1
|
Shang W, Lichtenberg E, Mlesnita AM, Wilde A, Koch HG. The contribution of mRNA targeting to spatial protein localization in bacteria. FEBS J 2024; 291:4639-4659. [PMID: 38226707 DOI: 10.1111/febs.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and must be inserted into or translocated across the cytoplasmic membrane. This requires efficient targeting systems that recognize N-terminal signal sequences in client proteins and deliver them to protein transport complexes in the membrane. While the importance of these protein transport machineries for the spatial organization of the bacterial cell is well documented in multiple studies, the contribution of mRNA targeting and localized translation to protein transport is only beginning to emerge. mRNAs can exhibit diverse subcellular localizations in the bacterial cell and can accumulate at sites where new protein is required. This is frequently observed for mRNAs encoding membrane proteins, but the physiological importance of membrane enrichment of mRNAs and the consequences it has for the insertion of the encoded protein have not been explored in detail. Here, we briefly highlight some basic concepts of signal sequence-based protein targeting and describe in more detail strategies that enable the monitoring of mRNA localization in bacterial cells and potential mechanisms that route mRNAs to particular positions within the cell. Finally, we summarize some recent developments that demonstrate that mRNA targeting and localized translation can sustain membrane protein insertion under stress conditions when the protein-targeting machinery is compromised. Thus, mRNA targeting likely acts as a back-up strategy and complements the canonical signal sequence-based protein targeting.
Collapse
Affiliation(s)
- Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | | | - Andreea Mihaela Mlesnita
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
2
|
Sarmah P, Shang W, Origi A, Licheva M, Kraft C, Ulbrich M, Lichtenberg E, Wilde A, Koch HG. mRNA targeting eliminates the need for the signal recognition particle during membrane protein insertion in bacteria. Cell Rep 2023; 42:112140. [PMID: 36842086 PMCID: PMC10066597 DOI: 10.1016/j.celrep.2023.112140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Signal-sequence-dependent protein targeting is essential for the spatiotemporal organization of eukaryotic and prokaryotic cells and is facilitated by dedicated protein targeting factors such as the signal recognition particle (SRP). However, targeting signals are not exclusively contained within proteins but can also be present within mRNAs. By in vivo and in vitro assays, we show that mRNA targeting is controlled by the nucleotide content and by secondary structures within mRNAs. mRNA binding to bacterial membranes occurs independently of soluble targeting factors but is dependent on the SecYEG translocon and YidC. Importantly, membrane insertion of proteins translated from membrane-bound mRNAs occurs independently of the SRP pathway, while the latter is strictly required for proteins translated from cytosolic mRNAs. In summary, our data indicate that mRNA targeting acts in parallel to the canonical SRP-dependent protein targeting and serves as an alternative strategy for safeguarding membrane protein insertion when the SRP pathway is compromised.
Collapse
Affiliation(s)
- Pinku Sarmah
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University Freiburg, 79104 Freiburg, Germany
| | - Maximilian Ulbrich
- Internal Medicine IV, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
Mayer M, Winer L, Karniel A, Pinner E, Yardeni EH, Morgenstern D, Bibi E. Co-translational membrane targeting and holo-translocon docking of ribosomes translating the SRP receptor. J Mol Biol 2022; 434:167459. [DOI: 10.1016/j.jmb.2022.167459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
4
|
Lee JH, Jomaa A, Chung S, Hwang Fu YH, Qian R, Sun X, Hsieh HH, Chandrasekar S, Bi X, Mattei S, Boehringer D, Weiss S, Ban N, Shan SO. Receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER. SCIENCE ADVANCES 2021; 7:eabg0942. [PMID: 34020957 PMCID: PMC8139590 DOI: 10.1126/sciadv.abg0942] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 05/07/2023]
Abstract
The conserved signal recognition particle (SRP) cotranslationally delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum (ER). The molecular mechanism by which eukaryotic SRP transitions from cargo recognition in the cytosol to protein translocation at the ER is not understood. Here, structural, biochemical, and single-molecule studies show that this transition requires multiple sequential conformational rearrangements in the targeting complex initiated by guanosine triphosphatase (GTPase)-driven compaction of the SRP receptor (SR). Disruption of these rearrangements, particularly in mutant SRP54G226E linked to severe congenital neutropenia, uncouples the SRP/SR GTPase cycle from protein translocation. Structures of targeting intermediates reveal the molecular basis of early SRP-SR recognition and emphasize the role of eukaryote-specific elements in regulating targeting. Our results provide a molecular model for the structural and functional transitions of SRP throughout the targeting cycle and show that these transitions provide important points for biological regulation that can be perturbed in genetic diseases.
Collapse
Affiliation(s)
- Jae Ho Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ruilin Qian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xuemeng Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hao-Hsuan Hsieh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaotian Bi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Simone Mattei
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
- Cryo-EM Knowledge Hub, ETH Zurich, 8093 Zurich, Switzerland
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Cardiolipin is required in vivo for the stability of bacterial translocon and optimal membrane protein translocation and insertion. Sci Rep 2020; 10:6296. [PMID: 32286407 PMCID: PMC7156725 DOI: 10.1038/s41598-020-63280-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/25/2020] [Indexed: 01/05/2023] Open
Abstract
Translocation of preproteins across the Escherichia coli inner membrane requires anionic lipids by virtue of their negative head-group charge either in vivo or in situ. However, available results do not differentiate between the roles of monoanionic phosphatidylglycerol and dianionic cardiolipin (CL) in this essential membrane-related process. To define in vivo the molecular steps affected by the absence of CL in protein translocation and insertion, we analyzed translocon activity, SecYEG stability and its interaction with SecA in an E. coli mutant devoid of CL. Although no growth defects were observed, co- and post-translational translocation of α-helical proteins across inner membrane and the assembly of outer membrane β-barrel precursors were severely compromised in CL-lacking cells. Components of proton-motive force which could impair protein insertion into and translocation across the inner membrane, were unaffected. However, stability of the dimeric SecYEG complex and oligomerization properties of SecA were strongly compromised while the levels of individual SecYEG translocon components, SecA and insertase YidC were largely unaffected. These results demonstrate that CL is required in vivo for the stability of the bacterial translocon and its efficient function in co-translational insertion into and translocation across the inner membrane of E. coli.
Collapse
|
7
|
Kempf G, Stjepanovic G, Sloan J, Hendricks A, Lapouge K, Sinning I. The Escherichia coli SRP Receptor Forms a Homodimer at the Membrane. Structure 2018; 26:1440-1450.e5. [PMID: 30146170 DOI: 10.1016/j.str.2018.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/14/2018] [Accepted: 07/22/2018] [Indexed: 01/19/2023]
Abstract
The Escherichia coli signal recognition particle (SRP) receptor, FtsY, plays a fundamental role in co-translational targeting of membrane proteins via the SRP pathway. Efficient targeting relies on membrane interaction of FtsY and heterodimerization with the SRP protein Ffh, which is driven by detachment of α helix (αN1) in FtsY. Here we show that apart from the heterodimer, FtsY forms a nucleotide-dependent homodimer on the membrane, and upon αN1 removal also in solution. Homodimerization triggers reciprocal stimulation of GTP hydrolysis and occurs in vivo. Biochemical characterization together with integrative modeling suggests that the homodimer employs the same interface as the heterodimer. Structure determination of FtsY NG+1 with GMPPNP shows that a dimerization-induced conformational switch of the γ-phosphate is conserved in Escherichia coli, filling an important gap in SRP GTPase activation. Our findings add to the current understanding of SRP GTPases and may challenge previous studies that did not consider homodimerization of FtsY.
