1
|
Ganesan I, Busto JV, Pfanner N, Wiedemann N. Biogenesis of mitochondrial β-barrel membrane proteins. FEBS Open Bio 2024; 14:1595-1609. [PMID: 39343721 PMCID: PMC11452307 DOI: 10.1002/2211-5463.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
β-barrel membrane proteins in the mitochondrial outer membrane are crucial for mediating the metabolite exchange between the cytosol and the mitochondrial intermembrane space. In addition, the β-barrel membrane protein subunit Tom40 of the translocase of the outer membrane (TOM) is essential for the import of the vast majority of mitochondrial proteins encoded in the nucleus. The sorting and assembly machinery (SAM) in the outer membrane is required for the membrane insertion of mitochondrial β-barrel proteins. The core subunit Sam50, which has been conserved from bacteria to humans, is itself a β-barrel protein. The β-strands of β-barrel precursor proteins are assembled at the Sam50 lateral gate forming a Sam50-preprotein hybrid barrel. The assembled precursor β-barrel is finally released into the outer mitochondrial membrane by displacement of the nascent β-barrel, termed the β-barrel switching mechanism. SAM forms supercomplexes with TOM and forms a mitochondrial outer-to-inner membrane contact site with the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. SAM shares subunits with the ER-mitochondria encounter structure (ERMES), which forms a membrane contact site between the mitochondrial outer membrane and the endoplasmic reticulum. Therefore, β-barrel membrane protein biogenesis is closely connected to general mitochondrial protein and lipid biogenesis and plays a central role in mitochondrial maintenance.
Collapse
Affiliation(s)
- Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Jon V. Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| |
Collapse
|
2
|
Busto JV, Ganesan I, Mathar H, Steiert C, Schneider EF, Straub SP, Ellenrieder L, Song J, Stiller SB, Lübbert P, Chatterjee R, Elsaesser J, Melchionda L, Schug C, den Brave F, Schulte U, Klecker T, Kraft C, Fakler B, Becker T, Wiedemann N. Role of the small protein Mco6 in the mitochondrial sorting and assembly machinery. Cell Rep 2024; 43:113805. [PMID: 38377000 DOI: 10.1016/j.celrep.2024.113805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The majority of mitochondrial precursor proteins are imported through the Tom40 β-barrel channel of the translocase of the outer membrane (TOM). The sorting and assembly machinery (SAM) is essential for β-barrel membrane protein insertion into the outer membrane and thus required for the assembly of the TOM complex. Here, we demonstrate that the α-helical outer membrane protein Mco6 co-assembles with the mitochondrial distribution and morphology protein Mdm10 as part of the SAM machinery. MCO6 and MDM10 display a negative genetic interaction, and a mco6-mdm10 yeast double mutant displays reduced levels of the TOM complex. Cells lacking Mco6 affect the levels of Mdm10 and show assembly defects of the TOM complex. Thus, this work uncovers a role of the SAMMco6 complex for the biogenesis of the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Jon V Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannah Mathar
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Conny Steiert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva F Schneider
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Sebastian B Stiller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Lübbert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ritwika Chatterjee
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jana Elsaesser
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laura Melchionda
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina Schug
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Till Klecker
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Moitra A, Tiku V, Rapaport D. Yeast mitochondria can process de novo designed β-barrel proteins. FEBS J 2024; 291:292-307. [PMID: 37723586 DOI: 10.1111/febs.16950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
Mitochondrial outer membrane β-barrel proteins are encoded in the nucleus, translated in the cytosol and then targeted to and imported into the respective organelles. Detailed studies have uncovered the mechanisms involved in the import of these proteins and identified the targeting signals and the cytosolic factors that govern their proper biogenesis. Recently, de novo designed eight-stranded β-barrel proteins (Tmb2.3 and Tmb2.17) were shown to fold and assemble into lipid membranes. To better understand the general aspects of the biogenesis of β-barrel proteins, we investigated the fate of these artificial proteins upon their expression in yeast cells. We demonstrate that although these proteins are de novo designed and are not related to bona fide mitochondrial β-barrel proteins, they were targeted to mitochondria and integrated into the organelle outer membrane. We further studied whether this integration requires components of the yeast mitochondrial import machinery like Tom20, Tom70, Tob55/Sam50 and Mas37/Sam37. Whereas it seems that none of the import receptors was required for the biogenesis of the artificial β-barrel proteins, we observed a strong dependency on the TOB/SAM complex. Collectively, our findings demonstrate that the mitochondrial outer membrane is the preferential location in yeast cells for any membrane-embedded β-barrel protein.
Collapse
Affiliation(s)
- Anasuya Moitra
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Vitasta Tiku
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
The Diversity of the Mitochondrial Outer Membrane Protein Import Channels: Emerging Targets for Modulation. Molecules 2021; 26:molecules26134087. [PMID: 34279427 PMCID: PMC8272145 DOI: 10.3390/molecules26134087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
The functioning of mitochondria and their biogenesis are largely based on the proper function of the mitochondrial outer membrane channels, which selectively recognise and import proteins but also transport a wide range of other molecules, including metabolites, inorganic ions and nucleic acids. To date, nine channels have been identified in the mitochondrial outer membrane of which at least half represent the mitochondrial protein import apparatus. When compared to the mitochondrial inner membrane, the presented channels are mostly constitutively open and consequently may participate in transport of different molecules and contribute to relevant changes in the outer membrane permeability based on the channel conductance. In this review, we focus on the channel structure, properties and transported molecules as well as aspects important to their modulation. This information could be used for future studies of the cellular processes mediated by these channels, mitochondrial functioning and therapies for mitochondria-linked diseases.
Collapse
|
5
|
Abudu YP, Shrestha BK, Zhang W, Palara A, Brenne HB, Larsen KB, Wolfson DL, Dumitriu G, Øie CI, Ahluwalia BS, Levy G, Behrends C, Tooze SA, Mouilleron S, Lamark T, Johansen T. SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. J Cell Biol 2021; 220:212185. [PMID: 34037656 PMCID: PMC8160579 DOI: 10.1083/jcb.202009092] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Mitophagy is the degradation of surplus or damaged mitochondria by autophagy. In addition to programmed and stress-induced mitophagy, basal mitophagy processes exert organelle quality control. Here, we show that the sorting and assembly machinery (SAM) complex protein SAMM50 interacts directly with ATG8 family proteins and p62/SQSTM1 to act as a receptor for a basal mitophagy of components of the SAM and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 regulates mitochondrial architecture by controlling formation and assembly of the MICOS complex decisive for normal cristae morphology and exerts quality control of MICOS components. To this end, SAMM50 recruits ATG8 family proteins through a canonical LIR motif and interacts with p62/SQSTM1 to mediate basal mitophagy of SAM and MICOS components. Upon metabolic switch to oxidative phosphorylation, SAMM50 and p62 cooperate to mediate efficient mitophagy.
