - Timothy M Healy
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Heather J Bryant
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Man Van La
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
| |
Collapse
|
29
|
Yang S, Zhang W, Cai M, Zhang Y, Jin F, Yan S, Baloch Z, Fang Z, Xue S, Tang R, Xiao J, Huang Q, Sun Y, Wang X. Suppression of Bone Resorption by miR-141 in Aged Rhesus Monkeys. J Bone Miner Res 2018; 33:1799-1812. [PMID: 29852535 DOI: 10.1002/jbmr.3479] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Aging-related osteoporosis (OP) is considered a serious public health concern. Approximately 30% of postmenopausal women suffer from OP; more than 40% of them risk fragility fractures. Multiple drugs have been prescribed to treat OP, but they are not ideal because of low cure rates and adverse side effects. miRNA-based gene therapy is a rapidly developing strategy in disease treatment that presents certain advantages, such as large-scale production capability, genetic safety, and rapid effects. miRNA drugs have been used primarily in cancer treatments; they have not yet been reported as candidates for osteoclast-targeted-OP treatment in primates. Their therapeutic efficacy has been limited by several shortcomings, such as low efficiency of selective delivery, insufficient expression levels in targeting cells, and unexpected side effects. Here, we identify miR-141 as a critical suppressor of osteoclastogenesis and bone resorption. The expression levels of miR-141 are positively correlated with BMD and negatively correlated with the aging of bones in both aged rhesus monkeys (Macaca mulatta) and osteoporotic patients. Selective delivery of miR-141 into the osteoclasts of aged rhesus monkeys via a nucleic acid delivery system allowed for a gradual increase in bone mass without significant effects on the health and function of primary organs. Furthermore, we found that the functional mechanism of miR-141 resides in its targeting of two osteoclast differentiation players, Calcr (calcitonin receptors) and EphA2 (ephrin type-A receptor 2 precursor). Our study suggests that miRNAs, such as miR-141, could play a crucial role in suppressing bone resorption in primates and provide reliable experimental evidence for the clinical application of miRNA in OP treatment. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Shihua Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Wenhui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Mingxiang Cai
- School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Yuanxu Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Fujun Jin
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Sen Yan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zulqurain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Zhihao Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Senren Xue
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Rongping Tang
- WinconTheraCells Biotechnologies Co. Ltd, Nanning, China
| | - Jia Xiao
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qunshan Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Yao Sun
- School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Xiaogang Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100083, China
| |
Collapse
|
30
|
IAPP in type II diabetes: Basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Park B, Song HS, Kwon JE, Cho SM, Jang SA, Kim MY, Kang SC. Effects of Salvia miltiorrhiza extract with supplemental liquefied calcium on osteoporosis in calcium-deficient ovariectomized mice. Altern Ther Health Med 2017; 17:545. [PMID: 29262817 PMCID: PMC5738837 DOI: 10.1186/s12906-017-2047-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023]
Abstract
Background Extracts from Salvia miltiorrhiza Bunge have been used in traditional Asian medicine to treat coronary heart disease, chronic renal failure, atherosclerosis, myocardial infraction, angina pectoris, myocardial ischemia, dysmenorrheal, neurasthenic insomnia, liver fibrosis and cirrhosis. The aim of the study was to investigate the anti-RANK signal effect of the combination of S.miltiorrhiza Bunge (SME) and liquefied calcium (LCa) supplement with ovariectomized (OVX-SML) mice, a osteoporosis animal model. Results were compared to 17β-estradiol (E2) treatment. Methods A total of 70 female ICR strain mice (7 weeks) were randomly divided into 10 groups with 7 mice in each group as follows: (1) sham-operated control mice (sham) received daily oral phosphate-buffered-saline (PBS) of equal volumes through oral administration. (2) OVX mice received a daily oral administration of PBS (OVX). (3) OVX mice treated daily with 50 mg/kg b.w./ day of SME (4) with 100 mg/kg b.w./day of SME or (5) with 200 mg/kg b.w./day of SME via oral administration. (6) OVX mice treated daily with 50 mg/kg b.w./day of SML (7) with 100 mg/kg b.w./day of SML or (8) with 200 mg/kg b.w./day of SML via oral administration. (9) OVX mice treated daily with 10 ml/kg b.w./day of LCa (10) OVX mice received i.p. injections of 17β-estradiol (E2) (0.1 mg/kg b.w./day) three times per week for 12 weeks. Results micro-CT analysis revealed that oral administration of SML inhibited tibial bone loss, sustained trabecular bone state, and ameliorated bone biochemical markers. In addition, SML administration compared to SEM and LCa reduced serum levels of RANKL, osteocalcin and BALP through increased serum levels of OPG and E2 in OVX mice. SML also had more beneficial effects on protection of estrogen-dependent bone loss through blocking expression of TRAF6 and NFTAc1 and produces cathepsin K and calcitonin receptor to develop osteoclast differentiation. Conclusion These data suggest that S. miltiorrhiza Bunge combined with liquefied calcium supplement has an inhibitory activity in OVX mice. This result implies the possibility of a pharmacological intervention specifically directed toward a disease such as osteoporosis where decreased bone strength increases the risk of a broken bone. Electronic supplementary material The online version of this article (10.1186/s12906-017-2047-y) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Zhang M, Ren B, Liu Y, Liang G, Sun Y, Xu L, Zheng J. Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations. ACS Chem Neurosci 2017; 8:1789-1800. [PMID: 28585804 DOI: 10.1021/acschemneuro.7b00160] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interaction of human islet amyloid polypeptide (hIAPP) peptides with cell membrane is crucial for the understanding of amyloid toxicity associated with Type II diabetes (T2D). While it is known that the hIAPP-membrane interactions are considered to promote hIAPP aggregation into fibrils and induce membrane disruption, the membrane-induced conformation, orientation, aggregation, and adsorption behaviors of hIAPP peptides have not been well understood at the atomic level. Herein, we perform all-atom explicit-water molecular dynamics (MD) simulations to study the adsorption, orientation, and surface interaction of hIAPP aggregates with different sizes (monomer to tetramer) and conformations (monomer with α-helix and tetramer with β-sheet-rich U-turn) upon adsorption on the lipid bilayers composed of both pure zwitterionic POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and mixed anionic POPC/POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) (3:1) lipids. MD simulation results show that hIAPP monomer with α-helical conformation and hIAPP pentamer with β-sheet conformation can adsorb on both POPC and POPC/POPE bilayers via a preferential orientation of N-terminal residues facing toward the bilayer surface. The hIAPP aggregates show stronger interactions with mixed POPC/POPE lipids than pure POPC lipids, consistent with experimental observation that hIAPP adsorption and fibrililation are enhanced on mixed lipid bilayers. While electrostatic interactions are main attractive forces to drive the hIAPP aggregates to adsorb on both bilayers, the introduction of the more hydrophilic head groups of POPE lipids further promote the formation of the interfacial hydrogen bonds. Complement to our previous studies of hIAPP aggregates in bulk solution, this computational work increases our knowledge about the mechanism of amyloid peptide-membrane interactions that is central to the understanding the progression of all amyloid diseases.
Collapse
Affiliation(s)
- Mingzhen Zhang
- College
of Life Sciences and Chemistry Hunan University of Technology, Zhuzhou 412007, China
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Baiping Ren
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Guizhao Liang
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Yan Sun
- Department
of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lijian Xu
- College
of Life Sciences and Chemistry Hunan University of Technology, Zhuzhou 412007, China
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
33
|
Bartelt A, Jeschke A, Müller B, Gaziano I, Morales M, Yorgan T, Heckt T, Heine M, Gagel RF, Emeson RB, Amling M, Niemeier A, Heeren J, Schinke T, Keller J. Differential effects of Calca-derived peptides in male mice with diet-induced obesity. PLoS One 2017; 12:e0180547. [PMID: 28666011 PMCID: PMC5493411 DOI: 10.1371/journal.pone.0180547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022] Open
Abstract
Key metabolic hormones, such as insulin, leptin, and adiponectin, have been studied extensively in obesity, however the pathophysiologic relevance of the calcitonin family of peptides remains unclear. This family includes calcitonin (CT), its precursor procalcitonin (PCT), and alpha calcitonin-gene related peptide (αCGRP), which are all encoded by the gene Calca. Here, we studied the role of Calca-derived peptides in diet-induced obesity (DIO) by challenging Calcr-/- (encoding the calcitonin receptor, CTR), Calca-/-, and αCGRP-/- mice and their respective littermates with high-fat diet (HFD) feeding for 16 weeks. HFD-induced pathologies were assessed by glucose tolerance, plasma cytokine and lipid markers, expression studies and histology. We found that DIO in mice lacking the CTR resulted in impaired glucose tolerance, features of enhanced nonalcoholic steatohepatitis (NASH) and adipose tissue inflammation compared to wildtype littermates. Furthermore, CTR-deficient mice were characterized by dyslipidemia and elevated HDL levels. In contrast, mice lacking Calca were protected from DIO, NASH and adipose tissue inflammation, and displayed improved glucose tolerance. Mice exclusively lacking αCGRP displayed a significantly less improved DIO phenotype compared to Calca-deficient mice. In summary, we demonstrate that the CT/CTR axis is involved in regulating plasma cholesterol levels while Calca, presumably through PCT, seems to have a detrimental effect in the context of metabolic disease. Our study provides the first comparative analyses of the roles of Calca-derived peptides and the CTR in metabolic disease.