Collapse
Affiliation(s)
- Georg Kempf
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Goran Stjepanovic
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Jeremy Sloan
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Astrid Hendricks
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany.
| |
Collapse
|
8
|
Hwang Fu YH, Huang WYC, Shen K, Groves JT, Miller T, Shan SO. Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting. eLife 2017; 6. [PMID: 28753124 PMCID: PMC5533587 DOI: 10.7554/elife.25885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/28/2017] [Indexed: 01/25/2023] Open
Abstract
The signal recognition particle (SRP) delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum, or the bacterial plasma membrane. The precise mechanism by which the bacterial SRP receptor, FtsY, interacts with and is regulated at the target membrane remain unclear. Here, quantitative analysis of FtsY-lipid interactions at single-molecule resolution revealed a two-step mechanism in which FtsY initially contacts membrane via a Dynamic mode, followed by an SRP-induced conformational transition to a Stable mode that activates FtsY for downstream steps. Importantly, mutational analyses revealed extensive auto-inhibitory mechanisms that prevent free FtsY from engaging membrane in the Stable mode; an engineered FtsY pre-organized into the Stable mode led to indiscriminate targeting in vitro and disrupted FtsY function in vivo. Our results show that the two-step lipid-binding mechanism uncouples the membrane association of FtsY from its conformational activation, thus optimizing the balance between the efficiency and fidelity of co-translational protein targeting. DOI:http://dx.doi.org/10.7554/eLife.25885.001
Collapse
Affiliation(s)
- Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - William Y C Huang
- Department of Chemistry, University of California at Berkeley, Berkeley, United States
| | - Kuang Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Jay T Groves
- Department of Chemistry, University of California at Berkeley, Berkeley, United States
| | - Thomas Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
9
|
Abstract
The insertion and assembly of proteins into the inner membrane of bacteria are crucial for many cellular processes, including cellular respiration, signal transduction, and ion and pH homeostasis. This process requires efficient membrane targeting and insertion of proteins into the lipid bilayer in their correct orientation and proper conformation. Playing center stage in these events are the targeting components, signal recognition particle (SRP) and the SRP receptor FtsY, as well as the insertion components, the Sec translocon and the YidC insertase. Here, we will discuss new insights provided from the recent high-resolution structures of these proteins. In addition, we will review the mechanism by which a variety of proteins with different topologies are inserted into the inner membrane of Gram-negative bacteria. Finally, we report on the energetics of this process and provide information on how membrane insertion occurs in Gram-positive bacteria and Archaea. It should be noted that most of what we know about membrane protein assembly in bacteria is based on studies conducted in Escherichia coli.
Collapse
Affiliation(s)
- Andreas Kuhn
- Institute for Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Ross E Dalbey
- Department of Chemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
10
|
Draycheva A, Bornemann T, Ryazanov S, Lakomek N, Wintermeyer W. The bacterial SRP receptor, FtsY, is activated on binding to the translocon. Mol Microbiol 2016; 102:152-67. [DOI: 10.1111/mmi.13452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Albena Draycheva
- Department of Physical BiochemistryMax Planck Institute for Biophysical ChemistryGöttingen Germany
| | - Thomas Bornemann
- Department of Physical BiochemistryMax Planck Institute for Biophysical ChemistryGöttingen Germany
| | - Sergey Ryazanov
- Department of NMR‐based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingen Germany
| | - Nils‐Alexander Lakomek
- Department of NMR‐based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingen Germany
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, Solid‐state NMRETH ZürichZürich Switzerland
| | - Wolfgang Wintermeyer
- Department of Physical BiochemistryMax Planck Institute for Biophysical ChemistryGöttingen Germany
| |
Collapse
|
11
|
Lakomek NA, Draycheva A, Bornemann T, Wintermeyer W. Electrostatics and Intrinsic Disorder Drive Translocon Binding of the SRP Receptor FtsY. Angew Chem Int Ed Engl 2016; 55:9544-7. [PMID: 27346853 PMCID: PMC5094494 DOI: 10.1002/anie.201602905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/19/2016] [Indexed: 01/18/2023]
Abstract
Integral membrane proteins in bacteria are co‐translationally targeted to the SecYEG translocon for membrane insertion via the signal recognition particle (SRP) pathway. The SRP receptor FtsY and its N‐terminal A domain, which is lacking in any structural model of FtsY, were studied using NMR and fluorescence spectroscopy. The A domain is mainly disordered and highly flexible; it binds to lipids via its N terminus and the C‐terminal membrane targeting sequence. The central A domain binds to the translocon non‐specifically and maintains disorder. Translocon targeting and binding of the A domain is driven by electrostatic interactions. The intrinsically disordered A domain tethers FtsY to the translocon, and because of its flexibility, allows the FtsY NG domain to scan a large area for binding to the NG domain of ribosome‐bound SRP, thereby promoting the formation of the quaternary transfer complex at the membrane.
Collapse
Affiliation(s)
- Nils-Alexander Lakomek
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany. .,ETH Zurich, Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Physical Chemistry (LPC), Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Albena Draycheva
- Max-Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas Bornemann
- Max-Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Wolfgang Wintermeyer
- Max-Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
12
|
Lakomek NA, Draycheva A, Bornemann T, Wintermeyer W. Electrostatics and Intrinsic Disorder Drive Translocon Binding of the SRP Receptor FtsY. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nils-Alexander Lakomek
- Department of NMR-based Structural Biology; Max-Planck Institute for Biophysical Chemistry; Am Fassberg 11 37077 Göttingen Germany
- ETH Zurich; Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Physical Chemistry (LPC); Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Albena Draycheva
- Max-Planck Institute for Biophysical Chemistry; Department of Physical Biochemistry; Am Fassberg 11 37077 Göttingen Germany
| | - Thomas Bornemann
- Max-Planck Institute for Biophysical Chemistry; Department of Physical Biochemistry; Am Fassberg 11 37077 Göttingen Germany
| | - Wolfgang Wintermeyer
- Max-Planck Institute for Biophysical Chemistry; Department of Physical Biochemistry; Am Fassberg 11 37077 Göttingen Germany
| |
Collapse
|
13
|
|
14
|
Kuhn P, Draycheva A, Vogt A, Petriman NA, Sturm L, Drepper F, Warscheid B, Wintermeyer W, Koch HG. Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon. J Cell Biol 2016; 211:91-104. [PMID: 26459600 PMCID: PMC4602035 DOI: 10.1083/jcb.201502103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cotranslational transfer of nascent membrane proteins to the SecYEG translocon is facilitated by a reorientation of the SecY-bound signal recognition particle (SRP) receptor, FtsY, which accompanies the formation of a quaternary targeting complex consisting of SecYEG, FtsY, SRP, and the ribosome. Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex.
