1
|
Sandoval C, Nisson K, Fregoso OI. HIV-1 Vpr-induced DNA damage activates NF-κB through ATM-NEMO independent of cell cycle arrest. mBio 2024; 15:e0024024. [PMID: 39269169 PMCID: PMC11481869 DOI: 10.1128/mbio.00240-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Lentiviruses encode a number of multi-functional accessory proteins, however, the primary role of the accessory protein Vpr remains unclear. As Vpr engages the host DNA damage response (DDR) at multiple steps, modulation of the DDR is considered central to the function(s) of Vpr. Vpr activates ataxia telangiectasia and Rad3 (ATR)-mediated DDR signaling, resulting in cell cycle arrest. However, the cellular consequences of Vpr-induced DNA damage, and the connection of Vpr-induced DNA damage to other Vpr functions, are unknown. Here, we determined that HIV-1 Vpr-induced DNA damage activates the ATM-NF-κB essential modulator (NEMO) pathway and alters cellular transcription via NF-κB/RelA. Through RNA-sequencing (RNA-seq) of cells expressing Vpr or mutants that separate the ability of Vpr to induce DNA damage from other DDR phenotypes, we identified that Vpr alters the transcriptome independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), we showed Vpr activates both ataxia telangiectasia mutated (ATM) and NF-κB/RelA signaling cascades. While inhibition of NEMO did not affect Vpr-induced DNA damage, it prevented NF-κB activation by Vpr, highlighting the importance of NEMO in Vpr-mediated transcriptional reprogramming. Virion-delivered Vpr was sufficient to induce DNA damage and activate ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional changes can occur early during viral replication. Together, our data uncover cellular consequences of Vpr-induced DNA damage and provide a mechanism for how Vpr activates NF-κB through DNA damage and ATM-NEMO signaling, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral replication.IMPORTANCEThe HIV accessory protein Vpr is multi-functional and required for viral replication in vivo, yet how Vpr enhances viral replication is unknown. Emerging literature suggests that a conserved function of Vpr is the engagement of the host DNA damage response (DDR). For example, Vpr activates DDR signaling, causes DDR-dependent cell cycle arrest, promotes degradation of various DDR proteins, and alters cellular consequences of DDR activation. However, a central understanding of how these phenotypes connect and how they affect HIV-infected cells remains unknown. Here, we found that Vpr-induced DNA damage alters the host transcriptome by activating an essential transcription pathway, NF-κB. This occurs early during the infection of primary human immune cells, suggesting NF-κB activation and transcriptome remodeling are important for establishing productive HIV-1 infection. Together, our study provides novel insights into how Vpr alters the host environment through the DDR, and what roles Vpr and the DDR play to enhance HIV replication.
Collapse
Affiliation(s)
- Carina Sandoval
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Karly Nisson
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Oliver I. Fregoso
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
2
|
Mu A, Okamoto Y, Katsuki Y, Takata M. The role of SLFN11 in DNA replication stress response and its implications for the Fanconi anemia pathway. DNA Repair (Amst) 2024; 141:103733. [PMID: 39096698 DOI: 10.1016/j.dnarep.2024.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/26/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
Fanconi anemia (FA) is a hereditary disorder characterized by a deficiency in the repair of DNA interstrand crosslinks and the response to replication stress. Endogenous DNA damage, most likely caused by aldehydes, severely affects hematopoietic stem cells in FA, resulting in progressive bone marrow failure and the development of leukemia. Recent studies revealed that expression levels of SLFN11 affect the replication stress response and are a strong determinant in cell killing by DNA-damaging cancer chemotherapy. Because SLFN11 is highly expressed in the hematopoietic system, we speculated that SLFN11 may have a significant role in FA pathophysiology. Indeed, we found that DNA damage sensitivity in FA cells is significantly mitigated by the loss of SLFN11 expression. Mechanistically, we demonstrated that SLFN11 destabilizes the nascent DNA strands upon replication fork stalling. In this review, we summarize our work regarding an interplay between SLFN11 and the FA pathway, and the role of SLFN11 in the response to replication stress.
Collapse
Affiliation(s)
- Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Katsuki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Castellón JO, Ofori S, Burton NR, Julio AR, Turmon AC, Armenta E, Sandoval C, Boatner LM, Takayoshi EE, Faragalla M, Taylor C, Zhou AL, Tran K, Shek J, Yan T, Desai HS, Fregoso OI, Damoiseaux R, Backus KM. Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors. J Am Chem Soc 2024; 146:14972-14988. [PMID: 38787738 DOI: 10.1021/jacs.3c12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.
Collapse
Affiliation(s)
- José O Castellón
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Nikolas R Burton
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ernest Armenta
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Evan E Takayoshi
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Marina Faragalla
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Cameron Taylor
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, California 90095, United States
| | - Ann L Zhou
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ky Tran
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Jeremy Shek
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
| | - Robert Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, California 90095, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California 90095, United States
- Department of Bioengineering, Samueli School of Engineering, UCLA, Los Angeles, California 90095, United States
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Abugable AA, Antar S, El-Khamisy SF. Chromosomal single-strand break repair and neurological disease: Implications on transcription and emerging genomic tools. DNA Repair (Amst) 2024; 135:103629. [PMID: 38266593 DOI: 10.1016/j.dnarep.2024.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.
Collapse
Affiliation(s)
- Arwa A Abugable
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Sarah Antar
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Sherif F El-Khamisy
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
5
|
Atkinson J, Bezak E, Le H, Kempson I. DNA Double Strand Break and Response Fluorescent Assays: Choices and Interpretation. Int J Mol Sci 2024; 25:2227. [PMID: 38396904 PMCID: PMC10889524 DOI: 10.3390/ijms25042227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Accurately characterizing DNA double-stranded breaks (DSBs) and understanding the DNA damage response (DDR) is crucial for assessing cellular genotoxicity, maintaining genomic integrity, and advancing gene editing technologies. Immunofluorescence-based techniques have proven to be invaluable for quantifying and visualizing DSB repair, providing valuable insights into cellular repair processes. However, the selection of appropriate markers for analysis can be challenging due to the intricate nature of DSB repair mechanisms, often leading to ambiguous interpretations. This comprehensively summarizes the significance of immunofluorescence-based techniques, with their capacity for spatiotemporal visualization, in elucidating complex DDR processes. By evaluating the strengths and limitations of different markers, we identify where they are most relevant chronologically from DSB detection to repair, better contextualizing what each assay represents at a molecular level. This is valuable for identifying biases associated with each assay and facilitates accurate data interpretation. This review aims to improve the precision of DSB quantification, deepen the understanding of DDR processes, assay biases, and pathway choices, and provide practical guidance on marker selection. Each assay offers a unique perspective of the underlying processes, underscoring the need to select markers that are best suited to specific research objectives.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Eva Bezak
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Hien Le
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
6
|
Sandoval C, Nisson K, Fregoso OI. HIV-1 Vpr-induced DNA damage activates NF-κB through ATM-NEMO independent of cell cycle arrest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.23.541990. [PMID: 37292767 PMCID: PMC10245860 DOI: 10.1101/2023.05.23.541990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lentiviral accessory genes enhance replication through diverse mechanisms. HIV-1 accessory protein Vpr modulates the host DNA damage response (DDR) at multiple steps through DNA damage, cell cycle arrest, the degradation of host proteins, and both the activation and repression of DDR signaling. Vpr also alters host and viral transcription; however, the connection between Vpr-mediated DDR modulation and transcriptional activation remains unclear. Here, we determined the cellular consequences of Vpr-induced DNA damage using Vpr mutants that allow us to separate the ability of Vpr to induce DNA damage from cell cycle arrest and other DDR phenotypes including host protein degradation and repression of DDR. RNA-sequencing of cells expressing Vpr or Vpr mutants identified that Vpr alters cellular transcription through mechanisms both dependent and independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), Vpr-induced DNA damage activates the ATM-NEMO pathway and alters cellular transcription via NF-κB/RelA signaling. HIV-1 infection of primary MDMs validated Vpr-dependent NF-κB transcriptional activation during infection. Both virion delivered and de novo expressed Vpr induced DNA damage and activated ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional reprogramming can occur during early and late stages of viral replication. Together, our data identifies a mechanism by which Vpr activates NF-κB through DNA damage and the ATM-NEMO pathway, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral transcription and replication.
Collapse
Affiliation(s)
- Carina Sandoval
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Karly Nisson
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Oliver I. Fregoso
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Richardson M, Richardson DR. Pharmacological Targeting of Senescence with Senolytics as a New Therapeutic Strategy for Neurodegeneration. Mol Pharmacol 2024; 105:64-74. [PMID: 38164616 DOI: 10.1124/molpharm.123.000803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Cellular senescence is a state of permanent cell-cycle arrest. Early in life, senescence has a physiologic role in tumor suppression and wound healing. However, gradually, as these senescent cells accumulate over the lifespan of an organism, they contribute to inflammation and the progression of age-related diseases, including neurodegeneration. Targeting senescent cells using a class of drugs known as "senolytics" holds great promise for the management of Alzheimer's and Parkinson's disease. Already, several senolytic compounds have been shown to ameliorate cognitive deficits across several preclinical models of neurodegeneration. Most of these senolytics (e.g., dasatinib) are repurposed clinical or experimental anticancer drugs, which trigger apoptosis of senescent cells by interfering with pro-survival pathways. However, outside of their senolytic function, many first-generation senolytics also have other less appreciated neuroprotective effects, such as potent antioxidant and anti-inflammatory activity. In addition, some senolytic drugs may also have negative dose-limiting toxicities, including thrombocytopenia. In this review, we discuss the various biologic pathways targeted by the leading senolytic drugs, namely dasatinib, quercetin, fisetin, and navitoclax. We further evaluate the clinical transability of these compounds for neurodegeneration, assessing their adverse effects, pharmacokinetic properties, and chemical structure. SIGNIFICANCE STATEMENT: Currently, there are no effective disease-modifying treatments for the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Some of the drugs currently available for treating these diseases are associated with unwanted side-effects and/or become less efficacious with time. Therefore, researchers have begun to explore new innovative treatments for these belligerent diseases, including senolytic drugs. These agents lead to the apoptosis of senescent cells thereby preventing their deleterious role in neurodegeneration.