Collapse
Affiliation(s)
- Alexander Bartelt
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Brigitte Müller
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabella Gaziano
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Morales
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, California, United States of America
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Heckt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert F. Gagel
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ronald B. Emeson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Niemeier
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Abstract
Diabetes be it type 1 or type 2 is associated with an increased risk of fragility fractures. The mechanisms underlying this increased risk are just being elucidated. Anti-diabetes medications are crucial for maintaining glucose control and for preventing micro- and macrovascular complications in diabetes. However, they may modulate fracture risk in diabetes in different ways. Thiazolidinediones have demonstrated an unfavorable effect on the skeleton, while metformin and sulfonylureas may have a neutral if not beneficial effect on bone. The use of insulin has been associated with an increased risk of fragility fractures though it is not clear whether it is due to direct influence of insulin or whether it is mediated through hypoglycemia and increased falls risk. The overall effect of incretin mimetics appears to be beneficial; however, this has to be elucidated further. The bone effects of pramlintide, a synthetic analog of amylin, have not been explored fully. Finally, issues regarding bone safety of SGLT2 (sodium-dependent glucose transporter 2) inhibitors, the newest anti-diabetic medications on the market are of concern. The purpose of this review is to provide a comprehensive overview of the effect of these medications on bone metabolism and the studies exploring the risk or lack thereof of these medications on bone loss and fragility fractures.
Collapse
Affiliation(s)
- Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, ACADEMIA, 20 College Road, Singapore, 169856, Singapore.
| |
Collapse
|
35
|
Abstract
The purpose of this article is to present information that will assist the diabetes educator in screening patients with diabetes for risk of osteoporosis and fracture, to offer appropriate treatment options for patients, and to identify potential referrals to other providers for patients with diabetes and increased risk of fracture.
Collapse
Affiliation(s)
- Karen Kemmis
- The Joslin Diabetes Center affiliate at SUNY Upstate Medical University, Syracuse, New York
| | - Diana Stuber
- The Joslin Diabetes Center affiliate at SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
36
|
Mabilleau G, Perrot R, Mieczkowska A, Boni S, Flatt PR, Irwin N, Chappard D. Glucose-dependent insulinotropic polypeptide (GIP) dose-dependently reduces osteoclast differentiation and resorption. Bone 2016; 91:102-12. [PMID: 27451082 DOI: 10.1016/j.bone.2016.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
A role for glucose-dependent insulinotropic polypeptide (GIP) in controlling bone resorption has been suspected. However uncertainty remains to identify whether GIP act directly on osteoclasts. The aim of the present study were (i) to identify in different osteoclast differentiation models (human peripheral blood mononuclear cells-PBMC, murine bone marrow macrophage-BMM and murine Raw 264.7 cells) whether GIP was capable of reducing osteoclast formation and resorption; (ii) ascertain whether the highly potent GIP analogue N-AcGIP was capable of inducing a response at lower concentrations and (iii) to decipher the molecular mechanisms responsible for such effects. [d-Ala(2)]-GIP dose-dependently reduced osteoclast formation at concentration as low as 1nM in human PBMC and 10nM in murine BMM cultures. Furthermore, [d-Ala(2)]-GIP also reduced the extent of osteoclast resorption at concentration as low as 1nM in human PBMC and murine BMM cultures. The mechanism of action of [d-Ala(2)]-GIP appeared to be mediated by reduction in intracellular calcium concentration and oscillation that subsequently inhibited calcineurin activity and NFATc1 nuclear translocation. The potency of the highly potent N-AcGIP was determined and highlighted an effect on osteoclast formation and resorption at concentration ten times lower than observed with [d-Ala(2)]-GIP in vitro. Furthermore, N-AcGIP was also capable of reducing the number of osteoclast in ovariectomized mice as well as the circulating level of type I collagen C-telopeptide. Pharmacological concentrations required for reducing osteoclast formation and resorption provide the impetus to design and exploit enzymatically stable GIP analogues for the treatment of bone resorption disorders in humans.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France.