Collapse
Affiliation(s)
- Patrick Kuhn
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Andreas Vogt
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lukas Sturm
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Mammalian SRP receptor switches the Sec61 translocase from Sec62 to SRP-dependent translocation. Nat Commun 2015; 6:10133. [PMID: 26634806 PMCID: PMC4686813 DOI: 10.1038/ncomms10133] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
Two distinct pathways deliver secretory proteins to the Sec61 protein translocase in the endoplasmic reticulum membrane. The canonical pathway requires the signal recognition particle (SRP) and its cognate receptor (SR), and targets ribosome-associated proteins to the Sec translocase. The SRP-independent pathway requires the Sec translocase-associated ER membrane protein Sec62 and can be uncoupled from translation. Here we show that SR switches translocons to SRP-dependent translocation by displacing Sec62. This activity localizes to the charged linker region between the longin and GTPase domains of SRα. Using truncation variants, crosslinking and translocation assays reveals two elements with distinct functions as follows: one rearranges the translocon, displacing Sec62 from Sec61. A second promotes ribosome binding and is conserved between all eukaryotes. These specific regions in SRα reprogramme the Sec translocon and facilitate recruitment of ribosome-nascent chain complexes. Overall, our study identifies an important function of SR, which mechanistically links two seemingly independent modes of translocation.
Collapse
|
16
|
Elvekrog MM, Walter P. Dynamics of co-translational protein targeting. Curr Opin Chem Biol 2015; 29:79-86. [PMID: 26517565 DOI: 10.1016/j.cbpa.2015.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
Most membrane and secretory proteins are delivered co-translationally to protein translocation channels in their destination membrane by the signal recognition particle (SRP) and its receptor. This co-translational molecular machinery is conserved across all kingdoms of life, though it varies in composition and function. Here we report recent progress towards understanding the mechanism of SRP function, focusing on findings about Escherichia coli SRP's conformational dynamics throughout the targeting process. These insights shed light on a key checkpoint in the targeting cycle: how SRP regulates engagement of an actively translating ribosome with the translocation machinery at the membrane.
Collapse
Affiliation(s)
- Margaret M Elvekrog
- The Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Peter Walter
- The Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
17
|
Walter B, Hristou A, Nowaczyk MM, Schünemann D. In vitro reconstitution of co-translational D1 insertion reveals a role of the cpSec-Alb3 translocase and Vipp1 in photosystem II biogenesis. Biochem J 2015; 468:315-24. [PMID: 25803492 DOI: 10.1042/bj20141425] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photosystem II (PS II) is a multi-subunit complex localized in the thylakoid membrane that performs the light-dependent photosynthetic charge separation. The PS II reaction centre comprises, among others, the D1 protein. De novo synthesis and repair of PS II require efficient mechanisms for transport and insertion of plastid encoded D1 into the thylakoid membrane. To elucidate the process of D1 insertion, we used an in vitro translation system derived from pea chloroplasts to reconstitute the D1 insertion. Thereby, truncated D1 encoding psbA mRNAs lacking a stop codon were translated in the presence of thylakoid membranes and the translation was stalled by addition of chloramphenicol. The generated ribosome nascent chain complexes (RNCs) were tightly associated with the thylakoids. Subsequently, these D1 insertion intermediates were enriched from solubilized thylakoids by sucrose cushion centrifugation. Immunological analyses demonstrated the presence of the cpSec translocase, Alb3, cpFtsY, cpSRP54 and Vipp1 (vesicle-inducing protein in plastids 1) in the enriched D1 insertion intermediates. A complex formation between cpSecY, Alb3, cpFtsY and Vipp1 in thylakoid membranes was shown by gel filtration chromatography, BN (Blue Native)/SDS-PAGE and co-immunoprecipitation experiments. Furthermore, a stimulating effect of recombinant Vipp1 on the formation of a D1 insertion intermediate was observed in vitro. These results suggest a co-operative function of these proteins in D1 insertion.
Collapse
Affiliation(s)
- Björn Walter
- *Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Athina Hristou
- *Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Marc M Nowaczyk
- †Plant Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Danja Schünemann
- *Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
18
|
Abstract
The signal recognition particle (SRP)-dependent pathway is essential for correct targeting of proteins to the membrane and subsequent insertion in the membrane or secretion. In Escherichia coli, the SRP and its receptor FtsY bind to ribosome-nascent chain complexes with signal sequences and undergo a series of distinct conformational changes, which ensures accurate timing and fidelity of protein targeting. Initial recruitment of the SRP receptor FtsY to the SRP-RNC complex results in GTP-independent binding of the SRP-FtsY GTPases at the SRP RNA tetraloop. In the presence of GTP, a closed state is adopted by the SRP-FtsY complex. The cryo-EM structure of the closed state reveals an ordered SRP RNA and SRP M domain with a signal sequence-bound. Van der Waals interactions between the finger loop and ribosomal protein L24 lead to a constricted signal sequence-binding pocket possibly preventing premature release of the signal sequence. Conserved M-domain residues contact ribosomal RNA helices 24 and 59. The SRP-FtsY GTPases are detached from the RNA tetraloop and flexible, thus liberating the ribosomal exit site for binding of the translocation machinery.
Collapse
|
19
|
Biology and Assembly of the Bacterial Envelope. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:41-76. [PMID: 26621461 DOI: 10.1007/978-3-319-23603-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All free-living bacterial cells are delimited and protected by an envelope of high complexity. This physiological barrier is essential for bacterial survival and assures multiple functions. The molecular assembly of the different envelope components into a functional structure represents a tremendous biological challenge and is of high interest for fundamental sciences. The study of bacterial envelope assembly has also been fostered by the need for novel classes of antibacterial agents to fight the problematic of bacterial resistance to antibiotics. This chapter focuses on the two most intensively studied classes of bacterial envelopes that belong to the phyla Firmicutes and Proteobacteria. The envelope of Firmicutes typically has one membrane and is defined as being monoderm whereas the envelope of Proteobacteria contains two distinct membranes and is referred to as being diderm. In this chapter, we will first discuss the multiple roles of the bacterial envelope and clarify the nomenclature used to describe the different types of envelopes. We will then define the architecture and composition of the envelopes of Firmicutes and Proteobacteria while outlining their similarities and differences. We will further cover the extensive progress made in the field of bacterial envelope assembly over the last decades, using Bacillus subtilis and Escherichia coli as model systems for the study of the monoderm and diderm bacterial envelopes, respectively. We will detail our current understanding of how molecular machines assure the secretion, insertion and folding of the envelope proteins as well as the assembly of the glycosidic components of the envelope. Finally, we will highlight the topics that are still under investigation, and that will surely lead to important discoveries in the near future.