Collapse
Affiliation(s)
- Yakubu Princely Abudu
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Birendra Kumar Shrestha
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Wenxin Zhang
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Anthimi Palara
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Hanne Britt Brenne
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Deanna Lynn Wolfson
- Department of Physics and Technology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Gianina Dumitriu
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Cristina Ionica Øie
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Gahl Levy
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University Hospital, Frankfurt am Main, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University, Munich, Germany
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Maity S, Chakrabarti O. Mitochondrial protein import as a quality control sensor. Biol Cell 2021; 113:375-400. [PMID: 33870508 DOI: 10.1111/boc.202100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Mitochondria are organelles involved in various functions related to cellular metabolism and homoeostasis. Though mitochondria contain own genome, their nuclear counterparts encode most of the different mitochondrial proteins. These are synthesised as precursors in the cytosol and have to be delivered into the mitochondria. These organelles hence have elaborate machineries for the import of precursor proteins from cytosol. The protein import machineries present in both mitochondrial membrane and aqueous compartments show great variability in pre-protein recognition, translocation and sorting across or into it. Mitochondrial protein import machineries also interact transiently with other protein complexes of the respiratory chain or those involved in the maintenance of membrane architecture. Hence mitochondrial protein translocation is an indispensable part of the regulatory network that maintains protein biogenesis, bioenergetics, membrane dynamics and quality control of the organelle. Various stress conditions and diseases that are associated with mitochondrial import defects lead to changes in cellular transcriptomic and proteomic profiles. Dysfunction in mitochondrial protein import also causes over-accumulation of precursor proteins and their aggregation in the cytosol. Multiple pathways may be activated for buffering these harmful consequences. Here, we present a comprehensive picture of import machinery and its role in cellular quality control in response to defective mitochondrial import. We also discuss the pathological consequences of dysfunctional mitochondrial protein import in neurodegeneration and cancer.
Collapse
Affiliation(s)
- Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| |
Collapse
|
7
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Gupta A, Becker T. Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148323. [PMID: 33035511 DOI: 10.1016/j.bbabio.2020.148323] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
Abstract
Outer membrane proteins integrate mitochondria into the cellular environment. They warrant exchange of small molecules like metabolites and ions, transport proteins into mitochondria, form contact sites to other cellular organelles for lipid exchange, constitute a signaling platform for apoptosis and inflammation and mediate organelle fusion and fission. The outer membrane contains two types of integral membrane proteins. Proteins with a transmembrane β-barrel structure and proteins with a single or multiple α-helical membrane spans. All outer membrane proteins are produced on cytosolic ribosomes and imported into the target organelle. Precursors of β-barrel and α-helical proteins are transported into the outer membrane via distinct import routes. The translocase of the outer membrane (TOM complex) transports β-barrel precursors across the outer membrane and the sorting and assembly machinery (SAM complex) inserts them into the target membrane. The mitochondrial import (MIM) complex constitutes the major integration site for α-helical embedded proteins. The import of some MIM-substrates involves TOM receptors, while others are imported in a TOM-independent manner. Remarkably, TOM, SAM and MIM complexes dynamically interact to import a large set of different proteins and to coordinate their assembly into protein complexes. Thus, protein import into the mitochondrial outer membrane involves a dynamic platform of protein translocases.
Collapse
Affiliation(s)
- Arushi Gupta
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
9
|
Roumia AF, Theodoropoulou MC, Tsirigos KD, Nielsen H, Bagos PG. Landscape of Eukaryotic Transmembrane Beta Barrel Proteins. J Proteome Res 2020; 19:1209-1221. [PMID: 32008325 DOI: 10.1021/acs.jproteome.9b00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Even though in the last few years several families of eukaryotic β-barrel outer membrane proteins have been discovered, their computational characterization and their annotation in public databases are far from complete. The PFAM database includes only very few characteristic profiles for these families, and in most cases, the profile hidden Markov models (pHMMs) have been trained using prokaryotic and eukaryotic proteins together. Here, we present for the first time a comprehensive computational analysis of eukaryotic transmembrane β-barrels. Twelve characteristic pHMMs were built, based on an extensive literature search, which can discriminate eukaryotic β-barrels from other classes of proteins (globular and bacterial β-barrel ones), as well as between mitochondrial and chloroplastic ones. We built eight novel profiles for the chloroplastic β-barrel families that are not present in the PFAM database and also updated the profile for the MDM10 family (PF12519) in the PFAM database and divide the porin family (PF01459) into two separate families, namely, VDAC and TOM40.
Collapse
Affiliation(s)
- Ahmed F Roumia
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece
| | | | - Konstantinos D Tsirigos
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Henrik Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece
| |
Collapse
|
10
|
Weinhäupl K, Lindau C, Hessel A, Wang Y, Schütze C, Jores T, Melchionda L, Schönfisch B, Kalbacher H, Bersch B, Rapaport D, Brennich M, Lindorff-Larsen K, Wiedemann N, Schanda P. Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space. Cell 2018; 175:1365-1379.e25. [PMID: 30445040 PMCID: PMC6242696 DOI: 10.1016/j.cell.2018.10.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/16/2018] [Accepted: 10/15/2018] [Indexed: 12/04/2022]
Abstract
The exchange of metabolites between the mitochondrial matrix and the cytosol depends on β-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and β-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and β-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.
Collapse
Affiliation(s)
- Katharina Weinhäupl
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Audrey Hessel
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yong Wang
- Structural Biology and NMR Laboratory, the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Conny Schütze
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Laura Melchionda
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Birgit Schönfisch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Beate Bersch
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Martha Brennich
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Paul Schanda
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France.
| |
Collapse
|
11
|
Hsueh YC, Nicolaisen K, Gross LE, Nöthen J, Schauer N, Vojta L, Ertel F, Koch I, Ladig R, Fulgosi H, Fernie AR, Schleiff E. The outer membrane Omp85-like protein P39 influences metabolic homeostasis in mature Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:825-833. [PMID: 29758131 DOI: 10.1111/plb.12839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The Omp85 proteins form a large membrane protein family in bacteria and eukaryotes. Omp85 proteins are composed of a C-terminal β-barrel-shaped membrane domain and one or more N-terminal polypeptide transport-associated (POTRA) domains. However, Arabidopsis thaliana contains two genes coding for Omp85 proteins without a POTRA domain. One gene is designated P39, according to the molecular weight of the encoded protein. The protein is targeted to plastids and it was established that p39 has electrophysiological properties similar to other Omp85 family members, particularly to that designated as Toc75V/Oep80. We analysed expression of the gene and characterised two T-DNA insertion mutants, focusing on alterations in photosynthetic activity, plastid ultrastructure, global expression profile and metabolome. We observed pronounced expression of P39, especially in veins. Mutants of P39 show growth aberrations, reduced photosynthetic activity and changes in plastid ultrastructure, particularly in the leaf tip. Further, they display global alteration of gene expression and metabolite content in leaves of mature plants. We conclude that the function of the plastid-localised and vein-specific Omp85 family protein p39 is important, but not essential, for maintenance of metabolic homeostasis of full-grown A. thaliana plants. Further, the function of p39 in veins influences the functionality of other plant tissues. The link connecting p39 function with metabolic regulation in mature A. thaliana is discussed.
Collapse
Affiliation(s)
- Y-C Hsueh
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - K Nicolaisen
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - L E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - J Nöthen
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
- Department of Mathematics and Informatics, Goethe University, Frankfurt, Germany
| | - N Schauer
- MPI für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - L Vojta
- Division of Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - F Ertel
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - I Koch
- Department of Mathematics and Informatics, Goethe University, Frankfurt, Germany
| | - R Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - H Fulgosi
- Division of Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - A R Fernie
- MPI für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - E Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| |
Collapse
|
12
|
Höhr AIC, Lindau C, Wirth C, Qiu J, Stroud DA, Kutik S, Guiard B, Hunte C, Becker T, Pfanner N, Wiedemann N. Membrane protein insertion through a mitochondrial β-barrel gate. Science 2018; 359:359/6373/eaah6834. [PMID: 29348211 DOI: 10.1126/science.aah6834] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/12/2017] [Accepted: 12/14/2017] [Indexed: 11/02/2022]
Abstract
The biogenesis of mitochondria, chloroplasts, and Gram-negative bacteria requires the insertion of β-barrel proteins into the outer membranes. Homologous Omp85 proteins are essential for membrane insertion of β-barrel precursors. It is unknown if precursors are threaded through the Omp85-channel interior and exit laterally or if they are translocated into the membrane at the Omp85-lipid interface. We have mapped the interaction of a precursor in transit with the mitochondrial Omp85-channel Sam50 in the native membrane environment. The precursor is translocated into the channel interior, interacts with an internal loop, and inserts into the lateral gate by β-signal exchange. Transport through the Omp85-channel interior followed by release through the lateral gate into the lipid phase may represent a basic mechanism for membrane insertion of β-barrel proteins.