Collapse
Affiliation(s)
- Miriam Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Lepetit C, Gaber M, Zhou K, Chen H, Holmes J, Summers P, Anderson KA, Scott RP, Pope CN, Hester K, Laurienti PJ, Quandt SA, Arcury TA, Vidi PA. Follicular DNA Damage and Pesticide Exposure Among Latinx Children in Rural and Urban Communities. EXPOSURE AND HEALTH 2023; 16:1039-1052. [PMID: 39220725 PMCID: PMC11362388 DOI: 10.1007/s12403-023-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 09/04/2024]
Abstract
The intersectional risks of children in United States immigrant communities include environmental exposures. Pesticide exposures and their biological outcomes are not well characterized in this population group. We assessed pesticide exposure and related these exposures to DNA double-strand breaks (DSBs) in Latinx children from rural, farmworker families (FW; N = 30) and from urban, non-farmworker families (NFW; N = 15) living in North Carolina. DSBs were quantified in hair follicular cells by immunostaining of 53BP1, and exposure to 72 pesticides and pesticide degradation products were determined using silicone wristbands. Cholinesterase activity was measured in blood samples. DSB frequencies were higher in FW compared to NFW children. Seasonal effects were detected in the FW group, with highest DNA damage levels in April-June and lowest levels in October-November. Acetylcholinesterase depression had the same seasonality and correlated with follicular DNA damage. Organophosphate pesticides were more frequently detected in FW than in NFW children. Participants with organophosphate detections had increased follicular DNA damage compared to participants without organophosphate detection. Follicular DNA damage did not correlate with organochlorine or pyrethroid detections and was not associated with the total number of pesticides detected in the wristbands. These results point to rural disparities in pesticide exposures and their outcomes in children from vulnerable immigrant communities. They suggest that among the different classes of pesticides, organophosphates have the strongest genotoxic effects. Assessing pesticide exposures and their consequences at the individual level is key to environmental surveillance programs. To this end, the minimally invasive combined approach used here is particularly well suited for children. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00609-1.
Collapse
Affiliation(s)
- Cassandra Lepetit
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| | - Mohamed Gaber
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Ke Zhou
- Sciences Humaines et Sociales, Institut de Cancérologie de l’Ouest, 44805 Saint Herblain, France
| | - Haiying Chen
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Phillip Summers
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Carey N. Pope
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Kirstin Hester
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Thomas A. Arcury
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Pierre-Alexandre Vidi
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
9
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
10
|
Scherthan H, Geiger B, Ridinger D, Müller J, Riccobono D, Bestvater F, Port M, Hausmann M. Nano-Architecture of Persistent Focal DNA Damage Regions in the Minipig Epidermis Weeks after Acute γ-Irradiation. Biomolecules 2023; 13:1518. [PMID: 37892200 PMCID: PMC10605239 DOI: 10.3390/biom13101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Exposure to high acute doses of ionizing radiation (IR) can induce cutaneous radiation syndrome. Weeks after such radiation insults, keratinocyte nuclei of the epidermis exhibit persisting genomic lesions that present as focal accumulations of DNA double-strand break (DSB) damage marker proteins. Knowledge about the nanostructure of these genomic lesions is scarce. Here, we compared the chromatin nano-architecture with respect to DNA damage response (DDR) factors in persistent genomic DNA damage regions and healthy chromatin in epidermis sections of two minipigs 28 days after lumbar irradiation with ~50 Gy γ-rays, using single-molecule localization microscopy (SMLM) combined with geometric and topological mathematical analyses. SMLM analysis of fluorochrome-stained paraffin sections revealed, within keratinocyte nuclei with perisitent DNA damage, the nano-arrangements of pATM, 53BP1 and Mre11 DDR proteins in γ-H2AX-positive focal chromatin areas (termed macro-foci). It was found that persistent macro-foci contained on average ~70% of 53BP1, ~23% of MRE11 and ~25% of pATM single molecule signals of a nucleus. MRE11 and pATM fluorescent tags were organized in focal nanoclusters peaking at about 40 nm diameter, while 53BP1 tags formed nanoclusters that made up super-foci of about 300 nm in size. Relative to undamaged nuclear chromatin, the enrichment of DDR protein signal tags in γ-H2AX macro-foci was on average 8.7-fold (±3) for 53BP1, 3.4-fold (±1.3) for MRE11 and 3.6-fold (±1.8) for pATM. The persistent macro-foci of minipig epidermis displayed a ~2-fold enrichment of DDR proteins, relative to DSB foci of lymphoblastoid control cells 30 min after 0.5 Gy X-ray exposure. A lasting accumulation of damage signaling and sensing molecules such as pATM and 53BP1, as well as the DSB end-processing protein MRE11 in the persistent macro-foci suggests the presence of diverse DNA damages which pose an insurmountable problem for DSB repair.
Collapse
Affiliation(s)
- Harry Scherthan
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Beatrice Geiger
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| | - David Ridinger
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| | - Jessica Müller
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Diane Riccobono
- Département des Effets Biologiques des Rayonnements, French Armed Forces Biomedical Research Institute, UMR 1296, BP 73, 91223 Brétigny-sur-Orge, France;
| | - Felix Bestvater
- Core Facility Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany;
| | - Matthias Port
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| |
Collapse
|
11
|
Raisch J, Dubois ML, Groleau M, Lévesque D, Burger T, Jurkovic CM, Brailly R, Marbach G, McKenna A, Barrette C, Jacques PÉ, Boisvert FM. Pulse-SILAC and Interactomics Reveal Distinct DDB1-CUL4-Associated Factors, Cellular Functions, and Protein Substrates. Mol Cell Proteomics 2023; 22:100644. [PMID: 37689310 PMCID: PMC10565876 DOI: 10.1016/j.mcpro.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Cullin-RING finger ligases represent the largest family of ubiquitin ligases. They are responsible for the ubiquitination of ∼20% of cellular proteins degraded through the proteasome, by catalyzing the transfer of E2-loaded ubiquitin to a substrate. Seven cullins are described in vertebrates. Among them, cullin 4 (CUL4) associates with DNA damage-binding protein 1 (DDB1) to form the CUL4-DDB1 ubiquitin ligase complex, which is involved in protein ubiquitination and in the regulation of many cellular processes. Substrate recognition adaptors named DDB1/CUL4-associated factors (DCAFs) mediate the specificity of CUL4-DDB1 and have a short structural motif of approximately forty amino acids terminating in tryptophan (W)-aspartic acid (D) dipeptide, called the WD40 domain. Using different approaches (bioinformatics/structural analyses), independent studies suggested that at least sixty WD40-containing proteins could act as adaptors for the DDB1/CUL4 complex. To better define this association and classification, the interaction of each DCAFs with DDB1 was determined, and new partners and potential substrates were identified. Using BioID and affinity purification-mass spectrometry approaches, we demonstrated that seven WD40 proteins can be considered DCAFs with a high confidence level. Identifying protein interactions does not always lead to identifying protein substrates for E3-ubiquitin ligases, so we measured changes in protein stability or degradation by pulse-stable isotope labeling with amino acids in cell culture to identify changes in protein degradation, following the expression of each DCAF. In conclusion, these results provide new insights into the roles of DCAFs in regulating the activity of the DDB1-CUL4 complex, in protein targeting, and characterized the cellular processes involved.
Collapse
Affiliation(s)
- Jennifer Raisch
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Line Dubois
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marika Groleau
- Département de biologie, faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Lévesque
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas Burger
- CNRS, INSERM, Université Grenoble Alpes, Grenoble, France
| | - Carla-Marie Jurkovic
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Romain Brailly
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gwendoline Marbach
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alyson McKenna
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Barrette
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Étienne Jacques
- Département de biologie, faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François-Michel Boisvert
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
12
|
Bianchini RM, Kurz EU. The analysis of protein recruitment to laser microirradiation-induced DNA damage in live cells: Best practices for data analysis. DNA Repair (Amst) 2023; 129:103545. [PMID: 37524003 DOI: 10.1016/j.dnarep.2023.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Laser microirradiation coupled with live-cell fluorescence microscopy is a powerful technique that has been used widely in studying the recruitment and retention of proteins at sites of DNA damage. Results obtained from this technique can be found in published works by both seasoned and infrequent users of microscopy. However, like many other microscopy-based techniques, the presentation of data from laser microirradiation experiments is inconsistent; papers report a wide assortment of analytic techniques, not all of which result in accurate and/or appropriate representation of the data. In addition to the varied methods of analysis, experimental and analytical details are commonly under-reported. Consequently, publications reporting data from laser microirradiation coupled with fluorescence microscopy experiments need to be carefully and critically assessed by readers. Here, we undertake a systematic investigation of commonly reported corrections used in the analysis of laser microirradiation data. We validate the critical need to correct data for photobleaching and we identify key experimental parameters that must be accounted for when presenting data from laser microirradiation experiments. Furthermore, we propose a straightforward, four-step analytical protocol that can readily be applied across platforms and that aims to improve the quality of data reporting in the DNA damage field.