Collapse
|
20
|
Sachelaru I, Petriman NA, Kudva R, Koch HG. Dynamic interaction of the sec translocon with the chaperone PpiD. J Biol Chem 2014; 289:21706-15. [PMID: 24951590 DOI: 10.1074/jbc.m114.577916] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sec translocon constitutes a ubiquitous protein transport channel that consists in bacteria of the three core components: SecY, SecE, and SecG. Additional proteins interact with SecYEG during different stages of protein transport. During targeting, SecYEG interacts with SecA, the SRP receptor, or the ribosome. Protein transport into or across the membrane is then facilitated by the interaction of SecYEG with YidC and the SecDFYajC complex. During protein transport, SecYEG is likely to interact also with the protein quality control machinery, but details about this interaction are missing. By in vivo and in vitro site-directed cross-linking, we show here that the periplasmic chaperone PpiD is located in front of the lateral gate of SecY, through which transmembrane domains exit the SecY channel. The strongest contacts were found to helix 2b of SecY. Blue native PAGE analyses verify the presence of a SecYEG-PpiD complex in native Escherichia coli membranes. The PpiD-SecY interaction was not influenced by the addition of SecA and only weakly influenced by binding of nontranslating ribosomes to SecYEG. In contrast, PpiD lost contact to the lateral gate of SecY during membrane protein insertion. These data identify PpiD as an additional and transient subunit of the bacterial SecYEG translocon. The data furthermore demonstrate the highly modular and versatile composition of the Sec translocon, which is probably essential for its ability to transport a wide range of substrates across membranes in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Ilie Sachelaru
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, the Faculty of Biology, and
| | - Narcis-Adrian Petriman
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, the Faculty of Biology, and
| | - Renuka Kudva
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, the Faculty of Biology, and the Spemann-Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, the Spemann-Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31:58-84. [DOI: 10.3109/09687688.2014.907455] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Saraogi I, Shan SO. Co-translational protein targeting to the bacterial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1433-41. [PMID: 24513458 DOI: 10.1016/j.bbamcr.2013.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 12/18/2022]
Abstract
Co-translational protein targeting by the Signal Recognition Particle (SRP) is an essential cellular pathway that couples the synthesis of nascent proteins to their proper cellular localization. The bacterial SRP, which contains the minimal ribonucleoprotein core of this universally conserved targeting machine, has served as a paradigm for understanding the molecular basis of protein localization in all cells. In this review, we highlight recent biochemical and structural insights into the molecular mechanisms by which fundamental challenges faced by protein targeting machineries are met in the SRP pathway. Collectively, these studies elucidate how an essential SRP RNA and two regulatory GTPases in the SRP and SRP receptor (SR) enable this targeting machinery to recognize, sense and respond to its biological effectors, i.e. the cargo protein, the target membrane and the translocation machinery, thus driving efficient and faithful co-translational protein targeting. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
23
|
Sachelaru I, Petriman NA, Kudva R, Kuhn P, Welte T, Knapp B, Drepper F, Warscheid B, Koch HG. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J Biol Chem 2013; 288:16295-16307. [PMID: 23609445 DOI: 10.1074/jbc.m112.446583] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most membrane proteins are co-translationally inserted into the lipid bilayer via the universally conserved SecY complex and they access the lipid phase presumably via a lateral gate in SecY. In bacteria, the lipid transfer of membrane proteins from the SecY channel is assisted by the SecY-associated protein YidC, but details on the SecY-YidC interaction are unknown. By employing an in vivo and in vitro site-directed cross-linking approach, we have mapped the SecY-YidC interface and found YidC in contact with all four transmembrane domains of the lateral gate. This interaction did not require the SecDFYajC complex and was not influenced by SecA binding to SecY. In contrast, ribosomes dissociated the YidC contacts to lateral gate helices 2b and 8. The major contact between YidC and the lateral gate was lost in the presence of ribosome nascent chains and new SecY-YidC contacts appeared. These data demonstrate that the SecY-YidC interaction is influenced by nascent-membrane-induced lateral gate movements.
Collapse
Affiliation(s)
- Ilie Sachelaru
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Fakultät für Biologie, 79104 Freiburg, Germany
| | - Narcis Adrian Petriman
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Fakultät für Biologie, 79104 Freiburg, Germany
| | - Renuka Kudva
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Fakultät für Biologie, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany
| | - Patrick Kuhn
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Fakultät für Biologie, 79104 Freiburg, Germany
| | - Thomas Welte
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany
| | | | - Friedel Drepper
- Fakultät für Biologie, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Zentrum für Biologische Signalstudien, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Fakultät für Biologie, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Zentrum für Biologische Signalstudien, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany.
| |
Collapse
|
24
|
Abstract
The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.
Collapse
Affiliation(s)
- David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kuang Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
25
|
Akopian D, Dalal K, Shen K, Duong F, Shan SO. SecYEG activates GTPases to drive the completion of cotranslational protein targeting. ACTA ACUST UNITED AC 2013; 200:397-405. [PMID: 23401005 PMCID: PMC3575545 DOI: 10.1083/jcb.201208045] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SecYEG drives conformational changes in the cotranslational targeting complex to activate it for GTP hydrolysis and the handover of the translating ribosome. Signal recognition particle (SRP) and its receptor (SR) comprise a highly conserved cellular machine that cotranslationally targets proteins to a protein-conducting channel, the bacterial SecYEG or eukaryotic Sec61p complex, at the target membrane. Whether SecYEG is a passive recipient of the translating ribosome or actively regulates this targeting machinery remains unclear. Here we show that SecYEG drives conformational changes in the cargo-loaded SRP–SR targeting complex that activate it for GTP hydrolysis and for handover of the translating ribosome. These results provide the first evidence that SecYEG actively drives the efficient delivery and unloading of translating ribosomes at the target membrane.
Collapse
Affiliation(s)
- David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
26
|
Shen X, Li S, Du Y, Mao X, Li Y. The N-terminal hydrophobic segment of Streptomyces coelicolor FtsY forms a transmembrane structure to stabilize its membrane localization. FEMS Microbiol Lett 2012; 327:164-71. [DOI: 10.1111/j.1574-6968.2011.02478.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/26/2011] [Accepted: 12/01/2011] [Indexed: 11/29/2022] Open
Affiliation(s)
- Xueling Shen
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Shanzhen Li
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Yiling Du
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Xuming Mao
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Yongquan Li
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| |
Collapse
|
27
|
Luirink J, Yu Z, Wagner S, de Gier JW. Biogenesis of inner membrane proteins in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:965-76. [PMID: 22201544 DOI: 10.1016/j.bbabio.2011.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/05/2011] [Accepted: 12/12/2011] [Indexed: 11/26/2022]
Abstract
The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Joen Luirink
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Aboulwafa M, Saier MH. Biophysical studies of the membrane-embedded and cytoplasmic forms of the glucose-specific Enzyme II of the E. coli phosphotransferase system (PTS). PLoS One 2011; 6:e24088. [PMID: 21935376 PMCID: PMC3174158 DOI: 10.1371/journal.pone.0024088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 07/29/2011] [Indexed: 11/18/2022] Open
Abstract
The glucose Enzyme II transporter complex of the Escherichia coli phosphotransferase system (PTS) exists in at least two physically distinct forms: a membrane-integrated dimeric form, and a cytoplasmic monomeric form, but little is known about the physical states of these enzyme forms. Six approaches were used to evaluate protein-protein and protein-lipid interactions in this system. Fluorescence energy transfer (FRET) using MBP-II(Glc)-YFP and MBP-II(Glc)-CFP revealed that the homodimeric Enzyme II complex in cell membranes is stable (FRET(-)) but can be dissociated and reassociated to the heterodimer only in the presence of Triton X100 (FRET(+)). The monomeric species could form a heterodimeric species (FRET(+)) by incubation and purification without detergent exposure. Formaldehyde cross linking studies, conducted both in vivo and in vitro, revealed that the dimeric MBP-II(Glc) activity decreased dramatically with increasing formaldehyde concentrations due to both aggregation and activity loss, but that the monomeric MBP-II(Glc) retained activity more effectively in response to the same formaldehyde treatments, and little or no aggregation was observed. Electron microscopy of MBP-II(Glc) indicated that the dimeric form is larger than the monomeric form. Dynamic light scattering confirmed this conclusion and provided quantitation. NMR analyses provided strong evidence that the dimeric form is present primarily in a lipid bilayer while the monomeric form is present as micelles. Finally, lipid analyses of the different fractions revealed that the three lipid species (PE, PG and CL) are present in all fractions, but the monomeric micellar structure contains a higher percentage of anionic lipids (PG & CL) while the dimeric bilayer form has a higher percentage of zwitterion lipids (PE). Additionally, evidence for a minor dimeric micellar species, possibly an intermediate between the monomeric micellar and the dimeric bilayer forms, is presented. These results provide convincing evidence for interconvertible physical forms of Enzyme-II(Glc).