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christophe Wirth
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - David A Stroud
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stephan Kutik
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Becker T, Wagner R. Mitochondrial Outer Membrane Channels: Emerging Diversity in Transport Processes. Bioessays 2018; 40:e1800013. [DOI: 10.1002/bies.201800013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Becker
- Faculty of MedicineInstitute of Biochemistry and Molecular Biology, ZBMZUniversity of FreiburgFreiburgD‐79104Germany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgD‐79104Germany
| | - Richard Wagner
- Biophysics, Life Sciences & ChemistryJacobs University BremenBremenD‐28759Germany
| |
Collapse
|
14
|
Hsueh YC, Flinner N, Gross LE, Haarmann R, Mirus O, Sommer MS, Schleiff E. Chloroplast outer envelope protein P39 in Arabidopsis thaliana belongs to the Omp85 protein family. Proteins 2017; 85:1391-1401. [PMID: 25401771 DOI: 10.1002/prot.24725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/08/2023]
Abstract
Proteins of the Omp85 family chaperone the membrane insertion of β-barrel-shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear-encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N-terminal polypeptide transport-associated (POTRA) domains and a C-terminal membrane-embedded β-barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded β-barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75-V, which is consistent with the phylogenetic clustering of P39 in the Toc75-V rather than the Toc75-III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75-III, Toc75-V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391-1401. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Ching Hsueh
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Nadine Flinner
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany.,Center of Membrane Proteomics, Goethe University, D-60438, Frankfurt, Germany
| | - Lucia E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Raimund Haarmann
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Oliver Mirus
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Maik S Sommer
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany.,Center of Membrane Proteomics, Goethe University, D-60438, Frankfurt, Germany.,Cluster of Excellence Frankfurt, Goethe University, D-60438, Frankfurt, Germany.,Buchman Institute of Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
| |
Collapse
|
15
|
Dastvan R, Brouwer EM, Schuetz D, Mirus O, Schleiff E, Prisner TF. Relative Orientation of POTRA Domains from Cyanobacterial Omp85 Studied by Pulsed EPR Spectroscopy. Biophys J 2017; 110:2195-206. [PMID: 27224485 DOI: 10.1016/j.bpj.2016.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022] Open
Abstract
Many proteins of the outer membrane of Gram-negative bacteria and of the outer envelope of the endosymbiotically derived organelles mitochondria and plastids have a β-barrel fold. Their insertion is assisted by membrane proteins of the Omp85-TpsB superfamily. These proteins are composed of a C-terminal β-barrel and a different number of N-terminal POTRA domains, three in the case of cyanobacterial Omp85. Based on structural studies of Omp85 proteins, including the five POTRA-domain-containing BamA protein of Escherichia coli, it is predicted that anaP2 and anaP3 bear a fixed orientation, whereas anaP1 and anaP2 are connected via a flexible hinge. We challenged this proposal by investigating the conformational space of the N-terminal POTRA domains of Omp85 from the cyanobacterium Anabaena sp. PCC 7120 using pulsed electron-electron double resonance (PELDOR, or DEER) spectroscopy. The pronounced dipolar oscillations observed for most of the double spin-labeled positions indicate a rather rigid orientation of the POTRA domains in frozen liquid solution. Based on the PELDOR distance data, structure refinement of the POTRA domains was performed taking two different approaches: 1) treating the individual POTRA domains as rigid bodies; and 2) using an all-atom refinement of the structure. Both refinement approaches yielded ensembles of model structures that are more restricted compared to the conformational ensemble obtained by molecular dynamics simulations, with only a slightly different orientation of N-terminal POTRA domains anaP1 and anaP2 compared with the x-ray structure. The results are discussed in the context of the native environment of the POTRA domains in the periplasm.
Collapse
Affiliation(s)
- Reza Dastvan
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany; Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eva-Maria Brouwer
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Denise Schuetz
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany; Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oliver Mirus
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt am Main, Germany; Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany; Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Abstract
Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.
Collapse
Affiliation(s)
- Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| |
Collapse
|
17
|
Pfitzner AK, Steblau N, Ulrich T, Oberhettinger P, Autenrieth IB, Schütz M, Rapaport D. Mitochondrial-bacterial hybrids of BamA/Tob55 suggest variable requirements for the membrane integration of β-barrel proteins. Sci Rep 2016; 6:39053. [PMID: 27982054 PMCID: PMC5159795 DOI: 10.1038/srep39053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 11/10/2022] Open
Abstract
β-Barrel proteins are found in the outer membrane (OM) of Gram-negative bacteria, chloroplasts and mitochondria. The assembly of these proteins into the corresponding OM is facilitated by a dedicated protein complex that contains a central conserved β-barrel protein termed BamA in bacteria and Tob55/Sam50 in mitochondria. BamA and Tob55 consist of a membrane-integral C-terminal domain that forms a β-barrel pore and a soluble N-terminal portion comprised of one (in Tob55) or five (in BamA) polypeptide transport-associated (POTRA) domains. Currently the functional significance of this difference and whether the homology between BamA and Tob55 can allow them to replace each other are unclear. To address these issues we constructed hybrid Tob55/BamA proteins with differently configured N-terminal POTRA domains. We observed that constructs harboring a heterologous C-terminal domain could not functionally replace the bacterial BamA or the mitochondrial Tob55 demonstrating species-specific requirements. Interestingly, the various hybrid proteins in combination with the bacterial chaperones Skp or SurA supported to a variable extent the assembly of bacterial β-barrel proteins into the mitochondrial OM. Collectively, our findings suggest that the membrane assembly of various β-barrel proteins depends to a different extent on POTRA domains and periplasmic chaperones.
Collapse
Affiliation(s)
| | - Nadja Steblau
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Ulrich
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Philipp Oberhettinger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Ingo B Autenrieth
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Monika Schütz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Endoplasmic Reticulum Stress Enhances Mitochondrial Metabolic Activity in Mammalian Adrenals and Gonads. Mol Cell Biol 2016; 36:3058-3074. [PMID: 27697863 DOI: 10.1128/mcb.00411-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 01/21/2023] Open
Abstract
The acute response to stress consists of a series of physiological programs to promote survival by generating glucocorticoids and activating stress response genes that increase the synthesis of many chaperone proteins specific to individual organelles. In the endoplasmic reticulum (ER), short-term stress triggers activation of the unfolded protein response (UPR) module that either leads to neutralization of the initial stress or adaptation to it; chronic stress favors cell death. UPR induces expression of the transcription factor, C/EBP homology protein (CHOP), and its deletion protects against the lethal consequences of prolonged UPR. Here, we show that stress-induced CHOP expression coincides with increased metabolic activity. During stress, the ER and mitochondria come close to each other, resulting in the formation of a complex consisting of the mitochondrial translocase, translocase of outer mitochondrial membrane 22 (Tom22), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2) via its intermembrane space (IMS)-exposed charged unstructured loop region. Stress increased the circulation of phosphates, which elevated pregnenolone synthesis by 2-fold by increasing the stability of 3βHSD2 and its association with the mitochondrion-associated ER membrane (MAM) and mitochondrial proteins. In summary, cytoplasmic CHOP plays a central role in coordinating the interaction of MAM proteins with the outer mitochondrial membrane translocase, Tom22, to activate metabolic activity in the IMS by enhanced phosphate circulation.