| | - Rodolphe Perrot
- SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France
| | - Aleksandra Mieczkowska
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France
| | - Sébastien Boni
- Lentivec, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Diabetes Research Group, Biomedical Sciences Research Institute, University of Ulster, BT52 1SA Coleraine, United Kingdom
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Diabetes Research Group, Biomedical Sciences Research Institute, University of Ulster, BT52 1SA Coleraine, United Kingdom
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, University of Angers, 49933 ANGERS Cedex, France
| |
Collapse
|
37
|
Kovacs CS. Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery. Physiol Rev 2016; 96:449-547. [PMID: 26887676 DOI: 10.1152/physrev.00027.2015] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During pregnancy and lactation, female physiology adapts to meet the added nutritional demands of fetuses and neonates. An average full-term fetus contains ∼30 g calcium, 20 g phosphorus, and 0.8 g magnesium. About 80% of mineral is accreted during the third trimester; calcium transfers at 300-350 mg/day during the final 6 wk. The neonate requires 200 mg calcium daily from milk during the first 6 mo, and 120 mg calcium from milk during the second 6 mo (additional calcium comes from solid foods). Calcium transfers can be more than double and triple these values, respectively, in women who nurse twins and triplets. About 25% of dietary calcium is normally absorbed in healthy adults. Average maternal calcium intakes in American and Canadian women are insufficient to meet the fetal and neonatal calcium requirements if normal efficiency of intestinal calcium absorption is relied upon. However, several adaptations are invoked to meet the fetal and neonatal demands for mineral without requiring increased intakes by the mother. During pregnancy the efficiency of intestinal calcium absorption doubles, whereas during lactation the maternal skeleton is resorbed to provide calcium for milk. This review addresses our current knowledge regarding maternal adaptations in mineral and skeletal homeostasis that occur during pregnancy, lactation, and post-weaning recovery. Also considered are the impacts that these adaptations have on biochemical and hormonal parameters of mineral homeostasis, the consequences for long-term skeletal health, and the presentation and management of disorders of mineral and bone metabolism.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
38
|
Time-dependent transcriptomic and biochemical responses of 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are explained by AHR activation time. Biochem Pharmacol 2016; 115:134-43. [PMID: 27301797 DOI: 10.1016/j.bcp.2016.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/08/2016] [Indexed: 12/31/2022]
Abstract
6-Formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are ligands of the aryl hydrocarbon receptor (AHR) and bind to the AHR with high affinity. Until recently, TCDD was considered to be the most potent AHR agonist, but several recent studies indicate that FICZ binds with greater affinity to the AHR than TCDD. To advance our understanding of the similarities and differences of the effects of FICZ and TCDD exposure in chicken embryo hepatocyte (CEH) cultures, we compared relative expression changes of 27 dioxin-responsive genes by the use of a chicken PCR array, porphyrin accumulation and ethoxyresorufin-O-deethylase (EROD) activity at different time points. In addition, an egg injection study was performed to assess the effects of FICZ on the developing chicken embryo. The results of the current study showed: (1) mean EROD-derived relative potency values for FICZ compared to TCDD changed as a function of time (i.e. 9, 0.004, 0.0008 and 0.00008 at 3, 8, 24, and 48h, respectively) in CEH cultures; (2) FICZ exposure did not result in porphyrin accumulation in CEH cultures; (3) concordance between gene expression profiles for FICZ and TCDD was time- and concentration-dependent, and (4) no mortality or morphological abnormalities were observed in chicken embryos injected with 0.87ng FICZ/g egg into the air cell. The results presented herein suggest that while FICZ and TCDD share similar molecular targets, transient versus sustained AHR activation by FICZ and TCDD result in differential transcriptomic responses. Moreover, rapid metabolism of FICZ in hepatocytes resulted in a significant decrease in the induction of EROD activity.