Collapse
Affiliation(s)
- Ryan M Bianchini
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ebba U Kurz
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
13
|
Morales-Valencia J, Petit C, Calderon A, Saini S, David G. Chromatin-Associated SIN3B Protects Cancer Cells from Genotoxic Stress-Induced Apoptosis and Dictates DNA Damage Repair Pathway Choice. Mol Cancer Res 2023; 21:947-957. [PMID: 37314748 PMCID: PMC10527583 DOI: 10.1158/1541-7786.mcr-22-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Transcription and DNA damage repair act in a coordinated manner. The scaffolding protein SIN3B serves as a transcriptional co-repressor of hundreds of cell cycle-related genes. However, the contribution of SIN3B during the DNA damage response remains unknown. Here, we show that SIN3B inactivation delays the resolution of DNA double-strand breaks and sensitizes cancer cells to DNA-damaging agents, including the chemotherapeutic drugs cisplatin and doxorubicin. Mechanistically, SIN3B is rapidly recruited to DNA damage sites where it directs the accumulation of Mediator of DNA Damage Checkpoint 1 (MDC1). In addition, we show that SIN3B inactivation favors the engagement of the alternative nonhomologous end joining (NHEJ) repair pathway over the canonical NHEJ. Altogether, our findings impute an unexpected function for the transcriptional co-repressor SIN3B as a gatekeeper of genomic integrity and a determining factor in the DNA repair choice pathway, and point to the inhibition of the SIN3B chromatin-modifying complex as a novel therapeutic vulnerability in cancer cells. IMPLICATIONS Identifying SIN3B as a modulator of DNA damage repair choice provides novel potential therapeutic avenues to sensitize cancer cells to cytotoxic therapies.
Collapse
Affiliation(s)
- Jorge Morales-Valencia
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Langone Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
| | - Coralie Petit
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Alexander Calderon
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Siddharth Saini
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Langone Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
- Department of Urology, NYU Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
14
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
15
|
Gioia U, Tavella S, Martínez-Orellana P, Cicio G, Colliva A, Ceccon M, Cabrini M, Henriques AC, Fumagalli V, Paldino A, Presot E, Rajasekharan S, Iacomino N, Pisati F, Matti V, Sepe S, Conte MI, Barozzi S, Lavagnino Z, Carletti T, Volpe MC, Cavalcante P, Iannacone M, Rampazzo C, Bussani R, Tripodo C, Zacchigna S, Marcello A, d'Adda di Fagagna F. SARS-CoV-2 infection induces DNA damage, through CHK1 degradation and impaired 53BP1 recruitment, and cellular senescence. Nat Cell Biol 2023; 25:550-564. [PMID: 36894671 PMCID: PMC10104783 DOI: 10.1038/s41556-023-01096-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/25/2023] [Indexed: 03/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs' biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence.
Collapse
Affiliation(s)
- Ubaldo Gioia
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Tavella
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Giada Cicio
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- University of Palermo, Palermo, Italy
| | - Andrea Colliva
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Marta Ceccon
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Matteo Cabrini
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ana C Henriques
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Alessia Paldino
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- University of Trieste, Trieste, Italy
| | | | - Sreejith Rajasekharan
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Nicola Iacomino
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Valentina Matti
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Sepe
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Matilde I Conte
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Barozzi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Zeno Lavagnino
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Tea Carletti
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | - Matteo Iannacone
- IRCCS San Raffaele Scientific Institute & University, Milan, Italy
| | | | | | - Claudio Tripodo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- University of Palermo, Palermo, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- University of Trieste, Trieste, Italy
| | - Alessandro Marcello
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
- Institute of Molecular Genetics (IGM), National Research Institute (CNR), Pavia, Italy.
| |
Collapse
|
16
|
Rass E, Willaume S, Bertrand P. 53BP1: Keeping It under Control, Even at a Distance from DNA Damage. Genes (Basel) 2022; 13:genes13122390. [PMID: 36553657 PMCID: PMC9778356 DOI: 10.3390/genes13122390] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Double-strand breaks (DSBs) are toxic lesions that can be generated by exposure to genotoxic agents or during physiological processes, such as during V(D)J recombination. The repair of these DSBs is crucial to prevent genomic instability and to maintain cellular homeostasis. Two main pathways participate in repairing DSBs, namely, non-homologous end joining (NHEJ) and homologous recombination (HR). The P53-binding protein 1 (53BP1) plays a pivotal role in the choice of DSB repair mechanism, promotes checkpoint activation and preserves genome stability upon DSBs. By preventing DSB end resection, 53BP1 promotes NHEJ over HR. Nonetheless, the balance between DSB repair pathways remains crucial, as unscheduled NHEJ or HR events at different phases of the cell cycle may lead to genomic instability. Therefore, the recruitment of 53BP1 to chromatin is tightly regulated and has been widely studied. However, less is known about the mechanism regulating 53BP1 recruitment at a distance from the DNA damage. The present review focuses on the mechanism of 53BP1 recruitment to damage and on recent studies describing novel mechanisms keeping 53BP1 at a distance from DSBs.
Collapse
Affiliation(s)
- Emilie Rass
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Correspondence:
| | - Simon Willaume
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Mechanism of action of non-camptothecin inhibitor Genz-644282 in topoisomerase I inhibition. Commun Biol 2022; 5:982. [PMID: 36114357 PMCID: PMC9481636 DOI: 10.1038/s42003-022-03920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractTopoisomerase I (TOP1) controls the topological state of DNA during DNA replication, and its dysfunction due to treatment with an inhibitor, such as camptothecin (CPT), causes replication arrest and cell death. Although CPT has excellent cytotoxicity, it has the disadvantage of instability under physiological conditions. Therefore, new types of TOP1 inhibitor have attracted particular attention. Here, we characterised the effect of a non-camptothecin inhibitor, Genz-644282 (Genz). First, we found that treatment with Genz showed cytotoxicity by introducing double-strand breaks (DSBs), which was suppressed by co-treatment with aphidicolin. Genz-induced DSB formation required the functions of TOP1. Next, we explored the advantages of Genz over CPT and found it was effective against CPT-resistant TOP1 carrying either N722S or N722A mutation. The effect of Genz was also confirmed at the cellular level using a CPT-resistant cell line carrying N722S mutation in the TOP1 gene. Moreover, we found arginine residue 364 plays a crucial role for the binding of Genz. Because tyrosine residue 723 is the active centre for DNA cleavage and re-ligation by TOP1, asparagine residue 722 plays crucial roles in the accessibility of the drug. Here, we discuss the mechanism of action of Genz on TOP1 inhibition.
Collapse
|
18
|
Abate NG, Hendzel MJ. Heterogeneity of Organization of Subcompartments in DSB Repair Foci. Front Genet 2022; 13:887088. [PMID: 35923694 PMCID: PMC9340495 DOI: 10.3389/fgene.2022.887088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cells assemble compartments around DNA double-strand breaks (DSBs). The assembly of this compartment is dependent on the phosphorylation of histone H2AX, the binding of MDC1 to phosphorylated H2AX, and the assembly of downstream signaling and repair components. The decision on whether to use homologous recombination or nonhomologous end-joining repair depends on competition between 53BP1 and BRCA1. A major point of control appears to be DNA replication and associated changes in the epigenetic state. This includes dilution of histone H4 dimethylation and an increase in acetylation of lysine residues on H2A and H4 that impair 53BP1 binding. In this article, we examined more closely the spatial relationship between 53BP1 and BRCA1 within the cell cycle. We find that 53BP1 can associate with early S-phase replicated chromatin and that the relative concentration of BRCA1 in DSB-associated compartments correlates with increased BRCA1 nuclear abundance as cells progress into and through S phase. In most cases during S phase, both BRCA1 and 53BP1 are recruited to these compartments. This occurs for both IR-induced DSBs and breaks targeted to an integrated LacO array through a LacI-Fok1-mCherry fusion protein. Having established that the array system replicates this heterogeneity, we further examined the spatial relationship between DNA repair components. This enabled us to precisely locate the DNA containing the break and map other proteins relative to that DNA. We find evidence for at least three subcompartments. The damaged DNA, single-stranded DNA generated from end resection of the array, and nuclease CtIP all localized to the center of the compartment. BRCA1 and 53BP1 largely occupied discrete regions of the focus. One of BRCA1 or 53BP1 overlaps with the array, while the other is more peripherally located. The array-overlapping protein occupied a larger volume than the array, CtIP, or single-stranded DNA (ssDNA). Rad51 often occupied a much larger volume than the array itself and was sometimes observed to be depleted in the array volume where the ssDNA exclusively localizes. These results highlight the complexity of molecular compartmentalization within DSB repair compartments.