Collapse
|
19
|
Chen YL, Chen LJ, Li HM. Polypeptide Transport-Associated Domains of the Toc75 Channel Protein Are Located in the Intermembrane Space of Chloroplasts. PLANT PHYSIOLOGY 2016; 172:235-43. [PMID: 27388682 PMCID: PMC5074630 DOI: 10.1104/pp.16.00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 05/20/2023]
Abstract
Toc75 is the channel for protein translocation across the chloroplast outer envelope membrane. Toc75 belongs to the Omp85 protein family and consists of three N-terminal polypeptide transport-associated (POTRA) domains that are essential for the functions of Toc75, followed by a membrane-spanning β-barrel domain. In bacteria, POTRA domains of Omp85 family members are located in the periplasm, where they interact with other partner proteins to accomplish protein secretion and outer membrane protein assembly. However, the orientation and therefore the molecular function of chloroplast Toc75 POTRA domains remain a matter of debate. We investigated the topology of Toc75 using bimolecular fluorescence complementation and immunogold electron microscopy. Bimolecular fluorescence complementation analyses showed that in stably transformed plants, Toc75 N terminus is located on the intermembrane space side, not the cytosolic side, of the outer membrane. Immunogold labeling of endogenous Toc75 POTRA domains in pea (Pisum sativum) and Arabidopsis (Arabidopsis thaliana) confirmed that POTRA domains are located in the intermembrane space of the chloroplast envelope.
Collapse
Affiliation(s)
- Yih-Lin Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
20
|
Paila YD, Richardson LG, Inoue H, Parks ES, McMahon J, Inoue K, Schnell DJ. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. eLife 2016; 5. [PMID: 26999824 PMCID: PMC4811774 DOI: 10.7554/elife.12631] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/04/2016] [Indexed: 01/20/2023] Open
Abstract
Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI:http://dx.doi.org/10.7554/eLife.12631.001 Chloroplasts are a hallmark feature of plant cells and the sites of photosynthesis – the process in which plants harness the energy in sunlight for their own needs. The first chloroplasts arose when a photosynthetic bacterium was engulfed by another host cell, and most of the original bacterial genes have been transferred to the host cell’s nucleus during the evolution of land plants. As a result, modern chloroplasts need to import the thousands of proteins encoded by these genes from the rest of the cell. The chloroplast protein import system relies on a protein transporter in the chloroplast membrane that evolved from a family of bacterial transporters. However, the bacterial transporters were initially involved in protein export, and it was not known how the activity of these transporters adapted to move proteins in the opposite direction. Paila et al. set out to better understand the chloroplast protein import system and produced mutated forms of the transporter in the model plant Arabidopsis thaliana. These experiments revealed that a part of the transporter that is conserved in many other organisms, the “protein transport associated domains”, has been adapted for three key roles in protein import. First, this part of the transporter interacts with the other components of the import system that make the transporter more selective and control which direction the proteins are transported. Second, the domains interact with proteins during transport to help move them across the chloroplast membrane. Finally, the domains recruit other molecules called chaperones, which stop the protein from aggregating or misfolding during the transport process. These activities are similar to those for the bacterial export transporters, but clearly evolved to allow transport in the opposite direction – that is, to import proteins into chloroplasts. The next challenges are to explain how proteins destined for chloroplasts are recognized and transported through the chloroplast’s membrane. DOI:http://dx.doi.org/10.7554/eLife.12631.002
Collapse
Affiliation(s)
- Yamuna D Paila
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Lynn Gl Richardson
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Hitoshi Inoue
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Elizabeth S Parks
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - James McMahon
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Kentaro Inoue
- Department of Plant Sciences, University of California, Davis, United States
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, United States
| |
Collapse
|
21
|
Ulrich T, Oberhettinger P, Autenrieth IB, Rapaport D. Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial β-Barrel Proteins. Methods Mol Biol 2015; 1329:17-31. [PMID: 26427673 DOI: 10.1007/978-1-4939-2871-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Beta-barrel proteins are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The evolutionary conservation in the biogenesis of these proteins allows mitochondria to assemble bacterial β-barrel proteins in their functional form. In this chapter, we describe exemplarily how the capacity of yeast mitochondria to process the trimeric autotransporter YadA can be used to study the role of bacterial periplasmic chaperones in this process.
Collapse
Affiliation(s)
- Thomas Ulrich
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, Tübingen, 72076, Germany
| | - Philipp Oberhettinger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, 72076, Germany
| | - Ingo B Autenrieth
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, 72076, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, Tübingen, 72076, Germany.
| |
Collapse
|
22
|
The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure 2015; 23:1783-1800. [DOI: 10.1016/j.str.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023]
|
23
|
|
24
|
Simmerman RF, Dave AM, Bruce BD. Structure and function of POTRA domains of Omp85/TPS superfamily. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:1-34. [PMID: 24411168 DOI: 10.1016/b978-0-12-800097-7.00001-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Omp85/TPS (outer-membrane protein of 85 kDa/two-partner secretion) superfamily is a ubiquitous and major class of β-barrel proteins. This superfamily is restricted to the outer membranes of gram-negative bacteria, mitochondria, and chloroplasts. The common architecture, with an N-terminus consisting of repeats of soluble polypeptide-transport-associated (POTRA) domains and a C-terminal β-barrel pore is highly conserved. The structures of multiple POTRA domains and one full-length TPS protein have been solved, yet discovering roles of individual POTRA domains has been difficult. This review focuses on similarities and differences between POTRA structures, emphasizing POTRA domains in autotrophic organisms including plants and cyanobacteria. Unique roles, specific for certain POTRA domains, are examined in the context of POTRA location with respect to their attachment to the β-barrel pore, and their degree of biological dispensability. Finally, because many POTRA domains may have the ability to interact with thousands of partner proteins, possible modes of these interactions are also explored.
Collapse
Affiliation(s)
- Richard F Simmerman
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA
| | - Ashita M Dave
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA; Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.
| |
Collapse
|
25
|
Abstract
The vast majority of outer membrane (OM) proteins in Gram-negative bacteria belongs to the class of membrane-embedded β-barrel proteins. Besides Gram-negative bacteria, the presence of β-barrel proteins is restricted to the OM of the eukaryotic organelles mitochondria and chloroplasts that were derived from prokaryotic ancestors. The assembly of these proteins into the corresponding OM is in each case facilitated by a dedicated protein complex that contains a highly conserved central β-barrel protein termed BamA/YaeT/Omp85 in Gram-negative bacteria and Tob55/Sam50 in mitochondria. However, little is known about the exact mechanism by which these complexes mediate the integration of β-barrel precursors into the lipid bilayer. Interestingly, previous studies showed that during evolution, these complexes retained the ability to functionally assemble β-barrel proteins from different origins. In this review we summarize the current knowledge on the biogenesis pathway of β-barrel proteins in Gram-negative bacteria, mitochondria and chloroplasts and focus on the commonalities and divergences that evolved between the different β-barrel assembly machineries.
Collapse
Affiliation(s)
- Thomas Ulrich
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
26
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
27
|
Qiu J, Wenz LS, Zerbes RM, Oeljeklaus S, Bohnert M, Stroud DA, Wirth C, Ellenrieder L, Thornton N, Kutik S, Wiese S, Schulze-Specking A, Zufall N, Chacinska A, Guiard B, Hunte C, Warscheid B, van der Laan M, Pfanner N, Wiedemann N, Becker T. Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 2013; 154:596-608. [PMID: 23911324 DOI: 10.1016/j.cell.2013.06.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/13/2013] [Accepted: 06/19/2013] [Indexed: 11/17/2022]
Abstract
The mitochondrial outer membrane harbors two protein translocases that are essential for cell viability: the translocase of the outer mitochondrial membrane (TOM) and the sorting and assembly machinery (SAM). The precursors of β-barrel proteins use both translocases-TOM for import to the intermembrane space and SAM for export into the outer membrane. It is unknown if the translocases cooperate and where the β-barrel of newly imported proteins is formed. We established a position-specific assay for monitoring β-barrel formation in vivo and in organello and demonstrated that the β-barrel was formed and membrane inserted while the precursor was bound to SAM. β-barrel formation was inhibited by SAM mutants and, unexpectedly, by mutants of the central import receptor, Tom22. We show that the cytosolic domain of Tom22 links TOM and SAM into a supercomplex, facilitating precursor transfer on the intermembrane space side. Our study reveals receptor-mediated coupling of import and export translocases as a means of precursor channeling.