Collapse
|
39
|
Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: Pharmacology, Physiology, and Clinical Potential. Pharmacol Rev 2016; 67:564-600. [PMID: 26071095 DOI: 10.1124/pr.115.010629] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin's major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 and type 2 diabetes. Clinical studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Steve Chen
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Thomas A Lutz
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - David G Parkes
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Jonathan D Roth
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| |
Collapse
|
40
|
Shanbhogue VV, Mitchell DM, Rosen CJ, Bouxsein ML. Type 2 diabetes and the skeleton: new insights into sweet bones. Lancet Diabetes Endocrinol 2016; 4:159-73. [PMID: 26365605 DOI: 10.1016/s2213-8587(15)00283-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022]
Abstract
Substantial evidence shows that skeletal fragility should be considered among the complications associated with type 2 diabetes. Individuals with type 2 diabetes have increased fracture risk, despite normal bone mineral density (BMD) and high BMI-factors that are generally protective against fractures. The mechanisms underlying skeletal fragility in diabetes are not completely understood, but are multifactorial and likely include effects of obesity, hyperglycaemia, oxidative stress, and accumulation of advanced glycation end products, leading to altered bone metabolism, structure, and strength. Clinicians should be aware that BMD measurements underestimate fracture risk in people with type 2 diabetes, and that new treatments for diabetes, with neutral or positive effects on skeletal health, might play a part in the management of diabetes in those at high risk of fracture. Data for the optimum management of osteoporosis in patients with type 2 diabetes are scarce, but in the absence of evidence to the contrary, physicians should follow guidelines established for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Vikram V Shanbhogue
- Department of Endocrinology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, Odense Denmark
| | - Deborah M Mitchell
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Yamaguchi M, Watanabe Y, Ohtani T, Uezumi A, Mikami N, Nakamura M, Sato T, Ikawa M, Hoshino M, Tsuchida K, Miyagoe-Suzuki Y, Tsujikawa K, Takeda S, Yamamoto H, Fukada SI. Calcitonin Receptor Signaling Inhibits Muscle Stem Cells from Escaping the Quiescent State and the Niche. Cell Rep 2015; 13:302-14. [PMID: 26440893 DOI: 10.1016/j.celrep.2015.08.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 06/09/2015] [Accepted: 08/31/2015] [Indexed: 01/26/2023] Open
Abstract
Calcitonin receptor (Calcr) is expressed in adult muscle stem cells (muscle satellite cells [MuSCs]). To elucidate the role of Calcr, we conditionally depleted Calcr from adult MuSCs and found that impaired regeneration after muscle injury correlated with the decreased number of MuSCs in Calcr-conditional knockout (cKO) mice. Calcr signaling maintained MuSC dormancy via the cAMP-PKA pathway but had no impact on myogenic differentiation of MuSCs in an undifferentiated state. The abnormal quiescent state in Calcr-cKO mice resulted in a reduction of the MuSC pool by apoptosis. Furthermore, MuSCs were found outside their niche in Calcr-cKO mice, demonstrating cell relocation. This emergence from the sublaminar niche was prevented by the Calcr-cAMP-PKA and Calcr-cAMP-Epac pathways downstream of Calcr. Altogether, the findings demonstrated that Calcr exerts its effect specifically by keeping MuSCs in a quiescent state and in their location, maintaining the MuSC pool.
Collapse
Affiliation(s)
- Masahiko Yamaguchi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoko Watanabe
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuji Ohtani
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akiyoshi Uezumi
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - Norihisa Mikami
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miki Nakamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiko Sato
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroshi Yamamoto
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - So-ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
42
|
Xie YL, Xiao DM, Zhang YW, Yuan TP, Su XQ. Relationship between islet function and bone mineral density in first-degree relatives of patients with type 2 diabetes. Shijie Huaren Xiaohua Zazhi 2015; 23:2996-3000. [DOI: 10.11569/wcjd.v23.i18.2996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the relationship between islet function and bone mineral density in first-degree relatives of type 2 diabetes mellitus (T2DM) patients.
METHODS: In first-degree relatives of T2DM patients, 30 cases with normal glucose tolerance (NGT) [NGT (+) group] and 30 cases with impaired glucose tolerance (IGT) [IGT (+) group] were included in the study. Thirty healthy controls without family history of T2DM [NGT (-) group] were also included. Electrochemical luminescence immunoassay was used to test fasting insulin level and insulin level at 2 h after oral administration of 75 g anhydrous glucose powder. Lumbar spine and left femur bone mineral density was determined by X-ray absorptiometry.
RESULTS: The homeostasis model assessment-pancreatic beta-cell function (HOMA-beta) was significantly lower in the NGT (-) group than in the NGT (+) group and IGT (+) group, but showed no statistical difference between the NGT (+) group and IGT (+) group. Compared with the IGT (+) group and NGT (+) group, bone density of L2 to L4 (L2-L4), the femoral neck and femoral trochanter was significantly different in the NGT (-) group, although there was no statistical difference between NGT (+) group and NGT (-) group.