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Molecular Biology Department, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Molecular Biology Department, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Braig D, Mircheva M, Sachelaru I, van der Sluis EO, Sturm L, Beckmann R, Koch HG. Signal sequence-independent SRP-SR complex formation at the membrane suggests an alternative targeting pathway within the SRP cycle. Mol Biol Cell 2011; 22:2309-23. [PMID: 21551068 PMCID: PMC3128533 DOI: 10.1091/mbc.e11-02-0152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Our study reveals an alternative route in the SRP-dependent protein targeting pathway that includes a preassembled, membrane-bound SRP-SR complex. This alternative route is fully sufficient to maintain cell viability in the absence of a soluble SRP. Protein targeting by the signal recognition particle (SRP) and the bacterial SRP receptor FtsY requires a series of closely coordinated steps that monitor the presence of a substrate, the membrane, and a vacant translocon. Although the influence of substrate binding on FtsY-SRP complex formation is well documented, the contribution of the membrane is largely unknown. In the current study, we found that negatively charged phospholipids stimulate FtsY-SRP complex formation. Phospholipids act on a conserved positively charged amphipathic helix in FtsY and induce a conformational change that strongly enhances the FtsY-lipid interaction. This membrane-bound, signal sequence–independent FtsY-SRP complex is able to recruit RNCs to the membrane and to transfer them to the Sec translocon. Significantly, the same results were also observed with an artificial FtsY-SRP fusion protein, which was tethered to the membrane via a transmembrane domain. This indicates that substrate recognition by a soluble SRP is not essential for cotranslational targeting in Escherichia coli. Our findings reveal a remarkable flexibility of SRP-dependent protein targeting, as they indicate that substrate recognition can occur either in the cytosol via ribosome-bound SRP or at the membrane via a preassembled FtsY-SRP complex.
Collapse
Affiliation(s)
- David Braig
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The signal recognition particle (SRP) is a key component of the cellular machinery that couples the ongoing synthesis of proteins to their proper localization, and has often served as a paradigm for understanding the molecular basis of protein localization within the cell. The SRP pathway exemplifies several key molecular events required for protein targeting to cellular membranes: the specific recognition of signal sequences on cargo proteins, the efficient delivery of cargo to the target membrane, the productive unloading of cargo to the translocation machinery and the precise spatial and temporal coordination of these molecular events. Here we highlight recent advances in our understanding of the molecular mechanisms underlying this pathway, and discuss new questions raised by these findings.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
31
|
Kuhn P, Weiche B, Sturm L, Sommer E, Drepper F, Warscheid B, Sourjik V, Koch HG. The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon. Traffic 2011; 12:563-78. [PMID: 21255212 DOI: 10.1111/j.1600-0854.2011.01167.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signal recognition particle (SRP)-dependent protein targeting is a universally conserved process that delivers proteins to the bacterial cytoplasmic membrane or to the endoplasmic reticulum membrane in eukaryotes. Crucial during targeting is the transfer of the ribosome-nascent chain complex (RNC) from SRP to the Sec translocon. In eukaryotes, this step is co-ordinated by the SRβ subunit of the SRP receptor (SR), which probably senses a vacant translocon by direct interaction with the translocon. Bacteria lack the SRβ subunit and how they co-ordinate RNC transfer is unknown. By site-directed cross-linking and fluorescence resonance energy transfer (FRET) analyses, we show that FtsY, the bacterial SRα homologue, binds to the exposed C4/C5 loops of SecY, the central component of the bacterial Sec translocon. The same loops serve also as binding sites for SecA and the ribosome. The FtsY-SecY interaction involves at least the A domain of FtsY, which attributes an important function to this so far ill-defined domain. Binding of FtsY to SecY residues, which are also used by SecA and the ribosome, probably allows FtsY to sense an available translocon and to align the incoming SRP-RNC with the protein conducting channel. Thus, the Escherichia coli FtsY encompasses the functions of both the eukaryotic SRα and SRβ subunits in one single protein.
Collapse
Affiliation(s)
- Patrick Kuhn
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Str. 17, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lam VQ, Akopian D, Rome M, Henningsen D, Shan SO. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. ACTA ACUST UNITED AC 2010; 190:623-35. [PMID: 20733058 PMCID: PMC2928010 DOI: 10.1083/jcb.201004129] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipid binding leads to accelerated assembly of the bacterial SRP receptor FtsY and SRP, allowing cargo proteins to be delivered to target membranes more efficiently. The signal recognition particle (SRP) and SRP receptor comprise the major cellular machinery that mediates the cotranslational targeting of proteins to cellular membranes. It remains unclear how the delivery of cargos to the target membrane is spatially coordinated. We show here that phospholipid binding drives important conformational rearrangements that activate the bacterial SRP receptor FtsY and the SRP–FtsY complex. This leads to accelerated SRP–FtsY complex assembly, and allows the SRP–FtsY complex to more efficiently unload cargo proteins. Likewise, formation of an active SRP–FtsY GTPase complex exposes FtsY’s lipid-binding helix and enables stable membrane association of the targeting complex. Thus, membrane binding, complex assembly with SRP, and cargo unloading are inextricably linked to each other via conformational changes in FtsY. These allosteric communications allow the membrane delivery of cargo proteins to be efficiently coupled to their subsequent unloading and translocation, thus providing spatial coordination during protein targeting.
Collapse
Affiliation(s)
- Vinh Q Lam
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
33
|
du Plessis DJF, Nouwen N, Driessen AJM. The Sec translocase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:851-65. [PMID: 20801097 DOI: 10.1016/j.bbamem.2010.08.016] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/18/2022]
Abstract
The vast majority of proteins trafficking across or into the bacterial cytoplasmic membrane occur via the translocon. The translocon consists of the SecYEG complex that forms an evolutionarily conserved heterotrimeric protein-conducting membrane channel that functions in conjunction with a variety of ancillary proteins. For posttranslational protein translocation, the translocon interacts with the cytosolic motor protein SecA that drives the ATP-dependent stepwise translocation of unfolded polypeptides across the membrane. For the cotranslational integration of membrane proteins, the translocon interacts with ribosome-nascent chain complexes and membrane insertion is coupled to polypeptide chain elongation at the ribosome. These processes are assisted by the YidC and SecDF(yajC) complex that transiently interacts with the translocon. This review summarizes our current understanding of the structure-function relationship of the translocon and its interactions with ancillary components during protein translocation and membrane protein insertion. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- David J F du Plessis
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751NN Haren, The Netherlands
| | | | | |
Collapse
|
34
|
Bibi E. Early targeting events during membrane protein biogenesis in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:841-50. [PMID: 20682283 DOI: 10.1016/j.bbamem.2010.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
All living cells have co-translational pathways for targeting membrane proteins. Co-translation pathways for secretory proteins also exist but mostly in eukaryotes. Unlike secretory proteins, the biosynthetic pathway of most membrane proteins is conserved through evolution and these proteins are usually synthesized by membrane-bound ribosomes. Translation on the membrane requires that both the ribosomes and the mRNAs be properly localized. Theoretically, this can be achieved by several means. (i) The current view is that the targeting of cytosolic mRNA-ribosome-nascent chain complexes (RNCs) to the membrane is initiated by information in the emerging hydrophobic nascent polypeptides. (ii) The alternative model suggests that ribosomes may be targeted to the membrane also constitutively, whereas the appropriate mRNAs may be carried on small ribosomal subunits or targeted by other cellular factors to the membrane-bound ribosomes. Importantly, the available experimental data do not rule out the possibility that cells may also utilize both pathways in parallel. In any case, it is well documented that a major player in the targeting pathway is the signal recognition particle (SRP) system composed of the SRP and its receptor (SR). Although the functional core of the SRP system is evolutionarily conserved, its composition and biological practice come with different flavors in various organisms. This review is dedicated mainly to the Escherichia (E.) coli SRP, where the biochemical and structural properties of components of the SRP system have been relatively characterized, yielding essential information about various aspects of the pathway. In addition, several cellular interactions of the SRP and its receptor have been described in E. coli, providing insights into their spatial function. Collectively, these in vitro studies have led to the current view of the targeting pathway [see (i) above]. Interestingly, however, in vivo studies of the role of the SRP and its receptor, with emphasis on the temporal progress of the pathway, elicited an alternative hypothesis [see (ii) above]. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
35
|
Facey SJ, Kuhn A. Biogenesis of bacterial inner-membrane proteins. Cell Mol Life Sci 2010; 67:2343-62. [PMID: 20204450 PMCID: PMC11115511 DOI: 10.1007/s00018-010-0303-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
Abstract
All cells must traffic proteins into and across their membranes. In bacteria, several pathways have evolved to enable protein transfer across the inner membrane, the periplasm, and the outer membrane. The major route of protein translocation in and across the cytoplasmic membrane is the general secretion pathway (Sec-pathway). The biogenesis of membrane proteins not only requires protein translocation but also coordinated targeting to the membrane beforehand and folding and assembly into their protein complexes afterwards to function properly in the cell. All these processes are responsible for the biogenesis of membrane proteins that mediate essential functions of the cell such as selective transport, energy conversion, cell division, extracellular signal sensing, and motility. This review will highlight the most recent developments on the structure and function of bacterial membrane proteins, focusing on the journey that integral membrane proteins take to find their final destination in the inner membrane.