Collapse
|
19
|
Płódowska M, Krakowiak W, Węgierek-Ciuk A, Lankoff A, Szary K, Lis K, Wojcik A, Lisowska H. Hypothermia differentially modulates the formation and decay of NBS1, γH2AX and 53BP1 foci in U2OS cells exposed to gamma radiation. Sci Rep 2022; 12:5878. [PMID: 35393518 PMCID: PMC8989987 DOI: 10.1038/s41598-022-09829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
In studies on the mechanism of DNA damage response where ionizing radiation is used as the DNA damaging agent, cells are often exposed to ionizing radiation on melting ice (corresponding to 0.8 °C). The purpose of this procedure is to inhibit cellular processes i.e. DNA repair. Low temperature at exposure has been shown to act in a radioprotective manner at the level of cytogenetic damage, but its mechanisms of action are poorly understood. The aim of the study was to analyze the effect of hypothermia at the level of formation and decay of NBS1, γH2AX, and 53BP1 foci, micronuclei, survival, cell cycle progression and oxidative stress in U2OS cells. The results show that hypothermia alone induced oxidative stress and foci. When applied in combination with radiation but only during the exposure time, it potentiated the formation of γH2AX and 53BP1 but not of NBS1 foci. When applied during irradiation and subsequent repair time, 53BP1 and NBS1 foci formed and decayed, but the levels were markedly lower than when repair was carried out at 37 °C. The frequency of micronuclei was elevated in cells irradiated at 0.8 °C, but only when analysed 20 h after irradiation which is likely due to a reduced G2 cell cycle block. Hypothermia reduced cell survival, both with and without radiation exposure. The temperature effect should be considered when cooling cells on melting ice to inhibit DNA repair in the induction of DNA damage.
Collapse
Affiliation(s)
- Magdalena Płódowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| | - Wiktoria Krakowiak
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Aneta Węgierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Anna Lankoff
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.,Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Karol Szary
- Department of Atomic Physics and Nanophysics, Institute of Physics, Jan Kochanowski University, Kielce, Poland
| | - Krzysztof Lis
- Department of Medical Physics, Holy Cross Cancer Center, Kielce, Poland
| | - Andrzej Wojcik
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.,Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Halina Lisowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
20
|
Rapid recruitment of p53 to DNA damage sites directs DNA repair choice and integrity. Proc Natl Acad Sci U S A 2022; 119:e2113233119. [PMID: 35235448 PMCID: PMC8915893 DOI: 10.1073/pnas.2113233119] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our work focuses on the critical longstanding question of the nontranscriptional role of p53 in tumor suppression. We demonstrate here that poly(ADP-ribose) polymerase (PARP)–dependent modification of p53 enables rapid recruitment of p53 to damage sites, where it in turn directs early repair pathway selection. Specifically, p53-mediated recruitment of 53BP1 at early time points promotes nonhomologous end joining over the more error-prone microhomology end-joining. Similarly, p53 directs nucleotide excision repair by mediating DDB1 recruitment. This property of p53 also correlates with tumor suppression in vivo. Our study provides mechanistic insight into how certain transcriptionally deficient p53 mutants may retain tumor-suppressive functions through regulating the DNA damage response. p53 is primarily known as a downstream transcriptional effector in the DNA damage-response cascade. We report that endogenous p53 rapidly accumulates at DNA damage sites within 2 s of UVA microirradiation. The kinetics of p53 recruitment mimics those of known DNA damage-response proteins, such as Ku70 and poly(ADP-ribose) polymerase (PARP), and precedes recruitment of Nbs1, 53BP1, and DDB1. Mutations in the DNA-binding and C-terminal domains significantly suppress this rapid recruitment. The C-terminal domain of p53 contains key residues for PARP interaction that are required for rapid recruitment of p53 to DNA damage sites, as is PARP-dependent modification. The presence of p53 at damage sites influences the recruitment kinetics of 53BP1 and DDB1 and directs the choice of nonhomologous end joining repair (NHEJ) and nucleotide excision repair. Mutations that suppressed rapid recruitment of p53 promoted error-prone alternative end-joining (alt-NHEJ) and inhibited nucleotide excision repair. Our finding that p53 is a critical early responder to DNA damage stands in contrast with its extensively studied role as a downstream transcriptional regulator in DNA damage repair. We highlight an unrecognized role of p53 in directing DNA repair dynamics and integrity and suggest a parallel mode of p53 tumor suppression apart from its function as a transcription factor.
Collapse
|
21
|
Shadfar S, Brocardo M, Atkin JD. The Complex Mechanisms by Which Neurons Die Following DNA Damage in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052484. [PMID: 35269632 PMCID: PMC8910227 DOI: 10.3390/ijms23052484] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Human cells are exposed to numerous exogenous and endogenous insults every day. Unlike other molecules, DNA cannot be replaced by resynthesis, hence damage to DNA can have major consequences for the cell. The DNA damage response contains overlapping signalling networks that repair DNA and hence maintain genomic integrity, and aberrant DNA damage responses are increasingly described in neurodegenerative diseases. Furthermore, DNA repair declines during aging, which is the biggest risk factor for these conditions. If unrepaired, the accumulation of DNA damage results in death to eliminate cells with defective genomes. This is particularly important for postmitotic neurons because they have a limited capacity to proliferate, thus they must be maintained for life. Neuronal death is thus an important process in neurodegenerative disorders. In addition, the inability of neurons to divide renders them susceptible to senescence or re-entry to the cell cycle. The field of cell death has expanded significantly in recent years, and many new mechanisms have been described in various cell types, including neurons. Several of these mechanisms are linked to DNA damage. In this review, we provide an overview of the cell death pathways induced by DNA damage that are relevant to neurons and discuss the possible involvement of these mechanisms in neurodegenerative conditions.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Mariana Brocardo
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
22
|
Dos Santos Passos C, Choi YS, Snow CD, Yao T, Cohen RE. Design of genetically encoded sensors to detect nucleosome ubiquitination in live cells. J Cell Biol 2021; 220:211785. [PMID: 33570569 PMCID: PMC7883740 DOI: 10.1083/jcb.201911130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) are dynamic, context-dependent signals that modulate chromatin structure and function. Ubiquitin (Ub) conjugation to different lysines of histones H2A and H2B is used to regulate diverse processes such as gene silencing, transcriptional elongation, and DNA repair. Despite considerable progress made to elucidate the players and mechanisms involved in histone ubiquitination, there remains a lack of tools to monitor these PTMs, especially in live cells. To address this, we combined an avidity-based strategy with in silico approaches to design sensors for specifically ubiquitinated nucleosomes. By linking Ub-binding domains to nucleosome-binding peptides, we engineered proteins that target H2AK13/15Ub and H2BK120Ub with Kd values from 10−8 to 10−6 M; when fused to fluorescent proteins, they work as PTM sensors in cells. The H2AK13/15Ub-specific sensor, employed to monitor signaling from endogenous DNA damage through the cell cycle, identified and differentiated roles for 53BP1 and BARD1 as mediators of this histone PTM.
Collapse
Affiliation(s)
| | - Yun-Seok Choi
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Christopher D Snow
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO.,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Robert E Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
23
|
Zentout S, Smith R, Jacquier M, Huet S. New Methodologies to Study DNA Repair Processes in Space and Time Within Living Cells. Front Cell Dev Biol 2021; 9:730998. [PMID: 34589495 PMCID: PMC8473836 DOI: 10.3389/fcell.2021.730998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
DNA repair requires a coordinated effort from an array of factors that play different roles in the DNA damage response from recognizing and signaling the presence of a break, creating a repair competent environment, and physically repairing the lesion. Due to the rapid nature of many of these events, live-cell microscopy has become an invaluable method to study this process. In this review we outline commonly used tools to induce DNA damage under the microscope and discuss spatio-temporal analysis tools that can bring added information regarding protein dynamics at sites of damage. In particular, we show how to go beyond the classical analysis of protein recruitment curves to be able to assess the dynamic association of the repair factors with the DNA lesions as well as the target-search strategies used to efficiently find these lesions. Finally, we discuss how the use of mathematical models, combined with experimental evidence, can be used to better interpret the complex dynamics of repair proteins at DNA lesions.
Collapse
Affiliation(s)
- Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Marine Jacquier
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
24
|
RNF8 ubiquitinates RecQL4 and promotes its dissociation from DNA double strand breaks. Oncogenesis 2021; 10:24. [PMID: 33674555 PMCID: PMC7935965 DOI: 10.1038/s41389-021-00315-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/08/2022] Open
Abstract
Ubiquitination-dependent DNA damage response (DDR) signals play a critical role in the cellular choice of DNA damage repair pathways. Human DNA helicase RecQL4 participates in DNA replication and repair, and loss of RecQL4 is associated with autosomal recessive genetic disorders characterized by genomic instability features. In an earlier study, RecQL4 was isolated as a stable complex that contained two ubiquitin ligases of the N-end rule (UBR1 and UBR2). However, it is unknown whether or not RecQL4 ubiquitination status is critical for its DNA repair function. Here, we report that RecQL4 directly interacts with RNF8 (a RING finger ubiquitin E3 ligase), and both co-localize at DNA double-strand break (DSB) sites. Our findings indicate that RNF8 ubiquitinates RecQL4 protein mainly at the lysine sites of 876, 1048, and 1101, thereby facilitating the dissociation of RecQL4 from DSB sites. RecQL4 mutant at ubiquitination sites had a significantly prolonged retention at DSBs, which hinders the recruitment of its direct downstream DSB repair proteins (CtIP & Ku80). Interestingly, reduced DSB repair capacity observed in RecQL4 depleted cells was restored only by the reconstitution of wild-type RecQL4, but not the ubiquitination mutant. Additionally, RecQL4 directly interacts with WRAP53β that is known to recruit RNF8 to DSBs and WRAP53β enhances the association of RecQL4 with RNF8. WRAP53β silencing resulted in a nearly diminished recruitment of RNF8 to DSBs and in a greatly attenuated dissociation of RecQL4 from the DSB sites. Collectively, our study demonstrates that the ubiquitination event mediated by RNF8 constitutes an essential component for RecQL4's function in DSB repair.