CONCLUSION: All T2DM first-degree relatives, regardless of whether they have NGT or IGT, have decreased islet function, and T2DM first-degree relatives with IGT have decreased bone mineral density in the lumbar spine and femoral both.
Collapse
|
43
|
Montalcini T, Gallotti P, Coppola A, Zambianchi V, Fodaro M, Galliera E, Marazzi MG, Romeo S, Giannini S, Corsi Romanelli MM, Pujia A, Gazzaruso C. Association between low C-peptide and low lumbar bone mineral density in postmenopausal women without diabetes. Osteoporos Int 2015; 26:1639-46. [PMID: 25616509 PMCID: PMC4428888 DOI: 10.1007/s00198-015-3040-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/12/2015] [Indexed: 11/13/2022]
Abstract
UNLABELLED In this population-based, cross-sectional study in Italian postmenopausal females not affected by diabetes, we showed a link between serum C-peptide and lumbar bone mineral density, suggesting that C-peptide exerts an insulin-independent effect on bone mass. INTRODUCTION It is well known that type 1 (T1) diabetes, characterized by insulin and C-peptide deficiency, is associated with a low lumbar bone mineral density and an increased risk for fracture. While a role for insulin in the pathogenesis of osteoporosis has been demonstrated, the association between C-peptide and the bone mineral density has not been investigated. We conducted a study in a cohort of 84 postmenopausal women without diabetes to clarify the association between serum C-peptide and the lumbar bone mineral density. METHODS Participants underwent a bone mineral density evaluation by DXA and biochemical analysis including the C-peptide assay. RESULTS rteen percent of the population had osteoporosis and 38% had osteopenia. With ANOVA test, we showed that women with the lowest C-peptide concentration had lower lumbar mineral density in comparison to those in all other C-peptide concentration group (p = 0.02 among groups after adjustment). The univariate and multivariate analysis showed that C-peptide was positively associated with both lumbar T-score and Z-score besides other well-known factors like age (with T-score p < 0.001; beta = -0.38) and BMI (with T-score p = 0.009; beta = 0.34), while insulin was not correlated with the lumbar bone mineral density. The area under the receiver operating characteristic (ROC) curve for C-peptide to predict the absence of lumbar osteoporosis was 0.74 (SE = 0.073; p = 0.013). CONCLUSIONS These results suggest that C-peptide may exert an insulin- and BMI-independent effect on lumbar bone mineral density and that further large-scale studies are needed in order to clarify its role in bone mineralization especially in subjects without diabetes.
Collapse
Affiliation(s)
- T Montalcini
- Clinical Nutrition Unit, Care Center in Menopause, Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, Campus Universitario Germaneto, Viale S. Venuta, 88100, Catanzaro, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Patients with type 2 diabetes mellitus (T2DM) have an increased risk of fragility fractures despite increased body weight and normal or higher bone mineral density. The mechanisms by which T2DM increases skeletal fragility are unclear. It is likely that a combination of factors, including a greater risk of falling, regional osteopenia, and impaired bone quality, contributes to the increased fracture risk. Drugs for the treatment of T2DM may also impact on the risk for fractures. For example, thiazolidinediones accelerate bone loss and increase the risk of fractures, particularly in older women. In contrast, metformin and sulfonylureas do not appear to have a negative effect on bone health and may, in fact, protect against fragility fracture. Animal models indicate a potential role for incretin hormones in bone metabolism, but there are only limited data on the impact of dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 agonists on bone health in humans. Animal models also have demonstrated a role for amylin in bone metabolism, but clinical trials in patients with type 1 diabetes with an amylin analog (pramlintide) have not shown a significant impact on bone metabolism. The effects of insulin treatment on fracture risk are inconsistent with some studies showing an increased risk and others showing no effect. Finally, although there is limited information on the latest class of medications for the treatment of T2DM, the sodium-glucose co-transporter-2 inhibitors, these drugs do not seem to increase fracture risk. Because diabetes is an increasingly common chronic condition that can affect patients for many decades, further research into the effects of agents for the treatment of T2DM on bone metabolism is warranted. In this review, the physiological mechanisms and clinical impact of diabetes treatments on bone health and fracture risk in patients with T2DM are described.