Collapse
Affiliation(s)
- Sandra J. Facey
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
36
|
Reinau ME, Thøgersen IB, Enghild JJ, Nielsen KL, Otzen DE. The diversity of FtsY-lipid interactions. Biopolymers 2010; 93:595-606. [DOI: 10.1002/bip.21404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Mircheva M, Boy D, Weiche B, Hucke F, Graumann P, Koch HG. Predominant membrane localization is an essential feature of the bacterial signal recognition particle receptor. BMC Biol 2009; 7:76. [PMID: 19912622 PMCID: PMC2780400 DOI: 10.1186/1741-7007-7-76] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/13/2009] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The signal recognition particle (SRP) receptor plays a vital role in co-translational protein targeting, because it connects the soluble SRP-ribosome-nascent chain complex (SRP-RNCs) to the membrane bound Sec translocon. The eukaryotic SRP receptor (SR) is a heterodimeric protein complex, consisting of two unrelated GTPases. The SRbeta subunit is an integral membrane protein, which tethers the SRP-interacting SRalpha subunit permanently to the endoplasmic reticulum membrane. The prokaryotic SR lacks the SRbeta subunit and consists of only the SRalpha homologue FtsY. Strikingly, although FtsY requires membrane contact for functionality, cell fractionation studies have localized FtsY predominantly to the cytosolic fraction of Escherichia coli. So far, the exact function of the soluble SR in E. coli is unknown, but it has been suggested that, in contrast to eukaryotes, the prokaryotic SR might bind SRP-RNCs already in the cytosol and only then initiates membrane targeting. RESULTS In the current study we have determined the contribution of soluble FtsY to co-translational targeting in vitro and have re-analysed the localization of FtsY in vivo by fluorescence microscopy. Our data show that FtsY can bind to SRP-ribosome nascent chains (RNCs) in the absence of membranes. However, these soluble FtsY-SRP-RNC complexes are not efficiently targeted to the membrane. In contrast, we observed effective targeting of SRP-RNCs to membrane-bond FtsY. These data show that soluble FtsY does not contribute significantly to cotranslational targeting in E. coli. In agreement with this observation, our in vivo analyses of FtsY localization in bacterial cells by fluorescence microscopy revealed that the vast majority of FtsY was localized to the inner membrane and that soluble FtsY constituted only a negligible species in vivo. CONCLUSION The exact function of the SRP receptor (SR) in bacteria has so far been enigmatic. Our data show that the bacterial SR is almost exclusively membrane-bound in vivo, indicating that the presence of a soluble SR is probably an artefact of cell fractionation. Thus, co-translational targeting in bacteria does not involve the formation of a soluble SR-signal recognition particle (SRP)-ribosome nascent chain (RNC) intermediate but requires membrane contact of FtsY for efficient SRP-RNC recruitment.
Collapse
Affiliation(s)
- Miryana Mircheva
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Hovijitra NT, Wuu JJ, Peaker B, Swartz JR. Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnol Bioeng 2009; 104:40-9. [PMID: 19557835 DOI: 10.1002/bit.22385] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The challenges involved in producing sufficient quantities of aquaporins for precise biophysical characterization have limited our knowledge of this important class of molecules. This article describes a cell-free protein synthesis method for producing high concentrations of the E. coli water transporter, aquaporin Z (AqpZ), in synthetic liposomes. To our knowledge, this is the first report of in vitro synthesis of a membrane protein directly into synthetic liposomes with verified function, (i.e., transport activity and selectivity). Titration of DOPC lipid vesicles added to the cell-free reaction show that production yields of active AqpZ are dependent on the concentration of DOPC lipid vesicles added to the cell-free reaction, with 224 +/- 24 lipids required per aquaporin monomer. Supplementation of the signal recognition particle receptor (FtsY) to the cell-free reaction increases production of vesicle-associated AqpZ but not active AqpZ. Cell-free reactions using 7 mg/mL lipids that were not supplemented with FtsY produced 507 +/- 11 microg/mL of vesicle-associated AqpZ that exhibited a specific water transport activity of (2.2 +/- 0.3) x 10(-14) cm(3) s(-1) monomer(-1). Proteinase K protection, activation energy determination, and selectivity against glycerol and urea transport also confirmed the production of correctly folded AqpZ. This technique is capable of producing milligram quantities of aquaporin that can be readily assayed for function, facilitating biophysical characterization and high-throughput analysis.
Collapse
Affiliation(s)
- Norman T Hovijitra
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
39
|
Depletion of the signal recognition particle receptor inactivates ribosomes in Escherichia coli. J Bacteriol 2009; 191:7017-26. [PMID: 19749044 DOI: 10.1128/jb.00208-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal recognition particle (SRP)-dependent cotranslational targeting of proteins to the cytoplasmic membrane in bacteria or the endoplasmic reticulum membrane in eukaryotes is an essential process in most living organisms. Eukaryotic cells have been shown to respond to an impairment of the SRP pathway by (i) repressing ribosome biogenesis, resulting in decreased protein synthesis, and (ii) by increasing the expression of protein quality control mechanisms, such as chaperones and proteases. In the current study, we have analyzed how bacteria like Escherichia coli respond to a gradual depletion of FtsY, the bacterial SRP receptor. Our analyses using cell-free transcription/translation systems showed that FtsY depletion inhibits the translation of both SRP-dependent and SRP-independent proteins. This synthesis defect is the result of a multifaceted response that includes the upregulation of the ribosome-inactivating protein ribosome modulation factor (RMF). Although the consequences of these responses in E. coli are very similar to some of the effects also observed in eukaryotic cells, one striking difference is that E. coli obviously does not reduce the rate of protein synthesis by downregulating ribosome biogenesis. Instead, the upregulation of RMF leads to a direct and reversible inhibition of translation.