Collapse
|
25
|
Abstract
In this perspective, we introduce shelterin and the mechanisms of ATM activation and NHEJ at telomeres, before discussing the following questions: How are t-loops proposed to protect chromosome ends and what is the evidence for this model? Can other models explain how TRF2 mediates end protection? Could t-loops be pathological structures? How is end protection achieved in pluripotent cells? What do the insights into telomere end protection in pluripotent cells mean for the t-loop model of end protection? Why might different cell states have evolved different mechanisms of end protection? Finally, we offer support for an updated t-loop model of end protection, suggesting that the data is supportive of a critical role for t-loops in protecting chromosome ends from NHEJ and ATM activation, but that other mechanisms are involved. Finally, we propose that t-loops are likely dynamic, rather than static, structures.
Collapse
Affiliation(s)
- Phil Ruis
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | |
Collapse
|
26
|
Rother MB, Pellegrino S, Smith R, Gatti M, Meisenberg C, Wiegant WW, Luijsterburg MS, Imhof R, Downs JA, Vertegaal ACO, Huet S, Altmeyer M, van Attikum H. CHD7 and 53BP1 regulate distinct pathways for the re-ligation of DNA double-strand breaks. Nat Commun 2020; 11:5775. [PMID: 33188175 PMCID: PMC7666215 DOI: 10.1038/s41467-020-19502-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/15/2020] [Indexed: 01/16/2023] Open
Abstract
Chromatin structure is dynamically reorganized at multiple levels in response to DNA double-strand breaks (DSBs). Yet, how the different steps of chromatin reorganization are coordinated in space and time to differentially regulate DNA repair pathways is insufficiently understood. Here, we identify the Chromodomain Helicase DNA Binding Protein 7 (CHD7), which is frequently mutated in CHARGE syndrome, as an integral component of the non-homologous end-joining (NHEJ) DSB repair pathway. Upon recruitment via PARP1-triggered chromatin remodeling, CHD7 stimulates further chromatin relaxation around DNA break sites and brings in HDAC1/2 for localized chromatin de-acetylation. This counteracts the CHD7-induced chromatin expansion, thereby ensuring temporally and spatially controlled 'chromatin breathing' upon DNA damage, which we demonstrate fosters efficient and accurate DSB repair by controlling Ku and LIG4/XRCC4 activities. Loss of CHD7-HDAC1/2-dependent cNHEJ reinforces 53BP1 assembly at the damaged chromatin and shifts DSB repair to mutagenic NHEJ, revealing a backup function of 53BP1 when cNHEJ fails.
Collapse
Grants
- 25715 Cancer Research UK
- 714326 European Research Council
- MR/N02155X/2 Medical Research Council
- MR/N02155X/1 Medical Research Council
- This research was financially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC-StG 714326 to M.A.; ERC-StG 310913 to A.C.O.V.; ERC-CoG 50364 to H.v.A), the Swiss National Science Foundation (grants 150690 and 179057 to M.A.), grants from the Danish Research Council (DFF 1333-00037B and 1331-00732B to M.A.), NWO-VENI (863.11.007) and NWO-VIDI (016.161.320) grants to M.S.L., People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/ 2007-2013) under REA grant agreement [(PCOFUND-GA-2013-609102), through the PRESTIGE program coordinated by Campus France (PRESTIGE-2017-2-0042), the Université Bretagne-Loire and the Fondation ARC pour la recherche sur le cancer (PDF20181208405) to R.S., the Ligue contre le Cancer du Grand-Ouest (committees 22 and 35), the Fondation ARC pour la recherche sur le cancer (20161204883), the Agence Nationale de la Recherche (PRC-2018 REPAIRCHROM) and the Institut Universitaire de France to S.H., and the Medical Research Council (MR/N02155X/1) to C.M. and J.A.D..
Collapse
Affiliation(s)
- Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefania Pellegrino
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, BIOSIT-UMS3480, F-35000, Rennes, France
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Jessica A Downs
- The Institute of Cancer Research, Royal Cancer Hospital, London, UK
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, BIOSIT-UMS3480, F-35000, Rennes, France
- Institut Universitaire de France, Paris, France
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
27
|
Lou J, Priest DG, Solano A, Kerjouan A, Hinde E. Spatiotemporal dynamics of 53BP1 dimer recruitment to a DNA double strand break. Nat Commun 2020; 11:5776. [PMID: 33188174 PMCID: PMC7666136 DOI: 10.1038/s41467-020-19504-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
Tumor suppressor p53-binding protein 1 (53BP1) is a DNA repair protein essential for the detection, assessment, and resolution of DNA double strand breaks (DSBs). The presence of a DSB is signaled to 53BP1 via a local histone modification cascade that triggers the binding of 53BP1 dimers to chromatin flanking this type of lesion. While biochemical studies have established that 53BP1 exists as a dimer, it has never been shown in a living cell when or where 53BP1 dimerizes upon recruitment to a DSB site, or upon arrival at this nuclear location, how the DSB histone code to which 53BP1 dimers bind regulates retention and self-association into higher-order oligomers. Thus, here in live-cell nuclear architecture we quantify the spatiotemporal dynamics of 53BP1 oligomerization during a DSB DNA damage response by coupling fluorescence fluctuation spectroscopy (FFS) with the DSB inducible via AsiSI cell system (DIvA). From adopting this multiplexed approach, we find that preformed 53BP1 dimers relocate from the nucleoplasm to DSB sites, where consecutive recognition of ubiquitinated lysine 15 of histone 2A (H2AK15ub) and di-methylated lysine 20 of histone 4 (H4K20me2), leads to the assembly of 53BP1 oligomers and a mature 53BP1 foci structure.
Collapse
Affiliation(s)
- Jieqiong Lou
- School of Physics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - David G Priest
- School of Physics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Ashleigh Solano
- School of Physics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Adèle Kerjouan
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
28
|
γH2AX in the S Phase after UV Irradiation Corresponds to DNA Replication and Does Not Report on the Extent of DNA Damage. Mol Cell Biol 2020; 40:MCB.00328-20. [PMID: 32778572 DOI: 10.1128/mcb.00328-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 01/13/2023] Open
Abstract
Ultraviolet (UV) radiation is a major environmental mutagen. Exposure to UV leads to a sharp peak of γH2AX, the phosphorylated form of the histone variant H2AX, in the S phase within an asynchronous population of cells. γH2AX is often considered a definitive marker of DNA damage inside a cell. In this report, we show that γH2AX in the S-phase cells after UV irradiation reports neither on the extent of primary DNA damage in the form of cyclobutane pyrimidine dimers nor on the extent of its secondary manifestations in the form of DNA double-strand breaks or in the inhibition of global transcription. Instead, γH2AX in the S phase corresponds to the sites of active replication at the time of UV irradiation. This accumulation of γH2AX at replication sites slows down the replication. However, the cells do complete the replication of their genomes and arrest within the G2 phase. Our study suggests that it is not DNA damage, but the response elicited, which peaks in the S phase upon UV irradiation.