Collapse
Affiliation(s)
- Matthew P Gilbert
- Division of Endocrinology and Diabetes (M.P.G.), The University of Vermont College of Medicine, Burlington, Vermont 05405; and Florida Hospital Diabetes and Translational Research Institutes and Sanford-Burnham Medical Research Institute, Orlando, Florida 32827
| | | |
Collapse
|
45
|
Wauquier F, Léotoing L, Philippe C, Spilmont M, Coxam V, Wittrant Y. Pros and cons of fatty acids in bone biology. Prog Lipid Res 2015; 58:121-45. [PMID: 25835096 DOI: 10.1016/j.plipres.2015.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/06/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022]
Abstract
Despite the growing interest in deciphering the causes and consequences of obesity-related disorders, the mechanisms linking fat intake to bone behaviour remain unclear. Since bone fractures are widely associated with increased morbidity and mortality, most notably in elderly and obese people, bone health has become a major social and economic issue. Consistently, public health system guidelines have encouraged low-fat diets in order to reduce associated complications. However, from a bone point of view, mechanisms linking fat intake to bone alteration remain quite controversial. Thus, after more than a decade of dedicated studies, this timely review offers a comprehensive overview of the relationships between bone and fatty acids. Using clinical evidences as a starting-point to more complex molecular elucidation, this work highlights the complexity of the system and reveals that bone alteration that cannot be solved simply by taking ω-3 pills. Fatty acid effects on bone metabolism can be both direct and indirect and require integrated investigations. Furthermore, even at the level of a single cell, one fatty acid is able to trigger several different independent pathways (receptors, metabolites…) which may all have a say in the final cellular metabolic response.
Collapse
Affiliation(s)
- Fabien Wauquier
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Laurent Léotoing
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Claire Philippe
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Mélanie Spilmont
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Véronique Coxam
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Yohann Wittrant
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France.
| |
Collapse
|
46
|
The role of calcitonin receptor signalling in polyethylene particle-induced osteolysis. Acta Biomater 2015; 14:125-32. [PMID: 25486133 DOI: 10.1016/j.actbio.2014.11.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 11/14/2014] [Accepted: 11/28/2014] [Indexed: 12/28/2022]
Abstract
The detection of peptides from the calcitonin (CT) family in the periarticular tissue of loosened implants has raised hopes of opening new regenerative therapies in the process of aseptic loosening, which remains the major cause of early implant failure in endoprosthetic surgery. We have previously shown the roles of α-calcitonin gene-related peptide (α-CGRP) and the CALCA gene which encodes α-CGRP/CT in this process. To uncover the role of direct calcitonin receptor (CTR) mediated signalling, we studied particle-induced osteolysis (PIO) in a murine calvaria model with a global deletion of the CTR (CTR-KO) using μCT analysis and histomorphometry. As expected, CTR-KO mice revealed reduced bone volume compared to wild-type (WT) controls (p<0.05). In CTR-KO mice we found significantly higher RANKL (receptor activator of NF-κB ligand) expression in the particle group than in the control group. The increase in osteoclast numbers by the particles was twice as high as the increase of osteoclasts in the WT mice (400 vs. 200%). Changes in the eroded surface and actual osteolysis due to ultrahigh-molecular-weight polyethylene particles were similar in WTs and CTR-KOs. Taken together, our findings strengthen the relevance of the OPG/RANK/RANKL system in the PIO process. CTR seems to have an effect on osteoclast differentiation in this context. As there were no obvious changes of the amount of PIO in CTR deficiency, regenerative strategies in aseptic loosening of endoprosthetic implants based on peptides arising from the CT family should rather focus on the impact of α-CGRP.