Collapse
Affiliation(s)
- Jian Qiu
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Misra R. Assembly of the β-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts. ISRN MOLECULAR BIOLOGY 2012; 2012:708203. [PMID: 27335668 PMCID: PMC4890855 DOI: 10.5402/2012/708203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/22/2012] [Indexed: 01/12/2023]
Abstract
In the last decade, there has been an explosion of publications on the assembly of β-barrel outer membrane proteins (OMPs), which carry out diverse cellular functions, including solute transport, protein secretion, and assembly of protein and lipid components of the outer membrane. Of the three outer membrane model systems—Gram-negative bacteria, mitochondria and chloroplasts—research on bacterial and mitochondrial systems has so far led the way in dissecting the β-barrel OMP assembly pathways. Many exciting discoveries have been made, including the identification of β-barrel OMP assembly machineries in bacteria and mitochondria, and potentially the core assembly component in chloroplasts. The atomic structures of all five components of the bacterial β-barrel assembly machinery (BAM) complex, except the β-barrel domain of the core BamA protein, have been solved. Structures reveal that these proteins contain domains/motifs known to facilitate protein-protein interactions, which are at the heart of the assembly pathways. While structural information has been valuable, most of our current understanding of the β-barrel OMP assembly pathways has come from genetic, molecular biology, and biochemical analyses. This paper provides a comparative account of the β-barrel OMP assembly pathways in Gram-negative bacteria, mitochondria, and chloroplasts.
Collapse
Affiliation(s)
- Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
29
|
Klein A, Israel L, Lackey SWK, Nargang FE, Imhof A, Baumeister W, Neupert W, Thomas DR. Characterization of the insertase for β-barrel proteins of the outer mitochondrial membrane. ACTA ACUST UNITED AC 2012; 199:599-611. [PMID: 23128244 PMCID: PMC3494861 DOI: 10.1083/jcb.201207161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolation of the intact TOB complex reveals a 1:1:1 stoichiometry of Tob55, Tob38, and Tob37 with a 140-kD molecular mass, providing new insight into complex structure and function. The TOB–SAM complex is an essential component of the mitochondrial outer membrane that mediates the insertion of β-barrel precursor proteins into the membrane. We report here its isolation and determine its size, composition, and structural organization. The complex from Neurospora crassa was composed of Tob55–Sam50, Tob38–Sam35, and Tob37–Sam37 in a stoichiometry of 1:1:1 and had a molecular mass of 140 kD. A very minor fraction of the purified complex was associated with one Mdm10 protein. Using molecular homology modeling for Tob55 and cryoelectron microscopy reconstructions of the TOB complex, we present a model of the TOB–SAM complex that integrates biochemical and structural data. We discuss our results and the structural model in the context of a possible mechanism of the TOB insertase.
Collapse
Affiliation(s)
- Astrid Klein
- Max-Planck Institut für Biochemie, Abteilung für zelluläre Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shiota T, Maruyama M, Miura M, Tamura Y, Yamano K, Esaki M, Endo T. The Tom40 assembly process probed using the attachment of different intramitochondrial sorting signals. Mol Biol Cell 2012; 23:3936-47. [PMID: 22933571 PMCID: PMC3469510 DOI: 10.1091/mbc.e12-03-0202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The β-barrel protein Tom40 functions as a protein-conducting channel in the mitochondrial outer membrane. By attaching mitochondrial presequences for various mitochondrial destinations to Tom40, it is possible to follow its sorting process. The results provide insight into the mechanism for the precise delivery of β-barrel proteins to the outer membrane. The TOM40 complex is a protein translocator in the mitochondrial outer membrane and consists of several different subunits. Among them, Tom40 is a central subunit that constitutes a protein-conducting channel by forming a β-barrel structure. To probe the nature of the assembly process of Tom40 in the outer membrane, we attached various mitochondrial presequences to Tom40 that possess sorting information for the intermembrane space (IMS), inner membrane, and matrix and would compete with the inherent Tom40 assembly process. We analyzed the mitochondrial import of those fusion proteins in vitro. Tom40 crossed the outer membrane and/or inner membrane even in the presence of various sorting signals. N-terminal anchorage of the attached presequence to the inner membrane did not prevent Tom40 from associating with the TOB/SAM complex, although it impaired its efficient release from the TOB complex in vitro but not in vivo. The IMS or matrix-targeting presequence attached to Tom40 was effective in substituting for the requirement for small Tim proteins in the IMS for the translocation of Tom40 across the outer membrane. These results provide insight into the mechanism responsible for the precise delivery of β-barrel proteins to the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Takuya Shiota
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Bohnert M, Wenz LS, Zerbes RM, Horvath SE, Stroud DA, von der Malsburg K, Müller JM, Oeljeklaus S, Perschil I, Warscheid B, Chacinska A, Veenhuis M, van der Klei IJ, Daum G, Wiedemann N, Becker T, Pfanner N, van der Laan M. Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. Mol Biol Cell 2012; 23:3948-56. [PMID: 22918945 PMCID: PMC3469511 DOI: 10.1091/mbc.e12-04-0295] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. We report that MINOS independently interacts with both preprotein translocases of the outer mitochondrial membrane and plays a role in the biogenesis of β-barrel proteins of the outer membrane. Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport–associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of β-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import β-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of β-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane β-barrel proteins.
Collapse
Affiliation(s)
- Maria Bohnert
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
From evolution to pathogenesis: the link between β-barrel assembly machineries in the outer membrane of mitochondria and gram-negative bacteria. Int J Mol Sci 2012; 13:8038-8050. [PMID: 22942688 PMCID: PMC3430219 DOI: 10.3390/ijms13078038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 01/29/2023] Open
Abstract
β-barrel proteins are the highly abundant in the outer membranes of Gram-negative bacteria and the mitochondria in eukaryotes. The assembly of β-barrels is mediated by two evolutionary conserved machineries; the β-barrel Assembly Machinery (BAM) in Gram-negative bacteria; and the Sorting and Assembly Machinery (SAM) in mitochondria. Although the BAM and SAM have functionally conserved roles in the membrane integration and folding of β-barrel proteins, apart from the central BamA and Sam50 proteins, the remaining components of each of the complexes have diverged remarkably. For example all of the accessory components of the BAM complex characterized to date are located in the bacterial periplasm, on the same side as the N-terminal domain of BamA. This is the same side of the membrane as the substrates that are delivered to the BAM. On the other hand, all of the accessory components of the SAM complex are located on the cytosolic side of the membrane, the opposite side of the membrane to the N-terminus of Sam50 and the substrate receiving side of the membrane. Despite the accessory subunits being located on opposite sides of the membrane in each system, it is clear that each system is functionally equivalent with bacterial proteins having the ability to use the eukaryotic SAM and vice versa. In this review, we summarize the similarities and differences between the BAM and SAM complexes, highlighting the possible selecting pressures on bacteria and eukaryotes during evolution. It is also now emerging that bacterial pathogens utilize the SAM to target toxins and effector proteins to host mitochondria and this will also be discussed from an evolutionary perspective.