Collapse
|
29
|
Zilio N, Ulrich HD. Exploring the SSBreakome: genome-wide mapping of DNA single-strand breaks by next-generation sequencing. FEBS J 2020; 288:3948-3961. [PMID: 32965079 DOI: 10.1111/febs.15568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
Mapping the genome-wide distribution of DNA lesions is key to understanding damage signalling and DNA repair in the context of genome and chromatin structure. Analytical tools based on high-throughput next-generation sequencing have revolutionized our progress with such investigations, and numerous methods are now available for various base lesions and modifications as well as for DNA double-strand breaks. Considering that single-strand breaks are by far the most common type of lesion and arise not only from exposure to exogenous DNA-damaging agents, but also as obligatory intermediates of DNA replication, recombination and repair, it is surprising that our insight into their genome-wide patterns, that is the 'SSBreakome', has remained rather obscure until recently, due to a lack of suitable mapping technology. Here we briefly review classical methods for analysing single-strand breaks and discuss and compare in detail a series of recently developed high-resolution approaches for the genome-wide mapping of these lesions, their advantages and limitations and how they have already provided valuable insight into the impact of this type of damage on the genome.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| |
Collapse
|
30
|
Olofsson D, Cheng L, Fernández RB, Płódowska M, Riego ML, Akuwudike P, Lisowska H, Lundholm L, Wojcik A. Biological effectiveness of very high gamma dose rate and its implication for radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:451-460. [PMID: 32488310 PMCID: PMC7368856 DOI: 10.1007/s00411-020-00852-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/25/2020] [Indexed: 05/06/2023]
Abstract
Many experimental studies are carried out to compare biological effectiveness of high dose rate (HDR) with that of low dose rate (LDR). The rational for this is the uncertainty regarding the value of the dose rate effectiveness factor (DREF) used in radiological protection. While a LDR is defined as 0.1 mGy/min or lower, anything above that is seen as HDR. In cell and animal experiments, a dose rate around 1 Gy/min is usually used as representative for HDR. However, atomic bomb survivors, the reference cohort for radiological protection, were exposed to tens of Gy/min. The important question is whether gamma radiation delivered at very high dose rate (VHDR-several Gy/min) is more effective in inducing DNA damage than that delivered at HDR. The aim of this investigation was to compare the biological effectiveness of gamma radiation delivered at VHDR (8.25 Gy/min) with that of HDR (0.38 Gy/min or 0.79 Gy/min). Experiments were carried out with human peripheral mononuclear cells (PBMC) and the human osteosarcoma cell line U2OS. Endpoints related to DNA damage response were analysed. The results show that in PBMC, VHDR is more effective than HDR in inducing gene expression and micronuclei. In U2OS cells, the repair of 53BP1 foci was delayed after VHDR indicating a higher level of damage complexity, but no VHDR effect was observed at the level of micronuclei and clonogenic cell survival. We suggest that the DREF value may be underestimated when the biological effectiveness of HDR and LDR is compared.
Collapse
Affiliation(s)
- Dante Olofsson
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
| | - Lei Cheng
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
| | - Rubén Barrios Fernández
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
| | - Magdalena Płódowska
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Milagrosa López Riego
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
| | - Pamela Akuwudike
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
| | - Halina Lisowska
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Lovisa Lundholm
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
| | - Andrzej Wojcik
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden.
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| |
Collapse
|
31
|
Baker LA, Holliday H, Roden D, Krisp C, Wu SZ, Junankar S, Serandour AA, Mohammed H, Nair R, Sankaranarayanan G, Law AMK, McFarland A, Simpson PT, Lakhani S, Dodson E, Selinger C, Anderson L, Samimi G, Hacker NF, Lim E, Ormandy CJ, Naylor MJ, Simpson K, Nikolic I, O'Toole S, Kaplan W, Cowley MJ, Carroll JS, Molloy M, Swarbrick A. Proteogenomic analysis of Inhibitor of Differentiation 4 (ID4) in basal-like breast cancer. Breast Cancer Res 2020; 22:63. [PMID: 32527287 PMCID: PMC7291584 DOI: 10.1186/s13058-020-01306-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.
Collapse
Affiliation(s)
- Laura A Baker
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Daniel Roden
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- Mass Spectrometric Proteome Analysis, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sunny Z Wu
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Simon Junankar
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Aurelien A Serandour
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Hisham Mohammed
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Radhika Nair
- Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Geetha Sankaranarayanan
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Andrew M K Law
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrea McFarland
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Peter T Simpson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sunil Lakhani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, , Brisbane, QLD, Australia
| | - Eoin Dodson
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christina Selinger
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Lyndal Anderson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Goli Samimi
- National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Neville F Hacker
- School of Women's and Children's Health, University of New South Wales, and Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, NSW, Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christopher J Ormandy
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Matthew J Naylor
- School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kaylene Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sandra O'Toole
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Warren Kaplan
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Mark J Cowley
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jason S Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Mark Molloy
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
32
|
Kordon MM, Zarębski M, Solarczyk K, Ma H, Pederson T, Dobrucki JW. STRIDE-a fluorescence method for direct, specific in situ detection of individual single- or double-strand DNA breaks in fixed cells. Nucleic Acids Res 2020; 48:e14. [PMID: 31832687 PMCID: PMC7026605 DOI: 10.1093/nar/gkz1118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
We here describe a technique termed STRIDE (SensiTive Recognition of Individual DNA Ends), which enables highly sensitive, specific, direct in situ detection of single- or double-strand DNA breaks (sSTRIDE or dSTRIDE), in nuclei of single cells, using fluorescence microscopy. The sensitivity of STRIDE was tested using a specially developed CRISPR/Cas9 DNA damage induction system, capable of inducing small clusters or individual single- or double-strand breaks. STRIDE exhibits significantly higher sensitivity and specificity of detection of DNA breaks than the commonly used terminal deoxynucleotidyl transferase dUTP nick-end labeling assay or methods based on monitoring of recruitment of repair proteins or histone modifications at the damage site (e.g. γH2AX). Even individual genome site-specific DNA double-strand cuts induced by CRISPR/Cas9, as well as individual single-strand DNA scissions induced by the nickase version of Cas9, can be detected by STRIDE and precisely localized within the cell nucleus. We further show that STRIDE can detect low-level spontaneous DNA damage, including age-related DNA lesions, DNA breaks induced by several agents (bleomycin, doxorubicin, topotecan, hydrogen peroxide, UV, photosensitized reactions) and fragmentation of DNA in human spermatozoa. The STRIDE methods are potentially useful in studies of mechanisms of DNA damage induction and repair in cell lines and primary cultures, including cells with impaired repair mechanisms.
Collapse
Affiliation(s)
- Magdalena M Kordon
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Kamil Solarczyk
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Hanhui Ma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jurek W Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
33
|
Differential Repair Protein Recruitment at Sites of Clustered and Isolated DNA Double-Strand Breaks Produced by High-Energy Heavy Ions. Sci Rep 2020; 10:1443. [PMID: 31996740 PMCID: PMC6989695 DOI: 10.1038/s41598-020-58084-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/06/2020] [Indexed: 01/17/2023] Open
Abstract
DNA double-strand break (DSB) repair is crucial to maintain genomic stability. The fidelity of the repair depends on the complexity of the lesion, with clustered DSBs being more difficult to repair than isolated breaks. Using live cell imaging of heavy ion tracks produced at a high-energy particle accelerator we visualised simultaneously the recruitment of different proteins at individual sites of complex and simple DSBs in human cells. NBS1 and 53BP1 were recruited in a few seconds to complex DSBs, but in 40% of the isolated DSBs the recruitment was delayed approximately 5 min. Using base excision repair (BER) inhibitors we demonstrate that some simple DSBs are generated by enzymatic processing of base damage, while BER did not affect the complex DSBs. The results show that DSB processing and repair kinetics are dependent on the complexity of the breaks and can be different even for the same clastogenic agent.
Collapse
|
34
|
Kochan JA, van den Belt M, von der Lippe J, Desclos ECB, Steurer B, Hoebe RA, Scutigliani EM, Verhoeven J, Stap J, Bosch R, Rijpkema M, van Oven C, van Veen HA, Stellingwerf I, Vriend LEM, Marteijn JA, Aten JA, Krawczyk PM. Ultra-soft X-ray system for imaging the early cellular responses to X-ray induced DNA damage. Nucleic Acids Res 2019; 47:e100. [PMID: 31318974 PMCID: PMC6753493 DOI: 10.1093/nar/gkz609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 11/14/2022] Open
Abstract
The majority of the proteins involved in processing of DNA double-strand breaks (DSBs) accumulate at the damage sites. Real-time imaging and analysis of these processes, triggered by the so-called microirradiation using UV lasers or heavy particle beams, yielded valuable insights into the underlying DSB repair mechanisms. To study the temporal organization of DSB repair responses triggered by a more clinically-relevant DNA damaging agent, we developed a system coined X-ray multi-microbeam microscope (XM3), capable of simultaneous high dose-rate (micro)irradiation of large numbers of cells with ultra-soft X-rays and imaging of the ensuing cellular responses. Using this setup, we analyzed the changes in real-time kinetics of MRE11, MDC1, RNF8, RNF168 and 53BP1—proteins involved in the signaling axis of mammalian DSB repair—in response to X-ray and UV laser-induced DNA damage, in non-cancerous and cancer cells and in the presence or absence of a photosensitizer. Our results reveal, for the first time, the kinetics of DSB signaling triggered by X-ray microirradiation and establish XM3 as a powerful platform for real-time analysis of cellular DSB repair responses.
Collapse
Affiliation(s)
- Jakub A Kochan
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.,Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Matthias van den Belt
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Julia von der Lippe
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Emilie C B Desclos
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Barbara Steurer
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Ron A Hoebe
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Jan Verhoeven
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Jan Stap
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ruben Bosch
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Meindert Rijpkema
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Carel van Oven
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Henk A van Veen
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Irene Stellingwerf
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Lianne E M Vriend
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Jurgen A Marteijn
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Jacob A Aten
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Przemek M Krawczyk
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
35
|
Lu X, Tang M, Zhu Q, Yang Q, Li Z, Bao Y, Liu G, Hou T, Lv Y, Zhao Y, Wang H, Yang Y, Cheng Z, Wen H, Liu B, Xu X, Gu L, Zhu WG. GLP-catalyzed H4K16me1 promotes 53BP1 recruitment to permit DNA damage repair and cell survival. Nucleic Acids Res 2019; 47:10977-10993. [PMID: 31612207 PMCID: PMC6868394 DOI: 10.1093/nar/gkz897] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
The binding of p53-binding protein 1 (53BP1) to damaged chromatin is a critical event in non-homologous DNA end joining (NHEJ)-mediated DNA damage repair. Although several molecular pathways explaining how 53BP1 binds damaged chromatin have been described, the precise underlying mechanisms are still unclear. Here we report that a newly identified H4K16 monomethylation (H4K16me1) mark is involved in 53BP1 binding activity in the DNA damage response (DDR). During the DDR, H4K16me1 rapidly increases as a result of catalyzation by the histone methyltransferase G9a-like protein (GLP). H4K16me1 shows an increased interaction level with 53BP1, which is important for the timely recruitment of 53BP1 to DNA double-strand breaks. Differing from H4K16 acetylation, H4K16me1 enhances the 53BP1-H4K20me2 interaction at damaged chromatin. Consistently, GLP knockdown markedly attenuates 53BP1 foci formation, leading to impaired NHEJ-mediated repair and decreased cell survival. Together, these data support a novel axis of the DNA damage repair pathway based on H4K16me1 catalysis by GLP, which promotes 53BP1 recruitment to permit NHEJ-mediated DNA damage repair.