Collapse
|
47
|
Chia LY, Walsh NC, Martin TJ, Sims NA. Isolation and gene expression of haematopoietic-cell-free preparations of highly purified murine osteocytes. Bone 2015; 72:34-42. [PMID: 25460578 DOI: 10.1016/j.bone.2014.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/14/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
To define their gene expression and function, osteocytes are commonly isolated and purified by fluorescence-activated cell sorting (FACS) from mice expressing GFP directed by the dentin matrix protein 1 (Dmp1) promoter (DMP1-GFP). These cells express mRNA for osteocyte genes, including sclerostin (Sost) and Dmp1, and genes associated with the osteoclast phenotype: Dcstamp, Oscar, Cathepsin K (Ctsk), tartrate resistant acid phosphatase (TRAP/Acp5) and calcitonin receptor (Calcr). This suggests either that osteoclasts and osteocytes share genes and functions or that DMP1-GFP(+) preparations contain haematopoietic osteoclasts. To resolve this we stained DMP1-GFP cells for haematopoietic lineage (Lin) surface markers (CD2, CD3e, CD4, CD45, CD5, CD8, CD11b, B220, Gr1, Ter119) and CD31. Lin(-)CD31(-) (Lin(-)) and Lin(+)CD31(+) (Lin(+)) populations were analysed for GFP, and the four resulting populations assessed by quantitative real-time PCR. Lin(-)GFP(+) cells expressed mRNAs for Sost, Dmp1, and Mepe, confirming their osteocyte identity. Dcstamp and Oscar mRNAs were restricted to haematopoietic (Lin(+)) cells, but Calcr, Ctsk and Acp5 were readily detected in purified osteocytes (Lin(-)GFP(+)). The capacity of these purified osteocytes to support osteoclastogenesis was assessed: no TRAP+ cells with >2 nuclei were formed when purified osteocytes were cultured with bone marrow macrophages and stimulated with 1,25-dihydroxyvitamin-D3/prostaglandin E2. Lin(-)GFP(+) osteocytes also expressed lower levels of Tnfsf11 (RANKL) mRNA than the osteoblast-enriched population (Lin(-)GFP(-)). This demonstrates the importance of haematopoietic depletion in generating highly purified osteocytes and shows that osteocytes express Acp5, Ctsk and Calcr, but not other osteoclast markers, and do not fully support osteoclast formation in vitro.
Collapse
Affiliation(s)
- Ling Yeong Chia
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Nicole C Walsh
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
48
|
Abstract
There are several mechanisms by which diabetes could affect bone mass and strength. These mechanisms include insulin deficiency; hyperglycemia; the accumulation of advanced glycation end products that may influence collagen characteristics; marrow adiposity and bone inflammation. Furthermore, associated diabetic complications and treatment with thaizolidinediones may also increase risk of fracturing. The following article provides its readers with an update on the latest information pertaining to diabetes related bone skeletal fragility. In the authors' opinion, future studies are needed in order to clarify the impact of different aspects of diabetes metabolism, glycemic control, and specific treatments for diabetes on bone. Given that dual energy x-ray absorptiometry is a poor predictor of bone morbidity in this group of patients, there is a need to explore novel approaches for assessing bone quality. It is important that we develop a better understanding of how diabetes affects bone in order to improve our ability to protect bone health and prevent fractures in the growing population of adults with diabetes.
Collapse
Affiliation(s)
- Naiemh Abdalrahman
- a Developmental Endocrinology Research Group, Royal Hospital for Sick Children, School of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, UK
| | - Suet Ching Chen
- a Developmental Endocrinology Research Group, Royal Hospital for Sick Children, School of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, UK
| | - Jessie Ruijun Wang
- a Developmental Endocrinology Research Group, Royal Hospital for Sick Children, School of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, UK
| | | |
Collapse
|
49
|
Martin TJ, Sims NA. Calcitonin physiology, saved by a lysophospholipid. J Bone Miner Res 2015; 30:212-5. [PMID: 25581311 DOI: 10.1002/jbmr.2449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/24/2022]
Affiliation(s)
- T John Martin
- St. Vincent's Institute of Medical Research and The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Australia
| | | |
Collapse
|
50
|
Amylin modulates the mesolimbic dopamine system to control energy balance. Neuropsychopharmacology 2015; 40:372-85. [PMID: 25035079 PMCID: PMC4443949 DOI: 10.1038/npp.2014.180] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/18/2014] [Accepted: 07/07/2014] [Indexed: 12/28/2022]
Abstract
Amylin acts in the CNS to reduce feeding and body weight. Recently, the ventral tegmental area (VTA), a mesolimbic nucleus important for food intake and reward, was identified as a site-of-action mediating the anorectic effects of amylin. However, the long-term physiological relevance and mechanisms mediating the intake-suppressive effects of VTA amylin receptor (AmyR) activation are unknown. Data show that the core component of the AmyR, the calcitonin receptor (CTR), is expressed on VTA dopamine (DA) neurons and that activation of VTA AmyRs reduces phasic DA in the nucleus accumbens core (NAcC). Suppression in NAcC DA mediates VTA amylin-induced hypophagia, as combined NAcC D1/D2 receptor agonists block the intake-suppressive effects of VTA AmyR activation. Knockdown of VTA CTR via adeno-associated virus short hairpin RNA resulted in hyperphagia and exacerbated body weight gain in rats maintained on high-fat diet. Collectively, these findings show that VTA AmyR signaling controls energy balance by modulating mesolimbic DA signaling.
Collapse
|