Collapse
|
33
|
Hsu SC, Nafati M, Inoue K. OEP80, an essential protein paralogous to the chloroplast protein translocation channel Toc75, exists as a 70-kD protein in the Arabidopsis thaliana chloroplast outer envelope. PLANT MOLECULAR BIOLOGY 2012; 78:147-58. [PMID: 22094888 DOI: 10.1007/s11103-011-9853-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/04/2011] [Indexed: 05/08/2023]
Abstract
Toc75 and OEP80 are paralogous proteins found in the Viridiplantae lineages, and appear to have evolved from a protein in the outer membrane of an ancient cyanobacterium. Toc75 is known to act as a protein translocation channel at the outer membrane of the chloroplast envelope, whereas the exact function of OEP80 is not understood. In Arabidopsis thaliana, each protein is encoded by a single gene, and both are essential for plant viability from embryonic stages onward. Sequence annotation and immunoblotting data with an antibody against its internal sequence (αOEP80(325-337)) indicated that the molecular weight of OEP80 is ca. 80 kD. Here we present multiple data to show that the size of A. thaliana OEP80 is smaller than previously estimated. First, we prepared the antibody against a recombinant protein consisting of annotated full-length A. thaliana OEP80 with an N-terminal hexahistidine tag (αOEP80(1-732)). This antibody recognized a 70-kD protein in the A. thaliana chloroplast membrane fraction which migrated faster than the His-tagged antigen and the protein recognized by the αOEP80(325-337) antibody on SDS-PAGE. Immunoprecipitation followed by LC-MS/MS analysis confirmed that the 70-kD protein was encoded by the OEP80 cDNA. Next, we performed a genetic complementation assay using embryo-lethal oep80-null plants and constructs encoding OEP80 and its variants. The results revealed that the nucleotide sequence encoding the 52 N-terminal amino acids was not required for functional expression of OEP80 and accumulation of the 70-kD protein. The data also indicated that an additional C-terminal T7 tag remained intact without disrupting the functionality of OEP80, and was not exposed to the cytoplasmic surface of the chloroplast envelope. Finally, OEP80-T7 and Toc75 showed distinct migration patterns on blue native-PAGE. This study provides molecular tools to investigate the function of OEP80, and also calls for caution in using an anti-peptide antibody.
Collapse
Affiliation(s)
- Shih-Chi Hsu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
34
|
Adams BP, Bose HS. Alteration in accumulated aldosterone synthesis as a result of N-terminal cleavage of aldosterone synthase. Mol Pharmacol 2011; 81:465-74. [PMID: 22184340 DOI: 10.1124/mol.111.076471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aldosterone synthase (AS) regulates blood volume by synthesizing the mineralocorticoid aldosterone. Overproduction of aldosterone in the adrenal gland can lead to hypertension, a major cause of heart disease and stroke. Aldosterone production depends upon stimulation of AS expression by the renin-angiotensin system, which takes 12 h to reach full effect, and then 24 h to subside. However, this promoter-dependent regulation of aldosterone production fails to explain phenomena such as rapid-onset hypertension that occurs quickly and then subsides. Here, we investigate the fate of AS after expression and how these events relate to aldosterone production. Using isolated mitochondria from steroidogenic cells and cell-free synthesized AS, we first showed that the precursor form of AS translocated into the matrix of the mitochondria, where it underwent cleavage by mitochondrial processing peptidase to a mature form approximately 54 kDa in size. Mature AS seemed to translocate across the inner mitochondrial membrane a second time to finally reside in the intermembrane space. Unprocessed N-terminal AS has 2-fold more activity than physiological levels. These results show how the subcellular mechanisms of AS localization relate to production of aldosterone and reveal a rapid, promoter-independent regulation of aldosterone production.
Collapse
Affiliation(s)
- Brian P Adams
- Department of Biochemistry, Biomedical Sciences, Mercer University School of Medicine and Memorial University Medical Center, Savannah, GA 31404, USA
| | | |
Collapse
|
35
|
Huang W, Ling Q, Bédard J, Lilley K, Jarvis P. In vivo analyses of the roles of essential Omp85-related proteins in the chloroplast outer envelope membrane. PLANT PHYSIOLOGY 2011; 157:147-59. [PMID: 21757633 PMCID: PMC3165866 DOI: 10.1104/pp.111.181891] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/12/2011] [Indexed: 05/12/2023]
Abstract
Two different, essential Omp85 (Outer membrane protein, 85 kD)-related proteins exist in the outer envelope membrane of Arabidopsis (Arabidopsis thaliana) chloroplasts: Toc75 (Translocon at the outer envelope membrane of chloroplasts, 75 kD), encoded by atTOC75-III; and OEP80 (Outer Envelope Protein, 80 kD), encoded by AtOEP80/atTOC75-V. The atToc75-III protein is closely related to the originally identified pea (Pisum sativum) Toc75 protein, and it forms a preprotein translocation channel during chloroplast import; the AtOEP80 protein is considerably more divergent from pea Toc75, and its role is unknown. As knockout mutations for atTOC75-III and AtOEP80 are embryo lethal, we employed a dexamethasone-inducible RNA interference strategy (using the pOpOff2 vector) to conduct in vivo studies on the roles of these two proteins in older, postembryonic plants. We conducted comparative studies on plants silenced for atToc75-III (atToc75-III↓) or AtOEP80 (AtOEP80↓), as well as additional studies on a stable, atToc75-III missense allele (toc75-III-3/modifier of altered response to gravity1), and our results indicated that both proteins are important for chloroplast biogenesis at postembryonic stages of development. Moreover, both are important for photosynthetic and nonphotosynthetic development, albeit to different degrees: atToc75-III↓ phenotypes were considerably more severe than those of AtOEP80↓. Qualitative similarity between the atToc75-III↓ and AtOEP80↓ phenotypes may be linked to deficiencies in atToc75-III and other TOC proteins in AtOEP80↓ plants. Detailed analysis of atToc75-III↓ plants, by electron microscopy, immunoblotting, quantitative proteomics, and protein import assays, indicated that these plants are defective in relation to the biogenesis of both photosynthetic and nonphotosynthetic plastids and preproteins, confirming the earlier hypothesis that atToc75-III functions promiscuously in different substrate-specific import pathways.
Collapse
Affiliation(s)
| | | | | | | | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (W.H., Q.L., J.B., P.J.); Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom (K.L.)
| |
Collapse
|
36
|
Abstract
The majority of outer membrane proteins (OMPs) from gram-negative bacteria and many of mitochondria and chloroplasts are β-barrels. Insertion and assembly of these proteins are catalyzed by the Omp85 protein family in a seemingly conserved process. All members of this family exhibit a characteristic N-terminal polypeptide-transport-associated (POTRA) and a C-terminal 16-stranded β-barrel domain. In plants, two phylogenetically distinct and essential Omp85's exist in the chloroplast outer membrane, namely Toc75-III and Toc75-V. Whereas Toc75-V, similar to the mitochondrial Sam50, is thought to possess the original bacterial function, its homolog, Toc75-III, evolved to the pore-forming unit of the TOC translocon for preprotein import. In all current models of OMP biogenesis and preprotein translocation, a topology of Omp85 with the POTRA domain in the periplasm or intermembrane space is assumed. Using self-assembly GFP-based in vivo experiments and in situ topology studies by electron cryotomography, we show that the POTRA domains of both Toc75-III and Toc75-V are exposed to the cytoplasm. This unexpected finding explains many experimental observations and requires a reevaluation of current models of OMP biogenesis and TOC complex function.