Collapse
Affiliation(s)
- Xiaopeng Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
- Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Ming Tang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Qian Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Qiaoyan Yang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Zhiming Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
- Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yantao Bao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Ge Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Tianyun Hou
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
- Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yafei Lv
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Ying Zhao
- Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Haiying Wang
- Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yang
- Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou 310018, China
| | - He Wen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
- Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
- International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China
| |
Collapse
|
36
|
Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: a brief review. Essays Biochem 2019; 63:569-577. [PMID: 31366473 DOI: 10.1042/ebc20190007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/14/2023]
Abstract
In many contexts of development, regeneration, or disease such as cancer, a cell squeezes through a dense tissue or a basement membrane, constricting its nucleus. Here, we describe how the severity of nuclear deformation depends on a nucleus' mechanical properties that are mostly determined by the density of chromatin and by the nuclear lamina. We explain how constriction-induced nuclear deformation affects nuclear contents by causing (i) local density changes in chromatin and (ii) rupture of the nuclear lamina and envelope. Both processes mislocalize diffusible nuclear factors including key DNA repair and regulatory proteins. Importantly, these effects of constricted migration are accompanied by excess DNA damage, marked by phosphorylated histone γH2AX in fixed cells. Rupture has a number of downstream consequences that include a delayed cell cycle-consistent with a damage checkpoint-and modulation of differentiation, both of which are expected to affect migration-dependent processes ranging from wound healing to tumorigenic invasion.
Collapse
|
37
|
Pfeifer CR, Irianto J, Discher DE. Nuclear Mechanics and Cancer Cell Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1146:117-130. [PMID: 31612457 DOI: 10.1007/978-3-030-17593-1_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a cancer cell invades adjacent tissue, penetrates a basement membrane barrier, or squeezes into a blood capillary, its nucleus can be greatly constricted. Here, we examine: (1) the passive and active deformation of the nucleus during 3D migration; (2) the nuclear structures-namely, the lamina and chromatin-that govern nuclear deformability; (3) the effect of large nuclear deformation on DNA and nuclear factors; and (4) the downstream consequences of mechanically stressing the nucleus. We focus especially on recent studies showing that constricted migration causes nuclear envelope rupture and excess DNA damage, leading to cell cycle suppression, possibly cell death, and ultimately it seems to heritable genomic variation. We first review the latest understanding of nuclear dynamics during cell migration, and then explore the functional effects of nuclear deformation, especially in relation to genome integrity and potentially cancerous mutations.
Collapse
Affiliation(s)
- Charlotte R Pfeifer
- Biophysical Engineering Labs: Molecular & Cell Biophysics and NanoBio-Polymers, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerome Irianto
- Biophysical Engineering Labs: Molecular & Cell Biophysics and NanoBio-Polymers, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Discher
- Biophysical Engineering Labs: Molecular & Cell Biophysics and NanoBio-Polymers, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V, Galbiati A, Barozzi S, Garre M, Oldani A, Flaus A, Cerbino R, Parazzoli D, Rothenberg E, d'Adda di Fagagna F. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol 2019; 21:1286-1299. [PMID: 31570834 PMCID: PMC6859070 DOI: 10.1038/s41556-019-0392-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.
Collapse
Affiliation(s)
- Fabio Pessina
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Ubaldo Gioia
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valerio Vitelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Sara Barozzi
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Amanda Oldani
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Andrew Flaus
- Centre for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Roberto Cerbino
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Dario Parazzoli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
39
|
Sabin R, Pucci G, Anderson RM. DNA Damage Processing is Perturbed in Both Proliferative and Non-Proliferative Cells of Increased Chronological Cellular Age. Radiat Res 2019; 192:200-207. [DOI: 10.1667/rr15348.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rebecca Sabin
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Gaia Pucci
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Rhona M. Anderson
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
40
|
Abstract
All organisms must protect their genome from constantly occurring DNA damage. To this end, cells have evolved complex pathways for repairing sites of DNA lesions, and multiple in vitro and in vivo techniques have been developed to study these processes. In this review, we discuss the commonly used laser microirradiation method for monitoring the accumulation of repair proteins at DNA damage sites in cells, and we outline several strategies for deriving kinetic models from such experimental data. We discuss an example of how in vitro measurements and in vivo microirradation experiments complement each other to provide insight into the mechanism of PARP1 recruitment to DNA lesions. We also discuss a strategy to combine data obtained for the recruitment of many different proteins in a move toward fully quantitating the spatiotemporal relationships between various damage responses, and we outline potential venues for future development in the field.
Collapse
|
41
|
Schwarz B, Friedl AA, Girst S, Dollinger G, Reindl J. Nanoscopic analysis of 53BP1, BRCA1 and Rad51 reveals new insights in temporal progression of DNA-repair and pathway choice. Mutat Res 2019; 816-818:111675. [PMID: 31302572 DOI: 10.1016/j.mrfmmm.2019.111675] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
The accumulation and spatial distribution of 53BP1, BRCA1 and Rad51, key proteins in DNA double-strand break (DSB) repair, was investigated with high temporal resolution over a time span of 24 h, using STED nanoscopy. DNA lesions were induced by irradiation with high-LET (linear energy transfer) α-particles. We show that 53BP1 IRIF formation occurs quickly in almost all cells and after about 6 h the fraction of 53BP1 IRIF positive cells slowly declines. Against the expectations BRCA1 and Rad51 IRIF formation is only shortly delayed but with the maximum of cells showing foci after 6 and 8 h after irradiation. At this stage, almost all IRIF in a given Rad51-positive cell show Rad51 accumulation, suggesting that repair via homologous recombination is attempted at almost all residual DSB sites. The frequency of BRCA1 IRIF positive cells increases much earlier and remains high after Rad51 positive cells start to decline, supporting models claiming that functional roles of BRCA1 change over time. Correlation analysis showed a high degree of correlation of Rad51 with BRCA1, while the exclusion of 53BP1 from the actual resection-zone is demonstrated by anti-correlation of Rad51 and 53BP1. Interestingly, these correlation and anti-correlation patterns exhibit complementary temporal variation.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.
| | - Anna A Friedl
- Department of Radiation Oncology, Ludwig-Maximilians-Universitaet Muenchen, 80336 Munich, Germany
| | - Stefanie Girst
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Günther Dollinger
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Judith Reindl
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| |
Collapse
|
42
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|
43
|
Gioia U, Francia S, Cabrini M, Brambillasca S, Michelini F, Jones-Weinert CW, d'Adda di Fagagna F. Pharmacological boost of DNA damage response and repair by enhanced biogenesis of DNA damage response RNAs. Sci Rep 2019; 9:6460. [PMID: 31015566 PMCID: PMC6478851 DOI: 10.1038/s41598-019-42892-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
A novel class of small non-coding RNAs called DNA damage response RNAs (DDRNAs) generated at DNA double-strand breaks (DSBs) in a DROSHA- and DICER-dependent manner has been shown to regulate the DNA damage response (DDR). Similar molecules were also reported to guide DNA repair. Here, we show that DDR activation and DNA repair can be pharmacologically boosted by acting on such non-coding RNAs. Cells treated with enoxacin, a compound previously demonstrated to augment DICER activity, show stronger DDR signalling and faster DNA repair upon exposure to ionizing radiations compared to vehicle-only treated cells. Enoxacin stimulates DDRNA production at chromosomal DSBs and at dysfunctional telomeres, which in turn promotes 53BP1 accumulation at damaged sites, therefore in a miRNA-independent manner. Increased 53BP1 occupancy at DNA lesions induced by enoxacin ultimately suppresses homologous recombination, channelling DNA repair towards faster and more accurate non-homologous end-joining, including in post-mitotic primary neurons. Notably, augmented DNA repair stimulated by enoxacin increases the survival also of cancer cells treated with chemotherapeutic agents.
Collapse
Affiliation(s)
- Ubaldo Gioia
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Sofia Francia
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Istituto di Genetica Molecolare, Luigi Luca Cavalli-Sforza - Consiglio Nazionale delle Ricerche, 27100, Pavia, Italy
| | - Matteo Cabrini
- Istituto di Genetica Molecolare, Luigi Luca Cavalli-Sforza - Consiglio Nazionale delle Ricerche, 27100, Pavia, Italy
| | - Silvia Brambillasca
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Flavia Michelini
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Human Oncology and Pathogenesis Program (HOPP) - Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Corey W Jones-Weinert
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.