Collapse
|
40
|
Grudnik P, Bange G, Sinning I. Protein targeting by the signal recognition particle. Biol Chem 2009; 390:775-82. [DOI: 10.1515/bc.2009.102] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
Protein targeting by the signal recognition particle (SRP) is universally conserved and starts with the recognition of a signal sequence in the context of a translating ribosome. SRP54 and FtsY, two multidomain proteins with guanosine triphosphatase (GTPase) activity, are the central elements of the SRP system. They have to coordinate the presence of a signal sequence with the presence of a vacant translocation channel in the membrane. For coordination the two GTPases form a unique, nearly symmetric heterodimeric complex in which the activation of GTP hydrolysis plays a key role for membrane insertion of substrate proteins. Recent results are integrated in an updated perception of the order of events in SRP-mediated protein targeting.
Collapse
|
41
|
Shan SO, Schmid SL, Zhang X. Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases. Biochemistry 2009; 48:6696-704. [PMID: 19469550 PMCID: PMC2883566 DOI: 10.1021/bi9006989] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The GTP-binding proteins or GTPases comprise a superfamily of proteins that provide molecular switches in numerous cellular processes. The "GTPase switch" paradigm, in which a GTPase acts as a bimodal switch that is turned "on" and "off" by external regulatory factors, has been used to interpret the regulatory mechanism of many GTPases for more than two decades. Nevertheless, recent work has unveiled an emerging class of "multistate" regulatory GTPases that do not adhere to this classical paradigm. Instead of relying on external nucleotide exchange factors or GTPase activating proteins to switch between the on and off states, these GTPases have the intrinsic ability to exchange nucleotides and to sense and respond to upstream and downstream factors. In contrast to the bimodal nature of the GTPase switch, these GTPases undergo multiple conformational rearrangements, allowing multiple regulatory points to be built into a complex biological process to ensure the efficiency and fidelity of the pathway. We suggest that these multistate regulatory GTPases are uniquely suited to provide spatial and temporal control of complex cellular pathways that require multiple molecular events to occur in a highly coordinated fashion.
Collapse
Affiliation(s)
- Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
42
|
The distinct anchoring mechanism of FtsY from different microbes. Curr Microbiol 2009; 59:336-40. [PMID: 19536595 DOI: 10.1007/s00284-009-9439-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
The SRP receptor FtsY, which is involved in targeting and translocating membrane protein, is generally composed of the N-terminal domain and the NG domain. Although FtsY was highly homologous in the composition of amino acids and functions among microbes, the different mechanism in the location of FtsYs from different bacteria such as S. coelicolor and E. coli were discovered in this study by laser scanning confocal microscope (LSCM) in vivo and molecular techniques in vitro. The results revealed that the N-terminal domain of S. coelicolor FtsY was indispensable for FtsY's anchoring membrane, and while the A domain of E. coli FtsY was dispensable. Moreover, the A domain of E. coli FtsY might promote itself to bind the membrane depending on the location images and Western blotting.
Collapse
|
43
|
Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein. J Mol Biol 2009; 391:679-90. [PMID: 19497327 DOI: 10.1016/j.jmb.2009.05.075] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 12/31/2022]
Abstract
The specialised signal recognition particle family guanosine 5c-triphosphate (GTP)-binding protein FlhF is required for the correct localisation of flagella in several bacterial species. Here, we characterise the regions of Vibrio cholerae FlhF that are required for its function and targeting to the old cell pole, and we present evidence for a mechanism by which FlhF establishes flagellum polar localisation. Substitution of residues in FlhF nucleotide-binding motifs reduced GTP binding and the efficiency of flagellum biogenesis, and caused flagellum mislocalisation. However, replacement of conserved putative catalytic residues (D(321), R(324), and Q(330)) had no effect, suggesting that while GTP binding influences FlhF function, GTPase activity might not be essential. FlhF associated with the inner membrane in the absence of other flagellar proteins, and a functional FlhF-green fluorescent protein fusion was targeted to the old cell pole where the flagellum is localised. FlhF targeting to the pole was intrinsic, as no other flagellar proteins were needed. Neither the FlhF C-terminal GTP-binding region nor the N-terminal 166-residue B-region was required for polar localisation, though they were essential for FlhF function. Deletion of the central 108-residue N-region of FlhF, comprising alpha-helices N1-N4, did however severely reduce the efficiency of FlhF polar targeting, as well as FlhF function. The intrinsic localisation of FlhF to the old cell pole membrane suggested that FlhF might function at an early stage of flagellum assembly; to test this, we assessed the effect of FlhF on the localisation of the earliest flagellar structural component, the membrane-supramembrane ring protein FliF. Recruitment of FliF to the pole required only FlhF and no other flagellar proteins. FliF polar targeting was abolished in the absence of FlhF and by deletion of the FlhF B-domain or GTP-binding region. Our data indicate that FlhF establishes the site of flagellum assembly at the old cell pole membrane by recruiting the earliest flagellar structural component FliF.
Collapse
|
44
|
Marty NJ, Rajalingam D, Kight AD, Lewis NE, Fologea D, Kumar TKS, Henry RL, Goforth RL. The membrane-binding motif of the chloroplast signal recognition particle receptor (cpFtsY) regulates GTPase activity. J Biol Chem 2009; 284:14891-903. [PMID: 19293157 PMCID: PMC2685671 DOI: 10.1074/jbc.m900775200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/16/2009] [Indexed: 11/06/2022] Open
Abstract
The chloroplast signal recognition particle (cpSRP) and its receptor (cpFtsY) function in thylakoid biogenesis to target integral membrane proteins to thylakoids. Unlike cytosolic SRP receptors in eukaryotes, cpFtsY partitions between thylakoid membranes and the soluble stroma. Based on sequence alignments, a membrane-binding motif identified in Escherichia coli FtsY appears to be conserved in cpFtsY, yet whether the proposed motif is responsible for the membrane-binding function of cpFtsY has yet to be shown experimentally. Our studies show that a small N-terminal region in cpFtsY stabilizes a membrane interaction critical to cpFtsY function in cpSRP-dependent protein targeting. This membrane-binding motif is both necessary and sufficient to direct cpFtsY and fused passenger proteins to thylakoids. Our results demonstrate that the cpFtsY membrane-binding motif may be functionally replaced by the corresponding region from E. coli, confirming that the membrane-binding motif is conserved among organellar and prokaryotic homologs. Furthermore, the capacity of cpFtsY for lipid binding correlates with liposome-induced GTP hydrolysis stimulation. Mutations that debilitate the membrane-binding motif in cpFtsY result in higher rates of GTP hydrolysis, suggesting that negative regulation is provided by the intact membrane-binding region in the absence of a bilayer. Furthermore, NMR and CD structural studies of the N-terminal region and the analogous region in the E. coli SRP receptor revealed a conformational change in secondary structure that takes place upon lipid binding. These studies suggest that the cpFtsY membrane-binding motif plays a critical role in the intramolecular communication that regulates cpSRP receptor functions at the membrane.