Collapse
|
37
|
Affiliation(s)
- Christine L. Hagan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; ,
| |
Collapse
|
38
|
Stroud DA, Becker T, Qiu J, Stojanovski D, Pfannschmidt S, Wirth C, Hunte C, Guiard B, Meisinger C, Pfanner N, Wiedemann N. Biogenesis of mitochondrial β-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Mol Biol Cell 2011; 22:2823-33. [PMID: 21680715 PMCID: PMC3154879 DOI: 10.1091/mbc.e11-02-0148] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mitochondrial outer membrane contains proteinaceous machineries for the translocation of precursor proteins. The sorting and assembly machinery (SAM) is required for the insertion of β-barrel proteins into the outer membrane. Sam50 is the channel-forming core subunit of the SAM complex and belongs to the BamA/Sam50/Toc75 family of proteins that have been conserved from Gram-negative bacteria to mitochondria and chloroplasts. These proteins contain one or more N-terminal polypeptide transport-associated (POTRA) domains. POTRA domains can bind precursor proteins, however, different views exist on the role of POTRA domains in the biogenesis of β-barrel proteins. It has been suggested that the single POTRA domain of mitochondrial Sam50 plays a receptor-like function at the SAM complex. We established a system to monitor the interaction of chemical amounts of β-barrel precursor proteins with the SAM complex of wild-type and mutant yeast in organello. We report that the SAM complex lacking the POTRA domain of Sam50 efficiently binds β-barrel precursors, but is impaired in the release of the precursors. These results indicate the POTRA domain of Sam50 is not essential for recognition of β-barrel precursors but functions in a subsequent step to promote the release of precursor proteins from the SAM complex.
Collapse
Affiliation(s)
- David A Stroud
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Delattre A, Saint N, Clantin B, Willery E, Lippens G, Locht C, Villeret V, Jacob‐Dubuisson F. Substrate recognition by the POTRA domains of TpsB transporter FhaC. Mol Microbiol 2011; 81:99-112. [DOI: 10.1111/j.1365-2958.2011.07680.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anne‐Sophie Delattre
- Inserm U1019, Center for Infection and Immunity of Lille, F‐59019 Lille, France
- Institut Pasteur de Lille, F‐59019 Lille, France
- Univ Lille Nord de France, F‐59000 Lille, France
- CNRS UMR8204, F‐59021 Lille, France
| | - Nathalie Saint
- INSERM U1046, Université de Montpellier 1 et 2, F‐34090 Montpellier cedex, France
| | - Bernard Clantin
- CNRS USR3078, Institut de Recherche Interdisciplinaire – Université de Lille 1 – Université de Lille 2, F‐59658 Villeneuve d'Ascq, France
| | - Eve Willery
- Inserm U1019, Center for Infection and Immunity of Lille, F‐59019 Lille, France
- Institut Pasteur de Lille, F‐59019 Lille, France
- Univ Lille Nord de France, F‐59000 Lille, France
- CNRS UMR8204, F‐59021 Lille, France
| | - Guy Lippens
- CNRS UMR 8576 – Université de Lille I, F‐59655 Villeneuve d'Ascq – France
| | - Camille Locht
- Inserm U1019, Center for Infection and Immunity of Lille, F‐59019 Lille, France
- Institut Pasteur de Lille, F‐59019 Lille, France
- Univ Lille Nord de France, F‐59000 Lille, France
- CNRS UMR8204, F‐59021 Lille, France
| | - Vincent Villeret
- CNRS USR3078, Institut de Recherche Interdisciplinaire – Université de Lille 1 – Université de Lille 2, F‐59658 Villeneuve d'Ascq, France
| | - Françoise Jacob‐Dubuisson
- Inserm U1019, Center for Infection and Immunity of Lille, F‐59019 Lille, France
- Institut Pasteur de Lille, F‐59019 Lille, France
- Univ Lille Nord de France, F‐59000 Lille, France
- CNRS UMR8204, F‐59021 Lille, France
| |
Collapse
|
40
|
Dukanovic J, Rapaport D. Multiple pathways in the integration of proteins into the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:971-80. [DOI: 10.1016/j.bbamem.2010.06.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
|
41
|
Schleiff E, Maier UG, Becker T. Omp85 in eukaryotic systems: one protein family with distinct functions. Biol Chem 2011; 392:21-7. [DOI: 10.1515/bc.2011.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractOmp85-like proteins are evolutionary ancient components of bacterial outer membranes and their evolutionary offspring. As a consequence, proteins of this family can be found in the outer membrane systems of Gram-negative bacteria and endosymbiotically derived organelles. In the different membranes, they perform distinct functions such as catalyzing protein insertion into or protein transport across the bilayer. Here, the knowledge on the Omp85-like proteins in the eukaryotic system with regard to structural properties and physiological behavior is summarized.
Collapse
|
42
|
Harsman A, Krüger V, Bartsch P, Honigmann A, Schmidt O, Rao S, Meisinger C, Wagner R. Protein conducting nanopores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454102. [PMID: 21339590 DOI: 10.1088/0953-8984/22/45/454102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40(SC) as well as a mutant Tom40(SC) (S(54 --> E) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40(SC) corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40(SC) S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with t(off) approximately = 1.1 ms for the wildtype, whereas the mutant Tom40(SC) S54E displayed a biphasic dwelltime distribution (t(off)(-1) approximately = 0.4 ms; t(off)(-2) approximately = 4.6 ms).
Collapse
Affiliation(s)
- Anke Harsman
- Biophysics, Department of Biology/Chemistry, University of Osnabrueck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH, Taylor SS. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem 2010; 286:2918-32. [PMID: 21081504 PMCID: PMC3024787 DOI: 10.1074/jbc.m110.171975] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial inner membrane (IM) serves as the site for ATP production by hosting the oxidative phosphorylation complex machinery most notably on the crista membranes. Disruption of the crista structure has been implicated in a variety of cardiovascular and neurodegenerative diseases. Here, we characterize ChChd3, a previously identified PKA substrate of unknown function (Schauble, S., King, C. C., Darshi, M., Koller, A., Shah, K., and Taylor, S. S. (2007) J. Biol. Chem. 282, 14952-14959), and show that it is essential for maintaining crista integrity and mitochondrial function. In the mitochondria, ChChd3 is a peripheral protein of the IM facing the intermembrane space. RNAi knockdown of ChChd3 in HeLa cells resulted in fragmented mitochondria, reduced OPA1 protein levels and impaired fusion, and clustering of the mitochondria around the nucleus along with reduced growth rate. Both the oxygen consumption and glycolytic rates were severely restricted. Ultrastructural analysis of these cells revealed aberrant mitochondrial IM structures with fragmented and tubular cristae or loss of cristae, and reduced crista membrane. Additionally, the crista junction opening diameter was reduced to 50% suggesting remodeling of cristae in the absence of ChChd3. Analysis of the ChChd3-binding proteins revealed that ChChd3 interacts with the IM proteins mitofilin and OPA1, which regulate crista morphology, and the outer membrane protein Sam50, which regulates import and assembly of β-barrel proteins on the outer membrane. Knockdown of ChChd3 led to almost complete loss of both mitofilin and Sam50 proteins and alterations in several mitochondrial proteins, suggesting that ChChd3 is a scaffolding protein that stabilizes protein complexes involved in maintaining crista architecture and protein import and is thus essential for maintaining mitochondrial structure and function.
Collapse
Affiliation(s)
- Manjula Darshi
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0654, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gatzeva-Topalova PZ, Warner LR, Pardi A, Sousa MC. Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane. Structure 2010; 18:1492-501. [PMID: 21070948 PMCID: PMC2991101 DOI: 10.1016/j.str.2010.08.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 11/30/2022]
Abstract
Folding and insertion of β-barrel outer membrane proteins (OMPs) is essential for Gram-negative bacteria. This process is mediated by the multiprotein complex BAM, composed of the essential β-barrel OMP BamA and four lipoproteins (BamBCDE). The periplasmic domain of BamA is key for its function and contains five "polypeptide transport-associated" (POTRA) repeats. Here, we report the crystal structure of the POTRA4-5 tandem, containing the essential for BAM complex formation and cell viability POTRA5. The domain orientation observed in the crystal is validated by solution NMR and SAXS. Using previously determined structures of BamA POTRA1-4, we present a spliced model of the entire BamA periplasmic domain validated by SAXS. Solution scattering shows that conformational flexibility between POTRA2 and 3 gives rise to compact and extended conformations. The length of BamA in its extended conformation suggests that the protein may bridge the inner and outer membranes across the periplasmic space.