- Istituto di Genetica Molecolare, Luigi Luca Cavalli-Sforza - Consiglio Nazionale delle Ricerche, 27100, Pavia, Italy.
| |
Collapse
|
44
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
45
|
Motea EA, Fattah FJ, Xiao L, Girard L, Rommel A, Morales JC, Patidar P, Zhou Y, Porter A, Xie Y, Minna JD, Boothman DA. Kub5-Hera RPRD1B Deficiency Promotes "BRCAness" and Vulnerability to PARP Inhibition in BRCA-proficient Breast Cancers. Clin Cancer Res 2018; 24:6459-6470. [PMID: 30108102 DOI: 10.1158/1078-0432.ccr-17-1118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/05/2017] [Accepted: 08/09/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Identification of novel strategies to expand the use of PARP inhibitors beyond BRCA deficiency is of great interest in personalized medicine. Here, we investigated the unannotated role of Kub5-HeraRPRD1B (K-H) in homologous recombination (HR) repair and its potential clinical significance in targeted cancer therapy. EXPERIMENTAL DESIGN Functional characterization of K-H alterations on HR repair of double-strand breaks (DSB) were assessed by targeted gene silencing, plasmid reporter assays, immunofluorescence, and Western blots. Cell survival with PARP inhibitors was evaluated through colony-forming assays and statistically analyzed for correlation with K-H expression in various BRCA1/2 nonmutated breast cancers. Gene expression microarray/qPCR analyses, chromatin immunoprecipitation, and rescue experiments were used to investigate molecular mechanisms of action. RESULTS K-H expression loss correlates with rucaparib LD50 values in a panel of BRCA1/2 nonmutated breast cancers. Mechanistically, K-H depletion promotes BRCAness, where extensive upregulation of PARP1 activity was required for the survival of breast cancer cells. PARP inhibition in these cells led to synthetic lethality that was rescued by wild-type K-H reexpression, but not by a mutant K-H (p.R106A) that weakly binds RNAPII. K-H mediates HR by facilitating recruitment of RNAPII to the promoter region of a critical DNA damage response and repair effector, cyclin-dependent kinase 1 (CDK1). CONCLUSIONS Cancer cells with low K-H expression may have exploitable BRCAness properties that greatly expand the use of PARP inhibitors beyond BRCA mutations. Our results suggest that aberrant K-H alterations may have vital translational implications in cellular responses/survival to DNA damage, carcinogenesis, and personalized medicine.
Collapse
Affiliation(s)
- Edward A Motea
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Farjana J Fattah
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ling Xiao
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amy Rommel
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Julio C Morales
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Praveen Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico
| | - Yunyun Zhou
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew Porter
- Center for Hematology, Imperial College, London, United Kingdom
| | - Yang Xie
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
46
|
Bolgioni AF, Vittoria MA, Ganem NJ. Long-term Live-cell Imaging to Assess Cell Fate in Response to Paclitaxel. J Vis Exp 2018. [PMID: 29806834 DOI: 10.3791/57383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Live-cell imaging is a powerful technique that can be used to directly visualize biological phenomena in single cells over extended periods of time. Over the past decade, new and innovative technologies have greatly enhanced the practicality of live-cell imaging. Cells can now be kept in focus and continuously imaged over several days while maintained under 37 °C and 5% CO2 cell culture conditions. Moreover, multiple fields of view representing different experimental conditions can be acquired simultaneously, thus providing high-throughput experimental data. Live-cell imaging provides a significant advantage over fixed-cell imaging by allowing for the direct visualization and temporal quantitation of dynamic cellular events. Live-cell imaging can also identify variation in the behavior of single cells that would otherwise have been missed using population-based assays. Here, we describe live-cell imaging protocols to assess cell fate decisions following treatment with the anti-mitotic drug paclitaxel. We demonstrate methods to visualize whether mitotically arrested cells die directly from mitosis or slip back into interphase. We also describe how the fluorescent ubiquitination-based cell cycle indicator (FUCCI) system can be used to assess the fraction of interphase cells born from mitotic slippage that are capable of re-entering the cell cycle. Finally, we describe a live-cell imaging method to identify nuclear envelope rupture events.
Collapse
Affiliation(s)
- Amanda F Bolgioni
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine
| | - Marc A Vittoria
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine
| | - Neil J Ganem
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine; Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine;
| |
Collapse
|
47
|
Gupta R, Somyajit K, Narita T, Maskey E, Stanlie A, Kremer M, Typas D, Lammers M, Mailand N, Nussenzweig A, Lukas J, Choudhary C. DNA Repair Network Analysis Reveals Shieldin as a Key Regulator of NHEJ and PARP Inhibitor Sensitivity. Cell 2018; 173:972-988.e23. [PMID: 29656893 PMCID: PMC8108093 DOI: 10.1016/j.cell.2018.03.050] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 01/13/2023]
Abstract
Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.
Collapse
Affiliation(s)
- Rajat Gupta
- Proteomics Program, the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Kumar Somyajit
- Protein Signaling Program, the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Takeo Narita
- Proteomics Program, the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Elina Maskey
- Proteomics Program, the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Andre Stanlie
- Laboratory of Genome Integrity, NIH, Bethesda, MD 20892, USA
| | - Magdalena Kremer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, University of Cologne, 50931 Cologne, Germany
| | - Dimitris Typas
- Protein Signaling Program, the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Michael Lammers
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, University of Cologne, 50931 Cologne, Germany; Institute for Biochemistry, Synthetic and Structural Biochemistry, Felix-Hausdorff-Str. 4, University of Greifswald, 17487 Greifswald, Germany
| | - Niels Mailand
- Protein Signaling Program, the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | | - Jiri Lukas
- Protein Signaling Program, the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- Proteomics Program, the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark; Center for Chromosome Stability (CCS), Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
48
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
49
|
Gupta D, Lin B, Cowan A, Heinen CD. ATR-Chk1 activation mitigates replication stress caused by mismatch repair-dependent processing of DNA damage. Proc Natl Acad Sci U S A 2018; 115:1523-1528. [PMID: 29378956 PMCID: PMC5816205 DOI: 10.1073/pnas.1720355115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mismatch repair pathway (MMR) is essential for removing DNA polymerase errors, thereby maintaining genomic stability. Loss of MMR function increases mutation frequency and is associated with tumorigenesis. However, how MMR is executed at active DNA replication forks is unclear. This has important implications for understanding how MMR repairs O6-methylguanine/thymidine (MeG/T) mismatches created upon exposure to DNA alkylating agents. If MeG/T lesion recognition by MMR initiates mismatch excision, the reinsertion of a mismatched thymidine during resynthesis could initiate futile repair cycles. One consequence of futile repair cycles might be a disruption of overall DNA replication in the affected cell. Herein, we show that in MMR-proficient HeLa cancer cells, treatment with a DNA alkylating agent slows S phase progression, yet cells still progress into the next cell cycle. In the first S phase following treatment, they activate ataxia telangiectasia and Rad3-related (ATR)-Checkpoint Kinase 1 (Chk1) signaling, which limits DNA damage, while inhibition of ATR kinase activity accelerates DNA damage accumulation and sensitivity to the DNA alkylating agent. We also observed that exposure of human embryonic stem cells to alkylation damage severely compromised DNA replication in a MMR-dependent manner. These cells fail to activate the ATR-Chk1 signaling axis, which may limit their ability to handle replication stress. Accordingly, they accumulate double-strand breaks and undergo immediate apoptosis. Our findings implicate the MMR-directed response to alkylation damage as a replication stress inducer, suggesting that repeated MMR processing of mismatches may occur that can disrupt S phase progression.
Collapse
Affiliation(s)
- Dipika Gupta
- Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030-3101
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101
| | - Bo Lin
- Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030-3101
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101
| | - Ann Cowan
- R. D. Berlin Center for Cell Analysis and Modeling, UConn Health, Farmington, CT 06030
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030
| | - Christopher D Heinen
- Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030-3101;
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101
| |
Collapse
|
50
|
Live Dynamics of 53BP1 Foci Following Simultaneous Induction of Clustered and Dispersed DNA Damage in U2OS Cells. Int J Mol Sci 2018; 19:ijms19020519. [PMID: 29419809 PMCID: PMC5855741 DOI: 10.3390/ijms19020519] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Cells react differently to clustered and dispersed DNA double strand breaks (DSB). Little is known about the initial reaction to simultaneous induction of DSBs with different complexities. Here, we used live cell microscopy to analyse the behaviour of 53BP1-GFP (green fluorescence protein) foci formation at DSBs induced in U2OS cells by alpha particles, X-rays or mixed beams over a 75 min period post irradiation. X-ray-induced foci rapidly increased and declined over the observation interval. After an initial increase, mixed beam-induced foci remained at a constant level over the observation interval, similarly as alpha-induced foci. The average areas of radiation-induced foci were similar for mixed beams and X-rays, being significantly smaller than those induced by alpha particles. Pixel intensities were highest for mixed beam-induced foci and showed the lowest level of variability over time as compared to foci induced by alphas and X-rays alone. Finally, mixed beam-exposed foci showed the lowest level of mobility as compared to alpha and X-ray exposure. The results suggest paralysation of chromatin around foci containing clustered DNA damage.
Collapse
|