Collapse
Affiliation(s)
- Naomi J Marty
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Braig D, Bär C, Thumfart JO, Koch HG. Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor. J Mol Biol 2009; 390:401-13. [PMID: 19414018 DOI: 10.1016/j.jmb.2009.04.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/02/2009] [Accepted: 04/28/2009] [Indexed: 11/19/2022]
Abstract
Protein targeting by the bacterial signal recognition particle requires the specific interaction of the signal recognition particle (SRP)-ribosome-nascent chain complex with FtsY, the bacterial SRP receptor. Although FtsY in Escherichia coli lacks a transmembrane domain, the membrane-bound FtsY displays many features of an integral membrane protein. Our data reveal that it is the cooperative action of two lipid-binding helices that allows this unusually strong membrane contact. Helix I comprises the first 14 amino acids of FtsY and the second is located at the interface between the A- and the N-domain of FtsY. We show by site-directed cross-linking and binding assays that both helices bind to negatively charged phospholipids, with a preference for phosphatidyl glycerol. Despite the strong lipid binding, helix I does not seem to be completely inserted into the lipid phase, but appears to be oriented parallel with the membrane surface. The two helices together with the connecting linker constitute an independently folded domain, which maintains its lipid binding even in the absence of the conserved NG-core of FtsY. In summary, our data reveal that the two consecutive lipid-binding helices of FtsY can provide a membrane contact that does not differ significantly in stability from that provided by a transmembrane domain. This explains why the bacterial SRP receptor does not require an integral beta-subunit for membrane binding.
Collapse
Affiliation(s)
- David Braig
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | |
Collapse
|
46
|
Abstract
Correct protein function depends on delivery to the appropriate cellular or subcellular compartment. Following the initiation of protein synthesis in the cytosol, many bacterial and eukaryotic proteins must be integrated into or transported across a membrane to reach their site of function. Whereas in the post-translational delivery pathway ATP-dependent factors bind to completed polypeptides and chaperone them until membrane translocation is initiated, a GTP-dependent co-translational pathway operates to couple ongoing protein synthesis to membrane transport. These distinct pathways provide different solutions for the maintenance of proteins in a state that is competent for membrane translocation and their delivery for export from the cytosol.
Collapse
|
47
|
SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction. Nat Struct Mol Biol 2009; 15:916-23. [PMID: 19172744 DOI: 10.1038/nsmb.1467] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interaction of the signal-recognition particle (SRP) with its receptor (SR) mediates co-translational protein targeting to the membrane. SRP and SR interact via their homologous core GTPase domains and N-terminal four-helix bundles (N domains). SRP-SR complex formation is slow unless catalyzed by SRP's essential RNA component. We show that truncation of the first helix of the N domain (helix N1) of both proteins dramatically accelerates their interaction. SRP and SR with helix N1 truncations interact at nearly the RNA-catalyzed rate in the absence of RNA. NMR spectroscopy and analysis of GTPase activity show that helix N1 truncation in SR mimics the conformational switch caused by complex formation. These results demonstrate that the N-terminal helices of SRP and SR are autoinhibitory for complex formation in the absence of SRP RNA, suggesting a mechanism for RNA-mediated coordination of the SRP-SR interaction.
Collapse
|
48
|
Boy D, Koch HG. Visualization of distinct entities of the SecYEG translocon during translocation and integration of bacterial proteins. Mol Biol Cell 2009; 20:1804-15. [PMID: 19158385 DOI: 10.1091/mbc.e08-08-0886] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The universally conserved SecYEG/Sec61 translocon constitutes the major protein-conducting channel in the cytoplasmic membrane of bacteria and the endoplasmic reticulum membrane of eukaryotes. It is engaged in both translocating secretory proteins across the membrane as well as in integrating membrane proteins into the lipid phase of the membrane. In the current study we have detected distinct SecYEG translocon complexes in native Escherichia coli membranes. Blue-Native-PAGE revealed the presence of a 200-kDa SecYEG complex in resting membranes. When the SecA-dependent secretory protein pOmpA was trapped inside the SecYEG channel, a smaller SecY-containing complex of approximately 140-kDa was observed, which probably corresponds to a monomeric SecYEG-substrate complex. Trapping the SRP-dependent polytopic membrane protein mannitol permease in the SecYEG translocon, resulted in two complexes of 250 and 600 kDa, each containing both SecY and the translocon-associated membrane protein YidC. The appearance of both complexes was correlated with the number of transmembrane domains that were exposed during targeting of mannitol permease to the membrane. These results suggest that the assembly or the stability of the bacterial SecYEG translocon is influenced by the substrate that needs to be transported.
Collapse
Affiliation(s)
- Diana Boy
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
49
|
Buskiewicz IA, Jöckel J, Rodnina MV, Wintermeyer W. Conformation of the signal recognition particle in ribosomal targeting complexes. RNA (NEW YORK, N.Y.) 2009; 15:44-54. [PMID: 19029307 PMCID: PMC2612770 DOI: 10.1261/rna.1285609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/14/2008] [Indexed: 05/27/2023]
Abstract
The bacterial signal recognition particle (SRP) binds to ribosomes synthesizing inner membrane proteins and, by interaction with the SRP receptor, FtsY, targets them to the translocon at the membrane. Here we probe the conformation of SRP and SRP protein, Ffh, at different stages of targeting by measuring fluorescence resonance energy transfer (FRET) between fluorophores placed at various positions within SRP. Distances derived from FRET indicate that SRP binding to nontranslating ribosomes triggers a global conformational change of SRP that facilitates binding of the SRP receptor, FtsY. Binding of SRP to a signal-anchor sequence exposed on a ribosome-nascent chain complex (RNC) causes a further change of the SRP conformation, involving the flexible part of the Ffh(M) domain, which increases the affinity for FtsY of ribosome-bound SRP up to the affinity exhibited by the isolated NG domain of Ffh. This indicates that in the RNC-SRP complex the Ffh(NG) domain is fully exposed for binding FtsY to form the targeting complex. Binding of FtsY to the RNC-SRP complex results in a limited conformational change of SRP, which may initiate subsequent targeting steps.
Collapse
Affiliation(s)
- Iwona A Buskiewicz
- Institute of Molecular Biology, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | | | |
Collapse
|
50
|
Egea PF, Tsuruta H, de Leon GP, Napetschnig J, Walter P, Stroud RM. Structures of the signal recognition particle receptor from the archaeon Pyrococcus furiosus: implications for the targeting step at the membrane. PLoS One 2008; 3:e3619. [PMID: 18978942 PMCID: PMC2572998 DOI: 10.1371/journal.pone.0003619] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/11/2008] [Indexed: 11/19/2022] Open
Abstract
In all organisms, a ribonucleoprotein called the signal recognition particle (SRP) and its receptor (SR) target nascent proteins from the ribosome to the translocon for secretion or membrane insertion. We present the first X-ray structures of an archeal FtsY, the receptor from the hyper-thermophile Pyrococcus furiosus (Pfu), in its free and GDP•magnesium-bound forms. The highly charged N-terminal domain of Pfu-FtsY is distinguished by a long N-terminal helix. The basic charges on the surface of this helix are likely to regulate interactions at the membrane. A peripheral GDP bound near a regulatory motif could indicate a site of interaction between the receptor and ribosomal or SRP RNAs. Small angle X-ray scattering and analytical ultracentrifugation indicate that the crystal structure of Pfu-FtsY correlates well with the average conformation in solution. Based on previous structures of two sub-complexes, we propose a model of the core of archeal and eukaryotic SRP•SR targeting complexes.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (PFE); (RMS)
| | - Hiro Tsuruta
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Stanford University, Stanford, California, United States of America
| | - Gladys P. de Leon
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Johanna Napetschnig
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Laboratory of Cell Biology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (PFE); (RMS)
| |
Collapse
|