Collapse
|
45
|
Tommassen J. Assembly of outer-membrane proteins in bacteria and mitochondria. Microbiology (Reading) 2010; 156:2587-2596. [DOI: 10.1099/mic.0.042689-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobicα-helices, integral outer-membrane proteins (OMPs) formβ-barrels. Similarβ-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How theseβ-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly ofβ-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrialβ-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
46
|
Sharma S, Singha UK, Chaudhuri M. Role of Tob55 on mitochondrial protein biogenesis in Trypanosoma brucei. Mol Biochem Parasitol 2010; 174:89-100. [PMID: 20659504 DOI: 10.1016/j.molbiopara.2010.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/02/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
Abstract
Mitochondrial outer membrane (MOM) proteins in parasitic protozoa like Trypanosoma brucei are poorly characterized. In fungi and higher eukaryotes, Tob55 is responsible for the assembly of β-barrel proteins in the MOM. Here we show that T. brucei Tob55 (TbTob55) has considerable similarity in its primary and secondary structure to Tob55 from other species. TbTob55 is localized in T. brucei MOM and is essential for procyclic cell survival. Induction of Tob55 RNAi decreased the level of the voltage-dependent anion channel (VDAC) within 48 h. Although the primary effect is on VDAC, induction of TbTob55 RNAi for 96 h or more also decreased the levels of other nucleus encoded mitochondrial proteins. In addition, the mitochondrial membrane potential was reduced at this later time point possibly due to a reduction in the level of the proteins involved in oxidative phosphorylation. However, mitochondrial structure was not altered due to depletion of Tob55. In vitro protein import of VDAC into mitochondria with a 50-60% reduction of TbTob55 was reduced about 40% in comparison to uninduced control. In addition, the import of presequence-containing proteins such as, cytochrome oxidase subunit 4 (COIV) and trypanosome alternative oxidase (TAO) was affected by about 20% under this condition. Depletion of VDAC levels by RNAi did not affect the import of either COIV or TAO. Furthermore, TbTob55 over expression increased the steady state level of VDAC as well as the level of the assembled protein complex of VDAC, suggesting that similar to other eukaryotes TbTob55 is involved in assembly of MOM β-barrel proteins and plays an indirect role in the biogenesis of mitochondrial preproteins destined for the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Shvetank Sharma
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | | | | |
Collapse
|
47
|
Arnold T, Zeth K, Linke D. Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J Biol Chem 2010; 285:18003-15. [PMID: 20351097 PMCID: PMC2878562 DOI: 10.1074/jbc.m110.112516] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/26/2010] [Indexed: 12/03/2022] Open
Abstract
Omp85 proteins are essential proteins located in the bacterial outer membrane. They are involved in outer membrane biogenesis and assist outer membrane protein insertion and folding by an unknown mechanism. Homologous proteins exist in eukaryotes, where they mediate outer membrane assembly in organelles of endosymbiotic origin, the mitochondria and chloroplasts. We set out to explore the homologous relationship between cyanobacteria and chloroplasts, studying the Omp85 protein from the thermophilic cyanobacterium Thermosynechococcus elongatus. Using state-of-the art sequence analysis and clustering methods, we show how this protein is more closely related to its chloroplast homologue Toc75 than to proteobacterial Omp85, a finding supported by single channel conductance measurements. We have solved the structure of the periplasmic part of the protein to 1.97 A resolution, and we demonstrate that in contrast to Omp85 from Escherichia coli the protein has only three, not five, polypeptide transport-associated (POTRA) domains, which recognize substrates and generally interact with other proteins in bigger complexes. We model how these POTRA domains are attached to the outer membrane, based on the relationship of Omp85 to two-partner secretion system proteins, which we show and analyze. Finally, we discuss how Omp85 proteins with different numbers of POTRA domains evolved, and evolve to this day, to accomplish an increasing number of interactions with substrates and helper proteins.
Collapse
Affiliation(s)
- Thomas Arnold
- From Department I, Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Kornelius Zeth
- From Department I, Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Dirk Linke
- From Department I, Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Endo T, Yamano K. Transport of proteins across or into the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:706-14. [DOI: 10.1016/j.bbamcr.2009.11.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/11/2009] [Accepted: 11/17/2009] [Indexed: 11/30/2022]
|
49
|
Ryan KR, Taylor JA, Bowers LM. The BAM complex subunit BamE (SmpA) is required for membrane integrity, stalk growth and normal levels of outer membrane {beta}-barrel proteins in Caulobacter crescentus. MICROBIOLOGY (READING, ENGLAND) 2010; 156:742-756. [PMID: 19959579 PMCID: PMC2889432 DOI: 10.1099/mic.0.035055-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/20/2009] [Accepted: 11/27/2009] [Indexed: 11/18/2022]
Abstract
The outer membrane of Gram-negative bacteria is an essential compartment containing a specific complement of lipids and proteins that constitute a protective, selective permeability barrier. Outer membrane beta-barrel proteins are assembled into the membrane by the essential hetero-oligomeric BAM complex, which contains the lipoprotein BamE. We have identified a homologue of BamE, encoded by CC1365, which is located in the outer membrane of the stalked alpha-proteobacterium Caulobacter crescentus. BamE associates with proteins whose homologues in other bacteria are known to participate in outer membrane protein assembly: BamA (CC1915), BamB (CC1653) and BamD (CC1984). Caulobacter cells lacking BamE grow slowly in rich medium and are hypersensitive to anionic detergents, some antibiotics and heat exposure, which suggest that the membrane integrity of the mutant is compromised. Membranes of the DeltabamE mutant have normal amounts of the outer membrane protein RsaF, a TolC homologue, but are deficient in CpaC*, an aggregated form of the outer membrane secretin for type IV pili. Delta bamE membranes also contain greatly reduced amounts of three TonB-dependent receptors that are abundant in wild-type cells. Cells lacking BamE have short stalks and are delayed in stalk outgrowth during the cell cycle. Based on these findings, we propose that Caulobacter BamE participates in the assembly of outer membrane beta-barrel proteins, including one or more substrates required for the initiation of stalk biogenesis.
Collapse
Affiliation(s)
- Kathleen R Ryan
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James A Taylor
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lisa M Bowers
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
50
|
Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep 2010; 11:187-93. [PMID: 20111053 DOI: 10.1038/embor.2009.283] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/03/2009] [Accepted: 12/14/2009] [Indexed: 11/08/2022] Open
Abstract
The mitochondrial outer membrane contains two protein translocators: the TOM40 and TOB/SAM complexes. Mdm10 is distributed in the TOB complex for beta-barrel protein assembly and in the MMM1 complex for tethering of the endoplasmic reticulum and mitochondria. Here, we establish a system in which the Mdm10 level in the TOB complex--but not in the MMM1 complex--is altered to analyse its part in beta-barrel protein assembly. A decrease in the Mdm10 level results in accumulation of in vitro imported Tom40, which is a beta-barrel protein, at the level of the TOB complex. An increase in the Mdm10 level inhibits association not only of Tom40 but also of other beta-barrel proteins with the TOB complex. These results show that Mdm10 regulates the timing of release of unassembled Tom40 from the TOB complex, to facilitate its coordinated assembly into the TOM40 complex.
Collapse
|